Merge tag 'seccomp-v5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27
28 bool hugetlb_disabled = false;
29
30 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
31
32 #define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_basic_t)) - \
33                          __builtin_ffs(sizeof(void *)))
34
35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37         /*
38          * Only called for hugetlbfs pages, hence can ignore THP and the
39          * irq disabled walk.
40          */
41         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43
44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45                            unsigned long address, unsigned int pdshift,
46                            unsigned int pshift, spinlock_t *ptl)
47 {
48         struct kmem_cache *cachep;
49         pte_t *new;
50         int i;
51         int num_hugepd;
52
53         if (pshift >= pdshift) {
54                 cachep = PGT_CACHE(PTE_T_ORDER);
55                 num_hugepd = 1 << (pshift - pdshift);
56         } else {
57                 cachep = PGT_CACHE(pdshift - pshift);
58                 num_hugepd = 1;
59         }
60
61         if (!cachep) {
62                 WARN_ONCE(1, "No page table cache created for hugetlb tables");
63                 return -ENOMEM;
64         }
65
66         new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67
68         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70
71         if (!new)
72                 return -ENOMEM;
73
74         /*
75          * Make sure other cpus find the hugepd set only after a
76          * properly initialized page table is visible to them.
77          * For more details look for comment in __pte_alloc().
78          */
79         smp_wmb();
80
81         spin_lock(ptl);
82         /*
83          * We have multiple higher-level entries that point to the same
84          * actual pte location.  Fill in each as we go and backtrack on error.
85          * We need all of these so the DTLB pgtable walk code can find the
86          * right higher-level entry without knowing if it's a hugepage or not.
87          */
88         for (i = 0; i < num_hugepd; i++, hpdp++) {
89                 if (unlikely(!hugepd_none(*hpdp)))
90                         break;
91                 hugepd_populate(hpdp, new, pshift);
92         }
93         /* If we bailed from the for loop early, an error occurred, clean up */
94         if (i < num_hugepd) {
95                 for (i = i - 1 ; i >= 0; i--, hpdp--)
96                         *hpdp = __hugepd(0);
97                 kmem_cache_free(cachep, new);
98         } else {
99                 kmemleak_ignore(new);
100         }
101         spin_unlock(ptl);
102         return 0;
103 }
104
105 /*
106  * At this point we do the placement change only for BOOK3S 64. This would
107  * possibly work on other subarchs.
108  */
109 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
110                       unsigned long addr, unsigned long sz)
111 {
112         pgd_t *pg;
113         p4d_t *p4;
114         pud_t *pu;
115         pmd_t *pm;
116         hugepd_t *hpdp = NULL;
117         unsigned pshift = __ffs(sz);
118         unsigned pdshift = PGDIR_SHIFT;
119         spinlock_t *ptl;
120
121         addr &= ~(sz-1);
122         pg = pgd_offset(mm, addr);
123         p4 = p4d_offset(pg, addr);
124
125 #ifdef CONFIG_PPC_BOOK3S_64
126         if (pshift == PGDIR_SHIFT)
127                 /* 16GB huge page */
128                 return (pte_t *) p4;
129         else if (pshift > PUD_SHIFT) {
130                 /*
131                  * We need to use hugepd table
132                  */
133                 ptl = &mm->page_table_lock;
134                 hpdp = (hugepd_t *)p4;
135         } else {
136                 pdshift = PUD_SHIFT;
137                 pu = pud_alloc(mm, p4, addr);
138                 if (!pu)
139                         return NULL;
140                 if (pshift == PUD_SHIFT)
141                         return (pte_t *)pu;
142                 else if (pshift > PMD_SHIFT) {
143                         ptl = pud_lockptr(mm, pu);
144                         hpdp = (hugepd_t *)pu;
145                 } else {
146                         pdshift = PMD_SHIFT;
147                         pm = pmd_alloc(mm, pu, addr);
148                         if (!pm)
149                                 return NULL;
150                         if (pshift == PMD_SHIFT)
151                                 /* 16MB hugepage */
152                                 return (pte_t *)pm;
153                         else {
154                                 ptl = pmd_lockptr(mm, pm);
155                                 hpdp = (hugepd_t *)pm;
156                         }
157                 }
158         }
159 #else
160         if (pshift >= PGDIR_SHIFT) {
161                 ptl = &mm->page_table_lock;
162                 hpdp = (hugepd_t *)p4;
