b722ac902269d8344a3d11e3b5793ca17563117b
[linux-2.6-microblaze.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24
25 #include <asm/sections.h>
26 #include <asm/io.h>
27 #include <asm/prom.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/machdep.h>
30 #include <asm/msi_bitmap.h>
31 #include <asm/ppc-pci.h>
32 #include <asm/opal.h>
33 #include <asm/iommu.h>
34 #include <asm/tce.h>
35 #include <asm/xics.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39 #include <asm/xive.h>
40
41 #include <misc/cxl-base.h>
42
43 #include "powernv.h"
44 #include "pci.h"
45 #include "../../../../drivers/pci/pci.h"
46
47 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
48 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
49 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
50
51 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
52
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54 static void pnv_pci_configure_bus(struct pci_bus *bus);
55
56 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57                             const char *fmt, ...)
58 {
59         struct va_format vaf;
60         va_list args;
61         char pfix[32];
62
63         va_start(args, fmt);
64
65         vaf.fmt = fmt;
66         vaf.va = &args;
67
68         if (pe->flags & PNV_IODA_PE_DEV)
69                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71                 sprintf(pfix, "%04x:%02x     ",
72                         pci_domain_nr(pe->pbus), pe->pbus->number);
73 #ifdef CONFIG_PCI_IOV
74         else if (pe->flags & PNV_IODA_PE_VF)
75                 sprintf(pfix, "%04x:%02x:%2x.%d",
76                         pci_domain_nr(pe->parent_dev->bus),
77                         (pe->rid & 0xff00) >> 8,
78                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79 #endif /* CONFIG_PCI_IOV*/
80
81         printk("%spci %s: [PE# %.2x] %pV",
82                level, pfix, pe->pe_number, &vaf);
83
84         va_end(args);
85 }
86
87 static bool pnv_iommu_bypass_disabled __read_mostly;
88 static bool pci_reset_phbs __read_mostly;
89
90 static int __init iommu_setup(char *str)
91 {
92         if (!str)
93                 return -EINVAL;
94
95         while (*str) {
96                 if (!strncmp(str, "nobypass", 8)) {
97                         pnv_iommu_bypass_disabled = true;
98                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
99                         break;
100                 }
101                 str += strcspn(str, ",");
102                 if (*str == ',')
103                         str++;
104         }
105
106         return 0;
107 }
108 early_param("iommu", iommu_setup);
109
110 static int __init pci_reset_phbs_setup(char *str)
111 {
112         pci_reset_phbs = true;
113         return 0;
114 }
115
116 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117
118 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119 {
120         s64 rc;
121
122         phb->ioda.pe_array[pe_no].phb = phb;
123         phb->ioda.pe_array[pe_no].pe_number = pe_no;
124         phb->ioda.pe_array[pe_no].dma_setup_done = false;
125
126         /*
127          * Clear the PE frozen state as it might be put into frozen state
128          * in the last PCI remove path. It's not harmful to do so when the
129          * PE is already in unfrozen state.
130          */
131         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135                         __func__, rc, phb->hose->global_number, pe_no);
136
137         return &phb->ioda.pe_array[pe_no];
138 }
139
140 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141 {
142         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
144                         __func__, pe_no, phb->hose->global_number);
145                 return;
146         }
147
148         mutex_lock(&phb->ioda.pe_alloc_mutex);
149         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
151                          __func__, pe_no, phb->hose->global_number);
152         mutex_unlock(&phb->ioda.pe_alloc_mutex);
153
154         pnv_ioda_init_pe(phb, pe_no);
155 }
156
157 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158 {
159         struct pnv_ioda_pe *ret = NULL;
160         int run = 0, pe, i;
161
162         mutex_lock(&phb->ioda.pe_alloc_mutex);
163
164         /* scan backwards for a run of @count cleared bits */
165         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166                 if (test_bit(pe, phb->ioda.pe_alloc)) {
167                         run = 0;
168                         continue;
169                 }
170
171                 run++;
172                 if (run == count)
173                         break;
174         }
175         if (run != count)
176                 goto out;
177
178         for (i = pe; i < pe + count; i++) {
179                 set_bit(i, phb->ioda.pe_alloc);
180                 pnv_ioda_init_pe(phb, i);
181         }
182         ret = &phb->ioda.pe_array[pe];
183
184 out:
185         mutex_unlock(&phb->ioda.pe_alloc_mutex);
186         return ret;
187 }
188
189 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190 {
191         struct pnv_phb *phb = pe->phb;
192         unsigned int pe_num = pe->pe_number;
193
194         WARN_ON(pe->pdev);
195         memset(pe, 0, sizeof(struct pnv_ioda_pe));
196
197         mutex_lock(&phb->ioda.pe_alloc_mutex);
198         clear_bit(pe_num, phb->ioda.pe_alloc);
199         mutex_unlock(&phb->ioda.pe_alloc_mutex);
200 }
201
202 /* The default M64 BAR is shared by all PEs */
203 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
204 {
205         const char *desc;
206         struct resource *r;
207         s64 rc;
208
209         /* Configure the default M64 BAR */
210         rc = opal_pci_set_phb_mem_window(phb->opal_id,
211                                          OPAL_M64_WINDOW_TYPE,
212                                          phb->ioda.m64_bar_idx,
213                                          phb->ioda.m64_base,
214                                          0, /* unused */
215                                          phb->ioda.m64_size);
216         if (rc != OPAL_SUCCESS) {
217                 desc = "configuring";
218                 goto fail;
219         }
220
221         /* Enable the default M64 BAR */
222         rc = opal_pci_phb_mmio_enable(phb->opal_id,
223                                       OPAL_M64_WINDOW_TYPE,
224                                       phb->ioda.m64_bar_idx,
225                                       OPAL_ENABLE_M64_SPLIT);
226         if (rc != OPAL_SUCCESS) {
227                 desc = "enabling";
228                 goto fail;
229         }
230
231         /*
232          * Exclude the segments for reserved and root bus PE, which
233          * are first or last two PEs.
234          */
235         r = &phb->hose->mem_resources[1];
236         if (phb->ioda.reserved_pe_idx == 0)
237                 r->start += (2 * phb->ioda.m64_segsize);
238         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
239                 r->end -= (2 * phb->ioda.m64_segsize);
240         else
241                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
242                         phb->ioda.reserved_pe_idx);
243
244         return 0;
245
246 fail:
247         pr_warn("  Failure %lld %s M64 BAR#%d\n",
248                 rc, desc, phb->ioda.m64_bar_idx);
249         opal_pci_phb_mmio_enable(phb->opal_id,
250                                  OPAL_M64_WINDOW_TYPE,
251                                  phb->ioda.m64_bar_idx,
252                                  OPAL_DISABLE_M64);
253         return -EIO;
254 }
255
256 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
257                                          unsigned long *pe_bitmap)
258 {
259         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
260         struct resource *r;
261         resource_size_t base, sgsz, start, end;
262         int segno, i;
263
264         base = phb->ioda.m64_base;
265         sgsz = phb->ioda.m64_segsize;
266         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
267                 r = &pdev->resource[i];
268                 if (!r->parent || !pnv_pci_is_m64(phb, r))
269                         continue;
270
271                 start = ALIGN_DOWN(r->start - base, sgsz);
272                 end = ALIGN(r->end - base, sgsz);
273                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
274                         if (pe_bitmap)
275                                 set_bit(segno, pe_bitmap);
276                         else
277                                 pnv_ioda_reserve_pe(phb, segno);
278                 }
279         }
280 }
281
282 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
283 {
284         struct resource *r;
285         int index;
286
287         /*
288          * There are 16 M64 BARs, each of which has 8 segments. So
289          * there are as many M64 segments as the maximum number of
290          * PEs, which is 128.
291          */
292         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
293                 unsigned long base, segsz = phb->ioda.m64_segsize;
294                 int64_t rc;
295
296                 base = phb->ioda.m64_base +
297                        index * PNV_IODA1_M64_SEGS * segsz;
298                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
299                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
300                                 PNV_IODA1_M64_SEGS * segsz);
301                 if (rc != OPAL_SUCCESS) {
302                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
303                                 rc, phb->hose->global_number, index);
304                         goto fail;
305                 }
306
307                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
308                                 OPAL_M64_WINDOW_TYPE, index,
309                                 OPAL_ENABLE_M64_SPLIT);
310                 if (rc != OPAL_SUCCESS) {
311                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
312                                 rc, phb->hose->global_number, index);
313                         goto fail;
314                 }
315         }
316
317         for (index = 0; index < phb->ioda.total_pe_num; index++) {
318                 int64_t rc;
319
320                 /*
321                  * P7IOC supports M64DT, which helps mapping M64 segment
322                  * to one particular PE#. However, PHB3 has fixed mapping
323                  * between M64 segment and PE#. In order to have same logic
324                  * for P7IOC and PHB3, we enforce fixed mapping between M64
325                  * segment and PE# on P7IOC.
326                  */
327                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
328                                 index, OPAL_M64_WINDOW_TYPE,
329                                 index / PNV_IODA1_M64_SEGS,
330                                 index % PNV_IODA1_M64_SEGS);
331                 if (rc != OPAL_SUCCESS) {
332                         pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
333                                 __func__, rc, phb->hose->global_number,
334                                 index);
335                         goto fail;
336                 }
337         }
338
339         /*
340          * Exclude the segments for reserved and root bus PE, which
341          * are first or last two PEs.
342          */
343         r = &phb->hose->mem_resources[1];
344         if (phb->ioda.reserved_pe_idx == 0)
345                 r->start += (2 * phb->ioda.m64_segsize);
346         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
347                 r->end -= (2 * phb->ioda.m64_segsize);
348         else
349                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
350                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
351
352         return 0;
353
354 fail:
355         for ( ; index >= 0; index--)
356                 opal_pci_phb_mmio_enable(phb->opal_id,
357                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
358
359         return -EIO;
360 }
361
362 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
363                                     unsigned long *pe_bitmap,
364                                     bool all)
365 {
366         struct pci_dev *pdev;
367
368         list_for_each_entry(pdev, &bus->devices, bus_list) {
369                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
370
371                 if (all && pdev->subordinate)
372                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
373                                                 pe_bitmap, all);
374         }
375 }
376
377 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
378 {
379         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
380         struct pnv_ioda_pe *master_pe, *pe;
381         unsigned long size, *pe_alloc;
382         int i;
383
384         /* Root bus shouldn't use M64 */
385         if (pci_is_root_bus(bus))
386                 return NULL;
387
388         /* Allocate bitmap */
389         size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
390         pe_alloc = kzalloc(size, GFP_KERNEL);
391         if (!pe_alloc) {
392                 pr_warn("%s: Out of memory !\n",
393                         __func__);
394                 return NULL;
395         }
396
397         /* Figure out reserved PE numbers by the PE */
398         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
399
400         /*
401          * the current bus might not own M64 window and that's all
402          * contributed by its child buses. For the case, we needn't
403          * pick M64 dependent PE#.
404          */
405         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
406                 kfree(pe_alloc);
407                 return NULL;
408         }
409
410         /*
411          * Figure out the master PE and put all slave PEs to master
412          * PE's list to form compound PE.
