Merge tag 'char-misc-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[linux-2.6-microblaze.git] / arch / powerpc / mm / pgtable-radix.c
1 /*
2  * Page table handling routines for radix page table.
3  *
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #define pr_fmt(fmt) "radix-mmu: " fmt
13
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
18 #include <linux/mm.h>
19 #include <linux/string_helpers.h>
20 #include <linux/stop_machine.h>
21
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/mmu_context.h>
25 #include <asm/dma.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu.h>
28 #include <asm/firmware.h>
29 #include <asm/powernv.h>
30 #include <asm/sections.h>
31 #include <asm/trace.h>
32
33 #include <trace/events/thp.h>
34
35 unsigned int mmu_pid_bits;
36 unsigned int mmu_base_pid;
37
38 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
39                                          unsigned long table_size)
40 {
41         unsigned long patb0, patb1;
42
43         patb0 = be64_to_cpu(partition_tb[0].patb0);
44         patb1 = base | table_size | PATB_GR;
45
46         mmu_partition_table_set_entry(0, patb0, patb1);
47
48         return 0;
49 }
50
51 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
52                         unsigned long region_start, unsigned long region_end)
53 {
54         unsigned long pa = 0;
55         void *pt;
56
57         if (region_start || region_end) /* has region hint */
58                 pa = memblock_alloc_range(size, size, region_start, region_end,
59                                                 MEMBLOCK_NONE);
60         else if (nid != -1) /* has node hint */
61                 pa = memblock_alloc_base_nid(size, size,
62                                                 MEMBLOCK_ALLOC_ANYWHERE,
63                                                 nid, MEMBLOCK_NONE);
64
65         if (!pa)
66                 pa = memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE);
67
68         BUG_ON(!pa);
69
70         pt = __va(pa);
71         memset(pt, 0, size);
72
73         return pt;
74 }
75
76 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
77                           pgprot_t flags,
78                           unsigned int map_page_size,
79                           int nid,
80                           unsigned long region_start, unsigned long region_end)
81 {
82         unsigned long pfn = pa >> PAGE_SHIFT;
83         pgd_t *pgdp;
84         pud_t *pudp;
85         pmd_t *pmdp;
86         pte_t *ptep;
87
88         pgdp = pgd_offset_k(ea);
89         if (pgd_none(*pgdp)) {
90                 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
91                                                 region_start, region_end);
92                 pgd_populate(&init_mm, pgdp, pudp);
93         }
94         pudp = pud_offset(pgdp, ea);
95         if (map_page_size == PUD_SIZE) {
96                 ptep = (pte_t *)pudp;
97                 goto set_the_pte;
98         }
99         if (pud_none(*pudp)) {
100                 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
101                                                 region_start, region_end);
102                 pud_populate(&init_mm, pudp, pmdp);
103         }
104         pmdp = pmd_offset(pudp, ea);
105         if (map_page_size == PMD_SIZE) {
106                 ptep = pmdp_ptep(pmdp);
107                 goto set_the_pte;
108         }
109         if (!pmd_present(*pmdp)) {
110                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
111                                                 region_start, region_end);
112                 pmd_populate_kernel(&init_mm, pmdp, ptep);
113         }
114         ptep = pte_offset_kernel(pmdp, ea);
115
116 set_the_pte:
117         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
118         smp_wmb();
119         return 0;
120 }
121
122 /*
123  * nid, region_start, and region_end are hints to try to place the page
124  * table memory in the same node or region.
125  */
126 static int __map_kernel_page(unsigned long ea, unsigned long pa,
127                           pgprot_t flags,
128                           unsigned int map_page_size,
129                           int nid,
130                           unsigned long region_start, unsigned long region_end)
131 {
132         unsigned long pfn = pa >> PAGE_SHIFT;
133         pgd_t *pgdp;
134         pud_t *pudp;
135         pmd_t *pmdp;
136         pte_t *ptep;
137         /*
138          * Make sure task size is correct as per the max adddr
139          */
140         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
141
142         if (unlikely(!slab_is_available()))
143                 return early_map_kernel_page(ea, pa, flags, map_page_size,
144                                                 nid, region_start, region_end);
145
146         /*
147          * Should make page table allocation functions be able to take a
148          * node, so we can place kernel page tables on the right nodes after
149          * boot.
