Merge tag 'seccomp-v5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK        0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK        0x87c0ffff
26 #endif
27
28 /* Bits in XER */
29 #define XER_SO          0x80000000U
30 #define XER_OV          0x40000000U
31 #define XER_CA          0x20000000U
32 #define XER_OV32        0x00080000U
33 #define XER_CA32        0x00040000U
34
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61                     unsigned int *crp);
62 #endif
63
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE   1
66 #define IS_BE   0
67 #else
68 #define IS_LE   0
69 #define IS_BE   1
70 #endif
71
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76                                                         unsigned long val)
77 {
78 #ifdef __powerpc64__
79         if ((msr & MSR_64BIT) == 0)
80                 val &= 0xffffffffUL;
81 #endif
82         return val;
83 }
84
85 /*
86  * Determine whether a conditional branch instruction would branch.
87  */
88 static nokprobe_inline int branch_taken(unsigned int instr,
89                                         const struct pt_regs *regs,
90                                         struct instruction_op *op)
91 {
92         unsigned int bo = (instr >> 21) & 0x1f;
93         unsigned int bi;
94
95         if ((bo & 4) == 0) {
96                 /* decrement counter */
97                 op->type |= DECCTR;
98                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99                         return 0;
100         }
101         if ((bo & 0x10) == 0) {
102                 /* check bit from CR */
103                 bi = (instr >> 16) & 0x1f;
104                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105                         return 0;
106         }
107         return 1;
108 }
109
110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111                                        unsigned long ea, int nb)
112 {
113         if (!user_mode(regs))
114                 return 1;
115         if (__access_ok(ea, nb))
116                 return 1;
117         if (__access_ok(ea, 1))
118                 /* Access overlaps the end of the user region */
119                 regs->dar = TASK_SIZE_MAX - 1;
120         else
121                 regs->dar = ea;
122         return 0;
123 }
124
125 /*
126  * Calculate effective address for a D-form instruction
127  */
128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129                                               const struct pt_regs *regs)
130 {
131         int ra;
132         unsigned long ea;
133
134         ra = (instr >> 16) & 0x1f;
135         ea = (signed short) instr;              /* sign-extend */
136         if (ra)
137                 ea += regs->gpr[ra];
138
139         return ea;
140 }
141
142 #ifdef __powerpc64__
143 /*
144  * Calculate effective address for a DS-form instruction
145  */
146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147                                                const struct pt_regs *regs)
148 {
149         int ra;
150         unsigned long ea;
151
152         ra = (instr >> 16) & 0x1f;
153         ea = (signed short) (instr & ~3);       /* sign-extend */
154         if (ra)
155                 ea += regs->gpr[ra];
156
157         return ea;
158 }
159
160 /*
161  * Calculate effective address for a DQ-form instruction
162  */
163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164                                                const struct pt_regs *regs)
165 {
166         int ra;
167         unsigned long ea;
168
169         ra = (instr >> 16) & 0x1f;
170         ea = (signed short) (instr & ~0xf);     /* sign-extend */
171         if (ra)
172                 ea += regs->gpr[ra];
173
174         return ea;
175 }
176 #endif /* __powerpc64 */
177
178 /*
179  * Calculate effective address for an X-form instruction
180  */
181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182                                               const struct pt_regs *regs)
183 {
184         int ra, rb;
185         unsigned long ea;
186
187         ra = (instr >> 16) & 0x1f;
188         rb = (instr >> 11) & 0x1f;
189         ea = regs->gpr[rb];
190         if (ra)
191                 ea += regs->gpr[ra];
192
193         return ea;
194 }
195
196 /*
197  * Calculate effective address for a MLS:D-form / 8LS:D-form
198  * prefixed instruction
199  */
200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201                                                   unsigned int suffix,
202                                                   const struct pt_regs *regs)
203 {
204         int ra, prefix_r;
205         unsigned int  dd;
206         unsigned long ea, d0, d1, d;
207
208         prefix_r = GET_PREFIX_R(instr);
209         ra = GET_PREFIX_RA(suffix);
210
211         d0 = instr & 0x3ffff;
212         d1 = suffix & 0xffff;
213         d = (d0 << 16) | d1;
214
215         /*
216          * sign extend a 34 bit number
217          */
218         dd = (unsigned int)(d >> 2);
219         ea = (signed int)dd;
220         ea = (ea << 2) | (d & 0x3);
221
222         if (!prefix_r && ra)
223                 ea += regs->gpr[ra];
224         else if (!prefix_r && !ra)
225                 ; /* Leave ea as is */
226         else if (prefix_r)
227                 ea += regs->nip;
228
229         /*
230          * (prefix_r && ra) is an invalid form. Should already be
231          * checked for by caller!