413          */
414         master_pe = NULL;
415         i = -1;
416         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
417                 phb->ioda.total_pe_num) {
418                 pe = &phb->ioda.pe_array[i];
419
420                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
421                 if (!master_pe) {
422                         pe->flags |= PNV_IODA_PE_MASTER;
423                         INIT_LIST_HEAD(&pe->slaves);
424                         master_pe = pe;
425                 } else {
426                         pe->flags |= PNV_IODA_PE_SLAVE;
427                         pe->master = master_pe;
428                         list_add_tail(&pe->list, &master_pe->slaves);
429                 }
430         }
431
432         kfree(pe_alloc);
433         return master_pe;
434 }
435
436 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
437 {
438         struct pci_controller *hose = phb->hose;
439         struct device_node *dn = hose->dn;
440         struct resource *res;
441         u32 m64_range[2], i;
442         const __be32 *r;
443         u64 pci_addr;
444
445         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
446                 pr_info("  Not support M64 window\n");
447                 return;
448         }
449
450         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
451                 pr_info("  Firmware too old to support M64 window\n");
452                 return;
453         }
454
455         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
456         if (!r) {
457                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
458                         dn);
459                 return;
460         }
461
462         /*
463          * Find the available M64 BAR range and pickup the last one for
464          * covering the whole 64-bits space. We support only one range.
465          */
466         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
467                                        m64_range, 2)) {
468                 /* In absence of the property, assume 0..15 */
469                 m64_range[0] = 0;
470                 m64_range[1] = 16;
471         }
472         /* We only support 64 bits in our allocator */
473         if (m64_range[1] > 63) {
474                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
475                         __func__, m64_range[1], phb->hose->global_number);
476                 m64_range[1] = 63;
477         }
478         /* Empty range, no m64 */
479         if (m64_range[1] <= m64_range[0]) {
480                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
481                         __func__, phb->hose->global_number);
482                 return;
483         }
484
485         /* Configure M64 informations */
486         res = &hose->mem_resources[1];
487         res->name = dn->full_name;
488         res->start = of_translate_address(dn, r + 2);
489         res->end = res->start + of_read_number(r + 4, 2) - 1;
490         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
491         pci_addr = of_read_number(r, 2);
492         hose->mem_offset[1] = res->start - pci_addr;
493
494         phb->ioda.m64_size = resource_size(res);
495         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
496         phb->ioda.m64_base = pci_addr;
497
498         /* This lines up nicely with the display from processing OF ranges */
499         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
500                 res->start, res->end, pci_addr, m64_range[0],
501                 m64_range[0] + m64_range[1] - 1);
502
503         /* Mark all M64 used up by default */
504         phb->ioda.m64_bar_alloc = (unsigned long)-1;
505
506         /* Use last M64 BAR to cover M64 window */
507         m64_range[1]--;
508         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
509
510         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
511
512         /* Mark remaining ones free */
513         for (i = m64_range[0]; i < m64_range[1]; i++)
514                 clear_bit(i, &phb->ioda.m64_bar_alloc);
515
516         /*
517          * Setup init functions for M64 based on IODA version, IODA3 uses
518          * the IODA2 code.
519          */
520         if (phb->type == PNV_PHB_IODA1)
521                 phb->init_m64 = pnv_ioda1_init_m64;
522         else
523                 phb->init_m64 = pnv_ioda2_init_m64;
524 }
525
526 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
527 {
528         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
529         struct pnv_ioda_pe *slave;
530         s64 rc;
531
532         /* Fetch master PE */
533         if (pe->flags & PNV_IODA_PE_SLAVE) {
534                 pe = pe->master;
535                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
536                         return;
537
538                 pe_no = pe->pe_number;
539         }
540
541         /* Freeze master PE */
542         rc = opal_pci_eeh_freeze_set(phb->opal_id,
543                                      pe_no,
544                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
545         if (rc != OPAL_SUCCESS) {
546                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
547                         __func__, rc, phb->hose->global_number, pe_no);
548                 return;
549         }
550
551         /* Freeze slave PEs */
552         if (!(pe->flags & PNV_IODA_PE_MASTER))
553                 return;
554
555         list_for_each_entry(slave, &pe->slaves, list) {
556                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
557                                              slave->pe_number,
558                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
559                 if (rc != OPAL_SUCCESS)
560                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
561                                 __func__, rc, phb->hose->global_number,
562                                 slave->pe_number);
563         }
564 }
565
566 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
567 {
568         struct pnv_ioda_pe *pe, *slave;
569         s64 rc;
570
571         /* Find master PE */
572         pe = &phb->ioda.pe_array[pe_no];
573         if (pe->flags & PNV_IODA_PE_SLAVE) {
574                 pe = pe->master;
575                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
576                 pe_no = pe->pe_number;
577         }
578
579         /* Clear frozen state for master PE */
580         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
581         if (rc != OPAL_SUCCESS) {
582                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
583                         __func__, rc, opt, phb->hose->global_number, pe_no);
584                 return -EIO;
585         }
586
587         if (!(pe->flags & PNV_IODA_PE_MASTER))
588                 return 0;
589
590         /* Clear frozen state for slave PEs */
591         list_for_each_entry(slave, &pe->slaves, list) {
592                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
593                                              slave->pe_number,
594                                              opt);
595                 if (rc != OPAL_SUCCESS) {
596                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
597                                 __func__, rc, opt, phb->hose->global_number,
598                                 slave->pe_number);
599                         return -EIO;
600                 }
601         }
602
603         return 0;
604 }
605
606 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
607 {
608         struct pnv_ioda_pe *slave, *pe;
609         u8 fstate = 0, state;
610         __be16 pcierr = 0;
611         s64 rc;
612
613         /* Sanity check on PE number */
614         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
615                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
616
617         /*
618          * Fetch the master PE and the PE instance might be
619          * not initialized yet.
620          */
621         pe = &phb->ioda.pe_array[pe_no];
622         if (pe->flags & PNV_IODA_PE_SLAVE) {
623                 pe = pe->master;
624                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
625                 pe_no = pe->pe_number;
626         }
627
628         /* Check the master PE */
629         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
630                                         &state, &pcierr, NULL);
631         if (rc != OPAL_SUCCESS) {
632                 pr_warn("%s: Failure %lld getting "
633                         "PHB#%x-PE#%x state\n",
634                         __func__, rc,
635                         phb->hose->global_number, pe_no);
636                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
637         }
638
639         /* Check the slave PE */
640         if (!(pe->flags & PNV_IODA_PE_MASTER))
641                 return state;
642
643         list_for_each_entry(slave, &pe->slaves, list) {
644                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
645                                                 slave->pe_number,
646                                                 &fstate,
647                                                 &pcierr,
648                                                 NULL);
649                 if (rc != OPAL_SUCCESS) {
650                         pr_warn("%s: Failure %lld getting "
651                                 "PHB#%x-PE#%x state\n",
652                                 __func__, rc,
653                                 phb->hose->global_number, slave->pe_number);
654                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
655                 }
656
657                 /*
658                  * Override the result based on the ascending
659                  * priority.
660                  */
661                 if (fstate > state)
662                         state = fstate;
663         }
664
665         return state;
666 }
667
668 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
669 {
670         int pe_number = phb->ioda.pe_rmap[bdfn];
671
672         if (pe_number == IODA_INVALID_PE)
673                 return NULL;
674
675         return &phb->ioda.pe_array[pe_number];
676 }
677
678 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
679 {
680         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
681         struct pci_dn *pdn = pci_get_pdn(dev);
682
683         if (!pdn)
684                 return NULL;
685         if (pdn->pe_number == IODA_INVALID_PE)
686                 return NULL;
687         return &phb->ioda.pe_array[pdn->pe_number];
688 }
689
690 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
691                                   struct pnv_ioda_pe *parent,
692                                   struct pnv_ioda_pe *child,
693                                   bool is_add)
694 {
695         const char *desc = is_add ? "adding" : "removing";
696         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
697                               OPAL_REMOVE_PE_FROM_DOMAIN;
698         struct pnv_ioda_pe *slave;
699         long rc;
700
701         /* Parent PE affects child PE */
702         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
703                                 child->pe_number, op);
704         if (rc != OPAL_SUCCESS) {
705                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
706                         rc, desc);
707                 return -ENXIO;
708         }
709
710         if (!(child->flags & PNV_IODA_PE_MASTER))
711                 return 0;
712
713         /* Compound case: parent PE affects slave PEs */
714         list_for_each_entry(slave, &child->slaves, list) {
715                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
716                                         slave->pe_number, op);
717                 if (rc != OPAL_SUCCESS) {
718                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
719                                 rc, desc);
720                         return -ENXIO;
721                 }
722         }
723
724         return 0;
725 }
726
727 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
728                               struct pnv_ioda_pe *pe,
729                               bool is_add)
730 {
731         struct pnv_ioda_pe *slave;
732         struct pci_dev *pdev = NULL;
733         int ret;
734
735         /*
736          * Clear PE frozen state. If it's master PE, we need
737          * clear slave PE frozen state as well.
738          */
739         if (is_add) {
740                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
741                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
742                 if (pe->flags & PNV_IODA_PE_MASTER) {
743                         list_for_each_entry(slave, &pe->slaves, list)
744                                 opal_pci_eeh_freeze_clear(phb->opal_id,
745                                                           slave->pe_number,
746                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
747                 }
748         }
749
750         /*
751          * Associate PE in PELT. We need add the PE into the
752          * corresponding PELT-V as well. Otherwise, the error
753          * originated from the PE might contribute to other
754          * PEs.
755          */
756         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
757         if (ret)
758                 return ret;
759
760         /* For compound PEs, any one affects all of them */
761         if (pe->flags & PNV_IODA_PE_MASTER) {
762                 list_for_each_entry(slave, &pe->slaves, list) {
763                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
764                         if (ret)
765                                 return ret;
766                 }
767         }
768
769         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
770                 pdev = pe->pbus->self;
771         else if (pe->flags & PNV_IODA_PE_DEV)
772                 pdev = pe->pdev->bus->self;
773 #ifdef CONFIG_PCI_IOV
774         else if (pe->flags & PNV_IODA_PE_VF)
775                 pdev = pe->parent_dev;
776 #endif /* CONFIG_PCI_IOV */
777         while (pdev) {
778                 struct pci_dn *pdn = pci_get_pdn(pdev);
779                 struct pnv_ioda_pe *parent;
780
781                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
782                         parent = &phb->ioda.pe_array[pdn->pe_number];
783                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
784                         if (ret)
785                                 return ret;
786                 }
787
788                 pdev = pdev->bus->self;
789         }
790
791         return 0;
792 }
793
794 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
795                                  struct pnv_ioda_pe *pe,
796                                  struct pci_dev *parent)
797 {
798         int64_t rc;
799
800         while (parent) {
801                 struct pci_dn *pdn = pci_get_pdn(parent);
802
803                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
804                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
805                                                 pe->pe_number,
806                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
807                         /* XXX What to do in case of error ? */
808                 }
809                 parent = parent->bus->self;
810         }
811
812         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
813                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
814
815         /* Disassociate PE in PELT */
816         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
817                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
818         if (rc)
819                 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
820 }
821
822 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
823 {
824         struct pci_dev *parent;
825         uint8_t bcomp, dcomp, fcomp;
826         int64_t rc;
827         long rid_end, rid;
828
829         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
830         if (pe->pbus) {
831                 int count;
832
833                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
834                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
835                 parent = pe->pbus->self;
836                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
837                         count = resource_size(&pe->pbus->busn_res);
838                 else
839                         count = 1;
840
841                 switch(count) {
842                 case  1: bcomp = OpalPciBusAll;         break;
843                 case  2: bcomp = OpalPciBus7Bits;       break;
844                 case  4: bcomp = OpalPciBus6Bits;       break;
845                 case  8: bcomp = OpalPciBus5Bits;       break;
846                 case 16: bcomp = OpalPciBus4Bits;       break;
847                 case 32: bcomp = OpalPciBus3Bits;       break;
848                 default:
849                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
850                                 count);
851                         /* Do an exact match only */
852                         bcomp = OpalPciBusAll;
853                 }
854                 rid_end = pe->rid + (count << 8);
855         } else {
856 #ifdef CONFIG_PCI_IOV
857                 if (pe->flags & PNV_IODA_PE_VF)
858                         parent = pe->parent_dev;
859                 else
860 #endif
861                         parent = pe->pdev->bus->self;
862                 bcomp = OpalPciBusAll;
863                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
864                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
865                 rid_end = pe->rid + 1;
866         }
867
868         /* Clear the reverse map */
869         for (rid = pe->rid; rid < rid_end; rid++)
870                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
871
872         /*
873          * Release from all parents PELT-V. NPUs don't have a PELTV
874          * table
875          */
876         if (phb->type != PNV_PHB_NPU_OCAPI)
877                 pnv_ioda_unset_peltv(phb, pe, parent);
878
879         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
880                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
881         if (rc)
882                 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
883
884         pe->pbus = NULL;
885         pe->pdev = NULL;
886 #ifdef CONFIG_PCI_IOV
887         pe->parent_dev = NULL;
888 #endif
889
890         return 0;
891 }
892
893 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
894 {
895         uint8_t bcomp, dcomp, fcomp;
896         long rc, rid_end, rid;
897
898         /* Bus validation ? */
899         if (pe->pbus) {
900                 int count;
901
902                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
903                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
904                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
905                         count = resource_size(&pe->pbus->busn_res);
906                 else
907                         count = 1;
908
909                 switch(count) {
910                 case  1: bcomp = OpalPciBusAll;         break;
911                 case  2: bcomp = OpalPciBus7Bits;       break;
912                 case  4: bcomp = OpalPciBus6Bits;       break;
913                 case  8: bcomp = OpalPciBus5Bits;       break;
914                 case 16: bcomp = OpalPciBus4Bits;       break;
915                 case 32: bcomp = OpalPciBus3Bits;       break;
916                 default:
917                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
918                                 count);
919                         /* Do an exact match only */
920                         bcomp = OpalPciBusAll;
921                 }
922                 rid_end = pe->rid + (count << 8);
923         } else {
924                 bcomp = OpalPciBusAll;
925                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
926                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
927                 rid_end = pe->rid + 1;
928         }
929
930         /*
931          * Associate PE in PELT. We need add the PE into the
932          * corresponding PELT-V as well. Otherwise, the error
933          * originated from the PE might contribute to other
934          * PEs.