150          */
151         pgdp = pgd_offset_k(ea);
152         pudp = pud_alloc(&init_mm, pgdp, ea);
153         if (!pudp)
154                 return -ENOMEM;
155         if (map_page_size == PUD_SIZE) {
156                 ptep = (pte_t *)pudp;
157                 goto set_the_pte;
158         }
159         pmdp = pmd_alloc(&init_mm, pudp, ea);
160         if (!pmdp)
161                 return -ENOMEM;
162         if (map_page_size == PMD_SIZE) {
163                 ptep = pmdp_ptep(pmdp);
164                 goto set_the_pte;
165         }
166         ptep = pte_alloc_kernel(pmdp, ea);
167         if (!ptep)
168                 return -ENOMEM;
169
170 set_the_pte:
171         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
172         smp_wmb();
173         return 0;
174 }
175
176 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
177                           pgprot_t flags,
178                           unsigned int map_page_size)
179 {
180         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
181 }
182
183 #ifdef CONFIG_STRICT_KERNEL_RWX
184 void radix__change_memory_range(unsigned long start, unsigned long end,
185                                 unsigned long clear)
186 {
187         unsigned long idx;
188         pgd_t *pgdp;
189         pud_t *pudp;
190         pmd_t *pmdp;
191         pte_t *ptep;
192
193         start = ALIGN_DOWN(start, PAGE_SIZE);
194         end = PAGE_ALIGN(end); // aligns up
195
196         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
197                  start, end, clear);
198
199         for (idx = start; idx < end; idx += PAGE_SIZE) {
200                 pgdp = pgd_offset_k(idx);
201                 pudp = pud_alloc(&init_mm, pgdp, idx);
202                 if (!pudp)
203                         continue;
204                 if (pud_huge(*pudp)) {
205                         ptep = (pte_t *)pudp;
206                         goto update_the_pte;
207                 }
208                 pmdp = pmd_alloc(&init_mm, pudp, idx);
209                 if (!pmdp)
210                         continue;
211                 if (pmd_huge(*pmdp)) {
212                         ptep = pmdp_ptep(pmdp);
213                         goto update_the_pte;
214                 }
215                 ptep = pte_alloc_kernel(pmdp, idx);
216                 if (!ptep)
217                         continue;
218 update_the_pte:
219                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
220         }
221
222         radix__flush_tlb_kernel_range(start, end);
223 }
224
225 void radix__mark_rodata_ro(void)
226 {
227         unsigned long start, end;
228
229         start = (unsigned long)_stext;
230         end = (unsigned long)__init_begin;
231
232         radix__change_memory_range(start, end, _PAGE_WRITE);
233 }
234
235 void radix__mark_initmem_nx(void)
236 {
237         unsigned long start = (unsigned long)__init_begin;
238         unsigned long end = (unsigned long)__init_end;
239
240         radix__change_memory_range(start, end, _PAGE_EXEC);
241 }
242 #endif /* CONFIG_STRICT_KERNEL_RWX */
243
244 static inline void __meminit
245 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
246 {
247         char buf[10];
248
249         if (end <= start)
250                 return;
251
252         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
253
254         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
255                 exec ? " (exec)" : "");
256 }
257
258 static unsigned long next_boundary(unsigned long addr, unsigned long end)
259 {
260 #ifdef CONFIG_STRICT_KERNEL_RWX
261         if (addr < __pa_symbol(__init_begin))
262                 return __pa_symbol(__init_begin);
263 #endif
264         return end;
265 }
266
267 static int __meminit create_physical_mapping(unsigned long start,
268                                              unsigned long end,
269                                              int nid)
270 {
271         unsigned long vaddr, addr, mapping_size = 0;
272         bool prev_exec, exec = false;
273         pgprot_t prot;
274         int psize;
275
276         start = _ALIGN_UP(start, PAGE_SIZE);
277         for (addr = start; addr < end; addr += mapping_size) {
278                 unsigned long gap, previous_size;
279                 int rc;
280
281                 gap = next_boundary(addr, end) - addr;
282                 previous_size = mapping_size;
283                 prev_exec = exec;
284
285                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
286                     mmu_psize_defs[MMU_PAGE_1G].shift) {
287                         mapping_size = PUD_SIZE;
288                         psize = MMU_PAGE_1G;
289                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
290                            mmu_psize_defs[MMU_PAGE_2M].shift) {
291                         mapping_size = PMD_SIZE;
292                         psize = MMU_PAGE_2M;
293                 } else {
294                         mapping_size = PAGE_SIZE;
295                         psize = mmu_virtual_psize;
296                 }
297
298                 vaddr = (unsigned long)__va(addr);
299
300                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
301                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
302                         prot = PAGE_KERNEL_X;
303                         exec = true;
304                 } else {
305                         prot = PAGE_KERNEL;
306                         exec = false;
307                 }
308
309                 if (mapping_size != previous_size || exec != prev_exec) {
310                         print_mapping(start, addr, previous_size, prev_exec);
311                         start = addr;
312                 }
313
314                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
315                 if (rc)
316                         return rc;
317
318                 update_page_count(psize, 1);
319         }
320
321         print_mapping(start, addr, mapping_size, exec);
322         return 0;
323 }
324
325 void __init radix_init_pgtable(void)
326 {
327         unsigned long rts_field;
328         struct memblock_region *reg;
329
330         /* We don't support slb for radix */
331         mmu_slb_size = 0;
332         /*
333          * Create the linear mapping, using standard page size for now
334          */
335         for_each_memblock(memory, reg) {
336                 /*
337                  * The memblock allocator  is up at this point, so the
338                  * page tables will be allocated within the range. No
339                  * need or a node (which we don't have yet).
