Merge tag 'seccomp-v5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / arch / powerpc / mm / slice.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * address space "slices" (meta-segments) support
4  *
5  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
6  *
7  * Based on hugetlb implementation
8  *
9  * Copyright (C) 2003 David Gibson, IBM Corporation.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/hugetlb.h>
21 #include <linux/sched/mm.h>
22 #include <linux/security.h>
23 #include <asm/mman.h>
24 #include <asm/mmu.h>
25 #include <asm/copro.h>
26 #include <asm/hugetlb.h>
27 #include <asm/mmu_context.h>
28
29 static DEFINE_SPINLOCK(slice_convert_lock);
30
31 #ifdef DEBUG
32 int _slice_debug = 1;
33
34 static void slice_print_mask(const char *label, const struct slice_mask *mask)
35 {
36         if (!_slice_debug)
37                 return;
38         pr_devel("%s low_slice: %*pbl\n", label,
39                         (int)SLICE_NUM_LOW, &mask->low_slices);
40         pr_devel("%s high_slice: %*pbl\n", label,
41                         (int)SLICE_NUM_HIGH, mask->high_slices);
42 }
43
44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
45
46 #else
47
48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
49 #define slice_dbg(fmt...)
50
51 #endif
52
53 static inline notrace bool slice_addr_is_low(unsigned long addr)
54 {
55         u64 tmp = (u64)addr;
56
57         return tmp < SLICE_LOW_TOP;
58 }
59
60 static void slice_range_to_mask(unsigned long start, unsigned long len,
61                                 struct slice_mask *ret)
62 {
63         unsigned long end = start + len - 1;
64
65         ret->low_slices = 0;
66         if (SLICE_NUM_HIGH)
67                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
68
69         if (slice_addr_is_low(start)) {
70                 unsigned long mend = min(end,
71                                          (unsigned long)(SLICE_LOW_TOP - 1));
72
73                 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
74                         - (1u << GET_LOW_SLICE_INDEX(start));
75         }
76
77         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
78                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
79                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
80                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
81
82                 bitmap_set(ret->high_slices, start_index, count);
83         }
84 }
85
86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
87                               unsigned long len)
88 {
89         struct vm_area_struct *vma;
90
91         if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
92                 return 0;
93         vma = find_vma(mm, addr);
94         return (!vma || (addr + len) <= vm_start_gap(vma));
95 }
96
97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
98 {
99         return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
100                                    1ul << SLICE_LOW_SHIFT);
101 }
102
103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
104 {
105         unsigned long start = slice << SLICE_HIGH_SHIFT;
106         unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
107
108         /* Hack, so that each addresses is controlled by exactly one
109          * of the high or low area bitmaps, the first high area starts
110          * at 4GB, not 0 */
111         if (start == 0)
112                 start = (unsigned long)SLICE_LOW_TOP;
113
114         return !slice_area_is_free(mm, start, end - start);
115 }
116
117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
118                                 unsigned long high_limit)
119 {
120         unsigned long i;
121
122         ret->low_slices = 0;
123         if (SLICE_NUM_HIGH)
124                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
125
126         for (i = 0; i < SLICE_NUM_LOW; i++)
127                 if (!slice_low_has_vma(mm, i))
128                         ret->low_slices |= 1u << i;
129
130         if (slice_addr_is_low(high_limit - 1))
131                 return;
132
133         for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134                 if (!slice_high_has_vma(mm, i))
135                         __set_bit(i, ret->high_slices);
136 }
137
138 static bool slice_check_range_fits(struct mm_struct *mm,
139                            const struct slice_mask *available,
140                            unsigned long start, unsigned long len)
141 {
142         unsigned long end = start + len - 1;
143         u64 low_slices = 0;
144
145         if (slice_addr_is_low(start)) {
146                 unsigned long mend = min(end,
147                                          (unsigned long)(SLICE_LOW_TOP - 1));
148
