Merge tag 'v5.9-rc2' into regulator-5.9
[linux-2.6-microblaze.git] / arch / riscv / kernel / kgdb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 SiFive
4  */
5
6 #include <linux/ptrace.h>
7 #include <linux/kdebug.h>
8 #include <linux/bug.h>
9 #include <linux/kgdb.h>
10 #include <linux/irqflags.h>
11 #include <linux/string.h>
12 #include <asm/cacheflush.h>
13 #include <asm/gdb_xml.h>
14 #include <asm/parse_asm.h>
15
16 enum {
17         NOT_KGDB_BREAK = 0,
18         KGDB_SW_BREAK,
19         KGDB_COMPILED_BREAK,
20         KGDB_SW_SINGLE_STEP
21 };
22
23 static unsigned long stepped_address;
24 static unsigned int stepped_opcode;
25
26 #if __riscv_xlen == 32
27 /* C.JAL is an RV32C-only instruction */
28 DECLARE_INSN(c_jal, MATCH_C_JAL, MASK_C_JAL)
29 #else
30 #define is_c_jal_insn(opcode) 0
31 #endif
32 DECLARE_INSN(jalr, MATCH_JALR, MASK_JALR)
33 DECLARE_INSN(jal, MATCH_JAL, MASK_JAL)
34 DECLARE_INSN(c_jr, MATCH_C_JR, MASK_C_JR)
35 DECLARE_INSN(c_jalr, MATCH_C_JALR, MASK_C_JALR)
36 DECLARE_INSN(c_j, MATCH_C_J, MASK_C_J)
37 DECLARE_INSN(beq, MATCH_BEQ, MASK_BEQ)
38 DECLARE_INSN(bne, MATCH_BNE, MASK_BNE)
39 DECLARE_INSN(blt, MATCH_BLT, MASK_BLT)
40 DECLARE_INSN(bge, MATCH_BGE, MASK_BGE)
41 DECLARE_INSN(bltu, MATCH_BLTU, MASK_BLTU)
42 DECLARE_INSN(bgeu, MATCH_BGEU, MASK_BGEU)
43 DECLARE_INSN(c_beqz, MATCH_C_BEQZ, MASK_C_BEQZ)
44 DECLARE_INSN(c_bnez, MATCH_C_BNEZ, MASK_C_BNEZ)
45 DECLARE_INSN(sret, MATCH_SRET, MASK_SRET)
46
47 static int decode_register_index(unsigned long opcode, int offset)
48 {
49         return (opcode >> offset) & 0x1F;
50 }
51
52 static int decode_register_index_short(unsigned long opcode, int offset)
53 {
54         return ((opcode >> offset) & 0x7) + 8;
55 }
56
57 /* Calculate the new address for after a step */
58 static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
59 {
60         unsigned long pc = regs->epc;
61         unsigned long *regs_ptr = (unsigned long *)regs;
62         unsigned int rs1_num, rs2_num;
63         int op_code;
64
65         if (get_kernel_nofault(op_code, (void *)pc))
66                 return -EINVAL;
67         if ((op_code & __INSN_LENGTH_MASK) != __INSN_LENGTH_GE_32) {
68                 if (is_c_jalr_insn(op_code) || is_c_jr_insn(op_code)) {
69                         rs1_num = decode_register_index(op_code, RVC_C2_RS1_OPOFF);
70                         *next_addr = regs_ptr[rs1_num];
71                 } else if (is_c_j_insn(op_code) || is_c_jal_insn(op_code)) {
72                         *next_addr = EXTRACT_RVC_J_IMM(op_code) + pc;
73                 } else if (is_c_beqz_insn(op_code)) {
74                         rs1_num = decode_register_index_short(op_code,
75                                                               RVC_C1_RS1_OPOFF);
76                         if (!rs1_num || regs_ptr[rs1_num] == 0)
77                                 *next_addr = EXTRACT_RVC_B_IMM(op_code) + pc;
78                         else
79                                 *next_addr = pc + 2;
80                 } else if (is_c_bnez_insn(op_code)) {
81                         rs1_num =
82                             decode_register_index_short(op_code, RVC_C1_RS1_OPOFF);
83                         if (rs1_num && regs_ptr[rs1_num] != 0)
84                                 *next_addr = EXTRACT_RVC_B_IMM(op_code) + pc;
85                         else
86                                 *next_addr = pc + 2;
87                 } else {
88                         *next_addr = pc + 2;
89                 }
90         } else {
91                 if ((op_code & __INSN_OPCODE_MASK) == __INSN_BRANCH_OPCODE) {
92                         bool result = false;
93                         long imm = EXTRACT_BTYPE_IMM(op_code);
94                         unsigned long rs1_val = 0, rs2_val = 0;
95
96                         rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF);
97                         rs2_num = decode_register_index(op_code, RVG_RS2_OPOFF);
98                         if (rs1_num)