340                  */
341                 WARN_ON(create_physical_mapping(reg->base,
342                                                 reg->base + reg->size,
343                                                 -1));
344         }
345
346         /* Find out how many PID bits are supported */
347         if (cpu_has_feature(CPU_FTR_HVMODE)) {
348                 if (!mmu_pid_bits)
349                         mmu_pid_bits = 20;
350 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
351                 /*
352                  * When KVM is possible, we only use the top half of the
353                  * PID space to avoid collisions between host and guest PIDs
354                  * which can cause problems due to prefetch when exiting the
355                  * guest with AIL=3
356                  */
357                 mmu_base_pid = 1 << (mmu_pid_bits - 1);
358 #else
359                 mmu_base_pid = 1;
360 #endif
361         } else {
362                 /* The guest uses the bottom half of the PID space */
363                 if (!mmu_pid_bits)
364                         mmu_pid_bits = 19;
365                 mmu_base_pid = 1;
366         }
367
368         /*
369          * Allocate Partition table and process table for the
370          * host.
371          */
372         BUG_ON(PRTB_SIZE_SHIFT > 36);
373         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
374         /*
375          * Fill in the process table.
376          */
377         rts_field = radix__get_tree_size();
378         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
379         /*
380          * Fill in the partition table. We are suppose to use effective address
381          * of process table here. But our linear mapping also enable us to use
382          * physical address here.
383          */
384         register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
385         pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
386         asm volatile("ptesync" : : : "memory");
387         asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
388                      "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
389         asm volatile("eieio; tlbsync; ptesync" : : : "memory");
390         trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
391
392         /*
393          * The init_mm context is given the first available (non-zero) PID,
394          * which is the "guard PID" and contains no page table. PIDR should
395          * never be set to zero because that duplicates the kernel address
396          * space at the 0x0... offset (quadrant 0)!
397          *
398          * An arbitrary PID that may later be allocated by the PID allocator
399          * for userspace processes must not be used either, because that
400          * would cause stale user mappings for that PID on CPUs outside of
401          * the TLB invalidation scheme (because it won't be in mm_cpumask).
402          *
403          * So permanently carve out one PID for the purpose of a guard PID.