149                 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
150                                 - (1u << GET_LOW_SLICE_INDEX(start));
151         }
152         if ((low_slices & available->low_slices) != low_slices)
153                 return false;
154
155         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
157                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
158                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
159                 unsigned long i;
160
161                 for (i = start_index; i < start_index + count; i++) {
162                         if (!test_bit(i, available->high_slices))
163                                 return false;
164                 }
165         }
166
167         return true;
168 }
169
170 static void slice_flush_segments(void *parm)
171 {
172 #ifdef CONFIG_PPC64
173         struct mm_struct *mm = parm;
174         unsigned long flags;
175
176         if (mm != current->active_mm)
177                 return;
178
179         copy_mm_to_paca(current->active_mm);
180
181         local_irq_save(flags);
182         slb_flush_and_restore_bolted();
183         local_irq_restore(flags);
184 #endif
185 }
186
187 static void slice_convert(struct mm_struct *mm,
188                                 const struct slice_mask *mask, int psize)
189 {
190         int index, mask_index;
191         /* Write the new slice psize bits */
192         unsigned char *hpsizes, *lpsizes;
193         struct slice_mask *psize_mask, *old_mask;
194         unsigned long i, flags;
195         int old_psize;
196
197         slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
198         slice_print_mask(" mask", mask);
199
200         psize_mask = slice_mask_for_size(&mm->context, psize);
201
202         /* We need to use a spinlock here to protect against
203          * concurrent 64k -> 4k demotion ...
204          */
205         spin_lock_irqsave(&slice_convert_lock, flags);
206
207         lpsizes = mm_ctx_low_slices(&mm->context);
208         for (i = 0; i < SLICE_NUM_LOW; i++) {
209                 if (!(mask->low_slices & (1u << i)))
210                         continue;
211
212                 mask_index = i & 0x1;
213                 index = i >> 1;
214
215                 /* Update the slice_mask */
216                 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217                 old_mask = slice_mask_for_size(&mm->context, old_psize);
218                 old_mask->low_slices &= ~(1u << i);
219                 psize_mask->low_slices |= 1u << i;
220
221                 /* Update the sizes array */
222                 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223                                 (((unsigned long)psize) << (mask_index * 4));
224         }
225
226         hpsizes = mm_ctx_high_slices(&mm->context);
227         for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228                 if (!test_bit(i, mask->high_slices))
229                         continue;
230
231                 mask_index = i & 0x1;
232                 index = i >> 1;
233
234                 /* Update the slice_mask */
235                 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236                 old_mask = slice_mask_for_size(&mm->context, old_psize);
237                 __clear_bit(i, old_mask->high_slices);
238                 __set_bit(i, psize_mask->high_slices);
239
240                 /* Update the sizes array */
241                 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242                                 (((unsigned long)psize) << (mask_index * 4));
243         }
244
245         slice_dbg(" lsps=%lx, hsps=%lx\n",
246                   (unsigned long)mm_ctx_low_slices(&mm->context),
247                   (unsigned long)mm_ctx_high_slices(&mm->context));
248
249         spin_unlock_irqrestore(&slice_convert_lock, flags);
250
251         copro_flush_all_slbs(mm);
252 }
253
254 /*
255  * Compute which slice addr is part of;
256  * set *boundary_addr to the start or end boundary of that slice
257  * (depending on 'end' parameter);
258  * return boolean indicating if the slice is marked as available in the
259  * 'available' slice_mark.
260  */
261 static bool slice_scan_available(unsigned long addr,
262                                  const struct slice_mask *available,
263                                  int end, unsigned long *boundary_addr)
264 {
265         unsigned long slice;
266         if (slice_addr_is_low(addr)) {
267                 slice = GET_LOW_SLICE_INDEX(addr);
268                 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269                 return !!(available->low_slices & (1u << slice));
270         } else {
271                 slice = GET_HIGH_SLICE_INDEX(addr);
272                 *boundary_addr = (slice + end) ?