163         } else {
164                 pdshift = PUD_SHIFT;
165                 pu = pud_alloc(mm, p4, addr);
166                 if (!pu)
167                         return NULL;
168                 if (pshift >= PUD_SHIFT) {
169                         ptl = pud_lockptr(mm, pu);
170                         hpdp = (hugepd_t *)pu;
171                 } else {
172                         pdshift = PMD_SHIFT;
173                         pm = pmd_alloc(mm, pu, addr);
174                         if (!pm)
175                                 return NULL;
176                         ptl = pmd_lockptr(mm, pm);
177                         hpdp = (hugepd_t *)pm;
178                 }
179         }
180 #endif
181         if (!hpdp)
182                 return NULL;
183
184         if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
185                 return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
186
187         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188
189         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
190                                                   pdshift, pshift, ptl))
191                 return NULL;
192
193         return hugepte_offset(*hpdp, addr, pdshift);
194 }
195
196 #ifdef CONFIG_PPC_BOOK3S_64
197 /*
198  * Tracks gpages after the device tree is scanned and before the
199  * huge_boot_pages list is ready on pseries.
200  */
201 #define MAX_NUMBER_GPAGES       1024
202 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
203 __initdata static unsigned nr_gpages;
204
205 /*
206  * Build list of addresses of gigantic pages.  This function is used in early
207  * boot before the buddy allocator is setup.
208  */
209 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
210 {
211         if (!addr)
212                 return;
213         while (number_of_pages > 0) {
214                 gpage_freearray[nr_gpages] = addr;
215                 nr_gpages++;
216                 number_of_pages--;
217                 addr += page_size;
218         }
219 }
220
221 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
222 {
223         struct huge_bootmem_page *m;
224         if (nr_gpages == 0)
225                 return 0;
226         m = phys_to_virt(gpage_freearray[--nr_gpages]);
227         gpage_freearray[nr_gpages] = 0;
228         list_add(&m->list, &huge_boot_pages);
229         m->hstate = hstate;
230         return 1;
231 }
232 #endif
233
234
235 int __init alloc_bootmem_huge_page(struct hstate *h)
236 {
237
238 #ifdef CONFIG_PPC_BOOK3S_64
239         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
240                 return pseries_alloc_bootmem_huge_page(h);
241 #endif
242         return __alloc_bootmem_huge_page(h);
243 }
244
245 #ifndef CONFIG_PPC_BOOK3S_64
246 #define HUGEPD_FREELIST_SIZE \
247         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
248
249 struct hugepd_freelist {
250         struct rcu_head rcu;
251         unsigned int index;
252         void *ptes[];
253 };
254
255 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
256
257 static void hugepd_free_rcu_callback(struct rcu_head *head)
258 {
259         struct hugepd_freelist *batch =
260                 container_of(head, struct hugepd_freelist, rcu);
261         unsigned int i;
262
263         for (i = 0; i < batch->index; i++)
264                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
265
266         free_page((unsigned long)batch);
267 }
268
269 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
270 {
271         struct hugepd_freelist **batchp;
272
273         batchp = &get_cpu_var(hugepd_freelist_cur);
274
275         if (atomic_read(&tlb->mm->mm_users) < 2 ||
276             mm_is_thread_local(tlb->mm)) {
277                 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
278                 put_cpu_var(hugepd_freelist_cur);
279                 return;
280         }
281
282         if (*batchp == NULL) {
283                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
284                 (*batchp)->index = 0;
285         }
286
287         (*batchp)->ptes[(*batchp)->index++] = hugepte;
288         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
289                 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
290                 *batchp = NULL;
291         }
292         put_cpu_var(hugepd_freelist_cur);
293 }
294 #else
295 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
296 #endif
297
298 /* Return true when the entry to be freed maps more than the area being freed */
299 static bool range_is_outside_limits(unsigned long start, unsigned long end,
300                                     unsigned long floor, unsigned long ceiling,
301                                     unsigned long mask)
302 {
303         if ((start & mask) < floor)
304                 return true;
305         if (ceiling) {
306                 ceiling &= mask;
