powerpc/64s: slb comment update
[linux-2.6-microblaze.git] / arch / powerpc / mm / book3s64 / slb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 SLB support.
4  *
5  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6  * Based on earlier code written by:
7  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8  *    Copyright (c) 2001 Dave Engebretsen
9  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10  */
11
12 #include <asm/asm-prototypes.h>
13 #include <asm/mmu.h>
14 #include <asm/mmu_context.h>
15 #include <asm/paca.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/cputable.h>
18 #include <asm/cacheflush.h>
19 #include <asm/smp.h>
20 #include <linux/compiler.h>
21 #include <linux/context_tracking.h>
22 #include <linux/mm_types.h>
23 #include <linux/pgtable.h>
24
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27
28 #include "internal.h"
29
30
31 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
32
33 bool stress_slb_enabled __initdata;
34
35 static int __init parse_stress_slb(char *p)
36 {
37         stress_slb_enabled = true;
38         return 0;
39 }
40 early_param("stress_slb", parse_stress_slb);
41
42 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
43
44 static void assert_slb_presence(bool present, unsigned long ea)
45 {
46 #ifdef CONFIG_DEBUG_VM
47         unsigned long tmp;
48
49         WARN_ON_ONCE(mfmsr() & MSR_EE);
50
51         if (!cpu_has_feature(CPU_FTR_ARCH_206))
52                 return;
53
54         /*
55          * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
56          * ignores all other bits from 0-27, so just clear them all.
57          */
58         ea &= ~((1UL << SID_SHIFT) - 1);
59         asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
60
61         WARN_ON(present == (tmp == 0));
62 #endif
63 }
64
65 static inline void slb_shadow_update(unsigned long ea, int ssize,
66                                      unsigned long flags,
67                                      enum slb_index index)
68 {
69         struct slb_shadow *p = get_slb_shadow();
70
71         /*
72          * Clear the ESID first so the entry is not valid while we are
73          * updating it.  No write barriers are needed here, provided
74          * we only update the current CPU's SLB shadow buffer.
75          */
76         WRITE_ONCE(p->save_area[index].esid, 0);
77         WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
78         WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
79 }
80
81 static inline void slb_shadow_clear(enum slb_index index)
82 {
83         WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
84 }
85
86 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
87                                         unsigned long flags,
88                                         enum slb_index index)
89 {
90         /*
91          * Updating the shadow buffer before writing the SLB ensures
92          * we don't get a stale entry here if we get preempted by PHYP
93          * between these two statements.
94          */
95         slb_shadow_update(ea, ssize, flags, index);
96
97         assert_slb_presence(false, ea);
98         asm volatile("slbmte  %0,%1" :
99                      : "r" (mk_vsid_data(ea, ssize, flags)),
100                        "r" (mk_esid_data(ea, ssize, index))
101                      : "memory" );
102 }
103
104 /*
105  * Insert bolted entries into SLB (which may not be empty, so don't clear
106  * slb_cache_ptr).
107  */
108 void __slb_restore_bolted_realmode(void)
109 {
110         struct slb_shadow *p = get_slb_shadow();
111         enum slb_index index;
112
113          /* No isync needed because realmode. */
114         for (index = 0; index < SLB_NUM_BOLTED; index++) {
115                 asm volatile("slbmte  %0,%1" :
116                      : "r" (be64_to_cpu(p->save_area[index].vsid)),
117                        "r" (be64_to_cpu(p->save_area[index].esid)));
118         }
119
120         assert_slb_presence(true, local_paca->kstack);
121 }
122
123 /*
124  * Insert the bolted entries into an empty SLB.
125  */
126 void slb_restore_bolted_realmode(void)
127 {
128         __slb_restore_bolted_realmode();
129         get_paca()->slb_cache_ptr = 0;
130
131         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
132         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
133 }
134
135 /*
136  * This flushes all SLB entries including 0, so it must be realmode.
137  */
138 void slb_flush_all_realmode(void)
139 {
140         asm volatile("slbmte %0,%0; slbia" : : "r" (0));
141 }
142
143 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
144 {
145         struct slb_shadow *p = get_slb_shadow();
146         unsigned long ksp_esid_data, ksp_vsid_data;
147         u32 ih;
148
149         /*
150          * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
151          * information created with Class=0 entries, which we use for kernel
152          * SLB entries (the SLB entries themselves are still invalidated).