935          */
936         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
937                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
938         if (rc) {
939                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
940                 return -ENXIO;
941         }
942
943         /*
944          * Configure PELTV. NPUs don't have a PELTV table so skip
945          * configuration on them.
946          */
947         if (phb->type != PNV_PHB_NPU_OCAPI)
948                 pnv_ioda_set_peltv(phb, pe, true);
949
950         /* Setup reverse map */
951         for (rid = pe->rid; rid < rid_end; rid++)
952                 phb->ioda.pe_rmap[rid] = pe->pe_number;
953
954         /* Setup one MVTs on IODA1 */
955         if (phb->type != PNV_PHB_IODA1) {
956                 pe->mve_number = 0;
957                 goto out;
958         }
959
960         pe->mve_number = pe->pe_number;
961         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
962         if (rc != OPAL_SUCCESS) {
963                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
964                        rc, pe->mve_number);
965                 pe->mve_number = -1;
966         } else {
967                 rc = opal_pci_set_mve_enable(phb->opal_id,
968                                              pe->mve_number, OPAL_ENABLE_MVE);
969                 if (rc) {
970                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
971                                rc, pe->mve_number);
972                         pe->mve_number = -1;
973                 }
974         }
975
976 out:
977         return 0;
978 }
979
980 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
981 {
982         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
983         struct pci_dn *pdn = pci_get_pdn(dev);
984         struct pnv_ioda_pe *pe;
985
986         if (!pdn) {
987                 pr_err("%s: Device tree node not associated properly\n",
988                            pci_name(dev));
989                 return NULL;
990         }
991         if (pdn->pe_number != IODA_INVALID_PE)
992                 return NULL;
993
994         pe = pnv_ioda_alloc_pe(phb, 1);
995         if (!pe) {
996                 pr_warn("%s: Not enough PE# available, disabling device\n",
997                         pci_name(dev));
998                 return NULL;
999         }
1000
1001         /* NOTE: We don't get a reference for the pointer in the PE
1002          * data structure, both the device and PE structures should be
1003          * destroyed at the same time.
1004          *
1005          * At some point we want to remove the PDN completely anyways
1006          */
1007         pdn->pe_number = pe->pe_number;
1008         pe->flags = PNV_IODA_PE_DEV;
1009         pe->pdev = dev;
1010         pe->pbus = NULL;
1011         pe->mve_number = -1;
1012         pe->rid = dev->bus->number << 8 | pdn->devfn;
1013         pe->device_count++;
1014
1015         pe_info(pe, "Associated device to PE\n");
1016
1017         if (pnv_ioda_configure_pe(phb, pe)) {
1018                 /* XXX What do we do here ? */
1019                 pnv_ioda_free_pe(pe);
1020                 pdn->pe_number = IODA_INVALID_PE;
1021                 pe->pdev = NULL;
1022                 return NULL;
1023         }
1024
1025         /* Put PE to the list */
1026         mutex_lock(&phb->ioda.pe_list_mutex);
1027         list_add_tail(&pe->list, &phb->ioda.pe_list);
1028         mutex_unlock(&phb->ioda.pe_list_mutex);
1029         return pe;
1030 }
1031
1032 /*
1033  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1034  * single PCI bus. Another one that contains the primary PCI bus and its
1035  * subordinate PCI devices and buses. The second type of PE is normally
1036  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1037  */
1038 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1039 {
1040         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1041         struct pnv_ioda_pe *pe = NULL;
1042         unsigned int pe_num;
1043
1044         /*
1045          * In partial hotplug case, the PE instance might be still alive.
1046          * We should reuse it instead of allocating a new one.
1047          */
1048         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1049         if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1050                 pe = &phb->ioda.pe_array[pe_num];
1051                 return NULL;
1052         }
1053
1054         /* PE number for root bus should have been reserved */
1055         if (pci_is_root_bus(bus))
1056                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1057
1058         /* Check if PE is determined by M64 */
1059         if (!pe)
1060                 pe = pnv_ioda_pick_m64_pe(bus, all);
1061
1062         /* The PE number isn't pinned by M64 */
1063         if (!pe)
1064                 pe = pnv_ioda_alloc_pe(phb, 1);
1065
1066         if (!pe) {
1067                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1068                         __func__, pci_domain_nr(bus), bus->number);
1069                 return NULL;
1070         }
1071
1072         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1073         pe->pbus = bus;
1074         pe->pdev = NULL;
1075         pe->mve_number = -1;
1076         pe->rid = bus->busn_res.start << 8;
1077
1078         if (all)
1079                 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1080                         &bus->busn_res.start, &bus->busn_res.end,
1081                         pe->pe_number);
1082         else
1083                 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1084                         &bus->busn_res.start, pe->pe_number);
1085
1086         if (pnv_ioda_configure_pe(phb, pe)) {
1087                 /* XXX What do we do here ? */
1088                 pnv_ioda_free_pe(pe);
1089                 pe->pbus = NULL;
1090                 return NULL;
1091         }
1092
1093         /* Put PE to the list */
1094         list_add_tail(&pe->list, &phb->ioda.pe_list);
1095
1096         return pe;
1097 }
1098
1099 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1100                                        struct pnv_ioda_pe *pe);
1101
1102 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1103 {
1104         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1105         struct pci_dn *pdn = pci_get_pdn(pdev);
1106         struct pnv_ioda_pe *pe;
1107
1108         /* Check if the BDFN for this device is associated with a PE yet */
1109         pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1110         if (!pe) {
1111                 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1112                 if (WARN_ON(pdev->is_virtfn))
1113                         return;
1114
1115                 pnv_pci_configure_bus(pdev->bus);
1116                 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1117                 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1118
1119
1120                 /*
1121                  * If we can't setup the IODA PE something has gone horribly
1122                  * wrong and we can't enable DMA for the device.
1123                  */
1124                 if (WARN_ON(!pe))
1125                         return;
1126         } else {
1127                 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1128         }
1129
1130         /*
1131          * We assume that bridges *probably* don't need to do any DMA so we can
1132          * skip allocating a TCE table, etc unless we get a non-bridge device.
1133          */
1134         if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1135                 switch (phb->type) {
1136                 case PNV_PHB_IODA1:
1137                         pnv_pci_ioda1_setup_dma_pe(phb, pe);
1138                         break;
1139                 case PNV_PHB_IODA2:
1140                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1141                         break;
1142                 default:
1143                         pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1144                                 __func__, phb->hose->global_number, phb->type);
1145                 }
1146         }
1147
1148         if (pdn)
1149                 pdn->pe_number = pe->pe_number;
1150         pe->device_count++;
1151
1152         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1153         pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1154         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1155
1156         /* PEs with a DMA weight of zero won't have a group */
1157         if (pe->table_group.group)
1158                 iommu_add_device(&pe->table_group, &pdev->dev);
1159 }
1160
1161 /*
1162  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1163  *
1164  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1165  * Devices can only access more than that if bit 59 of the PCI address is set
1166  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1167  * Many PCI devices are not capable of addressing that many bits, and as a
1168  * result are limited to the 4GB of virtual memory made available to 32-bit
1169  * devices in TVE#0.
1170  *
1171  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1172  * devices by configuring the virtual memory past the first 4GB inaccessible
1173  * by 64-bit DMAs.  This should only be used by devices that want more than
1174  * 4GB, and only on PEs that have no 32-bit devices.
1175  *
1176  * Currently this will only work on PHB3 (POWER8).
1177  */
1178 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1179 {
1180         u64 window_size, table_size, tce_count, addr;
1181         struct page *table_pages;
1182         u64 tce_order = 28; /* 256MB TCEs */
1183         __be64 *tces;
1184         s64 rc;
1185
1186         /*
1187          * Window size needs to be a power of two, but needs to account for
1188          * shifting memory by the 4GB offset required to skip 32bit space.
1189          */
1190         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1191         tce_count = window_size >> tce_order;
1192         table_size = tce_count << 3;
1193
1194         if (table_size < PAGE_SIZE)
1195                 table_size = PAGE_SIZE;
1196
1197         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1198                                        get_order(table_size));
1199         if (!table_pages)
1200                 goto err;
1201
1202         tces = page_address(table_pages);
1203         if (!tces)
1204                 goto err;
1205
1206         memset(tces, 0, table_size);
1207
1208         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1209                 tces[(addr + (1ULL << 32)) >> tce_order] =
1210                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1211         }
1212
1213         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1214                                         pe->pe_number,
1215                                         /* reconfigure window 0 */
1216                                         (pe->pe_number << 1) + 0,
1217                                         1,
1218                                         __pa(tces),
1219                                         table_size,
1220                                         1 << tce_order);
1221         if (rc == OPAL_SUCCESS) {
1222                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1223                 return 0;
1224         }
1225 err:
1226         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1227         return -EIO;
1228 }
1229
1230 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1231                 u64 dma_mask)
1232 {
1233         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1234         struct pci_dn *pdn = pci_get_pdn(pdev);
1235         struct pnv_ioda_pe *pe;
1236
1237         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1238                 return false;
1239
1240         pe = &phb->ioda.pe_array[pdn->pe_number];
1241         if (pe->tce_bypass_enabled) {
1242                 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1243                 if (dma_mask >= top)
1244                         return true;
1245         }
1246
1247         /*
1248          * If the device can't set the TCE bypass bit but still wants
1249          * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1250          * bypass the 32-bit region and be usable for 64-bit DMAs.