232          */
233
234         return ea;
235 }
236
237 /*
238  * Return the largest power of 2, not greater than sizeof(unsigned long),
239  * such that x is a multiple of it.
240  */
241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243         x |= sizeof(unsigned long);
244         return x & -x;          /* isolates rightmost bit */
245 }
246
247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251
252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257
258 #ifdef __powerpc64__
259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261         return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264
265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267         switch (nb) {
268         case 2:
269                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
270                 break;
271         case 4:
272                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
273                 break;
274 #ifdef __powerpc64__
275         case 8:
276                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277                 break;
278         case 16: {
279                 unsigned long *up = (unsigned long *)ptr;
280                 unsigned long tmp;
281                 tmp = byterev_8(up[0]);
282                 up[0] = byterev_8(up[1]);
283                 up[1] = tmp;
284                 break;
285         }
286         case 32: {
287                 unsigned long *up = (unsigned long *)ptr;
288                 unsigned long tmp;
289
290                 tmp = byterev_8(up[0]);
291                 up[0] = byterev_8(up[3]);
292                 up[3] = tmp;
293                 tmp = byterev_8(up[2]);
294                 up[2] = byterev_8(up[1]);
295                 up[1] = tmp;
296                 break;
297         }
298
299 #endif
300         default:
301                 WARN_ON_ONCE(1);
302         }
303 }
304
305 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
306                                             unsigned long ea, int nb,
307                                             struct pt_regs *regs)
308 {
309         int err = 0;
310         unsigned long x = 0;
311
312         switch (nb) {
313         case 1:
314                 err = __get_user(x, (unsigned char __user *) ea);
315                 break;
316         case 2:
317                 err = __get_user(x, (unsigned short __user *) ea);
318                 break;
319         case 4:
320                 err = __get_user(x, (unsigned int __user *) ea);
321                 break;
322 #ifdef __powerpc64__
323         case 8:
324                 err = __get_user(x, (unsigned long __user *) ea);
325                 break;
326 #endif
327         }
328         if (!err)
329                 *dest = x;
330         else
331                 regs->dar = ea;
332         return err;
333 }
334
335 /*
336  * Copy from userspace to a buffer, using the largest possible
337  * aligned accesses, up to sizeof(long).
338  */
339 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
340                                        struct pt_regs *regs)
341 {
342         int err = 0;
343         int c;
344
345         for (; nb > 0; nb -= c) {
346                 c = max_align(ea);
347                 if (c > nb)
348                         c = max_align(nb);
349                 switch (c) {
350                 case 1:
351                         err = __get_user(*dest, (unsigned char __user *) ea);
352                         break;
353                 case 2:
354                         err = __get_user(*(u16 *)dest,
355                                          (unsigned short __user *) ea);
356                         break;
357                 case 4:
358                         err = __get_user(*(u32 *)dest,
359                                          (unsigned int __user *) ea);
360                         break;
361 #ifdef __powerpc64__
362                 case 8:
363                         err = __get_user(*(unsigned long *)dest,
364                                          (unsigned long __user *) ea);
365                         break;
366 #endif
367                 }
368                 if (err) {
369                         regs->dar = ea;
370                         return err;
371                 }
372                 dest += c;
373                 ea += c;
374         }
375         return 0;
376 }
377
378 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
379                                               unsigned long ea, int nb,
380                                               struct pt_regs *regs)
381 {
382         union {
383                 unsigned long ul;
384                 u8 b[sizeof(unsigned long)];
385         } u;
386         int i;
387         int err;
388
389         u.ul = 0;
390         i = IS_BE ? sizeof(unsigned long) - nb : 0;
391         err = copy_mem_in(&u.b[i], ea, nb, regs);
392         if (!err)
393                 *dest = u.ul;
394         return err;
395 }
396
397 /*
398  * Read memory at address ea for nb bytes, return 0 for success
399  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
400  * If nb < sizeof(long), the result is right-justified on BE systems.
