Merge branches 'acpi-pm', 'acpi-pci', 'acpi-sysfs' and 'acpi-tables'
[linux-2.6-microblaze.git] / arch / riscv / kvm / vcpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  *
5  * Authors:
6  *     Anup Patel <anup.patel@wdc.com>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24         KVM_GENERIC_VCPU_STATS(),
25         STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26         STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27         STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28         STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29         STATS_DESC_COUNTER(VCPU, exits)
30 };
31
32 const struct kvm_stats_header kvm_vcpu_stats_header = {
33         .name_size = KVM_STATS_NAME_SIZE,
34         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
35         .id_offset = sizeof(struct kvm_stats_header),
36         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
37         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
38                        sizeof(kvm_vcpu_stats_desc),
39 };
40
41 #define KVM_RISCV_ISA_DISABLE_ALLOWED   (riscv_isa_extension_mask(d) | \
42                                         riscv_isa_extension_mask(f))
43
44 #define KVM_RISCV_ISA_DISABLE_NOT_ALLOWED       (riscv_isa_extension_mask(a) | \
45                                                 riscv_isa_extension_mask(c) | \
46                                                 riscv_isa_extension_mask(i) | \
47                                                 riscv_isa_extension_mask(m))
48
49 #define KVM_RISCV_ISA_ALLOWED (KVM_RISCV_ISA_DISABLE_ALLOWED | \
50                                KVM_RISCV_ISA_DISABLE_NOT_ALLOWED)
51
52 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
53 {
54         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
55         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
56         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
57         struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
58         bool loaded;
59
60         /**
61          * The preemption should be disabled here because it races with
62          * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which
63          * also calls vcpu_load/put.
64          */
65         get_cpu();
66         loaded = (vcpu->cpu != -1);
67         if (loaded)
68                 kvm_arch_vcpu_put(vcpu);
69
70         memcpy(csr, reset_csr, sizeof(*csr));
71
72         memcpy(cntx, reset_cntx, sizeof(*cntx));
73
74         kvm_riscv_vcpu_fp_reset(vcpu);
75
76         kvm_riscv_vcpu_timer_reset(vcpu);
77
78         WRITE_ONCE(vcpu->arch.irqs_pending, 0);
79         WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
80
81         /* Reset the guest CSRs for hotplug usecase */
82         if (loaded)
83                 kvm_arch_vcpu_load(vcpu, smp_processor_id());
84         put_cpu();
85 }
86
87 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
88 {
89         return 0;
90 }
91
92 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
93 {
94         struct kvm_cpu_context *cntx;
95         struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
96
97         /* Mark this VCPU never ran */
98         vcpu->arch.ran_atleast_once = false;
99         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
100
101         /* Setup ISA features available to VCPU */
102         vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED;
103
104         /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
105         cntx = &vcpu->arch.guest_reset_context;
106         cntx->sstatus = SR_SPP | SR_SPIE;
107         cntx->hstatus = 0;
108         cntx->hstatus |= HSTATUS_VTW;
109         cntx->hstatus |= HSTATUS_SPVP;
110         cntx->hstatus |= HSTATUS_SPV;
111
112         /* By default, make CY, TM, and IR counters accessible in VU mode */
113         reset_csr->scounteren = 0x7;
114
115         /* Setup VCPU timer */
116         kvm_riscv_vcpu_timer_init(vcpu);
117
118         /* Reset VCPU */
119         kvm_riscv_reset_vcpu(vcpu);
120
121         return 0;
122 }
123
124 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
125 {
126         /**
127          * vcpu with id 0 is the designated boot cpu.
128          * Keep all vcpus with non-zero id in power-off state so that
129          * they can be brought up using SBI HSM extension.