273                         ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274                 return !!test_bit(slice, available->high_slices);
275         }
276 }
277
278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
279                                               unsigned long len,
280                                               const struct slice_mask *available,
281                                               int psize, unsigned long high_limit)
282 {
283         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284         unsigned long addr, found, next_end;
285         struct vm_unmapped_area_info info;
286
287         info.flags = 0;
288         info.length = len;
289         info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
290         info.align_offset = 0;
291
292         addr = TASK_UNMAPPED_BASE;
293         /*
294          * Check till the allow max value for this mmap request
295          */
296         while (addr < high_limit) {
297                 info.low_limit = addr;
298                 if (!slice_scan_available(addr, available, 1, &addr))
299                         continue;
300
301  next_slice:
302                 /*
303                  * At this point [info.low_limit; addr) covers
304                  * available slices only and ends at a slice boundary.
305                  * Check if we need to reduce the range, or if we can
306                  * extend it to cover the next available slice.
307                  */
308                 if (addr >= high_limit)
309                         addr = high_limit;
310                 else if (slice_scan_available(addr, available, 1, &next_end)) {
311                         addr = next_end;
312                         goto next_slice;
313                 }
314                 info.high_limit = addr;
315
316                 found = vm_unmapped_area(&info);
317                 if (!(found & ~PAGE_MASK))
318                         return found;
319         }
320
321         return -ENOMEM;
322 }
323
324 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
325                                              unsigned long len,
326                                              const struct slice_mask *available,
327                                              int psize, unsigned long high_limit)
328 {
329         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
330         unsigned long addr, found, prev;
331         struct vm_unmapped_area_info info;
332         unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
333
334         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
335         info.length = len;
336         info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
337         info.align_offset = 0;
338
339         addr = mm->mmap_base;
340         /*
341          * If we are trying to allocate above DEFAULT_MAP_WINDOW
342          * Add the different to the mmap_base.
343          * Only for that request for which high_limit is above
344          * DEFAULT_MAP_WINDOW we should apply this.
345          */
346         if (high_limit > DEFAULT_MAP_WINDOW)
347                 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
348
349         while (addr > min_addr) {
350                 info.high_limit = addr;
351                 if (!slice_scan_available(addr - 1, available, 0, &addr))
352                         continue;
353
354  prev_slice:
355                 /*
356                  * At this point [addr; info.high_limit) covers
357                  * available slices only and starts at a slice boundary.
358                  * Check if we need to reduce the range, or if we can
359                  * extend it to cover the previous available slice.
360                  */
361                 if (addr < min_addr)
362                         addr = min_addr;
363                 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
364                         addr = prev;
365                         goto prev_slice;
366                 }
367                 info.low_limit = addr;
368
369                 found = vm_unmapped_area(&info);
370                 if (!(found & ~PAGE_MASK))
371                         return found;
372         }
373
374         /*
375          * A failed mmap() very likely causes application failure,
376          * so fall back to the bottom-up function here. This scenario
377          * can happen with large stack limits and large mmap()
378          * allocations.