401  */
402 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
403                               struct pt_regs *regs)
404 {
405         if (!address_ok(regs, ea, nb))
406                 return -EFAULT;
407         if ((ea & (nb - 1)) == 0)
408                 return read_mem_aligned(dest, ea, nb, regs);
409         return read_mem_unaligned(dest, ea, nb, regs);
410 }
411 NOKPROBE_SYMBOL(read_mem);
412
413 static nokprobe_inline int write_mem_aligned(unsigned long val,
414                                              unsigned long ea, int nb,
415                                              struct pt_regs *regs)
416 {
417         int err = 0;
418
419         switch (nb) {
420         case 1:
421                 err = __put_user(val, (unsigned char __user *) ea);
422                 break;
423         case 2:
424                 err = __put_user(val, (unsigned short __user *) ea);
425                 break;
426         case 4:
427                 err = __put_user(val, (unsigned int __user *) ea);
428                 break;
429 #ifdef __powerpc64__
430         case 8:
431                 err = __put_user(val, (unsigned long __user *) ea);
432                 break;
433 #endif
434         }
435         if (err)
436                 regs->dar = ea;
437         return err;
438 }
439
440 /*
441  * Copy from a buffer to userspace, using the largest possible
442  * aligned accesses, up to sizeof(long).
443  */
444 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
445                                         struct pt_regs *regs)
446 {
447         int err = 0;
448         int c;
449
450         for (; nb > 0; nb -= c) {
451                 c = max_align(ea);
452                 if (c > nb)
453                         c = max_align(nb);
454                 switch (c) {
455                 case 1:
456                         err = __put_user(*dest, (unsigned char __user *) ea);
457                         break;
458                 case 2:
459                         err = __put_user(*(u16 *)dest,
460                                          (unsigned short __user *) ea);
461                         break;
462                 case 4:
463                         err = __put_user(*(u32 *)dest,
464                                          (unsigned int __user *) ea);
465                         break;
466 #ifdef __powerpc64__
467                 case 8:
468                         err = __put_user(*(unsigned long *)dest,
469                                          (unsigned long __user *) ea);
470                         break;
471 #endif
472                 }
473                 if (err) {
474                         regs->dar = ea;
475                         return err;
476                 }
477                 dest += c;
478                 ea += c;
479         }
480         return 0;
481 }
482
483 static nokprobe_inline int write_mem_unaligned(unsigned long val,
484                                                unsigned long ea, int nb,
485                                                struct pt_regs *regs)
486 {
487         union {
488                 unsigned long ul;
489                 u8 b[sizeof(unsigned long)];
490         } u;
491         int i;
492
493         u.ul = val;
494         i = IS_BE ? sizeof(unsigned long) - nb : 0;
495         return copy_mem_out(&u.b[i], ea, nb, regs);
496 }
497
498 /*
499  * Write memory at address ea for nb bytes, return 0 for success
500  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
501  */
502 static int write_mem(unsigned long val, unsigned long ea, int nb,
503                                struct pt_regs *regs)
504 {
505         if (!address_ok(regs, ea, nb))
506                 return -EFAULT;
507         if ((ea & (nb - 1)) == 0)
508                 return write_mem_aligned(val, ea, nb, regs);
509         return write_mem_unaligned(val, ea, nb, regs);
510 }
511 NOKPROBE_SYMBOL(write_mem);
512
513 #ifdef CONFIG_PPC_FPU
514 /*
515  * These access either the real FP register or the image in the
516  * thread_struct, depending on regs->msr & MSR_FP.
