Merge tag 'powerpc-5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / arch / powerpc / sysdev / fsl_gtm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale General-purpose Timers Module
4  *
5  * Copyright (c) Freescale Semiconductor, Inc. 2006.
6  *               Shlomi Gridish <gridish@freescale.com>
7  *               Jerry Huang <Chang-Ming.Huang@freescale.com>
8  * Copyright (c) MontaVista Software, Inc. 2008.
9  *               Anton Vorontsov <avorontsov@ru.mvista.com>
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/spinlock.h>
21 #include <linux/bitops.h>
22 #include <linux/slab.h>
23 #include <linux/export.h>
24 #include <asm/fsl_gtm.h>
25
26 #define GTCFR_STP(x)            ((x) & 1 ? 1 << 5 : 1 << 1)
27 #define GTCFR_RST(x)            ((x) & 1 ? 1 << 4 : 1 << 0)
28
29 #define GTMDR_ICLK_MASK         (3 << 1)
30 #define GTMDR_ICLK_ICAS         (0 << 1)
31 #define GTMDR_ICLK_ICLK         (1 << 1)
32 #define GTMDR_ICLK_SLGO         (2 << 1)
33 #define GTMDR_FRR               (1 << 3)
34 #define GTMDR_ORI               (1 << 4)
35 #define GTMDR_SPS(x)            ((x) << 8)
36
37 struct gtm_timers_regs {
38         u8      gtcfr1;         /* Timer 1, Timer 2 global config register */
39         u8      res0[0x3];
40         u8      gtcfr2;         /* Timer 3, timer 4 global config register */
41         u8      res1[0xB];
42         __be16  gtmdr1;         /* Timer 1 mode register */
43         __be16  gtmdr2;         /* Timer 2 mode register */
44         __be16  gtrfr1;         /* Timer 1 reference register */
45         __be16  gtrfr2;         /* Timer 2 reference register */
46         __be16  gtcpr1;         /* Timer 1 capture register */
47         __be16  gtcpr2;         /* Timer 2 capture register */
48         __be16  gtcnr1;         /* Timer 1 counter */
49         __be16  gtcnr2;         /* Timer 2 counter */
50         __be16  gtmdr3;         /* Timer 3 mode register */
51         __be16  gtmdr4;         /* Timer 4 mode register */
52         __be16  gtrfr3;         /* Timer 3 reference register */
53         __be16  gtrfr4;         /* Timer 4 reference register */
54         __be16  gtcpr3;         /* Timer 3 capture register */
55         __be16  gtcpr4;         /* Timer 4 capture register */
56         __be16  gtcnr3;         /* Timer 3 counter */
57         __be16  gtcnr4;         /* Timer 4 counter */
58         __be16  gtevr1;         /* Timer 1 event register */
59         __be16  gtevr2;         /* Timer 2 event register */
60         __be16  gtevr3;         /* Timer 3 event register */
61         __be16  gtevr4;         /* Timer 4 event register */
62         __be16  gtpsr1;         /* Timer 1 prescale register */
63         __be16  gtpsr2;         /* Timer 2 prescale register */
64         __be16  gtpsr3;         /* Timer 3 prescale register */
65         __be16  gtpsr4;         /* Timer 4 prescale register */
66         u8 res2[0x40];
67 } __attribute__ ((packed));
68
69 struct gtm {
70         unsigned int clock;
71         struct gtm_timers_regs __iomem *regs;
72         struct gtm_timer timers[4];
73         spinlock_t lock;
74         struct list_head list_node;
75 };
76
77 static LIST_HEAD(gtms);
78
79 /**
80  * gtm_get_timer - request GTM timer to use it with the rest of GTM API
81  * Context:     non-IRQ
82  *
83  * This function reserves GTM timer for later use. It returns gtm_timer
84  * structure to use with the rest of GTM API, you should use timer->irq
85  * to manage timer interrupt.