307                 if (!ceiling)
308                         return true;
309         }
310         return end - 1 > ceiling - 1;
311 }
312
313 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
314                               unsigned long start, unsigned long end,
315                               unsigned long floor, unsigned long ceiling)
316 {
317         pte_t *hugepte = hugepd_page(*hpdp);
318         int i;
319
320         unsigned long pdmask = ~((1UL << pdshift) - 1);
321         unsigned int num_hugepd = 1;
322         unsigned int shift = hugepd_shift(*hpdp);
323
324         /* Note: On fsl the hpdp may be the first of several */
325         if (shift > pdshift)
326                 num_hugepd = 1 << (shift - pdshift);
327
328         if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
329                 return;
330
331         for (i = 0; i < num_hugepd; i++, hpdp++)
332                 *hpdp = __hugepd(0);
333
334         if (shift >= pdshift)
335                 hugepd_free(tlb, hugepte);
336         else
337                 pgtable_free_tlb(tlb, hugepte,
338                                  get_hugepd_cache_index(pdshift - shift));
339 }
340
341 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
342                                    unsigned long addr, unsigned long end,
343                                    unsigned long floor, unsigned long ceiling)
344 {
345         pgtable_t token = pmd_pgtable(*pmd);
346
347         if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
348                 return;
349
350         pmd_clear(pmd);
351         pte_free_tlb(tlb, token, addr);
352         mm_dec_nr_ptes(tlb->mm);
353 }
354
355 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
356                                    unsigned long addr, unsigned long end,
357                                    unsigned long floor, unsigned long ceiling)
358 {
359         pmd_t *pmd;
360         unsigned long next;
361         unsigned long start;
362
363         start = addr;
364         do {
365                 unsigned long more;
366
367                 pmd = pmd_offset(pud, addr);
368                 next = pmd_addr_end(addr, end);
369                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
370                         if (pmd_none_or_clear_bad(pmd))
371                                 continue;
372
373                         /*
374                          * if it is not hugepd pointer, we should already find
375                          * it cleared.
376                          */
377                         WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
378
379                         hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
380
381                         continue;
382                 }
383                 /*
384                  * Increment next by the size of the huge mapping since
385                  * there may be more than one entry at this level for a
386                  * single hugepage, but all of them point to
387                  * the same kmem cache that holds the hugepte.
388                  */
389                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
390                 if (more > next)
391                         next = more;
392
393                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
394                                   addr, next, floor, ceiling);
395         } while (addr = next, addr != end);
396
397         if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
398                 return;
399
400         pmd = pmd_offset(pud, start & PUD_MASK);
401         pud_clear(pud);
402         pmd_free_tlb(tlb, pmd, start & PUD_MASK);
403         mm_dec_nr_pmds(tlb->mm);
404 }
405
406 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
407                                    unsigned long addr, unsigned long end,
408                                    unsigned long floor, unsigned long ceiling)
409 {
410         pud_t *pud;
411         unsigned long next;
412         unsigned long start;
413
414         start = addr;
415         do {
416                 pud = pud_offset(p4d, addr);
417                 next = pud_addr_end(addr, end);
418                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
419                         if (pud_none_or_clear_bad(pud))
420                                 continue;
421                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
422                                                ceiling);
423                 } else {
424                         unsigned long more;
425                         /*
426                          * Increment next by the size of the huge mapping since
427                          * there may be more than one entry at this level for a
428                          * single hugepage, but all of them point to
429                          * the same kmem cache that holds the hugepte.