517  */
518 static int do_fp_load(struct instruction_op *op, unsigned long ea,
519                       struct pt_regs *regs, bool cross_endian)
520 {
521         int err, rn, nb;
522         union {
523                 int i;
524                 unsigned int u;
525                 float f;
526                 double d[2];
527                 unsigned long l[2];
528                 u8 b[2 * sizeof(double)];
529         } u;
530
531         nb = GETSIZE(op->type);
532         if (!address_ok(regs, ea, nb))
533                 return -EFAULT;
534         rn = op->reg;
535         err = copy_mem_in(u.b, ea, nb, regs);
536         if (err)
537                 return err;
538         if (unlikely(cross_endian)) {
539                 do_byte_reverse(u.b, min(nb, 8));
540                 if (nb == 16)
541                         do_byte_reverse(&u.b[8], 8);
542         }
543         preempt_disable();
544         if (nb == 4) {
545                 if (op->type & FPCONV)
546                         conv_sp_to_dp(&u.f, &u.d[0]);
547                 else if (op->type & SIGNEXT)
548                         u.l[0] = u.i;
549                 else
550                         u.l[0] = u.u;
551         }
552         if (regs->msr & MSR_FP)
553                 put_fpr(rn, &u.d[0]);
554         else
555                 current->thread.TS_FPR(rn) = u.l[0];
556         if (nb == 16) {
557                 /* lfdp */
558                 rn |= 1;
559                 if (regs->msr & MSR_FP)
560                         put_fpr(rn, &u.d[1]);
561                 else
562                         current->thread.TS_FPR(rn) = u.l[1];
563         }
564         preempt_enable();
565         return 0;
566 }
567 NOKPROBE_SYMBOL(do_fp_load);
568
569 static int do_fp_store(struct instruction_op *op, unsigned long ea,
570                        struct pt_regs *regs, bool cross_endian)
571 {
572         int rn, nb;
573         union {
574                 unsigned int u;
575                 float f;
576                 double d[2];
577                 unsigned long l[2];
578                 u8 b[2 * sizeof(double)];
579         } u;
580
581         nb = GETSIZE(op->type);
582         if (!address_ok(regs, ea, nb))
583                 return -EFAULT;
584         rn = op->reg;
585         preempt_disable();
586         if (regs->msr & MSR_FP)
587                 get_fpr(rn, &u.d[0]);
588         else
589                 u.l[0] = current->thread.TS_FPR(rn);
590         if (nb == 4) {
591                 if (op->type & FPCONV)
592                         conv_dp_to_sp(&u.d[0], &u.f);
593                 else
594                         u.u = u.l[0];
595         }
596         if (nb == 16) {
597                 rn |= 1;
598                 if (regs->msr & MSR_FP)
599                         get_fpr(rn, &u.d[1]);
600                 else
601                         u.l[1] = current->thread.TS_FPR(rn);
602         }
603         preempt_enable();
604         if (unlikely(cross_endian)) {
605                 do_byte_reverse(u.b, min(nb, 8));
606                 if (nb == 16)
607                         do_byte_reverse(&u.b[8], 8);
608         }
609         return copy_mem_out(u.b, ea, nb, regs);
610 }
611 NOKPROBE_SYMBOL(do_fp_store);
612 #endif
613
614 #ifdef CONFIG_ALTIVEC
615 /* For Altivec/VMX, no need to worry about alignment */
616 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
617                                        int size, struct pt_regs *regs,
618                                        bool cross_endian)
619 {
620         int err;
621         union {
622                 __vector128 v;
623                 u8 b[sizeof(__vector128)];
624         } u = {};
625
626         if (!address_ok(regs, ea & ~0xfUL, 16))
627                 return -EFAULT;
628         /* align to multiple of size */
629         ea &= ~(size - 1);
630         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
631         if (err)
632                 return err;
633         if (unlikely(cross_endian))
634                 do_byte_reverse(&u.b[ea & 0xf], size);
635         preempt_disable();
636         if (regs->msr & MSR_VEC)
637                 put_vr(rn, &u.v);
638         else
639                 current->thread.vr_state.vr[rn] = u.v;
640         preempt_enable();
641         return 0;
642 }
643
644 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
645                                         int size, struct pt_regs *regs,
646                                         bool cross_endian)
647 {
648         union {
649                 __vector128 v;
650                 u8 b[sizeof(__vector128)];
651         } u;
652
653         if (!address_ok(regs, ea & ~0xfUL, 16))
654                 return -EFAULT;
655         /* align to multiple of size */
656         ea &= ~(size - 1);
657
658         preempt_disable();
659         if (regs->msr & MSR_VEC)
660                 get_vr(rn, &u.v);
661         else