130          */
131         if (vcpu->vcpu_idx != 0)
132                 kvm_riscv_vcpu_power_off(vcpu);
133 }
134
135 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
136 {
137         /* Cleanup VCPU timer */
138         kvm_riscv_vcpu_timer_deinit(vcpu);
139
140         /* Free unused pages pre-allocated for Stage2 page table mappings */
141         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
142 }
143
144 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
145 {
146         return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
147 }
148
149 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
150 {
151 }
152
153 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
154 {
155 }
156
157 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
158 {
159         return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
160                 !vcpu->arch.power_off && !vcpu->arch.pause);
161 }
162
163 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
164 {
165         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
166 }
167
168 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
169 {
170         return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
171 }
172
173 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
174 {
175         return VM_FAULT_SIGBUS;
176 }
177
178 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
179                                          const struct kvm_one_reg *reg)
180 {
181         unsigned long __user *uaddr =
182                         (unsigned long __user *)(unsigned long)reg->addr;
183         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
184                                             KVM_REG_SIZE_MASK |
185                                             KVM_REG_RISCV_CONFIG);
186         unsigned long reg_val;
187
188         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
189                 return -EINVAL;
190
191         switch (reg_num) {
192         case KVM_REG_RISCV_CONFIG_REG(isa):
193                 reg_val = vcpu->arch.isa;
194                 break;
195         default:
196                 return -EINVAL;
197         }
198
199         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
200                 return -EFAULT;
201
202         return 0;
203 }
204
205 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
206                                          const struct kvm_one_reg *reg)
207 {
208         unsigned long __user *uaddr =
209                         (unsigned long __user *)(unsigned long)reg->addr;
210         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
211                                             KVM_REG_SIZE_MASK |
212                                             KVM_REG_RISCV_CONFIG);
213         unsigned long reg_val;
214
215         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
216                 return -EINVAL;
217
218         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
219                 return -EFAULT;
220
221         switch (reg_num) {
222         case KVM_REG_RISCV_CONFIG_REG(isa):
223                 if (!vcpu->arch.ran_atleast_once) {
224                         /* Ignore the disable request for these extensions */
225                         vcpu->arch.isa = reg_val | KVM_RISCV_ISA_DISABLE_NOT_ALLOWED;
226                         vcpu->arch.isa &= riscv_isa_extension_base(NULL);
227                         vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
228                         kvm_riscv_vcpu_fp_reset(vcpu);
229                 } else {
230                         return -EOPNOTSUPP;
231                 }
232                 break;
233         default:
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
241                                        const struct kvm_one_reg *reg)
242 {
243         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
244         unsigned long __user *uaddr =
245                         (unsigned long __user *)(unsigned long)reg->addr;
246         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
247                                             KVM_REG_SIZE_MASK |
248                                             KVM_REG_RISCV_CORE);
249         unsigned long reg_val;
250
251         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
252                 return -EINVAL;
253         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
254                 return -EINVAL;
255
256         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
257                 reg_val = cntx->sepc;
258         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
259                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
260                 reg_val = ((unsigned long *)cntx)[reg_num];
261         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
262                 reg_val = (cntx->sstatus & SR_SPP) ?