99                                 rs1_val = regs_ptr[rs1_num];
100                         if (rs2_num)
101                                 rs2_val = regs_ptr[rs2_num];
102
103                         if (is_beq_insn(op_code))
104                                 result = (rs1_val == rs2_val) ? true : false;
105                         else if (is_bne_insn(op_code))
106                                 result = (rs1_val != rs2_val) ? true : false;
107                         else if (is_blt_insn(op_code))
108                                 result =
109                                     ((long)rs1_val <
110                                      (long)rs2_val) ? true : false;
111                         else if (is_bge_insn(op_code))
112                                 result =
113                                     ((long)rs1_val >=
114                                      (long)rs2_val) ? true : false;
115                         else if (is_bltu_insn(op_code))
116                                 result = (rs1_val < rs2_val) ? true : false;
117                         else if (is_bgeu_insn(op_code))
118                                 result = (rs1_val >= rs2_val) ? true : false;
119                         if (result)
120                                 *next_addr = imm + pc;
121                         else
122                                 *next_addr = pc + 4;
123                 } else if (is_jal_insn(op_code)) {
124                         *next_addr = EXTRACT_JTYPE_IMM(op_code) + pc;
125                 } else if (is_jalr_insn(op_code)) {
126                         rs1_num = decode_register_index(op_code, RVG_RS1_OPOFF);
127                         if (rs1_num)
128                                 *next_addr = ((unsigned long *)regs)[rs1_num];
129                         *next_addr += EXTRACT_ITYPE_IMM(op_code);
130                 } else if (is_sret_insn(op_code)) {
131                         *next_addr = pc;
132                 } else {
133                         *next_addr = pc + 4;
134                 }
135         }
136         return 0;
137 }
138
139 static int do_single_step(struct pt_regs *regs)
140 {
141         /* Determine where the target instruction will send us to */
142         unsigned long addr = 0;
143         int error = get_step_address(regs, &addr);
144
145         if (error)
146                 return error;
147
148         /* Store the op code in the stepped address */
149         error = get_kernel_nofault(stepped_opcode, (void *)addr);
150         if (error)
151                 return error;
152
153         stepped_address = addr;
154
155         /* Replace the op code with the break instruction */
156         error = copy_to_kernel_nofault((void *)stepped_address,
157                                    arch_kgdb_ops.gdb_bpt_instr,
158                                    BREAK_INSTR_SIZE);
159         /* Flush and return */
160         if (!error) {
161                 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
162                 kgdb_single_step = 1;
163                 atomic_set(&kgdb_cpu_doing_single_step,
164                            raw_smp_processor_id());
165         } else {
166                 stepped_address = 0;
167                 stepped_opcode = 0;
168         }
169         return error;
170 }
171
172 /* Undo a single step */
173 static void undo_single_step(struct pt_regs *regs)
174 {
175         if (stepped_opcode != 0) {
176                 copy_to_kernel_nofault((void *)stepped_address,
177                                    (void *)&stepped_opcode, BREAK_INSTR_SIZE);
178                 flush_icache_range(stepped_address,
179                                    stepped_address + BREAK_INSTR_SIZE);
180         }
181         stepped_address = 0;
182         stepped_opcode = 0;
183         kgdb_single_step = 0;
184         atomic_set(&kgdb_cpu_doing_single_step, -1);
185 }
186
187 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
188         {DBG_REG_ZERO, GDB_SIZEOF_REG, -1},