662                 u.v = current->thread.vr_state.vr[rn];
663         preempt_enable();
664         if (unlikely(cross_endian))
665                 do_byte_reverse(&u.b[ea & 0xf], size);
666         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
667 }
668 #endif /* CONFIG_ALTIVEC */
669
670 #ifdef __powerpc64__
671 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
672                                       int reg, bool cross_endian)
673 {
674         int err;
675
676         if (!address_ok(regs, ea, 16))
677                 return -EFAULT;
678         /* if aligned, should be atomic */
679         if ((ea & 0xf) == 0) {
680                 err = do_lq(ea, &regs->gpr[reg]);
681         } else {
682                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
683                 if (!err)
684                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
685         }
686         if (!err && unlikely(cross_endian))
687                 do_byte_reverse(&regs->gpr[reg], 16);
688         return err;
689 }
690
691 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
692                                        int reg, bool cross_endian)
693 {
694         int err;
695         unsigned long vals[2];
696
697         if (!address_ok(regs, ea, 16))
698                 return -EFAULT;
699         vals[0] = regs->gpr[reg];
700         vals[1] = regs->gpr[reg + 1];
701         if (unlikely(cross_endian))
702                 do_byte_reverse(vals, 16);
703
704         /* if aligned, should be atomic */
705         if ((ea & 0xf) == 0)
706                 return do_stq(ea, vals[0], vals[1]);
707
708         err = write_mem(vals[IS_LE], ea, 8, regs);
709         if (!err)
710                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
711         return err;
712 }
713 #endif /* __powerpc64 */
714
715 #ifdef CONFIG_VSX
716 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
717                       const void *mem, bool rev)
718 {
719         int size, read_size;
720         int i, j;
721         const unsigned int *wp;
722         const unsigned short *hp;
723         const unsigned char *bp;
724
725         size = GETSIZE(op->type);
726         reg->d[0] = reg->d[1] = 0;
727
728         switch (op->element_size) {
729         case 32:
730                 /* [p]lxvp[x] */
731         case 16:
732                 /* whole vector; lxv[x] or lxvl[l] */
733                 if (size == 0)
734                         break;
735                 memcpy(reg, mem, size);
736                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
737                         rev = !rev;
738                 if (rev)
739                         do_byte_reverse(reg, size);
740                 break;
741         case 8:
742                 /* scalar loads, lxvd2x, lxvdsx */
743                 read_size = (size >= 8) ? 8 : size;
744                 i = IS_LE ? 8 : 8 - read_size;
745                 memcpy(&reg->b[i], mem, read_size);
746                 if (rev)
747                         do_byte_reverse(&reg->b[i], 8);
748                 if (size < 8) {
749                         if (op->type & SIGNEXT) {
750                                 /* size == 4 is the only case here */
751                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
752                         } else if (op->vsx_flags & VSX_FPCONV) {
753                                 preempt_disable();
754                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
755                                               &reg->dp[IS_LE]);
756                                 preempt_enable();
757                         }
758                 } else {
759                         if (size == 16) {
760                                 unsigned long v = *(unsigned long *)(mem + 8);
761                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
762                         } else if (op->vsx_flags & VSX_SPLAT)
763                                 reg->d[IS_BE] = reg->d[IS_LE];
764                 }
765                 break;
766         case 4:
767                 /* lxvw4x, lxvwsx */
768                 wp = mem;
769                 for (j = 0; j < size / 4; ++j) {
770                         i = IS_LE ? 3 - j : j;
771                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
772                 }
773                 if (op->vsx_flags & VSX_SPLAT) {
774                         u32 val = reg->w[IS_LE ? 3 : 0];
775                         for (; j < 4; ++j) {
776                                 i = IS_LE ? 3 - j : j;
777                                 reg->w[i] = val;
778                         }
779                 }
780                 break;
781         case 2:
782                 /* lxvh8x */
783                 hp = mem;
784                 for (j = 0; j < size / 2; ++j) {
785                         i = IS_LE ? 7 - j : j;
786                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