263                                 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
264         else
265                 return -EINVAL;
266
267         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
268                 return -EFAULT;
269
270         return 0;
271 }
272
273 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
274                                        const struct kvm_one_reg *reg)
275 {
276         struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
277         unsigned long __user *uaddr =
278                         (unsigned long __user *)(unsigned long)reg->addr;
279         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
280                                             KVM_REG_SIZE_MASK |
281                                             KVM_REG_RISCV_CORE);
282         unsigned long reg_val;
283
284         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
285                 return -EINVAL;
286         if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
287                 return -EINVAL;
288
289         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
290                 return -EFAULT;
291
292         if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
293                 cntx->sepc = reg_val;
294         else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
295                  reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
296                 ((unsigned long *)cntx)[reg_num] = reg_val;
297         else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
298                 if (reg_val == KVM_RISCV_MODE_S)
299                         cntx->sstatus |= SR_SPP;
300                 else
301                         cntx->sstatus &= ~SR_SPP;
302         } else
303                 return -EINVAL;
304
305         return 0;
306 }
307
308 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
309                                       const struct kvm_one_reg *reg)
310 {
311         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
312         unsigned long __user *uaddr =
313                         (unsigned long __user *)(unsigned long)reg->addr;
314         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
315                                             KVM_REG_SIZE_MASK |
316                                             KVM_REG_RISCV_CSR);
317         unsigned long reg_val;
318
319         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
320                 return -EINVAL;
321         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
322                 return -EINVAL;
323
324         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
325                 kvm_riscv_vcpu_flush_interrupts(vcpu);
326                 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
327         } else
328                 reg_val = ((unsigned long *)csr)[reg_num];
329
330         if (copy_to_user(uaddr, &reg_val, KVM_REG_SIZE(reg->id)))
331                 return -EFAULT;
332
333         return 0;
334 }
335
336 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
337                                       const struct kvm_one_reg *reg)
338 {
339         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
340         unsigned long __user *uaddr =
341                         (unsigned long __user *)(unsigned long)reg->addr;
342         unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
343                                             KVM_REG_SIZE_MASK |
344                                             KVM_REG_RISCV_CSR);
345         unsigned long reg_val;
346
347         if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
348                 return -EINVAL;
349         if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
350                 return -EINVAL;
351
352         if (copy_from_user(&reg_val, uaddr, KVM_REG_SIZE(reg->id)))
353                 return -EFAULT;
354
355         if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
356                 reg_val &= VSIP_VALID_MASK;
357                 reg_val <<= VSIP_TO_HVIP_SHIFT;
358         }
359
360         ((unsigned long *)csr)[reg_num] = reg_val;
361
362         if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
363                 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
364
365         return 0;
366 }
367
368 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
369                                   const struct kvm_one_reg *reg)
370 {
371         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
372                 return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
373         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
374                 return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
375         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
376                 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
377         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
378                 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
379         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
380                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
381                                                  KVM_REG_RISCV_FP_F);
382         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
383                 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
384                                                  KVM_REG_RISCV_FP_D);
385
386         return -EINVAL;
387 }
388
389 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
390                                   const struct kvm_one_reg *reg)
391 {
392         if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
393                 return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
394         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
395                 return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
396         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
397                 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
398         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
399                 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
400         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