86  */
87 struct gtm_timer *gtm_get_timer16(void)
88 {
89         struct gtm *gtm = NULL;
90         int i;
91
92         list_for_each_entry(gtm, &gtms, list_node) {
93                 spin_lock_irq(&gtm->lock);
94
95                 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
96                         if (!gtm->timers[i].requested) {
97                                 gtm->timers[i].requested = true;
98                                 spin_unlock_irq(&gtm->lock);
99                                 return &gtm->timers[i];
100                         }
101                 }
102
103                 spin_unlock_irq(&gtm->lock);
104         }
105
106         if (gtm)
107                 return ERR_PTR(-EBUSY);
108         return ERR_PTR(-ENODEV);
109 }
110 EXPORT_SYMBOL(gtm_get_timer16);
111
112 /**
113  * gtm_get_specific_timer - request specific GTM timer
114  * @gtm:        specific GTM, pass here GTM's device_node->data
115  * @timer:      specific timer number, Timer1 is 0.
116  * Context:     non-IRQ
117  *
118  * This function reserves GTM timer for later use. It returns gtm_timer
119  * structure to use with the rest of GTM API, you should use timer->irq
120  * to manage timer interrupt.
121  */
122 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
123                                            unsigned int timer)
124 {
125         struct gtm_timer *ret = ERR_PTR(-EBUSY);
126
127         if (timer > 3)
128                 return ERR_PTR(-EINVAL);
129
130         spin_lock_irq(&gtm->lock);
131
132         if (gtm->timers[timer].requested)
133                 goto out;
134
135         ret = &gtm->timers[timer];
136         ret->requested = true;
137
138 out:
139         spin_unlock_irq(&gtm->lock);
140         return ret;
141 }
142 EXPORT_SYMBOL(gtm_get_specific_timer16);
143
144 /**
145  * gtm_put_timer16 - release 16 bits GTM timer
146  * @tmr:        pointer to the gtm_timer structure obtained from gtm_get_timer
147  * Context:     any
148  *
149  * This function releases GTM timer so others may request it.
150  */
151 void gtm_put_timer16(struct gtm_timer *tmr)
152 {
153         gtm_stop_timer16(tmr);
154
155         spin_lock_irq(&tmr->gtm->lock);
156         tmr->requested = false;
157         spin_unlock_irq(&tmr->gtm->lock);
158 }
159 EXPORT_SYMBOL(gtm_put_timer16);
160
161 /*
162  * This is back-end for the exported functions, it's used to reset single
163  * timer in reference mode.
164  */
165 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
166                                int reference_value, bool free_run)
167 {
168         struct gtm *gtm = tmr->gtm;
169         int num = tmr - &gtm->timers[0];
170         unsigned int prescaler;
171         u8 iclk = GTMDR_ICLK_ICLK;
172         u8 psr;
173         u8 sps;
174         unsigned long flags;
175         int max_prescaler = 256 * 256 * 16;
176
177         /* CPM2 doesn't have primary prescaler */
178         if (!tmr->gtpsr)
179                 max_prescaler /= 256;
180
181         prescaler = gtm->clock / frequency;
182         /*
183          * We have two 8 bit prescalers -- primary and secondary (psr, sps),
184          * plus "slow go" mode (clk / 16). So, total prescale value is
185          * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
186          */
187         if (prescaler > max_prescaler)
188                 return -EINVAL;
189
190         if (prescaler > max_prescaler / 16) {
191                 iclk = GTMDR_ICLK_SLGO;
192                 prescaler /= 16;
193         }
194
195         if (prescaler <= 256) {
196                 psr = 0;
197                 sps = prescaler - 1;
198         } else {
199                 psr = 256 - 1;
200                 sps = prescaler / 256 - 1;
201         }
202
203         spin_lock_irqsave(&gtm->lock, flags);
204
205         /*
206          * Properly reset timers: stop, reset, set up prescalers, reference
207          * value and clear event register.