430                          */
431                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
432                         if (more > next)
433                                 next = more;
434
435                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
436                                           addr, next, floor, ceiling);
437                 }
438         } while (addr = next, addr != end);
439
440         if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
441                 return;
442
443         pud = pud_offset(p4d, start & PGDIR_MASK);
444         p4d_clear(p4d);
445         pud_free_tlb(tlb, pud, start & PGDIR_MASK);
446         mm_dec_nr_puds(tlb->mm);
447 }
448
449 /*
450  * This function frees user-level page tables of a process.
451  */
452 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
453                             unsigned long addr, unsigned long end,
454                             unsigned long floor, unsigned long ceiling)
455 {
456         pgd_t *pgd;
457         p4d_t *p4d;
458         unsigned long next;
459
460         /*
461          * Because there are a number of different possible pagetable
462          * layouts for hugepage ranges, we limit knowledge of how
463          * things should be laid out to the allocation path
464          * (huge_pte_alloc(), above).  Everything else works out the
465          * structure as it goes from information in the hugepd
466          * pointers.  That means that we can't here use the
467          * optimization used in the normal page free_pgd_range(), of
468          * checking whether we're actually covering a large enough
469          * range to have to do anything at the top level of the walk
470          * instead of at the bottom.
471          *
472          * To make sense of this, you should probably go read the big
473          * block comment at the top of the normal free_pgd_range(),
474          * too.
475          */
476
477         do {
478                 next = pgd_addr_end(addr, end);
479                 pgd = pgd_offset(tlb->mm, addr);
480                 p4d = p4d_offset(pgd, addr);
481                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
482                         if (p4d_none_or_clear_bad(p4d))
483                                 continue;
484                         hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
485                 } else {
486                         unsigned long more;
487                         /*
488                          * Increment next by the size of the huge mapping since
489                          * there may be more than one entry at the pgd level
490                          * for a single hugepage, but all of them point to the
491                          * same kmem cache that holds the hugepte.
492                          */
493                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
494                         if (more > next)
495                                 next = more;
496
497                         free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
498                                           addr, next, floor, ceiling);
499                 }
500         } while (addr = next, addr != end);
501 }
502
503 struct page *follow_huge_pd(struct vm_area_struct *vma,
504                             unsigned long address, hugepd_t hpd,
505                             int flags, int pdshift)
506 {
507         pte_t *ptep;
508         spinlock_t *ptl;
509         struct page *page = NULL;
510         unsigned long mask;
511         int shift = hugepd_shift(hpd);
512         struct mm_struct *mm = vma->vm_mm;
513
514 retry:
515         /*
516          * hugepage directory entries are protected by mm->page_table_lock
517          * Use this instead of huge_pte_lockptr
518          */
519         ptl = &mm->page_table_lock;
520         spin_lock(ptl);
521
522         ptep = hugepte_offset(hpd, address, pdshift);
523         if (pte_present(*ptep)) {
524                 mask = (1UL << shift) - 1;
525                 page = pte_page(*ptep);
526                 page += ((address & mask) >> PAGE_SHIFT);
527                 if (flags & FOLL_GET)
528                         get_page(page);
529         } else {
530                 if (is_hugetlb_entry_migration(*ptep)) {
531                         spin_unlock(ptl);
532                         __migration_entry_wait(mm, ptep, ptl);
533                         goto retry;
534                 }
535         }
536         spin_unlock(ptl);
537         return page;
538 }
539
540 #ifdef CONFIG_PPC_MM_SLICES
541 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
542                                         unsigned long len, unsigned long pgoff,
543                                         unsigned long flags)