401                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
402                                                  KVM_REG_RISCV_FP_F);
403         else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
404                 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
405                                                  KVM_REG_RISCV_FP_D);
406
407         return -EINVAL;
408 }
409
410 long kvm_arch_vcpu_async_ioctl(struct file *filp,
411                                unsigned int ioctl, unsigned long arg)
412 {
413         struct kvm_vcpu *vcpu = filp->private_data;
414         void __user *argp = (void __user *)arg;
415
416         if (ioctl == KVM_INTERRUPT) {
417                 struct kvm_interrupt irq;
418
419                 if (copy_from_user(&irq, argp, sizeof(irq)))
420                         return -EFAULT;
421
422                 if (irq.irq == KVM_INTERRUPT_SET)
423                         return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
424                 else
425                         return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
426         }
427
428         return -ENOIOCTLCMD;
429 }
430
431 long kvm_arch_vcpu_ioctl(struct file *filp,
432                          unsigned int ioctl, unsigned long arg)
433 {
434         struct kvm_vcpu *vcpu = filp->private_data;
435         void __user *argp = (void __user *)arg;
436         long r = -EINVAL;
437
438         switch (ioctl) {
439         case KVM_SET_ONE_REG:
440         case KVM_GET_ONE_REG: {
441                 struct kvm_one_reg reg;
442
443                 r = -EFAULT;
444                 if (copy_from_user(&reg, argp, sizeof(reg)))
445                         break;
446
447                 if (ioctl == KVM_SET_ONE_REG)
448                         r = kvm_riscv_vcpu_set_reg(vcpu, &reg);
449                 else
450                         r = kvm_riscv_vcpu_get_reg(vcpu, &reg);
451                 break;
452         }
453         default:
454                 break;
455         }
456
457         return r;
458 }
459
460 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
461                                   struct kvm_sregs *sregs)
462 {
463         return -EINVAL;
464 }
465
466 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
467                                   struct kvm_sregs *sregs)
468 {
469         return -EINVAL;
470 }
471
472 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
473 {
474         return -EINVAL;
475 }
476
477 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
478 {
479         return -EINVAL;
480 }
481
482 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
483                                   struct kvm_translation *tr)
484 {
485         return -EINVAL;
486 }
487
488 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
489 {
490         return -EINVAL;
491 }
492
493 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
494 {
495         return -EINVAL;
496 }
497
498 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
499 {
500         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
501         unsigned long mask, val;
502
503         if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
504                 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
505                 val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
506
507                 csr->hvip &= ~mask;
508                 csr->hvip |= val;
509         }
510 }
511
512 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
513 {
514         unsigned long hvip;
515         struct kvm_vcpu_arch *v = &vcpu->arch;
516         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
517
518         /* Read current HVIP and VSIE CSRs */
519         csr->vsie = csr_read(CSR_VSIE);
520
521         /* Sync-up HVIP.VSSIP bit changes does by Guest */
522         hvip = csr_read(CSR_HVIP);
523         if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
524                 if (hvip & (1UL << IRQ_VS_SOFT)) {
525                         if (!test_and_set_bit(IRQ_VS_SOFT,
526                                               &v->irqs_pending_mask))
527                                 set_bit(IRQ_VS_SOFT, &v->irqs_pending);
528                 } else {
529                         if (!test_and_set_bit(IRQ_VS_SOFT,
530                                               &v->irqs_pending_mask))
531                                 clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
532                 }
533         }
534 }
535
536 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
537 {
538         if (irq != IRQ_VS_SOFT &&
539             irq != IRQ_VS_TIMER &&
540             irq != IRQ_VS_EXT)
541                 return -EINVAL;
542
543         set_bit(irq, &vcpu->arch.irqs_pending);
544         smp_mb__before_atomic();
545         set_bit(irq, &vcpu->arch.irqs_pending_mask);
546
547         kvm_vcpu_kick(vcpu);
548
549         return 0;
550 }
551
552 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
553 {
554         if (irq != IRQ_VS_SOFT &&
555             irq != IRQ_VS_TIMER &&
556             irq != IRQ_VS_EXT)
557                 return -EINVAL;
558
559         clear_bit(irq, &vcpu->arch.irqs_pending);
560         smp_mb__before_atomic();
561         set_bit(irq, &vcpu->arch.irqs_pending_mask);
562
563         return 0;
564 }
565
566 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
567 {
568         unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
569                             << VSIP_TO_HVIP_SHIFT) & mask;
570
571         return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
572 }
573
574 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
575 {
576         vcpu->arch.power_off = true;
577         kvm_make_request(KVM_REQ_SLEEP, vcpu);
578         kvm_vcpu_kick(vcpu);
579 }
580
581 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
582 {
583         vcpu->arch.power_off = false;
584         kvm_vcpu_wake_up(vcpu);
585 }
586
587 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
588                                     struct kvm_mp_state *mp_state)
589 {
590         if (vcpu->arch.power_off)
591                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
592         else
593                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