208          */
209         clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
210                                  GTCFR_STP(num) | GTCFR_RST(num));
211
212         setbits8(tmr->gtcfr, GTCFR_STP(num));
213
214         if (tmr->gtpsr)
215                 out_be16(tmr->gtpsr, psr);
216         clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
217                         GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
218         out_be16(tmr->gtcnr, 0);
219         out_be16(tmr->gtrfr, reference_value);
220         out_be16(tmr->gtevr, 0xFFFF);
221
222         /* Let it be. */
223         clrbits8(tmr->gtcfr, GTCFR_STP(num));
224
225         spin_unlock_irqrestore(&gtm->lock, flags);
226
227         return 0;
228 }
229
230 /**
231  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
232  * @tmr:        pointer to the gtm_timer structure obtained from gtm_get_timer
233  * @usec:       timer interval in microseconds
234  * @reload:     if set, the timer will reset upon expiry rather than
235  *              continue running free.
236  * Context:     any
237  *
238  * This function (re)sets the GTM timer so that it counts up to the requested
239  * interval value, and fires the interrupt when the value is reached. This
240  * function will reduce the precision of the timer as needed in order for the
241  * requested timeout to fit in a 16-bit register.
242  */
243 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
244 {
245         /* quite obvious, frequency which is enough for µSec precision */
246         int freq = 1000000;
247         unsigned int bit;
248
249         bit = fls_long(usec);
250         if (bit > 15) {
251                 freq >>= bit - 15;
252                 usec >>= bit - 15;
253         }
254
255         if (!freq)
256                 return -EINVAL;
257
258         return gtm_set_ref_timer16(tmr, freq, usec, reload);
259 }
260 EXPORT_SYMBOL(gtm_set_timer16);
261
262 /**
263  * gtm_set_exact_utimer16 - (re)set 16 bits timer
264  * @tmr:        pointer to the gtm_timer structure obtained from gtm_get_timer
265  * @usec:       timer interval in microseconds
266  * @reload:     if set, the timer will reset upon expiry rather than
267  *              continue running free.
268  * Context:     any
269  *
270  * This function (re)sets GTM timer so that it counts up to the requested
271  * interval value, and fires the interrupt when the value is reached. If reload
272  * flag was set, timer will also reset itself upon reference value, otherwise
273  * it continues to increment.
274  *
275  * The _exact_ bit in the function name states that this function will not
276  * crop precision of the "usec" argument, thus usec is limited to 16 bits
277  * (single timer width).
278  */
279 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
280 {
281         /* quite obvious, frequency which is enough for µSec precision */
282         const int freq = 1000000;
283
284         /*
285          * We can lower the frequency (and probably power consumption) by
286          * dividing both frequency and usec by 2 until there is no remainder.
287          * But we won't bother with this unless savings are measured, so just
288          * run the timer as is.
289          */
290
291         return gtm_set_ref_timer16(tmr, freq, usec, reload);
292 }
293 EXPORT_SYMBOL(gtm_set_exact_timer16);
294
295 /**
296  * gtm_stop_timer16 - stop single timer
297  * @tmr:        pointer to the gtm_timer structure obtained from gtm_get_timer
298  * Context:     any
299  *
300  * This function simply stops the GTM timer.
301  */
302 void gtm_stop_timer16(struct gtm_timer *tmr)
303 {
304         struct gtm *gtm = tmr->gtm;
305         int num = tmr - &gtm->timers[0];
306         unsigned long flags;
307
308         spin_lock_irqsave(&gtm->lock, flags);
309
310         setbits8(tmr->gtcfr, GTCFR_STP(num));
311         out_be16(tmr->gtevr, 0xFFFF);
312
313         spin_unlock_irqrestore(&gtm->lock, flags);
314 }
315 EXPORT_SYMBOL(gtm_stop_timer16);
316
317 /**
318  * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
319  * @tmr:        pointer to the gtm_timer structure obtained from gtm_get_timer
320  * @events:     events mask to ack
321  * Context:     any
322  *
323  * Thus function used to acknowledge timer interrupt event, use it inside the
324  * interrupt handler.