153          *
154          * Older processors will ignore this optimisation. Over-invalidation
155          * is fine because we never rely on lookaside information existing.
156          */
157         if (preserve_kernel_lookaside)
158                 ih = 1;
159         else
160                 ih = 0;
161
162         ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
163         ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
164
165         asm volatile(PPC_SLBIA(%0)"     \n"
166                      "slbmte    %1, %2  \n"
167                      :: "i" (ih),
168                         "r" (ksp_vsid_data),
169                         "r" (ksp_esid_data)
170                      : "memory");
171 }
172
173 /*
174  * This flushes non-bolted entries, it can be run in virtual mode. Must
175  * be called with interrupts disabled.
176  */
177 void slb_flush_and_restore_bolted(void)
178 {
179         BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
180
181         WARN_ON(!irqs_disabled());
182
183         /*
184          * We can't take a PMU exception in the following code, so hard
185          * disable interrupts.
186          */
187         hard_irq_disable();
188
189         isync();
190         __slb_flush_and_restore_bolted(false);
191         isync();
192
193         assert_slb_presence(true, get_paca()->kstack);
194
195         get_paca()->slb_cache_ptr = 0;
196
197         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
198         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
199 }
200
201 void slb_save_contents(struct slb_entry *slb_ptr)
202 {
203         int i;
204         unsigned long e, v;
205
206         /* Save slb_cache_ptr value. */
207         get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
208
209         if (!slb_ptr)
210                 return;
211
212         for (i = 0; i < mmu_slb_size; i++) {
213                 asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
214                 asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
215                 slb_ptr->esid = e;
216                 slb_ptr->vsid = v;
217                 slb_ptr++;
218         }
219 }
220
221 void slb_dump_contents(struct slb_entry *slb_ptr)
222 {
223         int i, n;
224         unsigned long e, v;
225         unsigned long llp;
226
227         if (!slb_ptr)
228                 return;
229
230         pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
231
232         for (i = 0; i < mmu_slb_size; i++) {
233                 e = slb_ptr->esid;
234                 v = slb_ptr->vsid;
235                 slb_ptr++;
236
237                 if (!e && !v)
238                         continue;
239
240                 pr_err("%02d %016lx %016lx %s\n", i, e, v,
241                                 (e & SLB_ESID_V) ? "VALID" : "NOT VALID");
242
243                 if (!(e & SLB_ESID_V))
244                         continue;
245
246                 llp = v & SLB_VSID_LLP;
247                 if (v & SLB_VSID_B_1T) {
248                         pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
249                                GET_ESID_1T(e),
250                                (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
251                 } else {
252                         pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
253                                GET_ESID(e),
254                                (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
255                 }
256         }
257
258         if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
259                 /* RR is not so useful as it's often not used for allocation */
260                 pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
261
262                 /* Dump slb cache entires as well. */
263                 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
264                 pr_err("Valid SLB cache entries:\n");
265                 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
266                 for (i = 0; i < n; i++)
267                         pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
268                 pr_err("Rest of SLB cache entries:\n");
269                 for (i = n; i < SLB_CACHE_ENTRIES; i++)
270                         pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
271         }
272 }
273
274 void slb_vmalloc_update(void)
275 {
276         /*
277          * vmalloc is not bolted, so just have to flush non-bolted.
278          */
279         slb_flush_and_restore_bolted();
280 }
281
282 static bool preload_hit(struct thread_info *ti, unsigned long esid)
283 {
284         unsigned char i;
285
286         for (i = 0; i < ti->slb_preload_nr; i++) {
287                 unsigned char idx;
288
289                 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
290                 if (esid == ti->slb_preload_esid[idx])
291                         return true;
292         }
293         return false;
294 }
295
296 static bool preload_add(struct thread_info *ti, unsigned long ea)
297 {
298         unsigned char idx;
299         unsigned long esid;
300
301         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
302                 /* EAs are stored >> 28 so 256MB segments don't need clearing */
303                 if (ea & ESID_MASK_1T)
304                         ea &= ESID_MASK_1T;
305         }
306
307         esid = ea >> SID_SHIFT;
308
309         if (preload_hit(ti, esid))
310                 return false;
311
312         idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
313         ti->slb_preload_esid[idx] = esid;
314         if (ti->slb_preload_nr == SLB_PRELOAD_NR)
315                 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
316         else
317                 ti->slb_preload_nr++;
318
319         return true;
320 }
321
322 static void preload_age(struct thread_info *ti)
323 {
324         if (!ti->slb_preload_nr)
325                 return;
326         ti->slb_preload_nr--;
327         ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
328 }
329
330 void slb_setup_new_exec(void)
331 {
332         struct thread_info *ti = current_thread_info();
333         struct mm_struct *mm = current->mm;
334         unsigned long exec = 0x10000000;
335
336         WARN_ON(irqs_disabled());
337
338         /*
339          * preload cache can only be used to determine whether a SLB
340          * entry exists if it does not start to overflow.