379          */
380         return slice_find_area_bottomup(mm, len, available, psize, high_limit);
381 }
382
383
384 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
385                                      const struct slice_mask *mask, int psize,
386                                      int topdown, unsigned long high_limit)
387 {
388         if (topdown)
389                 return slice_find_area_topdown(mm, len, mask, psize, high_limit);
390         else
391                 return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
392 }
393
394 static inline void slice_copy_mask(struct slice_mask *dst,
395                                         const struct slice_mask *src)
396 {
397         dst->low_slices = src->low_slices;
398         if (!SLICE_NUM_HIGH)
399                 return;
400         bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
401 }
402
403 static inline void slice_or_mask(struct slice_mask *dst,
404                                         const struct slice_mask *src1,
405                                         const struct slice_mask *src2)
406 {
407         dst->low_slices = src1->low_slices | src2->low_slices;
408         if (!SLICE_NUM_HIGH)
409                 return;
410         bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
411 }
412
413 static inline void slice_andnot_mask(struct slice_mask *dst,
414                                         const struct slice_mask *src1,
415                                         const struct slice_mask *src2)
416 {
417         dst->low_slices = src1->low_slices & ~src2->low_slices;
418         if (!SLICE_NUM_HIGH)
419                 return;
420         bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
421 }
422
423 #ifdef CONFIG_PPC_64K_PAGES
424 #define MMU_PAGE_BASE   MMU_PAGE_64K
425 #else
426 #define MMU_PAGE_BASE   MMU_PAGE_4K
427 #endif
428
429 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
430                                       unsigned long flags, unsigned int psize,
431                                       int topdown)
432 {
433         struct slice_mask good_mask;
434         struct slice_mask potential_mask;
435         const struct slice_mask *maskp;
436         const struct slice_mask *compat_maskp = NULL;
437         int fixed = (flags & MAP_FIXED);
438         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
439         unsigned long page_size = 1UL << pshift;
440         struct mm_struct *mm = current->mm;
441         unsigned long newaddr;
442         unsigned long high_limit;
443
444         high_limit = DEFAULT_MAP_WINDOW;
445         if (addr >= high_limit || (fixed && (addr + len > high_limit)))
446                 high_limit = TASK_SIZE;
447
448         if (len > high_limit)
449                 return -ENOMEM;
450         if (len & (page_size - 1))
451                 return -EINVAL;
452         if (fixed) {
453                 if (addr & (page_size - 1))
454                         return -EINVAL;
455                 if (addr > high_limit - len)
456                         return -ENOMEM;
457         }
458
459         if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
460                 /*
461                  * Increasing the slb_addr_limit does not require
462                  * slice mask cache to be recalculated because it should
463                  * be already initialised beyond the old address limit.
464                  */
465                 mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
466
467                 on_each_cpu(slice_flush_segments, mm, 1);
468         }
469
470         /* Sanity checks */
471         BUG_ON(mm->task_size == 0);
472         BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
473         VM_BUG_ON(radix_enabled());
474
475         slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
476         slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
477                   addr, len, flags, topdown);
478
479         /* If hint, make sure it matches our alignment restrictions */
480         if (!fixed && addr) {
481                 addr = ALIGN(addr, page_size);
482                 slice_dbg(" aligned addr=%lx\n", addr);
483                 /* Ignore hint if it's too large or overlaps a VMA */
484                 if (addr > high_limit - len || addr < mmap_min_addr ||
485                     !slice_area_is_free(mm, addr, len))
486                         addr = 0;
487         }
488
489         /* First make up a "good" mask of slices that have the right size
490          * already
491          */
492         maskp = slice_mask_for_size(&mm->context, psize);
493
494         /*
495          * Here "good" means slices that are already the right page size,
496          * "compat" means slices that have a compatible page size (i.e.
497          * 4k in a 64k pagesize kernel), and "free" means slices without
498          * any VMAs.
499          *
500          * If MAP_FIXED:
501          *      check if fits in good | compat => OK
502          *      check if fits in good | compat | free => convert free
503          *      else bad
504          * If have hint:
505          *      check if hint fits in good => OK
506          *      check if hint fits in good | free => convert free
507          * Otherwise:
508          *      search in good, found => OK
509          *      search in good | free, found => convert free
510          *      search in good | compat | free, found => convert free.
511          */
512
513         /*
514          * If we support combo pages, we can allow 64k pages in 4k slices
515          * The mask copies could be avoided in most cases here if we had
516          * a pointer to good mask for the next code to use.