404          */
405         init_mm.context.id = mmu_base_pid;
406         mmu_base_pid++;
407 }
408
409 static void __init radix_init_partition_table(void)
410 {
411         unsigned long rts_field, dw0;
412
413         mmu_partition_table_init();
414         rts_field = radix__get_tree_size();
415         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
416         mmu_partition_table_set_entry(0, dw0, 0);
417
418         pr_info("Initializing Radix MMU\n");
419         pr_info("Partition table %p\n", partition_tb);
420 }
421
422 void __init radix_init_native(void)
423 {
424         register_process_table = native_register_process_table;
425 }
426
427 static int __init get_idx_from_shift(unsigned int shift)
428 {
429         int idx = -1;
430
431         switch (shift) {
432         case 0xc:
433                 idx = MMU_PAGE_4K;
434                 break;
435         case 0x10:
436                 idx = MMU_PAGE_64K;
437                 break;
438         case 0x15:
439                 idx = MMU_PAGE_2M;
440                 break;
441         case 0x1e:
442                 idx = MMU_PAGE_1G;
443                 break;
444         }
445         return idx;
446 }
447
448 static int __init radix_dt_scan_page_sizes(unsigned long node,
449                                            const char *uname, int depth,
450                                            void *data)
451 {
452         int size = 0;
453         int shift, idx;
454         unsigned int ap;
455         const __be32 *prop;
456         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
457
458         /* We are scanning "cpu" nodes only */
459         if (type == NULL || strcmp(type, "cpu") != 0)
460                 return 0;
461
462         /* Find MMU PID size */
463         prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
464         if (prop && size == 4)
465                 mmu_pid_bits = be32_to_cpup(prop);
466
467         /* Grab page size encodings */
468         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
469         if (!prop)
470                 return 0;
471
472         pr_info("Page sizes from device-tree:\n");
473         for (; size >= 4; size -= 4, ++prop) {
474
475                 struct mmu_psize_def *def;
476
477                 /* top 3 bit is AP encoding */
478                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
479                 ap = be32_to_cpu(prop[0]) >> 29;
480                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
481
482                 idx = get_idx_from_shift(shift);
483                 if (idx < 0)
484                         continue;
485
486                 def = &mmu_psize_defs[idx];
487                 def->shift = shift;
488                 def->ap  = ap;
489         }
490
491         /* needed ? */
492         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
493         return 1;
494 }
495
496 void __init radix__early_init_devtree(void)
497 {
498         int rc;
499
500         /*
501          * Try to find the available page sizes in the device-tree
502          */
503         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
504         if (rc != 0)  /* Found */
505                 goto found;
506         /*
507          * let's assume we have page 4k and 64k support
508          */
509         mmu_psize_defs[MMU_PAGE_4K].shift = 12;
510         mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
511
512         mmu_psize_defs[MMU_PAGE_64K].shift = 16;
513         mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
514 found:
515 #ifdef CONFIG_SPARSEMEM_VMEMMAP
516         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
517                 /*
518                  * map vmemmap using 2M if available
519                  */
520                 mmu_vmemmap_psize = MMU_PAGE_2M;
521         }
522 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
523         return;
524 }
525
526 static void radix_init_amor(void)
527 {
528         /*
529         * In HV mode, we init AMOR (Authority Mask Override Register) so that
530         * the hypervisor and guest can setup IAMR (Instruction Authority Mask
531         * Register), enable key 0 and set it to 1.
532         *
533         * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
534         */
535         mtspr(SPRN_AMOR, (3ul << 62));
536 }
537
538 static void radix_init_iamr(void)
539 {
540         /*
541          * Radix always uses key0 of the IAMR to determine if an access is
542          * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
543          * fetch.
544          */
545         mtspr(SPRN_IAMR, (1ul << 62));
546 }
547
548 void __init radix__early_init_mmu(void)
549 {
550         unsigned long lpcr;
551
552 #ifdef CONFIG_PPC_64K_PAGES
553         /* PAGE_SIZE mappings */
554         mmu_virtual_psize = MMU_PAGE_64K;
555 #else
556         mmu_virtual_psize = MMU_PAGE_4K;
557 #endif
558
559 #ifdef CONFIG_SPARSEMEM_VMEMMAP
560         /* vmemmap mapping */
561         mmu_vmemmap_psize = mmu_virtual_psize;
562 #endif
563         /*
564          * initialize page table size
565          */
566         __pte_index_size = RADIX_PTE_INDEX_SIZE;
567         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
568         __pud_index_size = RADIX_PUD_INDEX_SIZE;
569         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
570         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
571         __pte_table_size = RADIX_PTE_TABLE_SIZE;
572         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
573         __pud_table_size = RADIX_PUD_TABLE_SIZE;