1251          * The device needs to be able to address all of this space.
1252          */
1253         if (dma_mask >> 32 &&
1254             dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1255             /* pe->pdev should be set if it's a single device, pe->pbus if not */
1256             (pe->device_count == 1 || !pe->pbus) &&
1257             phb->model == PNV_PHB_MODEL_PHB3) {
1258                 /* Configure the bypass mode */
1259                 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1260                 if (rc)
1261                         return false;
1262                 /* 4GB offset bypasses 32-bit space */
1263                 pdev->dev.archdata.dma_offset = (1ULL << 32);
1264                 return true;
1265         }
1266
1267         return false;
1268 }
1269
1270 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1271                                                      bool real_mode)
1272 {
1273         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1274                 (phb->regs + 0x210);
1275 }
1276
1277 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1278                 unsigned long index, unsigned long npages, bool rm)
1279 {
1280         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1281                         &tbl->it_group_list, struct iommu_table_group_link,
1282                         next);
1283         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1284                         struct pnv_ioda_pe, table_group);
1285         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1286         unsigned long start, end, inc;
1287
1288         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1289         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1290                         npages - 1);
1291
1292         /* p7ioc-style invalidation, 2 TCEs per write */
1293         start |= (1ull << 63);
1294         end |= (1ull << 63);
1295         inc = 16;
1296         end |= inc - 1; /* round up end to be different than start */
1297
1298         mb(); /* Ensure above stores are visible */
1299         while (start <= end) {
1300                 if (rm)
1301                         __raw_rm_writeq_be(start, invalidate);
1302                 else
1303                         __raw_writeq_be(start, invalidate);
1304
1305                 start += inc;
1306         }
1307
1308         /*
1309          * The iommu layer will do another mb() for us on build()
1310          * and we don't care on free()
1311          */
1312 }
1313
1314 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1315                 long npages, unsigned long uaddr,
1316                 enum dma_data_direction direction,
1317                 unsigned long attrs)
1318 {
1319         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1320                         attrs);
1321
1322         if (!ret)
1323                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1324
1325         return ret;
1326 }
1327
1328 #ifdef CONFIG_IOMMU_API
1329 /* Common for IODA1 and IODA2 */
1330 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1331                 unsigned long *hpa, enum dma_data_direction *direction,
1332                 bool realmode)
1333 {
1334         return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1335 }
1336 #endif
1337
1338 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1339                 long npages)
1340 {
1341         pnv_tce_free(tbl, index, npages);
1342
1343         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1344 }
1345
1346 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1347         .set = pnv_ioda1_tce_build,
1348 #ifdef CONFIG_IOMMU_API
1349         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1350         .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1351         .useraddrptr = pnv_tce_useraddrptr,
1352 #endif
1353         .clear = pnv_ioda1_tce_free,
1354         .get = pnv_tce_get,
1355 };
1356
1357 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1358 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1359 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1360
1361 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1362 {
1363         /* 01xb - invalidate TCEs that match the specified PE# */
1364         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1365         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1366
1367         mb(); /* Ensure above stores are visible */
1368         __raw_writeq_be(val, invalidate);
1369 }
1370
1371 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1372                                         unsigned shift, unsigned long index,
1373                                         unsigned long npages)
1374 {
1375         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1376         unsigned long start, end, inc;
1377
1378         /* We'll invalidate DMA address in PE scope */
1379         start = PHB3_TCE_KILL_INVAL_ONE;
1380         start |= (pe->pe_number & 0xFF);
1381         end = start;
1382
1383         /* Figure out the start, end and step */
1384         start |= (index << shift);
1385         end |= ((index + npages - 1) << shift);
1386         inc = (0x1ull << shift);
1387         mb();
1388
1389         while (start <= end) {
1390                 if (rm)
1391                         __raw_rm_writeq_be(start, invalidate);
1392                 else
1393                         __raw_writeq_be(start, invalidate);
1394                 start += inc;
1395         }
1396 }
1397
1398 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1399 {
1400         struct pnv_phb *phb = pe->phb;
1401
1402         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1403                 pnv_pci_phb3_tce_invalidate_pe(pe);
1404         else
1405                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1406                                   pe->pe_number, 0, 0, 0);
1407 }
1408
1409 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1410                 unsigned long index, unsigned long npages, bool rm)
1411 {
1412         struct iommu_table_group_link *tgl;
1413
1414         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1415                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1416                                 struct pnv_ioda_pe, table_group);
1417                 struct pnv_phb *phb = pe->phb;
1418                 unsigned int shift = tbl->it_page_shift;
1419
1420                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1421                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1422                                                     index, npages);
1423                 else
1424                         opal_pci_tce_kill(phb->opal_id,
1425                                           OPAL_PCI_TCE_KILL_PAGES,
1426                                           pe->pe_number, 1u << shift,
1427                                           index << shift, npages);
1428         }
1429 }
1430
1431 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1432                 long npages, unsigned long uaddr,
1433                 enum dma_data_direction direction,
1434                 unsigned long attrs)
1435 {
1436         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1437                         attrs);
1438
1439         if (!ret)
1440                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1441
1442         return ret;
1443 }
1444
1445 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1446                 long npages)
1447 {
1448         pnv_tce_free(tbl, index, npages);
1449
1450         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1451 }
1452
1453 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1454         .set = pnv_ioda2_tce_build,
1455 #ifdef CONFIG_IOMMU_API
1456         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1457         .tce_kill = pnv_pci_ioda2_tce_invalidate,
1458         .useraddrptr = pnv_tce_useraddrptr,
1459 #endif
1460         .clear = pnv_ioda2_tce_free,
1461         .get = pnv_tce_get,
1462         .free = pnv_pci_ioda2_table_free_pages,
1463 };
1464
1465 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1466 {
1467         unsigned int *weight = (unsigned int *)data;
1468
1469         /* This is quite simplistic. The "base" weight of a device
1470          * is 10. 0 means no DMA is to be accounted for it.
1471          */
1472         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1473                 return 0;
1474
1475         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1476             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1477             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1478                 *weight += 3;
1479         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1480                 *weight += 15;
1481         else
1482                 *weight += 10;
1483
1484         return 0;
1485 }
1486
1487 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1488 {
1489         unsigned int weight = 0;
1490
1491         /* SRIOV VF has same DMA32 weight as its PF */
1492 #ifdef CONFIG_PCI_IOV
1493         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1494                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1495                 return weight;
1496         }
1497 #endif
1498
1499         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1500                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1501         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1502                 struct pci_dev *pdev;
1503
1504                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1505                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1506         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1507                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1508         }
1509
1510         return weight;
1511 }
1512
1513 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1514                                        struct pnv_ioda_pe *pe)
1515 {
1516
1517         struct page *tce_mem = NULL;
1518         struct iommu_table *tbl;
1519         unsigned int weight, total_weight = 0;
1520         unsigned int tce32_segsz, base, segs, avail, i;
1521         int64_t rc;
1522         void *addr;
1523
1524         /* XXX FIXME: Handle 64-bit only DMA devices */
1525         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1526         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1527         weight = pnv_pci_ioda_pe_dma_weight(pe);
1528         if (!weight)
1529                 return;
1530
1531         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1532                      &total_weight);
1533         segs = (weight * phb->ioda.dma32_count) / total_weight;
1534         if (!segs)
1535                 segs = 1;
1536
1537         /*
1538          * Allocate contiguous DMA32 segments. We begin with the expected
1539          * number of segments. With one more attempt, the number of DMA32
1540          * segments to be allocated is decreased by one until one segment
1541          * is allocated successfully.
1542          */
1543         do {
1544                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1545                         for (avail = 0, i = base; i < base + segs; i++) {
1546                                 if (phb->ioda.dma32_segmap[i] ==
1547                                     IODA_INVALID_PE)
1548                                         avail++;
1549                         }
1550
1551                         if (avail == segs)
1552                                 goto found;
1553                 }
1554         } while (--segs);
1555
1556         if (!segs) {
1557                 pe_warn(pe, "No available DMA32 segments\n");
1558                 return;
1559         }
1560
1561 found:
1562         tbl = pnv_pci_table_alloc(phb->hose->node);
1563         if (WARN_ON(!tbl))
1564                 return;
1565
1566         iommu_register_group(&pe->table_group, phb->hose->global_number,
1567                         pe->pe_number);
1568         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1569
1570         /* Grab a 32-bit TCE table */
1571         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1572                 weight, total_weight, base, segs);
1573         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1574                 base * PNV_IODA1_DMA32_SEGSIZE,
1575                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1576
1577         /* XXX Currently, we allocate one big contiguous table for the
1578          * TCEs. We only really need one chunk per 256M of TCE space
1579          * (ie per segment) but that's an optimization for later, it
1580          * requires some added smarts with our get/put_tce implementation
1581          *
1582          * Each TCE page is 4KB in size and each TCE entry occupies 8
1583          * bytes
1584          */
1585         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1586         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1587                                    get_order(tce32_segsz * segs));
1588         if (!tce_mem) {
1589                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1590                 goto fail;
1591         }
1592         addr = page_address(tce_mem);
1593         memset(addr, 0, tce32_segsz * segs);
1594
1595         /* Configure HW */
1596         for (i = 0; i < segs; i++) {
1597                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1598                                               pe->pe_number,
1599                                               base + i, 1,
1600                                               __pa(addr) + tce32_segsz * i,
1601                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
1602                 if (rc) {
1603                         pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1604                                rc);
1605                         goto fail;
1606                 }
1607         }
1608
1609         /* Setup DMA32 segment mapping */
1610         for (i = base; i < base + segs; i++)
1611                 phb->ioda.dma32_segmap[i] = pe->pe_number;
1612
1613         /* Setup linux iommu table */
1614         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1615                                   base * PNV_IODA1_DMA32_SEGSIZE,
1616                                   IOMMU_PAGE_SHIFT_4K);
1617
1618         tbl->it_ops = &pnv_ioda1_iommu_ops;
1619         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1620         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1621         if (!iommu_init_table(tbl, phb->hose->node, 0, 0))
1622                 panic("Failed to initialize iommu table");
1623
1624         pe->dma_setup_done = true;
1625         return;
1626  fail:
1627         /* XXX Failure: Try to fallback to 64-bit only ? */
1628         if (tce_mem)
1629                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
1630         if (tbl) {
1631                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1632                 iommu_tce_table_put(tbl);
1633         }
1634 }
1635
1636 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1637                 int num, struct iommu_table *tbl)
1638 {
1639         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1640                         table_group);
1641         struct pnv_phb *phb = pe->phb;
1642         int64_t rc;
1643         const unsigned long size = tbl->it_indirect_levels ?
1644                         tbl->it_level_size : tbl->it_size;
1645         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1646         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1647
1648         pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1649                 num, start_addr, start_addr + win_size - 1,
1650                 IOMMU_PAGE_SIZE(tbl));
1651
1652         /*
1653          * Map TCE table through TVT. The TVE index is the PE number
1654          * shifted by 1 bit for 32-bits DMA space.