517          */
518         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
519                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
520                 if (fixed)
521                         slice_or_mask(&good_mask, maskp, compat_maskp);
522                 else
523                         slice_copy_mask(&good_mask, maskp);
524         } else {
525                 slice_copy_mask(&good_mask, maskp);
526         }
527
528         slice_print_mask(" good_mask", &good_mask);
529         if (compat_maskp)
530                 slice_print_mask(" compat_mask", compat_maskp);
531
532         /* First check hint if it's valid or if we have MAP_FIXED */
533         if (addr != 0 || fixed) {
534                 /* Check if we fit in the good mask. If we do, we just return,
535                  * nothing else to do
536                  */
537                 if (slice_check_range_fits(mm, &good_mask, addr, len)) {
538                         slice_dbg(" fits good !\n");
539                         newaddr = addr;
540                         goto return_addr;
541                 }
542         } else {
543                 /* Now let's see if we can find something in the existing
544                  * slices for that size
545                  */
546                 newaddr = slice_find_area(mm, len, &good_mask,
547                                           psize, topdown, high_limit);
548                 if (newaddr != -ENOMEM) {
549                         /* Found within the good mask, we don't have to setup,
550                          * we thus return directly
551                          */
552                         slice_dbg(" found area at 0x%lx\n", newaddr);
553                         goto return_addr;
554                 }
555         }
556         /*
557          * We don't fit in the good mask, check what other slices are
558          * empty and thus can be converted
559          */
560         slice_mask_for_free(mm, &potential_mask, high_limit);
561         slice_or_mask(&potential_mask, &potential_mask, &good_mask);
562         slice_print_mask(" potential", &potential_mask);
563
564         if (addr != 0 || fixed) {
565                 if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
566                         slice_dbg(" fits potential !\n");
567                         newaddr = addr;
568                         goto convert;
569                 }
570         }
571
572         /* If we have MAP_FIXED and failed the above steps, then error out */
573         if (fixed)
574                 return -EBUSY;
575
576         slice_dbg(" search...\n");
577
578         /* If we had a hint that didn't work out, see if we can fit
579          * anywhere in the good area.
580          */
581         if (addr) {
582                 newaddr = slice_find_area(mm, len, &good_mask,
583                                           psize, topdown, high_limit);
584                 if (newaddr != -ENOMEM) {
585                         slice_dbg(" found area at 0x%lx\n", newaddr);
586                         goto return_addr;
587                 }
588         }
589
590         /* Now let's see if we can find something in the existing slices
591          * for that size plus free slices
592          */
593         newaddr = slice_find_area(mm, len, &potential_mask,
594                                   psize, topdown, high_limit);
595
596         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
597             psize == MMU_PAGE_64K) {
598                 /* retry the search with 4k-page slices included */
599                 slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
600                 newaddr = slice_find_area(mm, len, &potential_mask,
601                                           psize, topdown, high_limit);
602         }
603
604         if (newaddr == -ENOMEM)
605                 return -ENOMEM;
606
607         slice_range_to_mask(newaddr, len, &potential_mask);
608         slice_dbg(" found potential area at 0x%lx\n", newaddr);
609         slice_print_mask(" mask", &potential_mask);
610
611  convert:
612         /*
613          * Try to allocate the context before we do slice convert
614          * so that we handle the context allocation failure gracefully.
615          */
616         if (need_extra_context(mm, newaddr)) {
617                 if (alloc_extended_context(mm, newaddr) < 0)
618                         return -ENOMEM;
619         }
620
621         slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
622         if (compat_maskp && !fixed)
623                 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
624         if (potential_mask.low_slices ||
625                 (SLICE_NUM_HIGH &&
626                  !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
627                 slice_convert(mm, &potential_mask, psize);
628                 if (psize > MMU_PAGE_BASE)
629                         on_each_cpu(slice_flush_segments, mm, 1);
630         }
631         return newaddr;
632
633 return_addr:
634         if (need_extra_context(mm, newaddr)) {
635                 if (alloc_extended_context(mm, newaddr) < 0)
636                         return -ENOMEM;
637         }
638         return newaddr;
639 }
640 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
641
642 unsigned long arch_get_unmapped_area(struct file *filp,
643                                      unsigned long addr,
644                                      unsigned long len,
645                                      unsigned long pgoff,
646                                      unsigned long flags)
647 {
648         return slice_get_unmapped_area(addr, len, flags,
649                                        mm_ctx_user_psize(&current->mm->context), 0);
650 }
651
652 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
653                                              const unsigned long addr0,
654                                              const unsigned long len,
655                                              const unsigned long pgoff,
656                                              const unsigned long flags)
657 {
658         return slice_get_unmapped_area(addr0, len, flags,
659                                        mm_ctx_user_psize(&current->mm->context), 1);
660 }
661
662 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
663 {
664         unsigned char *psizes;
665         int index, mask_index;
666
667         VM_BUG_ON(radix_enabled());
668
669         if (slice_addr_is_low(addr)) {
670                 psizes = mm_ctx_low_slices(&mm->context);
671                 index = GET_LOW_SLICE_INDEX(addr);
672         } else {
673                 psizes = mm_ctx_high_slices(&mm->context);
674                 index = GET_HIGH_SLICE_INDEX(addr);
675         }
676         mask_index = index & 0x1;
677         return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
678 }
679 EXPORT_SYMBOL_GPL(get_slice_psize);
680
681 void slice_init_new_context_exec(struct mm_struct *mm)
682 {
683         unsigned char *hpsizes, *lpsizes;
684         struct slice_mask *mask;
685         unsigned int psize = mmu_virtual_psize;
686
687         slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
688
689         /*
690          * In the case of exec, use the default limit. In the
691          * case of fork it is just inherited from the mm being
692          * duplicated.