341          */
342         if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
343                 return;
344
345         hard_irq_disable();
346
347         /*
348          * We have no good place to clear the slb preload cache on exec,
349          * flush_thread is about the earliest arch hook but that happens
350          * after we switch to the mm and have aleady preloaded the SLBEs.
351          *
352          * For the most part that's probably okay to use entries from the
353          * previous exec, they will age out if unused. It may turn out to
354          * be an advantage to clear the cache before switching to it,
355          * however.
356          */
357
358         /*
359          * preload some userspace segments into the SLB.
360          * Almost all 32 and 64bit PowerPC executables are linked at
361          * 0x10000000 so it makes sense to preload this segment.
362          */
363         if (!is_kernel_addr(exec)) {
364                 if (preload_add(ti, exec))
365                         slb_allocate_user(mm, exec);
366         }
367
368         /* Libraries and mmaps. */
369         if (!is_kernel_addr(mm->mmap_base)) {
370                 if (preload_add(ti, mm->mmap_base))
371                         slb_allocate_user(mm, mm->mmap_base);
372         }
373
374         /* see switch_slb */
375         asm volatile("isync" : : : "memory");
376
377         local_irq_enable();
378 }
379
380 void preload_new_slb_context(unsigned long start, unsigned long sp)
381 {
382         struct thread_info *ti = current_thread_info();
383         struct mm_struct *mm = current->mm;
384         unsigned long heap = mm->start_brk;
385
386         WARN_ON(irqs_disabled());
387
388         /* see above */
389         if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
390                 return;
391
392         hard_irq_disable();
393
394         /* Userspace entry address. */
395         if (!is_kernel_addr(start)) {
396                 if (preload_add(ti, start))
397                         slb_allocate_user(mm, start);
398         }
399
400         /* Top of stack, grows down. */
401         if (!is_kernel_addr(sp)) {
402                 if (preload_add(ti, sp))
403                         slb_allocate_user(mm, sp);
404         }
405
406         /* Bottom of heap, grows up. */
407         if (heap && !is_kernel_addr(heap)) {
408                 if (preload_add(ti, heap))
409                         slb_allocate_user(mm, heap);
410         }
411
412         /* see switch_slb */
413         asm volatile("isync" : : : "memory");
414
415         local_irq_enable();
416 }
417
418 static void slb_cache_slbie_kernel(unsigned int index)
419 {
420         unsigned long slbie_data = get_paca()->slb_cache[index];
421         unsigned long ksp = get_paca()->kstack;
422
423         slbie_data <<= SID_SHIFT;
424         slbie_data |= 0xc000000000000000ULL;
425         if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
426                 return;
427         slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
428
429         asm volatile("slbie %0" : : "r" (slbie_data));
430 }
431
432 static void slb_cache_slbie_user(unsigned int index)
433 {
434         unsigned long slbie_data = get_paca()->slb_cache[index];
435
436         slbie_data <<= SID_SHIFT;
437         slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
438         slbie_data |= SLBIE_C; /* user slbs have C=1 */
439
440         asm volatile("slbie %0" : : "r" (slbie_data));
441 }
442
443 /* Flush all user entries from the segment table of the current processor. */
444 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
445 {
446         struct thread_info *ti = task_thread_info(tsk);
447         unsigned char i;
448
449         /*
450          * We need interrupts hard-disabled here, not just soft-disabled,
451          * so that a PMU interrupt can't occur, which might try to access
452          * user memory (to get a stack trace) and possible cause an SLB miss
453          * which would update the slb_cache/slb_cache_ptr fields in the PACA.
454          */
455         hard_irq_disable();
456         isync();
457         if (stress_slb()) {
458                 __slb_flush_and_restore_bolted(false);
459                 isync();
460                 get_paca()->slb_cache_ptr = 0;
461                 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
462
463         } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
464                 /*
465                  * SLBIA IH=3 invalidates all Class=1 SLBEs and their
466                  * associated lookaside structures, which matches what
467                  * switch_slb wants. So ARCH_300 does not use the slb
468                  * cache.