787                 }
788                 break;
789         case 1:
790                 /* lxvb16x */
791                 bp = mem;
792                 for (j = 0; j < size; ++j) {
793                         i = IS_LE ? 15 - j : j;
794                         reg->b[i] = *bp++;
795                 }
796                 break;
797         }
798 }
799 EXPORT_SYMBOL_GPL(emulate_vsx_load);
800 NOKPROBE_SYMBOL(emulate_vsx_load);
801
802 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
803                        void *mem, bool rev)
804 {
805         int size, write_size;
806         int i, j;
807         union vsx_reg buf;
808         unsigned int *wp;
809         unsigned short *hp;
810         unsigned char *bp;
811
812         size = GETSIZE(op->type);
813
814         switch (op->element_size) {
815         case 32:
816                 /* [p]stxvp[x] */
817                 if (size == 0)
818                         break;
819                 if (rev) {
820                         /* reverse 32 bytes */
821                         union vsx_reg buf32[2];
822                         buf32[0].d[0] = byterev_8(reg[1].d[1]);
823                         buf32[0].d[1] = byterev_8(reg[1].d[0]);
824                         buf32[1].d[0] = byterev_8(reg[0].d[1]);
825                         buf32[1].d[1] = byterev_8(reg[0].d[0]);
826                         memcpy(mem, buf32, size);
827                 } else {
828                         memcpy(mem, reg, size);
829                 }
830                 break;
831         case 16:
832                 /* stxv, stxvx, stxvl, stxvll */
833                 if (size == 0)
834                         break;
835                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
836                         rev = !rev;
837                 if (rev) {
838                         /* reverse 16 bytes */
839                         buf.d[0] = byterev_8(reg->d[1]);
840                         buf.d[1] = byterev_8(reg->d[0]);
841                         reg = &buf;
842                 }
843                 memcpy(mem, reg, size);
844                 break;
845         case 8:
846                 /* scalar stores, stxvd2x */
847                 write_size = (size >= 8) ? 8 : size;
848                 i = IS_LE ? 8 : 8 - write_size;
849                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
850                         buf.d[0] = buf.d[1] = 0;
851                         preempt_disable();
852                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
853                         preempt_enable();
854                         reg = &buf;
855                 }
856                 memcpy(mem, &reg->b[i], write_size);
857                 if (size == 16)
858                         memcpy(mem + 8, &reg->d[IS_BE], 8);
859                 if (unlikely(rev)) {
860                         do_byte_reverse(mem, write_size);
861                         if (size == 16)
862                                 do_byte_reverse(mem + 8, 8);
863                 }
864                 break;
865         case 4:
866                 /* stxvw4x */
867                 wp = mem;
868                 for (j = 0; j < size / 4; ++j) {
869                         i = IS_LE ? 3 - j : j;
870                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
871                 }
872                 break;
873         case 2:
874                 /* stxvh8x */
875                 hp = mem;
876                 for (j = 0; j < size / 2; ++j) {
877                         i = IS_LE ? 7 - j : j;
878                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
879                 }
880                 break;
881         case 1:
882                 /* stvxb16x */
883                 bp = mem;
884                 for (j = 0; j < size; ++j) {
885                         i = IS_LE ? 15 - j : j;
886                         *bp++ = reg->b[i];
887                 }
888                 break;
889         }
890 }
891 EXPORT_SYMBOL_GPL(emulate_vsx_store);
892 NOKPROBE_SYMBOL(emulate_vsx_store);
893
894 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
895                                        unsigned long ea, struct pt_regs *regs,
896                                        bool cross_endian)
897 {
898         int reg = op->reg;
899         int i, j, nr_vsx_regs;
900         u8 mem[32];
901         union vsx_reg buf[2];
902         int size = GETSIZE(op->type);
903
904         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
905                 return -EFAULT;
906
907         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
908         emulate_vsx_load(op, buf, mem, cross_endian);
909         preempt_disable();
910         if (reg < 32) {
911                 /* FP regs + extensions */
912                 if (regs->msr & MSR_FP) {
913                         for (i = 0; i < nr_vsx_regs; i++) {
914                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