574         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
575
576         __pmd_val_bits = RADIX_PMD_VAL_BITS;
577         __pud_val_bits = RADIX_PUD_VAL_BITS;
578         __pgd_val_bits = RADIX_PGD_VAL_BITS;
579
580         __kernel_virt_start = RADIX_KERN_VIRT_START;
581         __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
582         __vmalloc_start = RADIX_VMALLOC_START;
583         __vmalloc_end = RADIX_VMALLOC_END;
584         __kernel_io_start = RADIX_KERN_IO_START;
585         vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
586         ioremap_bot = IOREMAP_BASE;
587
588 #ifdef CONFIG_PCI
589         pci_io_base = ISA_IO_BASE;
590 #endif
591         __pte_frag_nr = RADIX_PTE_FRAG_NR;
592         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
593         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
594         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
595
596         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
597                 radix_init_native();
598                 lpcr = mfspr(SPRN_LPCR);
599                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
600                 radix_init_partition_table();
601                 radix_init_amor();
602         } else {
603                 radix_init_pseries();
604         }
605
606         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
607
608         radix_init_iamr();
609         radix_init_pgtable();
610         /* Switch to the guard PID before turning on MMU */
611         radix__switch_mmu_context(NULL, &init_mm);
612         if (cpu_has_feature(CPU_FTR_HVMODE))
613                 tlbiel_all();
614 }
615
616 void radix__early_init_mmu_secondary(void)
617 {
618         unsigned long lpcr;
619         /*
620          * update partition table control register and UPRT
621          */
622         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
623                 lpcr = mfspr(SPRN_LPCR);
624                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
625
626                 mtspr(SPRN_PTCR,
627                       __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
628                 radix_init_amor();
629         }
630         radix_init_iamr();
631
632         radix__switch_mmu_context(NULL, &init_mm);
633         if (cpu_has_feature(CPU_FTR_HVMODE))
634                 tlbiel_all();
635 }
636
637 void radix__mmu_cleanup_all(void)
638 {
639         unsigned long lpcr;
640
641         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
642                 lpcr = mfspr(SPRN_LPCR);
643                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
644                 mtspr(SPRN_PTCR, 0);
645                 powernv_set_nmmu_ptcr(0);
646                 radix__flush_tlb_all();
647         }
648 }
649
650 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
651                                 phys_addr_t first_memblock_size)
652 {
653         /* We don't currently support the first MEMBLOCK not mapping 0
654          * physical on those processors
655          */
656         BUG_ON(first_memblock_base != 0);
657
658         /*
659          * Radix mode is not limited by RMA / VRMA addressing.
660          */
661         ppc64_rma_size = ULONG_MAX;
662 }
663
664 #ifdef CONFIG_MEMORY_HOTPLUG
665 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
666 {
667         pte_t *pte;
668         int i;
669
670         for (i = 0; i < PTRS_PER_PTE; i++) {
671                 pte = pte_start + i;
672                 if (!pte_none(*pte))
673                         return;
674         }
675
676         pte_free_kernel(&init_mm, pte_start);
677         pmd_clear(pmd);
678 }
679
680 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
681 {
682         pmd_t *pmd;
683         int i;
684
685         for (i = 0; i < PTRS_PER_PMD; i++) {
686                 pmd = pmd_start + i;
687                 if (!pmd_none(*pmd))
688                         return;
689         }
690
691         pmd_free(&init_mm, pmd_start);
692         pud_clear(pud);
693 }
694
695 struct change_mapping_params {
696         pte_t *pte;
697         unsigned long start;
698         unsigned long end;
699         unsigned long aligned_start;
700         unsigned long aligned_end;
701 };
702
703 static int __meminit stop_machine_change_mapping(void *data)
704 {
705         struct change_mapping_params *params =
706                         (struct change_mapping_params *)data;
707
708         if (!data)
709                 return -1;
710
711         spin_unlock(&init_mm.page_table_lock);
712         pte_clear(&init_mm, params->aligned_start, params->pte);
713         create_physical_mapping(params->aligned_start, params->start, -1);
714         create_physical_mapping(params->end, params->aligned_end, -1);
715         spin_lock(&init_mm.page_table_lock);
716         return 0;
717 }
718
719 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
720                              unsigned long end)
721 {
722         unsigned long next;
723         pte_t *pte;
724
725         pte = pte_start + pte_index(addr);
726         for (; addr < end; addr = next, pte++) {
727                 next = (addr + PAGE_SIZE) & PAGE_MASK;
728                 if (next > end)
729                         next = end;
730
731                 if (!pte_present(*pte))
732                         continue;
733
734                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
735                         /*
736                          * The vmemmap_free() and remove_section_mapping()
737                          * codepaths call us with aligned addresses.