1655          */
1656         rc = opal_pci_map_pe_dma_window(phb->opal_id,
1657                         pe->pe_number,
1658                         (pe->pe_number << 1) + num,
1659                         tbl->it_indirect_levels + 1,
1660                         __pa(tbl->it_base),
1661                         size << 3,
1662                         IOMMU_PAGE_SIZE(tbl));
1663         if (rc) {
1664                 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1665                 return rc;
1666         }
1667
1668         pnv_pci_link_table_and_group(phb->hose->node, num,
1669                         tbl, &pe->table_group);
1670         pnv_pci_ioda2_tce_invalidate_pe(pe);
1671
1672         return 0;
1673 }
1674
1675 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1676 {
1677         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1678         int64_t rc;
1679
1680         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1681         if (enable) {
1682                 phys_addr_t top = memblock_end_of_DRAM();
1683
1684                 top = roundup_pow_of_two(top);
1685                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1686                                                      pe->pe_number,
1687                                                      window_id,
1688                                                      pe->tce_bypass_base,
1689                                                      top);
1690         } else {
1691                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1692                                                      pe->pe_number,
1693                                                      window_id,
1694                                                      pe->tce_bypass_base,
1695                                                      0);
1696         }
1697         if (rc)
1698                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1699         else
1700                 pe->tce_bypass_enabled = enable;
1701 }
1702
1703 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1704                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1705                 bool alloc_userspace_copy, struct iommu_table **ptbl)
1706 {
1707         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1708                         table_group);
1709         int nid = pe->phb->hose->node;
1710         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1711         long ret;
1712         struct iommu_table *tbl;
1713
1714         tbl = pnv_pci_table_alloc(nid);
1715         if (!tbl)
1716                 return -ENOMEM;
1717
1718         tbl->it_ops = &pnv_ioda2_iommu_ops;
1719
1720         ret = pnv_pci_ioda2_table_alloc_pages(nid,
1721                         bus_offset, page_shift, window_size,
1722                         levels, alloc_userspace_copy, tbl);
1723         if (ret) {
1724                 iommu_tce_table_put(tbl);
1725                 return ret;
1726         }
1727
1728         *ptbl = tbl;
1729
1730         return 0;
1731 }
1732
1733 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1734 {
1735         struct iommu_table *tbl = NULL;
1736         long rc;
1737         unsigned long res_start, res_end;
1738
1739         /*
1740          * crashkernel= specifies the kdump kernel's maximum memory at
1741          * some offset and there is no guaranteed the result is a power
1742          * of 2, which will cause errors later.
1743          */
1744         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1745
1746         /*
1747          * In memory constrained environments, e.g. kdump kernel, the
1748          * DMA window can be larger than available memory, which will
1749          * cause errors later.
1750          */
1751         const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1752
1753         /*
1754          * We create the default window as big as we can. The constraint is
1755          * the max order of allocation possible. The TCE table is likely to
1756          * end up being multilevel and with on-demand allocation in place,
1757          * the initial use is not going to be huge as the default window aims
1758          * to support crippled devices (i.e. not fully 64bit DMAble) only.
1759          */
1760         /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1761         const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1762         /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1763         unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1764         unsigned long tcelevel_order = ilog2(maxblock >> 3);
1765         unsigned int levels = tces_order / tcelevel_order;
1766
1767         if (tces_order % tcelevel_order)
1768                 levels += 1;
1769         /*
1770          * We try to stick to default levels (which is >1 at the moment) in
1771          * order to save memory by relying on on-demain TCE level allocation.
1772          */
1773         levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1774
1775         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1776                         window_size, levels, false, &tbl);
1777         if (rc) {
1778                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1779                                 rc);
1780                 return rc;
1781         }
1782
1783         /* We use top part of 32bit space for MMIO so exclude it from DMA */
1784         res_start = 0;
1785         res_end = 0;
1786         if (window_size > pe->phb->ioda.m32_pci_base) {
1787                 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1788                 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1789         }
1790
1791         if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1792                 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1793         else
1794                 rc = -ENOMEM;
1795         if (rc) {
1796                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1797                 iommu_tce_table_put(tbl);
1798                 tbl = NULL; /* This clears iommu_table_base below */
1799         }
1800         if (!pnv_iommu_bypass_disabled)
1801                 pnv_pci_ioda2_set_bypass(pe, true);
1802
1803         /*
1804          * Set table base for the case of IOMMU DMA use. Usually this is done
1805          * from dma_dev_setup() which is not called when a device is returned
1806          * from VFIO so do it here.
1807          */
1808         if (pe->pdev)
1809                 set_iommu_table_base(&pe->pdev->dev, tbl);
1810
1811         return 0;
1812 }
1813
1814 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1815                 int num)
1816 {
1817         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1818                         table_group);
1819         struct pnv_phb *phb = pe->phb;
1820         long ret;
1821
1822         pe_info(pe, "Removing DMA window #%d\n", num);
1823
1824         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1825                         (pe->pe_number << 1) + num,
1826                         0/* levels */, 0/* table address */,
1827                         0/* table size */, 0/* page size */);
1828         if (ret)
1829                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1830         else
1831                 pnv_pci_ioda2_tce_invalidate_pe(pe);
1832
1833         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1834
1835         return ret;
1836 }
1837
1838 #ifdef CONFIG_IOMMU_API
1839 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1840                 __u64 window_size, __u32 levels)
1841 {
1842         unsigned long bytes = 0;
1843         const unsigned window_shift = ilog2(window_size);
1844         unsigned entries_shift = window_shift - page_shift;
1845         unsigned table_shift = entries_shift + 3;
1846         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1847         unsigned long direct_table_size;
1848
1849         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1850                         !is_power_of_2(window_size))
1851                 return 0;
1852
1853         /* Calculate a direct table size from window_size and levels */
1854         entries_shift = (entries_shift + levels - 1) / levels;
1855         table_shift = entries_shift + 3;
1856         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1857         direct_table_size =  1UL << table_shift;
1858
1859         for ( ; levels; --levels) {
1860                 bytes += ALIGN(tce_table_size, direct_table_size);
1861
1862                 tce_table_size /= direct_table_size;
1863                 tce_table_size <<= 3;
1864                 tce_table_size = max_t(unsigned long,
1865                                 tce_table_size, direct_table_size);
1866         }
1867
1868         return bytes + bytes; /* one for HW table, one for userspace copy */
1869 }
1870
1871 static long pnv_pci_ioda2_create_table_userspace(
1872                 struct iommu_table_group *table_group,
1873                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1874                 struct iommu_table **ptbl)
1875 {
1876         long ret = pnv_pci_ioda2_create_table(table_group,
1877                         num, page_shift, window_size, levels, true, ptbl);
1878
1879         if (!ret)
1880                 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1881                                 page_shift, window_size, levels);
1882         return ret;
1883 }
1884
1885 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1886 {
1887         struct pci_dev *dev;
1888
1889         list_for_each_entry(dev, &bus->devices, bus_list) {
1890                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1891                 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1892
1893                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1894                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1895         }
1896 }
1897
1898 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1899 {
1900         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1901                                                 table_group);
1902         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1903         struct iommu_table *tbl = pe->table_group.tables[0];
1904
1905         pnv_pci_ioda2_set_bypass(pe, false);
1906         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1907         if (pe->pbus)
1908                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1909         else if (pe->pdev)
1910                 set_iommu_table_base(&pe->pdev->dev, NULL);
1911         iommu_tce_table_put(tbl);
1912 }
1913
1914 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1915 {
1916         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1917                                                 table_group);
1918
1919         pnv_pci_ioda2_setup_default_config(pe);
1920         if (pe->pbus)
1921                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1922 }
1923
1924 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1925         .get_table_size = pnv_pci_ioda2_get_table_size,
1926         .create_table = pnv_pci_ioda2_create_table_userspace,
1927         .set_window = pnv_pci_ioda2_set_window,
1928         .unset_window = pnv_pci_ioda2_unset_window,
1929         .take_ownership = pnv_ioda2_take_ownership,
1930         .release_ownership = pnv_ioda2_release_ownership,
1931 };
1932 #endif
1933
1934 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1935                                 struct pnv_ioda_pe *pe)
1936 {
1937         int64_t rc;
1938
1939         /* TVE #1 is selected by PCI address bit 59 */
1940         pe->tce_bypass_base = 1ull << 59;
1941
1942         /* The PE will reserve all possible 32-bits space */
1943         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1944                 phb->ioda.m32_pci_base);
1945
1946         /* Setup linux iommu table */
1947         pe->table_group.tce32_start = 0;
1948         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1949         pe->table_group.max_dynamic_windows_supported =
1950                         IOMMU_TABLE_GROUP_MAX_TABLES;
1951         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1952         pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1953
1954         rc = pnv_pci_ioda2_setup_default_config(pe);
1955         if (rc)
1956                 return;
1957
1958 #ifdef CONFIG_IOMMU_API
1959         pe->table_group.ops = &pnv_pci_ioda2_ops;
1960         iommu_register_group(&pe->table_group, phb->hose->global_number,
1961                              pe->pe_number);
1962 #endif
1963         pe->dma_setup_done = true;
1964 }
1965
1966 /*
1967  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1968  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1969  *
1970  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1971  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1972  * numbers of the in-the-middle MSI domain are vector numbers and it's
1973  * good enough for OPAL. Use that.
1974  */
1975 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1976 {
1977         struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1978         struct pnv_phb *phb = hose->private_data;
1979
1980         return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1981 }
1982
1983 /*
1984  * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1985  */
1986 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1987 {
1988         int64_t rc;
1989         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1990         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1991         struct pnv_phb *phb = hose->private_data;
1992
1993         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1994         WARN_ON_ONCE(rc);
1995
1996         icp_native_eoi(d);
1997 }
1998
1999 /* P8/CXL only */
2000 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2001 {
2002         struct irq_data *idata;
2003         struct irq_chip *ichip;
2004
2005         /* The MSI EOI OPAL call is only needed on PHB3 */
2006         if (phb->model != PNV_PHB_MODEL_PHB3)
2007                 return;
2008
2009         if (!phb->ioda.irq_chip_init) {
2010                 /*
2011                  * First time we setup an MSI IRQ, we need to setup the
2012                  * corresponding IRQ chip to route correctly.
2013                  */
2014                 idata = irq_get_irq_data(virq);
2015                 ichip = irq_data_get_irq_chip(idata);
2016                 phb->ioda.irq_chip_init = 1;
2017                 phb->ioda.irq_chip = *ichip;
2018                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2019         }
2020         irq_set_chip(virq, &phb->ioda.irq_chip);
2021         irq_set_chip_data(virq, phb->hose);
2022 }
2023
2024 static struct irq_chip pnv_pci_msi_irq_chip;
2025
2026 /*
2027  * Returns true iff chip is something that we could call
2028  * pnv_opal_pci_msi_eoi for.
2029  */
2030 bool is_pnv_opal_msi(struct irq_chip *chip)
2031 {
2032         return chip == &pnv_pci_msi_irq_chip;
2033 }
2034 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2035
2036 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2037                                     unsigned int xive_num,
2038                                     unsigned int is_64, struct msi_msg *msg)
2039 {
2040         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2041         __be32 data;
2042         int rc;
2043
2044         dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
2045                 is_64 ? "64" : "32", xive_num);
2046
2047         /* No PE assigned ? bail out ... no MSI for you ! */
2048         if (pe == NULL)
2049                 return -ENXIO;
2050
2051         /* Check if we have an MVE */
2052         if (pe->mve_number < 0)
2053                 return -ENXIO;
2054
2055         /* Force 32-bit MSI on some broken devices */
2056         if (dev->no_64bit_msi)
2057                 is_64 = 0;
2058
2059         /* Assign XIVE to PE */
2060         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2061         if (rc) {
2062                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2063                         pci_name(dev), rc, xive_num);
2064                 return -EIO;
2065         }
2066
2067         if (is_64) {
2068                 __be64 addr64;
2069
2070                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2071                                      &addr64, &data);
2072                 if (rc) {
2073                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2074                                 pci_name(dev), rc);
2075                         return -EIO;
2076                 }
2077                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2078                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2079         } else {
2080                 __be32 addr32;
2081
2082                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2083                                      &addr32, &data);
2084                 if (rc) {
2085                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2086                                 pci_name(dev), rc);
2087                         return -EIO;
2088                 }
2089                 msg->address_hi = 0;
2090                 msg->address_lo = be32_to_cpu(addr32);
2091         }
2092         msg->data = be32_to_cpu(data);
2093
2094         return 0;
2095 }
2096
2097 /*
2098  * The msi_free() op is called before irq_domain_free_irqs_top() when
2099  * the handler data is still available. Use that to clear the XIVE
2100  * controller.