915                                 load_vsrn(reg + i, &buf[j].v);
916                         }
917                 } else {
918                         for (i = 0; i < nr_vsx_regs; i++) {
919                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
920                                 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
921                                 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
922                         }
923                 }
924         } else {
925                 if (regs->msr & MSR_VEC) {
926                         for (i = 0; i < nr_vsx_regs; i++) {
927                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
928                                 load_vsrn(reg + i, &buf[j].v);
929                         }
930                 } else {
931                         for (i = 0; i < nr_vsx_regs; i++) {
932                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
933                                 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
934                         }
935                 }
936         }
937         preempt_enable();
938         return 0;
939 }
940
941 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
942                                         unsigned long ea, struct pt_regs *regs,
943                                         bool cross_endian)
944 {
945         int reg = op->reg;
946         int i, j, nr_vsx_regs;
947         u8 mem[32];
948         union vsx_reg buf[2];
949         int size = GETSIZE(op->type);
950
951         if (!address_ok(regs, ea, size))
952                 return -EFAULT;
953
954         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
955         preempt_disable();
956         if (reg < 32) {
957                 /* FP regs + extensions */
958                 if (regs->msr & MSR_FP) {
959                         for (i = 0; i < nr_vsx_regs; i++) {
960                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
961                                 store_vsrn(reg + i, &buf[j].v);
962                         }
963                 } else {
964                         for (i = 0; i < nr_vsx_regs; i++) {
965                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
966                                 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
967                                 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
968                         }
969                 }
970         } else {
971                 if (regs->msr & MSR_VEC) {
972                         for (i = 0; i < nr_vsx_regs; i++) {
973                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
974                                 store_vsrn(reg + i, &buf[j].v);
975                         }
976                 } else {
977                         for (i = 0; i < nr_vsx_regs; i++) {
978                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
979                                 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
980                         }
981                 }
982         }
983         preempt_enable();
984         emulate_vsx_store(op, buf, mem, cross_endian);
985         return  copy_mem_out(mem, ea, size, regs);
986 }
987 #endif /* CONFIG_VSX */
988
989 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
990 {
991         int err;
992         unsigned long i, size;
993
994 #ifdef __powerpc64__
995         size = ppc64_caches.l1d.block_size;
996         if (!(regs->msr & MSR_64BIT))
997                 ea &= 0xffffffffUL;
998 #else
999         size = L1_CACHE_BYTES;
1000 #endif
1001         ea &= ~(size - 1);
1002         if (!address_ok(regs, ea, size))
1003                 return -EFAULT;
1004         for (i = 0; i < size; i += sizeof(long)) {
1005                 err = __put_user(0, (unsigned long __user *) (ea + i));
1006                 if (err) {
1007                         regs->dar = ea;
1008                         return err;
1009                 }
1010         }
1011         return 0;
1012 }
1013 NOKPROBE_SYMBOL(emulate_dcbz);
1014
1015 #define __put_user_asmx(x, addr, err, op, cr)           \
1016         __asm__ __volatile__(                           \
1017                 "1:     " op " %2,0,%3\n"               \
1018                 "       mfcr    %1\n"                   \
1019                 "2:\n"                                  \
1020                 ".section .fixup,\"ax\"\n"              \
1021                 "3:     li      %0,%4\n"                \
1022                 "       b       2b\n"                   \
1023                 ".previous\n"                           \
1024                 EX_TABLE(1b, 3b)                        \
1025                 : "=r" (err), "=r" (cr)                 \
1026                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1027
1028 #define __get_user_asmx(x, addr, err, op)               \