594
595         return 0;
596 }
597
598 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
599                                     struct kvm_mp_state *mp_state)
600 {
601         int ret = 0;
602
603         switch (mp_state->mp_state) {
604         case KVM_MP_STATE_RUNNABLE:
605                 vcpu->arch.power_off = false;
606                 break;
607         case KVM_MP_STATE_STOPPED:
608                 kvm_riscv_vcpu_power_off(vcpu);
609                 break;
610         default:
611                 ret = -EINVAL;
612         }
613
614         return ret;
615 }
616
617 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
618                                         struct kvm_guest_debug *dbg)
619 {
620         /* TODO; To be implemented later. */
621         return -EINVAL;
622 }
623
624 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
625 {
626         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
627
628         csr_write(CSR_VSSTATUS, csr->vsstatus);
629         csr_write(CSR_VSIE, csr->vsie);
630         csr_write(CSR_VSTVEC, csr->vstvec);
631         csr_write(CSR_VSSCRATCH, csr->vsscratch);
632         csr_write(CSR_VSEPC, csr->vsepc);
633         csr_write(CSR_VSCAUSE, csr->vscause);
634         csr_write(CSR_VSTVAL, csr->vstval);
635         csr_write(CSR_HVIP, csr->hvip);
636         csr_write(CSR_VSATP, csr->vsatp);
637
638         kvm_riscv_stage2_update_hgatp(vcpu);
639
640         kvm_riscv_vcpu_timer_restore(vcpu);
641
642         kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
643         kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
644                                         vcpu->arch.isa);
645
646         vcpu->cpu = cpu;
647 }
648
649 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
650 {
651         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
652
653         vcpu->cpu = -1;
654
655         kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
656                                      vcpu->arch.isa);
657         kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
658
659         csr->vsstatus = csr_read(CSR_VSSTATUS);
660         csr->vsie = csr_read(CSR_VSIE);
661         csr->vstvec = csr_read(CSR_VSTVEC);
662         csr->vsscratch = csr_read(CSR_VSSCRATCH);
663         csr->vsepc = csr_read(CSR_VSEPC);
664         csr->vscause = csr_read(CSR_VSCAUSE);
665         csr->vstval = csr_read(CSR_VSTVAL);
666         csr->hvip = csr_read(CSR_HVIP);
667         csr->vsatp = csr_read(CSR_VSATP);
668 }
669
670 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
671 {
672         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
673
674         if (kvm_request_pending(vcpu)) {
675                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
676                         rcuwait_wait_event(wait,
677                                 (!vcpu->arch.power_off) && (!vcpu->arch.pause),
678                                 TASK_INTERRUPTIBLE);
679
680                         if (vcpu->arch.power_off || vcpu->arch.pause) {
681                                 /*
682                                  * Awaken to handle a signal, request to
683                                  * sleep again later.
684                                  */
685                                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
686                         }
687                 }
688
689                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
690                         kvm_riscv_reset_vcpu(vcpu);
691
692                 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
693                         kvm_riscv_stage2_update_hgatp(vcpu);
694
695                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
696                         __kvm_riscv_hfence_gvma_all();
697         }
698 }
699
700 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
701 {
702         struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
703
704         csr_write(CSR_HVIP, csr->hvip);
705 }
706
707 /*
708  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
709  * the vCPU is running.
710  *
711  * This must be noinstr as instrumentation may make use of RCU, and this is not
712  * safe during the EQS.
713  */
714 static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu)
715 {
716         guest_state_enter_irqoff();
717         __kvm_riscv_switch_to(&vcpu->arch);
718         guest_state_exit_irqoff();
719 }
720
721 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
722 {
723         int ret;
724         struct kvm_cpu_trap trap;
725         struct kvm_run *run = vcpu->run;
726
727         /* Mark this VCPU ran at least once */
728         vcpu->arch.ran_atleast_once = true;
729
730         kvm_vcpu_srcu_read_lock(vcpu);
731
732         /* Process MMIO value returned from user-space */
733         if (run->exit_reason == KVM_EXIT_MMIO) {
734                 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
735                 if (ret) {
736                         kvm_vcpu_srcu_read_unlock(vcpu);
737                         return ret;
738                 }
739         }
740
741         /* Process SBI value returned from user-space */
742         if (run->exit_reason == KVM_EXIT_RISCV_SBI) {
743                 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
744                 if (ret) {
745                         kvm_vcpu_srcu_read_unlock(vcpu);
746                         return ret;
747                 }
748         }
749
750         if (run->immediate_exit) {
751                 kvm_vcpu_srcu_read_unlock(vcpu);
752                 return -EINTR;
753         }
754
755         vcpu_load(vcpu);
756
757         kvm_sigset_activate(vcpu);
758
759         ret = 1;
760         run->exit_reason = KVM_EXIT_UNKNOWN;
761         while (ret > 0) {
762                 /* Check conditions before entering the guest */
763                 cond_resched();
764
765                 kvm_riscv_stage2_vmid_update(vcpu);
766
767                 kvm_riscv_check_vcpu_requests(vcpu);
768
769                 preempt_disable();
770
771                 local_irq_disable();
772
773                 /*
774                  * Exit if we have a signal pending so that we can deliver
775                  * the signal to user space.