469                  */
470                 asm volatile(PPC_SLBIA(3));
471
472         } else {
473                 unsigned long offset = get_paca()->slb_cache_ptr;
474
475                 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
476                     offset <= SLB_CACHE_ENTRIES) {
477                         /*
478                          * Could assert_slb_presence(true) here, but
479                          * hypervisor or machine check could have come
480                          * in and removed the entry at this point.
481                          */
482
483                         for (i = 0; i < offset; i++)
484                                 slb_cache_slbie_user(i);
485
486                         /* Workaround POWER5 < DD2.1 issue */
487                         if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
488                                 slb_cache_slbie_user(0);
489
490                 } else {
491                         /* Flush but retain kernel lookaside information */
492                         __slb_flush_and_restore_bolted(true);
493                         isync();
494
495                         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
496                 }
497
498                 get_paca()->slb_cache_ptr = 0;
499         }
500         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
501
502         copy_mm_to_paca(mm);
503
504         /*
505          * We gradually age out SLBs after a number of context switches to
506          * reduce reload overhead of unused entries (like we do with FP/VEC
507          * reload). Each time we wrap 256 switches, take an entry out of the
508          * SLB preload cache.
509          */
510         tsk->thread.load_slb++;
511         if (!tsk->thread.load_slb) {
512                 unsigned long pc = KSTK_EIP(tsk);
513
514                 preload_age(ti);
515                 preload_add(ti, pc);
516         }
517
518         for (i = 0; i < ti->slb_preload_nr; i++) {
519                 unsigned char idx;
520                 unsigned long ea;
521
522                 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
523                 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
524
525                 slb_allocate_user(mm, ea);
526         }
527
528         /*
529          * Synchronize slbmte preloads with possible subsequent user memory
530          * address accesses by the kernel (user mode won't happen until
531          * rfid, which is safe).
532          */
533         isync();
534 }
535
536 void slb_set_size(u16 size)
537 {
538         mmu_slb_size = size;
539 }
540
541 void slb_initialize(void)
542 {
543         unsigned long linear_llp, vmalloc_llp, io_llp;
544         unsigned long lflags;
545         static int slb_encoding_inited;
546 #ifdef CONFIG_SPARSEMEM_VMEMMAP
547         unsigned long vmemmap_llp;
548 #endif
549
550         /* Prepare our SLB miss handler based on our page size */
551         linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
552         io_llp = mmu_psize_defs[mmu_io_psize].sllp;
553         vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
554         get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
555 #ifdef CONFIG_SPARSEMEM_VMEMMAP
556         vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
557 #endif
558         if (!slb_encoding_inited) {
559                 slb_encoding_inited = 1;
560                 pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
561                 pr_devel("SLB: io      LLP = %04lx\n", io_llp);
562 #ifdef CONFIG_SPARSEMEM_VMEMMAP
563                 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
564 #endif
565         }
566
567         get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
568         get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
569         get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
570
571         lflags = SLB_VSID_KERNEL | linear_llp;
572
573         /* Invalidate the entire SLB (even entry 0) & all the ERATS */
574         asm volatile("isync":::"memory");
575         asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
576         asm volatile("isync; slbia; isync":::"memory");
577         create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
578
579         /*
580          * For the boot cpu, we're running on the stack in init_thread_union,
581          * which is in the first segment of the linear mapping, and also
582          * get_paca()->kstack hasn't been initialized yet.
583          * For secondary cpus, we need to bolt the kernel stack entry now.
584          */
585         slb_shadow_clear(KSTACK_INDEX);
586         if (raw_smp_processor_id() != boot_cpuid &&
587             (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
588                 create_shadowed_slbe(get_paca()->kstack,
589                                      mmu_kernel_ssize, lflags, KSTACK_INDEX);
590
591         asm volatile("isync":::"memory");
592 }
593
594 static void slb_cache_update(unsigned long esid_data)
595 {
596         int slb_cache_index;
597
598         if (cpu_has_feature(CPU_FTR_ARCH_300))
599                 return; /* ISAv3.0B and later does not use slb_cache */
600
601         if (stress_slb())
602                 return;
603
604         /*
605          * Now update slb cache entries
606          */
607         slb_cache_index = local_paca->slb_cache_ptr;
608         if (slb_cache_index < SLB_CACHE_ENTRIES) {
609                 /*
610                  * We have space in slb cache for optimized switch_slb().