189         {DBG_REG_RA, GDB_SIZEOF_REG, offsetof(struct pt_regs, ra)},
190         {DBG_REG_SP, GDB_SIZEOF_REG, offsetof(struct pt_regs, sp)},
191         {DBG_REG_GP, GDB_SIZEOF_REG, offsetof(struct pt_regs, gp)},
192         {DBG_REG_TP, GDB_SIZEOF_REG, offsetof(struct pt_regs, tp)},
193         {DBG_REG_T0, GDB_SIZEOF_REG, offsetof(struct pt_regs, t0)},
194         {DBG_REG_T1, GDB_SIZEOF_REG, offsetof(struct pt_regs, t1)},
195         {DBG_REG_T2, GDB_SIZEOF_REG, offsetof(struct pt_regs, t2)},
196         {DBG_REG_FP, GDB_SIZEOF_REG, offsetof(struct pt_regs, s0)},
197         {DBG_REG_S1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)},
198         {DBG_REG_A0, GDB_SIZEOF_REG, offsetof(struct pt_regs, a0)},
199         {DBG_REG_A1, GDB_SIZEOF_REG, offsetof(struct pt_regs, a1)},
200         {DBG_REG_A2, GDB_SIZEOF_REG, offsetof(struct pt_regs, a2)},
201         {DBG_REG_A3, GDB_SIZEOF_REG, offsetof(struct pt_regs, a3)},
202         {DBG_REG_A4, GDB_SIZEOF_REG, offsetof(struct pt_regs, a4)},
203         {DBG_REG_A5, GDB_SIZEOF_REG, offsetof(struct pt_regs, a5)},
204         {DBG_REG_A6, GDB_SIZEOF_REG, offsetof(struct pt_regs, a6)},
205         {DBG_REG_A7, GDB_SIZEOF_REG, offsetof(struct pt_regs, a7)},
206         {DBG_REG_S2, GDB_SIZEOF_REG, offsetof(struct pt_regs, s2)},
207         {DBG_REG_S3, GDB_SIZEOF_REG, offsetof(struct pt_regs, s3)},
208         {DBG_REG_S4, GDB_SIZEOF_REG, offsetof(struct pt_regs, s4)},
209         {DBG_REG_S5, GDB_SIZEOF_REG, offsetof(struct pt_regs, s5)},
210         {DBG_REG_S6, GDB_SIZEOF_REG, offsetof(struct pt_regs, s6)},
211         {DBG_REG_S7, GDB_SIZEOF_REG, offsetof(struct pt_regs, s7)},
212         {DBG_REG_S8, GDB_SIZEOF_REG, offsetof(struct pt_regs, s8)},
213         {DBG_REG_S9, GDB_SIZEOF_REG, offsetof(struct pt_regs, s9)},
214         {DBG_REG_S10, GDB_SIZEOF_REG, offsetof(struct pt_regs, s10)},
215         {DBG_REG_S11, GDB_SIZEOF_REG, offsetof(struct pt_regs, s11)},
216         {DBG_REG_T3, GDB_SIZEOF_REG, offsetof(struct pt_regs, t3)},
217         {DBG_REG_T4, GDB_SIZEOF_REG, offsetof(struct pt_regs, t4)},
218         {DBG_REG_T5, GDB_SIZEOF_REG, offsetof(struct pt_regs, t5)},
219         {DBG_REG_T6, GDB_SIZEOF_REG, offsetof(struct pt_regs, t6)},
220         {DBG_REG_EPC, GDB_SIZEOF_REG, offsetof(struct pt_regs, epc)},
221         {DBG_REG_STATUS, GDB_SIZEOF_REG, offsetof(struct pt_regs, status)},
222         {DBG_REG_BADADDR, GDB_SIZEOF_REG, offsetof(struct pt_regs, badaddr)},
223         {DBG_REG_CAUSE, GDB_SIZEOF_REG, offsetof(struct pt_regs, cause)},
224 };
225
226 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
227 {
228         if (regno >= DBG_MAX_REG_NUM || regno < 0)
229                 return NULL;
230
231         if (dbg_reg_def[regno].offset != -1)
232                 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
233                        dbg_reg_def[regno].size);
234         else
235                 memset(mem, 0, dbg_reg_def[regno].size);
236         return dbg_reg_def[regno].name;
237 }
238
239 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
240 {
241         if (regno >= DBG_MAX_REG_NUM || regno < 0)
242                 return -EINVAL;
243
244         if (dbg_reg_def[regno].offset != -1)
245                 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
246                        dbg_reg_def[regno].size);
247         return 0;
248 }
249
250 void
251 sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *task)
252 {
253         /* Initialize to zero */
254         memset((char *)gdb_regs, 0, NUMREGBYTES);
255
256         gdb_regs[DBG_REG_SP_OFF] = task->thread.sp;
257         gdb_regs[DBG_REG_FP_OFF] = task->thread.s[0];
258         gdb_regs[DBG_REG_S1_OFF] = task->thread.s[1];
259         gdb_regs[DBG_REG_S2_OFF] = task->thread.s[2];
260         gdb_regs[DBG_REG_S3_OFF] = task->thread.s[3];
261         gdb_regs[DBG_REG_S4_OFF] = task->thread.s[4];
262         gdb_regs[DBG_REG_S5_OFF] = task->thread.s[5];
263         gdb_regs[DBG_REG_S6_OFF] = task->thread.s[6];