738                          */
739                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
740                         continue;
741                 }
742
743                 pte_clear(&init_mm, addr, pte);
744         }
745 }
746
747 /*
748  * clear the pte and potentially split the mapping helper
749  */
750 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
751                                 unsigned long size, pte_t *pte)
752 {
753         unsigned long mask = ~(size - 1);
754         unsigned long aligned_start = addr & mask;
755         unsigned long aligned_end = addr + size;
756         struct change_mapping_params params;
757         bool split_region = false;
758
759         if ((end - addr) < size) {
760                 /*
761                  * We're going to clear the PTE, but not flushed
762                  * the mapping, time to remap and flush. The
763                  * effects if visible outside the processor or
764                  * if we are running in code close to the
765                  * mapping we cleared, we are in trouble.
766                  */
767                 if (overlaps_kernel_text(aligned_start, addr) ||
768                         overlaps_kernel_text(end, aligned_end)) {
769                         /*
770                          * Hack, just return, don't pte_clear
771                          */
772                         WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
773                                   "text, not splitting\n", addr, end);
774                         return;
775                 }
776                 split_region = true;
777         }
778
779         if (split_region) {
780                 params.pte = pte;
781                 params.start = addr;
782                 params.end = end;
783                 params.aligned_start = addr & ~(size - 1);
784                 params.aligned_end = min_t(unsigned long, aligned_end,
785                                 (unsigned long)__va(memblock_end_of_DRAM()));
786                 stop_machine(stop_machine_change_mapping, &params, NULL);
787                 return;
788         }
789
790         pte_clear(&init_mm, addr, pte);
791 }
792
793 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
794                              unsigned long end)
795 {
796         unsigned long next;
797         pte_t *pte_base;
798         pmd_t *pmd;
799
800         pmd = pmd_start + pmd_index(addr);
801         for (; addr < end; addr = next, pmd++) {
802                 next = pmd_addr_end(addr, end);
803
804                 if (!pmd_present(*pmd))
805                         continue;
806
807                 if (pmd_huge(*pmd)) {
808                         split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
809                         continue;
810                 }
811
812                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
813                 remove_pte_table(pte_base, addr, next);
814                 free_pte_table(pte_base, pmd);
815         }
816 }
817
818 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
819                              unsigned long end)
820 {
821         unsigned long next;
822         pmd_t *pmd_base;
823         pud_t *pud;
824
825         pud = pud_start + pud_index(addr);
826         for (; addr < end; addr = next, pud++) {
827                 next = pud_addr_end(addr, end);
828
829                 if (!pud_present(*pud))
830                         continue;
831
832                 if (pud_huge(*pud)) {
833                         split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
834                         continue;
835                 }
836
837                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
838                 remove_pmd_table(pmd_base, addr, next);
839                 free_pmd_table(pmd_base, pud);
840         }
841 }
842
843 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
844 {
845         unsigned long addr, next;
846         pud_t *pud_base;
847         pgd_t *pgd;
848
849         spin_lock(&init_mm.page_table_lock);
850
851         for (addr = start; addr < end; addr = next) {
852                 next = pgd_addr_end(addr, end);
853
854                 pgd = pgd_offset_k(addr);
855                 if (!pgd_present(*pgd))
856                         continue;
857
858                 if (pgd_huge(*pgd)) {
859                         split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
860                         continue;
861                 }
862
863                 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
864                 remove_pud_table(pud_base, addr, next);
865         }
866
867         spin_unlock(&init_mm.page_table_lock);
868         radix__flush_tlb_kernel_range(start, end);
869 }
870
871 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
872 {
873         return create_physical_mapping(start, end, nid);
874 }
875
876 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
877 {
878         remove_pagetable(start, end);
879         return 0;
880 }
881 #endif /* CONFIG_MEMORY_HOTPLUG */
882
883 #ifdef CONFIG_SPARSEMEM_VMEMMAP
884 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
885                                  pgprot_t flags, unsigned int map_page_size,
886                                  int nid)
887 {
888         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
889 }
890
891 int __meminit radix__vmemmap_create_mapping(unsigned long start,
892                                       unsigned long page_size,
893                                       unsigned long phys)
894 {
895         /* Create a PTE encoding */
896         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
897         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
898         int ret;
899
900         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
901         BUG_ON(ret);
902
903         return 0;
904 }
905
906 #ifdef CONFIG_MEMORY_HOTPLUG
907 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
908 {
909         remove_pagetable(start, start + page_size);
910 }
911 #endif
912 #endif
913
914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
915
916 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
917                                   pmd_t *pmdp, unsigned long clr,
918                                   unsigned long set)
919 {
920         unsigned long old;
921
922 #ifdef CONFIG_DEBUG_VM
923         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
924         assert_spin_locked(pmd_lockptr(mm, pmdp));
925 #endif
926
927         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
928         trace_hugepage_update(addr, old, clr, set);
929
930         return old;
931 }
932
933 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
934                         pmd_t *pmdp)
935
936 {
937         pmd_t pmd;
938
939         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
940         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
941         VM_BUG_ON(pmd_devmap(*pmdp));
942         /*
943          * khugepaged calls this for normal pmd
944          */
945         pmd = *pmdp;
946         pmd_clear(pmdp);
947
948         /*FIXME!!  Verify whether we need this kick below */
949         serialize_against_pte_lookup(vma->vm_mm);
950
951         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
952
953         return pmd;
954 }
955
956 /*
957  * For us pgtable_t is pte_t *. Inorder to save the deposisted
958  * page table, we consider the allocated page table as a list
959  * head. On withdraw we need to make sure we zero out the used
960  * list_head memory area.