776                  */
777                 if (signal_pending(current)) {
778                         ret = -EINTR;
779                         run->exit_reason = KVM_EXIT_INTR;
780                 }
781
782                 /*
783                  * Ensure we set mode to IN_GUEST_MODE after we disable
784                  * interrupts and before the final VCPU requests check.
785                  * See the comment in kvm_vcpu_exiting_guest_mode() and
786                  * Documentation/virt/kvm/vcpu-requests.rst
787                  */
788                 vcpu->mode = IN_GUEST_MODE;
789
790                 kvm_vcpu_srcu_read_unlock(vcpu);
791                 smp_mb__after_srcu_read_unlock();
792
793                 /*
794                  * We might have got VCPU interrupts updated asynchronously
795                  * so update it in HW.
796                  */
797                 kvm_riscv_vcpu_flush_interrupts(vcpu);
798
799                 /* Update HVIP CSR for current CPU */
800                 kvm_riscv_update_hvip(vcpu);
801
802                 if (ret <= 0 ||
803                     kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
804                     kvm_request_pending(vcpu)) {
805                         vcpu->mode = OUTSIDE_GUEST_MODE;
806                         local_irq_enable();
807                         preempt_enable();
808                         kvm_vcpu_srcu_read_lock(vcpu);
809                         continue;
810                 }
811
812                 guest_timing_enter_irqoff();
813
814                 kvm_riscv_vcpu_enter_exit(vcpu);
815
816                 vcpu->mode = OUTSIDE_GUEST_MODE;
817                 vcpu->stat.exits++;
818
819                 /*
820                  * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
821                  * get an interrupt between __kvm_riscv_switch_to() and
822                  * local_irq_enable() which can potentially change CSRs.
823                  */
824                 trap.sepc = vcpu->arch.guest_context.sepc;
825                 trap.scause = csr_read(CSR_SCAUSE);
826                 trap.stval = csr_read(CSR_STVAL);
827                 trap.htval = csr_read(CSR_HTVAL);
828                 trap.htinst = csr_read(CSR_HTINST);
829
830                 /* Syncup interrupts state with HW */
831                 kvm_riscv_vcpu_sync_interrupts(vcpu);
832
833                 /*
834                  * We must ensure that any pending interrupts are taken before
835                  * we exit guest timing so that timer ticks are accounted as
836                  * guest time. Transiently unmask interrupts so that any
837                  * pending interrupts are taken.
838                  *
839                  * There's no barrier which ensures that pending interrupts are
840                  * recognised, so we just hope that the CPU takes any pending
841                  * interrupts between the enable and disable.
842                  */
843                 local_irq_enable();
844                 local_irq_disable();
845
846                 guest_timing_exit_irqoff();
847
848                 local_irq_enable();
849
850                 preempt_enable();
851
852                 kvm_vcpu_srcu_read_lock(vcpu);
853
854                 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
855         }
856
857         kvm_sigset_deactivate(vcpu);
858
859         vcpu_put(vcpu);
860
861         kvm_vcpu_srcu_read_unlock(vcpu);
862
863         return ret;
864 }