325  */
326 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
327 {
328         out_be16(tmr->gtevr, events);
329 }
330 EXPORT_SYMBOL(gtm_ack_timer16);
331
332 static void __init gtm_set_shortcuts(struct device_node *np,
333                                      struct gtm_timer *timers,
334                                      struct gtm_timers_regs __iomem *regs)
335 {
336         /*
337          * Yeah, I don't like this either, but timers' registers a bit messed,
338          * so we have to provide shortcuts to write timer independent code.
339          * Alternative option is to create gt*() accessors, but that will be
340          * even uglier and cryptic.
341          */
342         timers[0].gtcfr = &regs->gtcfr1;
343         timers[0].gtmdr = &regs->gtmdr1;
344         timers[0].gtcnr = &regs->gtcnr1;
345         timers[0].gtrfr = &regs->gtrfr1;
346         timers[0].gtevr = &regs->gtevr1;
347
348         timers[1].gtcfr = &regs->gtcfr1;
349         timers[1].gtmdr = &regs->gtmdr2;
350         timers[1].gtcnr = &regs->gtcnr2;
351         timers[1].gtrfr = &regs->gtrfr2;
352         timers[1].gtevr = &regs->gtevr2;
353
354         timers[2].gtcfr = &regs->gtcfr2;
355         timers[2].gtmdr = &regs->gtmdr3;
356         timers[2].gtcnr = &regs->gtcnr3;
357         timers[2].gtrfr = &regs->gtrfr3;
358         timers[2].gtevr = &regs->gtevr3;
359
360         timers[3].gtcfr = &regs->gtcfr2;
361         timers[3].gtmdr = &regs->gtmdr4;
362         timers[3].gtcnr = &regs->gtcnr4;
363         timers[3].gtrfr = &regs->gtrfr4;
364         timers[3].gtevr = &regs->gtevr4;
365
366         /* CPM2 doesn't have primary prescaler */
367         if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
368                 timers[0].gtpsr = &regs->gtpsr1;
369                 timers[1].gtpsr = &regs->gtpsr2;
370                 timers[2].gtpsr = &regs->gtpsr3;
371                 timers[3].gtpsr = &regs->gtpsr4;
372         }
373 }
374
375 static int __init fsl_gtm_init(void)
376 {
377         struct device_node *np;
378
379         for_each_compatible_node(np, NULL, "fsl,gtm") {
380                 int i;
381                 struct gtm *gtm;
382                 const u32 *clock;
383                 int size;
384
385                 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
386                 if (!gtm) {
387                         pr_err("%pOF: unable to allocate memory\n",
388                                 np);
389                         continue;
390                 }
391
392                 spin_lock_init(&gtm->lock);
393
394                 clock = of_get_property(np, "clock-frequency", &size);
395                 if (!clock || size != sizeof(*clock)) {
396                         pr_err("%pOF: no clock-frequency\n", np);
397                         goto err;
398                 }
399                 gtm->clock = *clock;
400
401                 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
402                         unsigned int irq;
403
404                         irq = irq_of_parse_and_map(np, i);
405                         if (!irq) {
406                                 pr_err("%pOF: not enough interrupts specified\n",
407                                        np);
408                                 goto err;
409                         }
410                         gtm->timers[i].irq = irq;
411                         gtm->timers[i].gtm = gtm;
412                 }
413
414                 gtm->regs = of_iomap(np, 0);
415                 if (!gtm->regs) {
416                         pr_err("%pOF: unable to iomap registers\n",
417                                np);
418                         goto err;
419                 }
420
421                 gtm_set_shortcuts(np, gtm->timers, gtm->regs);
422                 list_add(&gtm->list_node, &gtms);
423
424                 /* We don't want to lose the node and its ->data */
425                 np->data = gtm;
426                 of_node_get(np);
427
428                 continue;
429 err:
430                 kfree(gtm);
431         }
432         return 0;
433 }
434 arch_initcall(fsl_gtm_init);