2101  */
2102 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
2103                                  struct msi_domain_info *info,
2104                                  unsigned int irq)
2105 {
2106         if (xive_enabled())
2107                 xive_irq_free_data(irq);
2108 }
2109
2110 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
2111         .msi_free       = pnv_msi_ops_msi_free,
2112 };
2113
2114 static void pnv_msi_shutdown(struct irq_data *d)
2115 {
2116         d = d->parent_data;
2117         if (d->chip->irq_shutdown)
2118                 d->chip->irq_shutdown(d);
2119 }
2120
2121 static void pnv_msi_mask(struct irq_data *d)
2122 {
2123         pci_msi_mask_irq(d);
2124         irq_chip_mask_parent(d);
2125 }
2126
2127 static void pnv_msi_unmask(struct irq_data *d)
2128 {
2129         pci_msi_unmask_irq(d);
2130         irq_chip_unmask_parent(d);
2131 }
2132
2133 static struct irq_chip pnv_pci_msi_irq_chip = {
2134         .name           = "PNV-PCI-MSI",
2135         .irq_shutdown   = pnv_msi_shutdown,
2136         .irq_mask       = pnv_msi_mask,
2137         .irq_unmask     = pnv_msi_unmask,
2138         .irq_eoi        = irq_chip_eoi_parent,
2139 };
2140
2141 static struct msi_domain_info pnv_msi_domain_info = {
2142         .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
2143                   MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
2144         .ops   = &pnv_pci_msi_domain_ops,
2145         .chip  = &pnv_pci_msi_irq_chip,
2146 };
2147
2148 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
2149 {
2150         struct msi_desc *entry = irq_data_get_msi_desc(d);
2151         struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
2152         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2153         struct pnv_phb *phb = hose->private_data;
2154         int rc;
2155
2156         rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
2157                                       entry->pci.msi_attrib.is_64, msg);
2158         if (rc)
2159                 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
2160                         entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
2161 }
2162
2163 /*
2164  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
2165  * correspond to vector numbers.
2166  */
2167 static void pnv_msi_eoi(struct irq_data *d)
2168 {
2169         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2170         struct pnv_phb *phb = hose->private_data;
2171
2172         if (phb->model == PNV_PHB_MODEL_PHB3) {
2173                 /*
2174                  * The EOI OPAL call takes an OPAL HW IRQ number but
2175                  * since it is translated into a vector number in
2176                  * OPAL, use that directly.
2177                  */
2178                 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
2179         }
2180
2181         irq_chip_eoi_parent(d);
2182 }
2183
2184 static struct irq_chip pnv_msi_irq_chip = {
2185         .name                   = "PNV-MSI",
2186         .irq_shutdown           = pnv_msi_shutdown,
2187         .irq_mask               = irq_chip_mask_parent,
2188         .irq_unmask             = irq_chip_unmask_parent,
2189         .irq_eoi                = pnv_msi_eoi,
2190         .irq_set_affinity       = irq_chip_set_affinity_parent,
2191         .irq_compose_msi_msg    = pnv_msi_compose_msg,
2192 };
2193
2194 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
2195                                        unsigned int virq, int hwirq)
2196 {
2197         struct irq_fwspec parent_fwspec;
2198         int ret;
2199
2200         parent_fwspec.fwnode = domain->parent->fwnode;
2201         parent_fwspec.param_count = 2;
2202         parent_fwspec.param[0] = hwirq;
2203         parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2204
2205         ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
2206         if (ret)
2207                 return ret;
2208
2209         return 0;
2210 }
2211
2212 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2213                                 unsigned int nr_irqs, void *arg)
2214 {
2215         struct pci_controller *hose = domain->host_data;
2216         struct pnv_phb *phb = hose->private_data;
2217         msi_alloc_info_t *info = arg;
2218         struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
2219         int hwirq;
2220         int i, ret;
2221
2222         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
2223         if (hwirq < 0) {
2224                 dev_warn(&pdev->dev, "failed to find a free MSI\n");
2225                 return -ENOSPC;
2226         }
2227
2228         dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
2229                 hose->dn, virq, hwirq, nr_irqs);
2230
2231         for (i = 0; i < nr_irqs; i++) {
2232                 ret = pnv_irq_parent_domain_alloc(domain, virq + i,
2233                                                   phb->msi_base + hwirq + i);
2234                 if (ret)
2235                         goto out;
2236
2237                 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
2238                                               &pnv_msi_irq_chip, hose);
2239         }
2240
2241         return 0;
2242
2243 out:
2244         irq_domain_free_irqs_parent(domain, virq, i - 1);
2245         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
2246         return ret;
2247 }
2248
2249 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2250                                 unsigned int nr_irqs)
2251 {
2252         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2253         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2254         struct pnv_phb *phb = hose->private_data;
2255
2256         pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
2257                  virq, d->hwirq, nr_irqs);
2258
2259         msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
2260         /* XIVE domain is cleared through ->msi_free() */
2261 }
2262
2263 static const struct irq_domain_ops pnv_irq_domain_ops = {
2264         .alloc  = pnv_irq_domain_alloc,
2265         .free   = pnv_irq_domain_free,
2266 };
2267
2268 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
2269 {
2270         struct pnv_phb *phb = hose->private_data;
2271         struct irq_domain *parent = irq_get_default_host();
2272
2273         hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
2274         if (!hose->fwnode)
2275                 return -ENOMEM;
2276
2277         hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
2278                                                        hose->fwnode,
2279                                                        &pnv_irq_domain_ops, hose);
2280         if (!hose->dev_domain) {
2281                 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
2282                        hose->dn, hose->global_number);
2283                 irq_domain_free_fwnode(hose->fwnode);
2284                 return -ENOMEM;
2285         }
2286
2287         hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
2288                                                      &pnv_msi_domain_info,
2289                                                      hose->dev_domain);
2290         if (!hose->msi_domain) {
2291                 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
2292                        hose->dn, hose->global_number);
2293                 irq_domain_free_fwnode(hose->fwnode);
2294                 irq_domain_remove(hose->dev_domain);
2295                 return -ENOMEM;
2296         }
2297
2298         return 0;
2299 }
2300
2301 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2302 {
2303         unsigned int count;
2304         const __be32 *prop = of_get_property(phb->hose->dn,
2305                                              "ibm,opal-msi-ranges", NULL);
2306         if (!prop) {
2307                 /* BML Fallback */
2308                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2309         }
2310         if (!prop)
2311                 return;
2312
2313         phb->msi_base = be32_to_cpup(prop);
2314         count = be32_to_cpup(prop + 1);
2315         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2316                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2317                        phb->hose->global_number);
2318                 return;
2319         }
2320
2321         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2322                 count, phb->msi_base);
2323
2324         pnv_msi_allocate_domains(phb->hose, count);
2325 }
2326
2327 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2328                                   struct resource *res)
2329 {
2330         struct pnv_phb *phb = pe->phb;
2331         struct pci_bus_region region;
2332         int index;
2333         int64_t rc;
2334
2335         if (!res || !res->flags || res->start > res->end)
2336                 return;
2337
2338         if (res->flags & IORESOURCE_IO) {
2339                 region.start = res->start - phb->ioda.io_pci_base;
2340                 region.end   = res->end - phb->ioda.io_pci_base;
2341                 index = region.start / phb->ioda.io_segsize;
2342
2343                 while (index < phb->ioda.total_pe_num &&
2344                        region.start <= region.end) {
2345                         phb->ioda.io_segmap[index] = pe->pe_number;
2346                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2347                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2348                         if (rc != OPAL_SUCCESS) {
2349                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2350                                        __func__, rc, index, pe->pe_number);
2351                                 break;
2352                         }
2353
2354                         region.start += phb->ioda.io_segsize;
2355                         index++;
2356                 }
2357         } else if ((res->flags & IORESOURCE_MEM) &&
2358                    !pnv_pci_is_m64(phb, res)) {
2359                 region.start = res->start -
2360                                phb->hose->mem_offset[0] -
2361                                phb->ioda.m32_pci_base;
2362                 region.end   = res->end -
2363                                phb->hose->mem_offset[0] -
2364                                phb->ioda.m32_pci_base;
2365                 index = region.start / phb->ioda.m32_segsize;
2366
2367                 while (index < phb->ioda.total_pe_num &&
2368                        region.start <= region.end) {
2369                         phb->ioda.m32_segmap[index] = pe->pe_number;
2370                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2371                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2372                         if (rc != OPAL_SUCCESS) {
2373                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2374                                        __func__, rc, index, pe->pe_number);
2375                                 break;
2376                         }
2377
2378                         region.start += phb->ioda.m32_segsize;
2379                         index++;
2380                 }
2381         }
2382 }
2383
2384 /*
2385  * This function is supposed to be called on basis of PE from top
2386  * to bottom style. So the the I/O or MMIO segment assigned to
2387  * parent PE could be overridden by its child PEs if necessary.
2388  */
2389 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2390 {
2391         struct pci_dev *pdev;
2392         int i;
2393
2394         /*
2395          * NOTE: We only care PCI bus based PE for now. For PCI
2396          * device based PE, for example SRIOV sensitive VF should
2397          * be figured out later.
2398          */
2399         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2400
2401         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2402                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2403                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2404
2405                 /*
2406                  * If the PE contains all subordinate PCI buses, the
2407                  * windows of the child bridges should be mapped to
2408                  * the PE as well.
2409                  */
2410                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2411                         continue;
2412                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2413                         pnv_ioda_setup_pe_res(pe,
2414                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2415         }
2416 }
2417
2418 #ifdef CONFIG_DEBUG_FS
2419 static int pnv_pci_diag_data_set(void *data, u64 val)
2420 {
2421         struct pnv_phb *phb = data;
2422         s64 ret;
2423
2424         /* Retrieve the diag data from firmware */
2425         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2426                                           phb->diag_data_size);
2427         if (ret != OPAL_SUCCESS)
2428                 return -EIO;
2429
2430         /* Print the diag data to the kernel log */
2431         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2432         return 0;
2433 }
2434
2435 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2436                          "%llu\n");
2437
2438 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2439 {
2440         struct pnv_phb *phb = data;
2441         int pe_num;
2442
2443         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2444                 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2445
2446                 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2447                         continue;
2448
2449                 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2450                         pe->rid, pe->device_count,
2451                         (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2452                         (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2453                         (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2454                         (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2455                         (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2456                         (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2457         }
2458
2459         return 0;
2460 }
2461
2462 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2463                          pnv_pci_ioda_pe_dump, "%llu\n");
2464
2465 #endif /* CONFIG_DEBUG_FS */
2466
2467 static void pnv_pci_ioda_create_dbgfs(void)
2468 {
2469 #ifdef CONFIG_DEBUG_FS
2470         struct pci_controller *hose, *tmp;
2471         struct pnv_phb *phb;
2472         char name[16];
2473
2474         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2475                 phb = hose->private_data;
2476
2477                 sprintf(name, "PCI%04x", hose->global_number);
2478                 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2479
2480                 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2481                                            phb, &pnv_pci_diag_data_fops);
2482                 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2483                                            phb, &pnv_pci_ioda_pe_dump_fops);
2484         }
2485 #endif /* CONFIG_DEBUG_FS */
2486 }
2487
2488 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2489 {
2490         struct pci_dev *dev = bus->self;
2491         struct pci_bus *child;
2492
2493         /* Empty bus ? bail */
2494         if (list_empty(&bus->devices))
2495                 return;
2496
2497         /*
2498          * If there's a bridge associated with that bus enable it. This works
2499          * around races in the generic code if the enabling is done during
2500          * parallel probing. This can be removed once those races have been
2501          * fixed.