693          */
694         mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
695         mm_ctx_set_user_psize(&mm->context, psize);
696
697         /*
698          * Set all slice psizes to the default.
699          */
700         lpsizes = mm_ctx_low_slices(&mm->context);
701         memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
702
703         hpsizes = mm_ctx_high_slices(&mm->context);
704         memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
705
706         /*
707          * Slice mask cache starts zeroed, fill the default size cache.
708          */
709         mask = slice_mask_for_size(&mm->context, psize);
710         mask->low_slices = ~0UL;
711         if (SLICE_NUM_HIGH)
712                 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
713 }
714
715 #ifdef CONFIG_PPC_BOOK3S_64
716 void slice_setup_new_exec(void)
717 {
718         struct mm_struct *mm = current->mm;
719
720         slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
721
722         if (!is_32bit_task())
723                 return;
724
725         mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
726 }
727 #endif
728
729 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
730                            unsigned long len, unsigned int psize)
731 {
732         struct slice_mask mask;
733
734         VM_BUG_ON(radix_enabled());
735
736         slice_range_to_mask(start, len, &mask);
737         slice_convert(mm, &mask, psize);
738 }
739
740 #ifdef CONFIG_HUGETLB_PAGE
741 /*
742  * is_hugepage_only_range() is used by generic code to verify whether
743  * a normal mmap mapping (non hugetlbfs) is valid on a given area.
744  *
745  * until the generic code provides a more generic hook and/or starts
746  * calling arch get_unmapped_area for MAP_FIXED (which our implementation
747  * here knows how to deal with), we hijack it to keep standard mappings
748  * away from us.
749  *
750  * because of that generic code limitation, MAP_FIXED mapping cannot
751  * "convert" back a slice with no VMAs to the standard page size, only
752  * get_unmapped_area() can. It would be possible to fix it here but I
753  * prefer working on fixing the generic code instead.
754  *
755  * WARNING: This will not work if hugetlbfs isn't enabled since the
756  * generic code will redefine that function as 0 in that. This is ok
757  * for now as we only use slices with hugetlbfs enabled. This should
758  * be fixed as the generic code gets fixed.
759  */
760 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
761                            unsigned long len)
762 {
763         const struct slice_mask *maskp;
764         unsigned int psize = mm_ctx_user_psize(&mm->context);
765
766         VM_BUG_ON(radix_enabled());
767
768         maskp = slice_mask_for_size(&mm->context, psize);
769
770         /* We need to account for 4k slices too */
771         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
772                 const struct slice_mask *compat_maskp;
773                 struct slice_mask available;
774
775                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
776                 slice_or_mask(&available, maskp, compat_maskp);
777                 return !slice_check_range_fits(mm, &available, addr, len);
778         }
779
780         return !slice_check_range_fits(mm, maskp, addr, len);
781 }
782 #endif