264         gdb_regs[DBG_REG_S7_OFF] = task->thread.s[7];
265         gdb_regs[DBG_REG_S8_OFF] = task->thread.s[8];
266         gdb_regs[DBG_REG_S9_OFF] = task->thread.s[10];
267         gdb_regs[DBG_REG_S10_OFF] = task->thread.s[11];
268         gdb_regs[DBG_REG_EPC_OFF] = task->thread.ra;
269 }
270
271 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
272 {
273         regs->epc = pc;
274 }
275
276 void kgdb_arch_handle_qxfer_pkt(char *remcom_in_buffer,
277                                 char *remcom_out_buffer)
278 {
279         if (!strncmp(remcom_in_buffer, gdb_xfer_read_target,
280                      sizeof(gdb_xfer_read_target)))
281                 strcpy(remcom_out_buffer, riscv_gdb_stub_target_desc);
282         else if (!strncmp(remcom_in_buffer, gdb_xfer_read_cpuxml,
283                           sizeof(gdb_xfer_read_cpuxml)))
284                 strcpy(remcom_out_buffer, riscv_gdb_stub_cpuxml);
285 }
286
287 static inline void kgdb_arch_update_addr(struct pt_regs *regs,
288                                          char *remcom_in_buffer)
289 {
290         unsigned long addr;
291         char *ptr;
292
293         ptr = &remcom_in_buffer[1];
294         if (kgdb_hex2long(&ptr, &addr))
295                 regs->epc = addr;
296 }
297
298 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
299                                char *remcom_in_buffer, char *remcom_out_buffer,
300                                struct pt_regs *regs)
301 {
302         int err = 0;
303
304         undo_single_step(regs);
305
306         switch (remcom_in_buffer[0]) {
307         case 'c':
308         case 'D':
309         case 'k':
310                 if (remcom_in_buffer[0] == 'c')
311                         kgdb_arch_update_addr(regs, remcom_in_buffer);
312                 break;
313         case 's':
314                 kgdb_arch_update_addr(regs, remcom_in_buffer);
315                 err = do_single_step(regs);
316                 break;
317         default:
318                 err = -1;
319         }
320         return err;
321 }
322
323 static int kgdb_riscv_kgdbbreak(unsigned long addr)
324 {
325         if (stepped_address == addr)
326                 return KGDB_SW_SINGLE_STEP;
327         if (atomic_read(&kgdb_setting_breakpoint))
328                 if (addr == (unsigned long)&kgdb_compiled_break)
329                         return KGDB_COMPILED_BREAK;
330
331         return kgdb_has_hit_break(addr);
332 }
333
334 static int kgdb_riscv_notify(struct notifier_block *self, unsigned long cmd,
335                              void *ptr)
336 {
337         struct die_args *args = (struct die_args *)ptr;
338         struct pt_regs *regs = args->regs;
339         unsigned long flags;
340         int type;
341
342         if (user_mode(regs))
343                 return NOTIFY_DONE;
344
345         type = kgdb_riscv_kgdbbreak(regs->epc);
346         if (type == NOT_KGDB_BREAK && cmd == DIE_TRAP)
347                 return NOTIFY_DONE;
348
349         local_irq_save(flags);
350
351         if (kgdb_handle_exception(type == KGDB_SW_SINGLE_STEP ? 0 : 1,
352                                   args->signr, cmd, regs))
353                 return NOTIFY_DONE;
354
355         if (type == KGDB_COMPILED_BREAK)
356                 regs->epc += 4;
357
358         local_irq_restore(flags);
359
360         return NOTIFY_STOP;
361 }
362
363 static struct notifier_block kgdb_notifier = {
364         .notifier_call = kgdb_riscv_notify,
365 };
366
367 int kgdb_arch_init(void)
368 {
369         register_die_notifier(&kgdb_notifier);
370
371         return 0;
372 }
373
374 void kgdb_arch_exit(void)
375 {
376         unregister_die_notifier(&kgdb_notifier);
377 }
378
379 /*
380  * Global data
381  */
382 #ifdef CONFIG_RISCV_ISA_C
383 const struct kgdb_arch arch_kgdb_ops = {
384         .gdb_bpt_instr = {0x02, 0x90},  /* c.ebreak */
385 };
386 #else
387 const struct kgdb_arch arch_kgdb_ops = {
388         .gdb_bpt_instr = {0x73, 0x00, 0x10, 0x00},      /* ebreak */
389 };
390 #endif