2502          */
2503         if (dev) {
2504                 int rc = pci_enable_device(dev);
2505                 if (rc)
2506                         pci_err(dev, "Error enabling bridge (%d)\n", rc);
2507                 pci_set_master(dev);
2508         }
2509
2510         /* Perform the same to child busses */
2511         list_for_each_entry(child, &bus->children, node)
2512                 pnv_pci_enable_bridge(child);
2513 }
2514
2515 static void pnv_pci_enable_bridges(void)
2516 {
2517         struct pci_controller *hose;
2518
2519         list_for_each_entry(hose, &hose_list, list_node)
2520                 pnv_pci_enable_bridge(hose->bus);
2521 }
2522
2523 static void pnv_pci_ioda_fixup(void)
2524 {
2525         pnv_pci_ioda_create_dbgfs();
2526
2527         pnv_pci_enable_bridges();
2528
2529 #ifdef CONFIG_EEH
2530         pnv_eeh_post_init();
2531 #endif
2532 }
2533
2534 /*
2535  * Returns the alignment for I/O or memory windows for P2P
2536  * bridges. That actually depends on how PEs are segmented.
2537  * For now, we return I/O or M32 segment size for PE sensitive
2538  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2539  * 1MiB for memory) will be returned.
2540  *
2541  * The current PCI bus might be put into one PE, which was
2542  * create against the parent PCI bridge. For that case, we
2543  * needn't enlarge the alignment so that we can save some
2544  * resources.
2545  */
2546 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2547                                                 unsigned long type)
2548 {
2549         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2550         int num_pci_bridges = 0;
2551         struct pci_dev *bridge;
2552
2553         bridge = bus->self;
2554         while (bridge) {
2555                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2556                         num_pci_bridges++;
2557                         if (num_pci_bridges >= 2)
2558                                 return 1;
2559                 }
2560
2561                 bridge = bridge->bus->self;
2562         }
2563
2564         /*
2565          * We fall back to M32 if M64 isn't supported. We enforce the M64
2566          * alignment for any 64-bit resource, PCIe doesn't care and
2567          * bridges only do 64-bit prefetchable anyway.
2568          */
2569         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2570                 return phb->ioda.m64_segsize;
2571         if (type & IORESOURCE_MEM)
2572                 return phb->ioda.m32_segsize;
2573
2574         return phb->ioda.io_segsize;
2575 }
2576
2577 /*
2578  * We are updating root port or the upstream port of the
2579  * bridge behind the root port with PHB's windows in order
2580  * to accommodate the changes on required resources during
2581  * PCI (slot) hotplug, which is connected to either root
2582  * port or the downstream ports of PCIe switch behind the
2583  * root port.
2584  */
2585 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2586                                            unsigned long type)
2587 {
2588         struct pci_controller *hose = pci_bus_to_host(bus);
2589         struct pnv_phb *phb = hose->private_data;
2590         struct pci_dev *bridge = bus->self;
2591         struct resource *r, *w;
2592         bool msi_region = false;
2593         int i;
2594
2595         /* Check if we need apply fixup to the bridge's windows */
2596         if (!pci_is_root_bus(bridge->bus) &&
2597             !pci_is_root_bus(bridge->bus->self->bus))
2598                 return;
2599
2600         /* Fixup the resources */
2601         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2602                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2603                 if (!r->flags || !r->parent)
2604                         continue;
2605
2606                 w = NULL;
2607                 if (r->flags & type & IORESOURCE_IO)
2608                         w = &hose->io_resource;
2609                 else if (pnv_pci_is_m64(phb, r) &&
2610                          (type & IORESOURCE_PREFETCH) &&
2611                          phb->ioda.m64_segsize)
2612                         w = &hose->mem_resources[1];
2613                 else if (r->flags & type & IORESOURCE_MEM) {
2614                         w = &hose->mem_resources[0];
2615                         msi_region = true;
2616                 }
2617
2618                 r->start = w->start;
2619                 r->end = w->end;
2620
2621                 /* The 64KB 32-bits MSI region shouldn't be included in
2622                  * the 32-bits bridge window. Otherwise, we can see strange
2623                  * issues. One of them is EEH error observed on Garrison.
2624                  *
2625                  * Exclude top 1MB region which is the minimal alignment of
2626                  * 32-bits bridge window.
2627                  */
2628                 if (msi_region) {
2629                         r->end += 0x10000;
2630                         r->end -= 0x100000;
2631                 }
2632         }
2633 }
2634
2635 static void pnv_pci_configure_bus(struct pci_bus *bus)
2636 {
2637         struct pci_dev *bridge = bus->self;
2638         struct pnv_ioda_pe *pe;
2639         bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2640
2641         dev_info(&bus->dev, "Configuring PE for bus\n");
2642
2643         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2644         if (WARN_ON(list_empty(&bus->devices)))
2645                 return;
2646
2647         /* Reserve PEs according to used M64 resources */
2648         pnv_ioda_reserve_m64_pe(bus, NULL, all);
2649
2650         /*
2651          * Assign PE. We might run here because of partial hotplug.
2652          * For the case, we just pick up the existing PE and should
2653          * not allocate resources again.
2654          */
2655         pe = pnv_ioda_setup_bus_PE(bus, all);
2656         if (!pe)
2657                 return;
2658
2659         pnv_ioda_setup_pe_seg(pe);
2660 }
2661
2662 static resource_size_t pnv_pci_default_alignment(void)
2663 {
2664         return PAGE_SIZE;
2665 }
2666
2667 /* Prevent enabling devices for which we couldn't properly
2668  * assign a PE
2669  */
2670 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2671 {
2672         struct pci_dn *pdn;
2673
2674         pdn = pci_get_pdn(dev);
2675         if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2676                 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2677                 return false;
2678         }
2679
2680         return true;
2681 }
2682
2683 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2684 {
2685         struct pci_dn *pdn;
2686         struct pnv_ioda_pe *pe;
2687
2688         pdn = pci_get_pdn(dev);
2689         if (!pdn)
2690                 return false;
2691
2692         if (pdn->pe_number == IODA_INVALID_PE) {
2693                 pe = pnv_ioda_setup_dev_PE(dev);
2694                 if (!pe)
2695                         return false;
2696         }
2697         return true;
2698 }
2699
2700 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2701                                        int num)
2702 {
2703         struct pnv_ioda_pe *pe = container_of(table_group,
2704                                               struct pnv_ioda_pe, table_group);
2705         struct pnv_phb *phb = pe->phb;
2706         unsigned int idx;
2707         long rc;
2708
2709         pe_info(pe, "Removing DMA window #%d\n", num);
2710         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2711                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2712                         continue;
2713
2714                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2715                                                 idx, 0, 0ul, 0ul, 0ul);
2716                 if (rc != OPAL_SUCCESS) {
2717                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2718                                 rc, idx);
2719                         return rc;
2720                 }
2721
2722                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2723         }
2724
2725         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2726         return OPAL_SUCCESS;
2727 }
2728
2729 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2730 {
2731         struct iommu_table *tbl = pe->table_group.tables[0];
2732         int64_t rc;
2733
2734         if (!pe->dma_setup_done)
2735                 return;
2736
2737         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2738         if (rc != OPAL_SUCCESS)
2739                 return;
2740
2741         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2742         if (pe->table_group.group) {
2743                 iommu_group_put(pe->table_group.group);
2744                 WARN_ON(pe->table_group.group);
2745         }
2746
2747         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2748         iommu_tce_table_put(tbl);
2749 }
2750
2751 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2752 {
2753         struct iommu_table *tbl = pe->table_group.tables[0];
2754         int64_t rc;
2755
2756         if (!pe->dma_setup_done)
2757                 return;
2758
2759         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2760         if (rc)
2761                 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2762
2763         pnv_pci_ioda2_set_bypass(pe, false);
2764         if (pe->table_group.group) {
2765                 iommu_group_put(pe->table_group.group);
2766                 WARN_ON(pe->table_group.group);
2767         }
2768
2769         iommu_tce_table_put(tbl);
2770 }
2771
2772 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2773                                  unsigned short win,
2774                                  unsigned int *map)
2775 {
2776         struct pnv_phb *phb = pe->phb;
2777         int idx;
2778         int64_t rc;
2779
2780         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2781                 if (map[idx] != pe->pe_number)
2782                         continue;
2783
2784                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2785                                 phb->ioda.reserved_pe_idx, win, 0, idx);
2786
2787                 if (rc != OPAL_SUCCESS)
2788                         pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2789                                 rc, win, idx);
2790
2791                 map[idx] = IODA_INVALID_PE;
2792         }
2793 }
2794
2795 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2796 {
2797         struct pnv_phb *phb = pe->phb;
2798
2799         if (phb->type == PNV_PHB_IODA1) {
2800                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2801                                      phb->ioda.io_segmap);
2802                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2803                                      phb->ioda.m32_segmap);
2804                 /* M64 is pre-configured by pnv_ioda1_init_m64() */
2805         } else if (phb->type == PNV_PHB_IODA2) {
2806                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2807                                      phb->ioda.m32_segmap);
2808         }
2809 }
2810
2811 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2812 {
2813         struct pnv_phb *phb = pe->phb;
2814         struct pnv_ioda_pe *slave, *tmp;
2815
2816         pe_info(pe, "Releasing PE\n");
2817
2818         mutex_lock(&phb->ioda.pe_list_mutex);
2819         list_del(&pe->list);
2820         mutex_unlock(&phb->ioda.pe_list_mutex);
2821
2822         switch (phb->type) {
2823         case PNV_PHB_IODA1:
2824                 pnv_pci_ioda1_release_pe_dma(pe);
2825                 break;
2826         case PNV_PHB_IODA2:
2827                 pnv_pci_ioda2_release_pe_dma(pe);
2828                 break;
2829         case PNV_PHB_NPU_OCAPI:
2830                 break;
2831         default:
2832                 WARN_ON(1);
2833         }
2834
2835         pnv_ioda_release_pe_seg(pe);
2836         pnv_ioda_deconfigure_pe(pe->phb, pe);
2837
2838         /* Release slave PEs in the compound PE */
2839         if (pe->flags & PNV_IODA_PE_MASTER) {
2840                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2841                         list_del(&slave->list);
2842                         pnv_ioda_free_pe(slave);
2843                 }
2844         }
2845
2846         /*
2847          * The PE for root bus can be removed because of hotplug in EEH
2848          * recovery for fenced PHB error. We need to mark the PE dead so
2849          * that it can be populated again in PCI hot add path. The PE
2850          * shouldn't be destroyed as it's the global reserved resource.