961  */
962 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
963                                  pgtable_t pgtable)
964 {
965         struct list_head *lh = (struct list_head *) pgtable;
966
967         assert_spin_locked(pmd_lockptr(mm, pmdp));
968
969         /* FIFO */
970         if (!pmd_huge_pte(mm, pmdp))
971                 INIT_LIST_HEAD(lh);
972         else
973                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
974         pmd_huge_pte(mm, pmdp) = pgtable;
975 }
976
977 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
978 {
979         pte_t *ptep;
980         pgtable_t pgtable;
981         struct list_head *lh;
982
983         assert_spin_locked(pmd_lockptr(mm, pmdp));
984
985         /* FIFO */
986         pgtable = pmd_huge_pte(mm, pmdp);
987         lh = (struct list_head *) pgtable;
988         if (list_empty(lh))
989                 pmd_huge_pte(mm, pmdp) = NULL;
990         else {
991                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
992                 list_del(lh);
993         }
994         ptep = (pte_t *) pgtable;
995         *ptep = __pte(0);
996         ptep++;
997         *ptep = __pte(0);
998         return pgtable;
999 }
1000
1001
1002 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1003                                unsigned long addr, pmd_t *pmdp)
1004 {
1005         pmd_t old_pmd;
1006         unsigned long old;
1007
1008         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1009         old_pmd = __pmd(old);
1010         /*
1011          * Serialize against find_current_mm_pte which does lock-less
1012          * lookup in page tables with local interrupts disabled. For huge pages
1013          * it casts pmd_t to pte_t. Since format of pte_t is different from
1014          * pmd_t we want to prevent transit from pmd pointing to page table
1015          * to pmd pointing to huge page (and back) while interrupts are disabled.
1016          * We clear pmd to possibly replace it with page table pointer in
1017          * different code paths. So make sure we wait for the parallel
1018          * find_current_mm_pte to finish.
1019          */
1020         serialize_against_pte_lookup(mm);
1021         return old_pmd;
1022 }
1023
1024 int radix__has_transparent_hugepage(void)
1025 {
1026         /* For radix 2M at PMD level means thp */
1027         if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1028                 return 1;
1029         return 0;
1030 }
1031 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1032
1033 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1034                                   pte_t entry, unsigned long address, int psize)
1035 {
1036         struct mm_struct *mm = vma->vm_mm;
1037         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1038                                               _PAGE_RW | _PAGE_EXEC);
1039
1040         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1041         /*
1042          * To avoid NMMU hang while relaxing access, we need mark
1043          * the pte invalid in between.
1044          */
1045         if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1046                 unsigned long old_pte, new_pte;
1047
1048                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1049                 /*
1050                  * new value of pte
1051                  */
1052                 new_pte = old_pte | set;
1053                 radix__flush_tlb_page_psize(mm, address, psize);
1054                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1055         } else {
1056                 __radix_pte_update(ptep, 0, set);
1057                 /*
1058                  * Book3S does not require a TLB flush when relaxing access
1059                  * restrictions when the address space is not attached to a
1060                  * NMMU, because the core MMU will reload the pte after taking
1061                  * an access fault, which is defined by the architectue.
1062                  */
1063         }
1064         /* See ptesync comment in radix__set_pte_at */
1065 }