544 {
545         struct hstate *hstate = hstate_file(file);
546         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
547
548 #ifdef CONFIG_PPC_RADIX_MMU
549         if (radix_enabled())
550                 return radix__hugetlb_get_unmapped_area(file, addr, len,
551                                                        pgoff, flags);
552 #endif
553         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
554 }
555 #endif
556
557 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
558 {
559         /* With radix we don't use slice, so derive it from vma*/
560         if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
561                 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
562
563                 return 1UL << mmu_psize_to_shift(psize);
564         }
565         return vma_kernel_pagesize(vma);
566 }
567
568 bool __init arch_hugetlb_valid_size(unsigned long size)
569 {
570         int shift = __ffs(size);
571         int mmu_psize;
572
573         /* Check that it is a page size supported by the hardware and
574          * that it fits within pagetable and slice limits. */
575         if (size <= PAGE_SIZE || !is_power_of_2(size))
576                 return false;
577
578         mmu_psize = check_and_get_huge_psize(shift);
579         if (mmu_psize < 0)
580                 return false;
581
582         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
583
584         return true;
585 }
586
587 static int __init add_huge_page_size(unsigned long long size)
588 {
589         int shift = __ffs(size);
590
591         if (!arch_hugetlb_valid_size((unsigned long)size))
592                 return -EINVAL;
593
594         hugetlb_add_hstate(shift - PAGE_SHIFT);
595         return 0;
596 }
597
598 static int __init hugetlbpage_init(void)
599 {
600         bool configured = false;
601         int psize;
602
603         if (hugetlb_disabled) {
604                 pr_info("HugeTLB support is disabled!\n");
605                 return 0;
606         }
607
608         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
609             !mmu_has_feature(MMU_FTR_16M_PAGE))
610                 return -ENODEV;
611
612         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
613                 unsigned shift;
614                 unsigned pdshift;
615
616                 if (!mmu_psize_defs[psize].shift)
617                         continue;
618
619                 shift = mmu_psize_to_shift(psize);
620
621 #ifdef CONFIG_PPC_BOOK3S_64
622                 if (shift > PGDIR_SHIFT)
623                         continue;
624                 else if (shift > PUD_SHIFT)
625                         pdshift = PGDIR_SHIFT;
626                 else if (shift > PMD_SHIFT)
627                         pdshift = PUD_SHIFT;
628                 else
629                         pdshift = PMD_SHIFT;
630 #else
631                 if (shift < PUD_SHIFT)
632                         pdshift = PMD_SHIFT;
633                 else if (shift < PGDIR_SHIFT)
634                         pdshift = PUD_SHIFT;
635                 else
636                         pdshift = PGDIR_SHIFT;
637 #endif
638
639                 if (add_huge_page_size(1ULL << shift) < 0)
640                         continue;
641                 /*
642                  * if we have pdshift and shift value same, we don't
643                  * use pgt cache for hugepd.
644                  */
645                 if (pdshift > shift) {
646                         if (!IS_ENABLED(CONFIG_PPC_8xx))
647                                 pgtable_cache_add(pdshift - shift);
648                 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
649                            IS_ENABLED(CONFIG_PPC_8xx)) {
650                         pgtable_cache_add(PTE_T_ORDER);
651                 }
652
653                 configured = true;
654         }
655
656         if (configured) {
657                 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
658                         hugetlbpage_init_default();
659         } else
660                 pr_info("Failed to initialize. Disabling HugeTLB");
661
662         return 0;
663 }
664
665 arch_initcall(hugetlbpage_init);
666
667 void __init gigantic_hugetlb_cma_reserve(void)
668 {
669         unsigned long order = 0;
670
671         if (radix_enabled())
672                 order = PUD_SHIFT - PAGE_SHIFT;
673         else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
674                 /*
675                  * For pseries we do use ibm,expected#pages for reserving 16G pages.
676                  */
677                 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
678
679         if (order) {
680                 VM_WARN_ON(order < MAX_ORDER);
681                 hugetlb_cma_reserve(order);
682         }
683 }