611                  * Top 36 bits from esid_data as per ISA
612                  */
613                 local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
614                 local_paca->slb_cache_ptr++;
615         } else {
616                 /*
617                  * Our cache is full and the current cache content strictly
618                  * doesn't indicate the active SLB conents. Bump the ptr
619                  * so that switch_slb() will ignore the cache.
620                  */
621                 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
622         }
623 }
624
625 static enum slb_index alloc_slb_index(bool kernel)
626 {
627         enum slb_index index;
628
629         /*
630          * The allocation bitmaps can become out of synch with the SLB
631          * when the _switch code does slbie when bolting a new stack
632          * segment and it must not be anywhere else in the SLB. This leaves
633          * a kernel allocated entry that is unused in the SLB. With very
634          * large systems or small segment sizes, the bitmaps could slowly
635          * fill with these entries. They will eventually be cleared out
636          * by the round robin allocator in that case, so it's probably not
637          * worth accounting for.
638          */
639
640         /*
641          * SLBs beyond 32 entries are allocated with stab_rr only
642          * POWER7/8/9 have 32 SLB entries, this could be expanded if a
643          * future CPU has more.
644          */
645         if (local_paca->slb_used_bitmap != U32_MAX) {
646                 index = ffz(local_paca->slb_used_bitmap);
647                 local_paca->slb_used_bitmap |= 1U << index;
648                 if (kernel)
649                         local_paca->slb_kern_bitmap |= 1U << index;
650         } else {
651                 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
652                 index = local_paca->stab_rr;
653                 if (index < (mmu_slb_size - 1))
654                         index++;
655                 else
656                         index = SLB_NUM_BOLTED;
657                 local_paca->stab_rr = index;
658                 if (index < 32) {
659                         if (kernel)
660                                 local_paca->slb_kern_bitmap |= 1U << index;
661                         else
662                                 local_paca->slb_kern_bitmap &= ~(1U << index);
663                 }
664         }
665         BUG_ON(index < SLB_NUM_BOLTED);
666
667         return index;
668 }
669
670 static long slb_insert_entry(unsigned long ea, unsigned long context,
671                                 unsigned long flags, int ssize, bool kernel)
672 {
673         unsigned long vsid;
674         unsigned long vsid_data, esid_data;
675         enum slb_index index;
676
677         vsid = get_vsid(context, ea, ssize);
678         if (!vsid)
679                 return -EFAULT;
680
681         /*
682          * There must not be a kernel SLB fault in alloc_slb_index or before
683          * slbmte here or the allocation bitmaps could get out of whack with
684          * the SLB.
685          *
686          * User SLB faults or preloads take this path which might get inlined
687          * into the caller, so add compiler barriers here to ensure unsafe
688          * memory accesses do not come between.
689          */
690         barrier();
691
692         index = alloc_slb_index(kernel);
693
694         vsid_data = __mk_vsid_data(vsid, ssize, flags);
695         esid_data = mk_esid_data(ea, ssize, index);
696
697         /*
698          * No need for an isync before or after this slbmte. The exception
699          * we enter with and the rfid we exit with are context synchronizing.
700          * User preloads should add isync afterwards in case the kernel
701          * accesses user memory before it returns to userspace with rfid.
702          */
703         assert_slb_presence(false, ea);
704         if (stress_slb()) {
705                 int slb_cache_index = local_paca->slb_cache_ptr;
706
707                 /*
708                  * stress_slb() does not use slb cache, repurpose as a
709                  * cache of inserted (non-bolted) kernel SLB entries. All
710                  * non-bolted kernel entries are flushed on any user fault,
711                  * or if there are already 3 non-boled kernel entries.