2851          */
2852         if (phb->ioda.root_pe_idx == pe->pe_number)
2853                 return;
2854
2855         pnv_ioda_free_pe(pe);
2856 }
2857
2858 static void pnv_pci_release_device(struct pci_dev *pdev)
2859 {
2860         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2861         struct pci_dn *pdn = pci_get_pdn(pdev);
2862         struct pnv_ioda_pe *pe;
2863
2864         /* The VF PE state is torn down when sriov_disable() is called */
2865         if (pdev->is_virtfn)
2866                 return;
2867
2868         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2869                 return;
2870
2871 #ifdef CONFIG_PCI_IOV
2872         /*
2873          * FIXME: Try move this to sriov_disable(). It's here since we allocate
2874          * the iov state at probe time since we need to fiddle with the IOV
2875          * resources.
2876          */
2877         if (pdev->is_physfn)
2878                 kfree(pdev->dev.archdata.iov_data);
2879 #endif
2880
2881         /*
2882          * PCI hotplug can happen as part of EEH error recovery. The @pdn
2883          * isn't removed and added afterwards in this scenario. We should
2884          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2885          * device count is decreased on removing devices while failing to
2886          * be increased on adding devices. It leads to unbalanced PE's device
2887          * count and eventually make normal PCI hotplug path broken.
2888          */
2889         pe = &phb->ioda.pe_array[pdn->pe_number];
2890         pdn->pe_number = IODA_INVALID_PE;
2891
2892         WARN_ON(--pe->device_count < 0);
2893         if (pe->device_count == 0)
2894                 pnv_ioda_release_pe(pe);
2895 }
2896
2897 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2898 {
2899         struct pnv_phb *phb = hose->private_data;
2900
2901         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2902                        OPAL_ASSERT_RESET);
2903 }
2904
2905 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2906 {
2907         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2908         struct pnv_ioda_pe *pe;
2909
2910         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2911                 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2912                         continue;
2913
2914                 if (!pe->pbus)
2915                         continue;
2916
2917                 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2918                         pe->pbus = bus;
2919                         break;
2920                 }
2921         }
2922 }
2923
2924 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2925         .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2926         .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2927         .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2928         .enable_device_hook     = pnv_pci_enable_device_hook,
2929         .release_device         = pnv_pci_release_device,
2930         .window_alignment       = pnv_pci_window_alignment,
2931         .setup_bridge           = pnv_pci_fixup_bridge_resources,
2932         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2933         .shutdown               = pnv_pci_ioda_shutdown,
2934 };
2935
2936 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2937         .enable_device_hook     = pnv_ocapi_enable_device_hook,
2938         .release_device         = pnv_pci_release_device,
2939         .window_alignment       = pnv_pci_window_alignment,
2940         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2941         .shutdown               = pnv_pci_ioda_shutdown,
2942 };
2943
2944 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2945                                          u64 hub_id, int ioda_type)
2946 {
2947         struct pci_controller *hose;
2948         struct pnv_phb *phb;
2949         unsigned long size, m64map_off, m32map_off, pemap_off;
2950         unsigned long iomap_off = 0, dma32map_off = 0;
2951         struct pnv_ioda_pe *root_pe;
2952         struct resource r;
2953         const __be64 *prop64;
2954         const __be32 *prop32;
2955         int len;
2956         unsigned int segno;
2957         u64 phb_id;
2958         void *aux;
2959         long rc;
2960
2961         if (!of_device_is_available(np))
2962                 return;
2963
2964         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2965
2966         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2967         if (!prop64) {
2968                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2969                 return;
2970         }
2971         phb_id = be64_to_cpup(prop64);
2972         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2973
2974         phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2975         if (!phb)
2976                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2977                       sizeof(*phb));
2978
2979         /* Allocate PCI controller */
2980         phb->hose = hose = pcibios_alloc_controller(np);
2981         if (!phb->hose) {
2982                 pr_err("  Can't allocate PCI controller for %pOF\n",
2983                        np);
2984                 memblock_free(phb, sizeof(struct pnv_phb));
2985                 return;
2986         }
2987
2988         spin_lock_init(&phb->lock);
2989         prop32 = of_get_property(np, "bus-range", &len);
2990         if (prop32 && len == 8) {
2991                 hose->first_busno = be32_to_cpu(prop32[0]);
2992                 hose->last_busno = be32_to_cpu(prop32[1]);
2993         } else {
2994                 pr_warn("  Broken <bus-range> on %pOF\n", np);
2995                 hose->first_busno = 0;
2996                 hose->last_busno = 0xff;
2997         }
2998         hose->private_data = phb;
2999         phb->hub_id = hub_id;
3000         phb->opal_id = phb_id;
3001         phb->type = ioda_type;
3002         mutex_init(&phb->ioda.pe_alloc_mutex);
3003
3004         /* Detect specific models for error handling */
3005         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3006                 phb->model = PNV_PHB_MODEL_P7IOC;
3007         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3008                 phb->model = PNV_PHB_MODEL_PHB3;
3009         else
3010                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3011
3012         /* Initialize diagnostic data buffer */
3013         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3014         if (prop32)
3015                 phb->diag_data_size = be32_to_cpup(prop32);
3016         else
3017                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3018
3019         phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
3020         if (!phb->diag_data)
3021                 panic("%s: Failed to allocate %u bytes\n", __func__,
3022                       phb->diag_data_size);
3023
3024         /* Parse 32-bit and IO ranges (if any) */
3025         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3026
3027         /* Get registers */
3028         if (!of_address_to_resource(np, 0, &r)) {
3029                 phb->regs_phys = r.start;
3030                 phb->regs = ioremap(r.start, resource_size(&r));
3031                 if (phb->regs == NULL)
3032                         pr_err("  Failed to map registers !\n");
3033         }
3034
3035         /* Initialize more IODA stuff */
3036         phb->ioda.total_pe_num = 1;
3037         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3038         if (prop32)
3039                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3040         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3041         if (prop32)
3042                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3043
3044         /* Invalidate RID to PE# mapping */
3045         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3046                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3047
3048         /* Parse 64-bit MMIO range */
3049         pnv_ioda_parse_m64_window(phb);
3050
3051         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3052         /* FW Has already off top 64k of M32 space (MSI space) */
3053         phb->ioda.m32_size += 0x10000;
3054
3055         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3056         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3057         phb->ioda.io_size = hose->pci_io_size;
3058         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3059         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3060
3061         /* Calculate how many 32-bit TCE segments we have */
3062         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3063                                 PNV_IODA1_DMA32_SEGSIZE;
3064
3065         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3066         size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3067                         sizeof(unsigned long));
3068         m64map_off = size;
3069         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3070         m32map_off = size;
3071         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3072         if (phb->type == PNV_PHB_IODA1) {
3073                 iomap_off = size;
3074                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3075                 dma32map_off = size;
3076                 size += phb->ioda.dma32_count *
3077                         sizeof(phb->ioda.dma32_segmap[0]);
3078         }
3079         pemap_off = size;
3080         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3081         aux = kzalloc(size, GFP_KERNEL);
3082         if (!aux)
3083                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3084
3085         phb->ioda.pe_alloc = aux;
3086         phb->ioda.m64_segmap = aux + m64map_off;
3087         phb->ioda.m32_segmap = aux + m32map_off;
3088         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3089                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3090                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3091         }
3092         if (phb->type == PNV_PHB_IODA1) {
3093                 phb->ioda.io_segmap = aux + iomap_off;
3094                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3095                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3096
3097                 phb->ioda.dma32_segmap = aux + dma32map_off;
3098                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3099                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3100         }
3101         phb->ioda.pe_array = aux + pemap_off;
3102
3103         /*
3104          * Choose PE number for root bus, which shouldn't have
3105          * M64 resources consumed by its child devices. To pick
3106          * the PE number adjacent to the reserved one if possible.
3107          */
3108         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3109         if (phb->ioda.reserved_pe_idx == 0) {
3110                 phb->ioda.root_pe_idx = 1;
3111                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3112         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3113                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3114                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3115         } else {
3116                 /* otherwise just allocate one */
3117                 root_pe = pnv_ioda_alloc_pe(phb, 1);
3118                 phb->ioda.root_pe_idx = root_pe->pe_number;
3119         }
3120
3121         INIT_LIST_HEAD(&phb->ioda.pe_list);
3122         mutex_init(&phb->ioda.pe_list_mutex);
3123
3124         /* Calculate how many 32-bit TCE segments we have */
3125         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3126                                 PNV_IODA1_DMA32_SEGSIZE;
3127
3128 #if 0 /* We should really do that ... */
3129         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3130                                          window_type,
3131                                          window_num,
3132                                          starting_real_address,
3133                                          starting_pci_address,
3134                                          segment_size);
3135 #endif
3136
3137         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3138                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3139                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3140         if (phb->ioda.m64_size)
3141                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3142                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3143         if (phb->ioda.io_size)
3144                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3145                         phb->ioda.io_size, phb->ioda.io_segsize);
3146
3147
3148         phb->hose->ops = &pnv_pci_ops;
3149         phb->get_pe_state = pnv_ioda_get_pe_state;
3150         phb->freeze_pe = pnv_ioda_freeze_pe;
3151         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3152
3153         /* Setup MSI support */
3154         pnv_pci_init_ioda_msis(phb);
3155
3156         /*
3157          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3158          * to let the PCI core do resource assignment. It's supposed
3159          * that the PCI core will do correct I/O and MMIO alignment
3160          * for the P2P bridge bars so that each PCI bus (excluding
3161          * the child P2P bridges) can form individual PE.
3162          */
3163         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3164
3165         switch (phb->type) {
3166         case PNV_PHB_NPU_OCAPI:
3167                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3168                 break;
3169         default:
3170                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3171         }
3172
3173         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3174
3175 #ifdef CONFIG_PCI_IOV
3176         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3177         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3178         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3179         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3180 #endif
3181
3182         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3183
3184         /* Reset IODA tables to a clean state */
3185         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3186         if (rc)
3187                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3188
3189         /*
3190          * If we're running in kdump kernel, the previous kernel never
3191          * shutdown PCI devices correctly. We already got IODA table
3192          * cleaned out. So we have to issue PHB reset to stop all PCI
3193          * transactions from previous kernel. The ppc_pci_reset_phbs
3194          * kernel parameter will force this reset too. Additionally,
3195          * if the IODA reset above failed then use a bigger hammer.
3196          * This can happen if we get a PHB fatal error in very early
3197          * boot.
3198          */
3199         if (is_kdump_kernel() || pci_reset_phbs || rc) {
3200                 pr_info("  Issue PHB reset ...\n");
3201                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3202                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3203         }
3204
3205         /* Remove M64 resource if we can't configure it successfully */
3206         if (!phb->init_m64 || phb->init_m64(phb))
3207                 hose->mem_resources[1].flags = 0;
3208
3209         /* create pci_dn's for DT nodes under this PHB */
3210         pci_devs_phb_init_dynamic(hose);
3211 }
3212
3213 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3214 {
3215         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3216 }
3217
3218 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3219 {
3220         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3221 }
3222
3223 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3224 {
3225         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3226
3227         if (!machine_is(powernv))
3228                 return;
3229
3230         if (phb->type == PNV_PHB_NPU_OCAPI)
3231                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3232 }
3233 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3234
3235 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3236 {
3237         struct device_node *phbn;
3238         const __be64 *prop64;
3239         u64 hub_id;
3240
3241         pr_info("Probing IODA IO-Hub %pOF\n", np);
3242
3243         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3244         if (!prop64) {
3245                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3246                 return;
3247         }
3248         hub_id = be64_to_cpup(prop64);
3249         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3250
3251         /* Count child PHBs */
3252         for_each_child_of_node(np, phbn) {
3253                 /* Look for IODA1 PHBs */
3254                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3255                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3256         }
3257 }