712                  */
713                 BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
714                 if (!kernel || slb_cache_index == 3) {
715                         int i;
716
717                         for (i = 0; i < slb_cache_index; i++)
718                                 slb_cache_slbie_kernel(i);
719                         slb_cache_index = 0;
720                 }
721
722                 if (kernel)
723                         local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
724                 local_paca->slb_cache_ptr = slb_cache_index;
725         }
726         asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
727
728         barrier();
729
730         if (!kernel)
731                 slb_cache_update(esid_data);
732
733         return 0;
734 }
735
736 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
737 {
738         unsigned long context;
739         unsigned long flags;
740         int ssize;
741
742         if (id == LINEAR_MAP_REGION_ID) {
743
744                 /* We only support upto H_MAX_PHYSMEM_BITS */
745                 if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
746                         return -EFAULT;
747
748                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
749
750 #ifdef CONFIG_SPARSEMEM_VMEMMAP
751         } else if (id == VMEMMAP_REGION_ID) {
752
753                 if (ea >= H_VMEMMAP_END)
754                         return -EFAULT;
755
756                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
757 #endif
758         } else if (id == VMALLOC_REGION_ID) {
759
760                 if (ea >= H_VMALLOC_END)
761                         return -EFAULT;
762
763                 flags = local_paca->vmalloc_sllp;
764
765         } else if (id == IO_REGION_ID) {
766
767                 if (ea >= H_KERN_IO_END)
768                         return -EFAULT;
769
770                 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
771
772         } else {
773                 return -EFAULT;
774         }
775
776         ssize = MMU_SEGSIZE_1T;
777         if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
778                 ssize = MMU_SEGSIZE_256M;
779
780         context = get_kernel_context(ea);
781
782         return slb_insert_entry(ea, context, flags, ssize, true);
783 }
784
785 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
786 {
787         unsigned long context;
788         unsigned long flags;
789         int bpsize;
790         int ssize;
791
792         /*
793          * consider this as bad access if we take a SLB miss
794          * on an address above addr limit.
795          */
796         if (ea >= mm_ctx_slb_addr_limit(&mm->context))
797                 return -EFAULT;
798
799         context = get_user_context(&mm->context, ea);
800         if (!context)
801                 return -EFAULT;
802
803         if (unlikely(ea >= H_PGTABLE_RANGE)) {
804                 WARN_ON(1);
805                 return -EFAULT;
806         }
807
808         ssize = user_segment_size(ea);
809
810         bpsize = get_slice_psize(mm, ea);
811         flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
812
813         return slb_insert_entry(ea, context, flags, ssize, false);
814 }
815
816 long do_slb_fault(struct pt_regs *regs)
817 {
818         unsigned long ea = regs->dar;
819         unsigned long id = get_region_id(ea);
820
821         /* IRQs are not reconciled here, so can't check irqs_disabled */
822         VM_WARN_ON(mfmsr() & MSR_EE);
823
824         if (unlikely(!(regs->msr & MSR_RI)))
825                 return -EINVAL;
826
827         /*
828          * SLB kernel faults must be very careful not to touch anything that is
829          * not bolted. E.g., PACA and global variables are okay, mm->context
830          * stuff is not. SLB user faults may access all of memory (and induce
831          * one recursive SLB kernel fault), so the kernel fault must not
832          * trample on the user fault state at those points.
833          */
834
835         /*
836          * The interrupt state is not reconciled, for performance, so that
837          * fast_interrupt_return can be used. The handler must not touch local
838          * irq state, or schedule. We could test for usermode and upgrade to a
839          * normal process context (synchronous) interrupt for those, which
840          * would make them first-class kernel code and able to be traced and
841          * instrumented, although performance would suffer a bit, it would
842          * probably be a good tradeoff.
843          */
844         if (id >= LINEAR_MAP_REGION_ID) {
845                 long err;
846 #ifdef CONFIG_DEBUG_VM
847                 /* Catch recursive kernel SLB faults. */
848                 BUG_ON(local_paca->in_kernel_slb_handler);
849                 local_paca->in_kernel_slb_handler = 1;
850 #endif
851                 err = slb_allocate_kernel(ea, id);
852 #ifdef CONFIG_DEBUG_VM
853                 local_paca->in_kernel_slb_handler = 0;
854 #endif
855                 return err;
856         } else {
857                 struct mm_struct *mm = current->mm;
858                 long err;
859
860                 if (unlikely(!mm))
861                         return -EFAULT;
862
863                 err = slb_allocate_user(mm, ea);
864                 if (!err)
865                         preload_add(current_thread_info(), ea);
866
867                 return err;
868         }
869 }
870
871 void do_bad_slb_fault(struct pt_regs *regs)
872 {
873         int err = regs->result;
874
875         if (err == -EFAULT) {
876                 if (user_mode(regs))
877                         _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
878                 else
879                         bad_page_fault(regs, SIGSEGV);
880         } else if (err == -EINVAL) {
881                 unrecoverable_exception(regs);
882         } else {
883                 BUG();
884         }
885 }