1029         __asm__ __volatile__(                           \
1030                 "1:     "op" %1,0,%2\n"                 \
1031                 "2:\n"                                  \
1032                 ".section .fixup,\"ax\"\n"              \
1033                 "3:     li      %0,%3\n"                \
1034                 "       b       2b\n"                   \
1035                 ".previous\n"                           \
1036                 EX_TABLE(1b, 3b)                        \
1037                 : "=r" (err), "=r" (x)                  \
1038                 : "r" (addr), "i" (-EFAULT), "0" (err))
1039
1040 #define __cacheop_user_asmx(addr, err, op)              \
1041         __asm__ __volatile__(                           \
1042                 "1:     "op" 0,%1\n"                    \
1043                 "2:\n"                                  \
1044                 ".section .fixup,\"ax\"\n"              \
1045                 "3:     li      %0,%3\n"                \
1046                 "       b       2b\n"                   \
1047                 ".previous\n"                           \
1048                 EX_TABLE(1b, 3b)                        \
1049                 : "=r" (err)                            \
1050                 : "r" (addr), "i" (-EFAULT), "0" (err))
1051
1052 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1053                                     struct instruction_op *op)
1054 {
1055         long val = op->val;
1056
1057         op->type |= SETCC;
1058         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1059 #ifdef __powerpc64__
1060         if (!(regs->msr & MSR_64BIT))
1061                 val = (int) val;
1062 #endif
1063         if (val < 0)
1064                 op->ccval |= 0x80000000;
1065         else if (val > 0)
1066                 op->ccval |= 0x40000000;
1067         else
1068                 op->ccval |= 0x20000000;
1069 }
1070
1071 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1072 {
1073         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1074                 if (val)
1075                         op->xerval |= XER_CA32;
1076                 else
1077                         op->xerval &= ~XER_CA32;
1078         }
1079 }
1080
1081 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1082                                      struct instruction_op *op, int rd,
1083                                      unsigned long val1, unsigned long val2,
1084                                      unsigned long carry_in)
1085 {
1086         unsigned long val = val1 + val2;
1087
1088         if (carry_in)
1089                 ++val;
1090         op->type = COMPUTE + SETREG + SETXER;
1091         op->reg = rd;
1092         op->val = val;
1093 #ifdef __powerpc64__
1094         if (!(regs->msr & MSR_64BIT)) {
1095                 val = (unsigned int) val;
1096                 val1 = (unsigned int) val1;
1097         }
1098 #endif
1099         op->xerval = regs->xer;
1100         if (val < val1 || (carry_in && val == val1))
1101                 op->xerval |= XER_CA;
1102         else
1103                 op->xerval &= ~XER_CA;
1104
1105         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1106                         (carry_in && (unsigned int)val == (unsigned int)val1));
1107 }
1108
1109 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1110                                           struct instruction_op *op,
1111                                           long v1, long v2, int crfld)
1112 {
1113         unsigned int crval, shift;
1114
1115         op->type = COMPUTE + SETCC;
1116         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1117         if (v1 < v2)
1118                 crval |= 8;
1119         else if (v1 > v2)
1120                 crval |= 4;
1121         else
1122                 crval |= 2;
1123         shift = (7 - crfld) * 4;
1124         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1125 }
1126
1127 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1128                                             struct instruction_op *op,
1129                                             unsigned long v1,
1130                                             unsigned long v2, int crfld)
1131 {
1132         unsigned int crval, shift;
1133
1134         op->type = COMPUTE + SETCC;
1135         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1136         if (v1 < v2)
1137                 crval |= 8;
1138         else if (v1 > v2)
1139                 crval |= 4;
1140         else
1141                 crval |= 2;
1142         shift = (7 - crfld) * 4;
1143         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1144 }
1145
1146 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1147                                     struct instruction_op *op,
1148                                     unsigned long v1, unsigned long v2)
1149 {
1150         unsigned long long out_val, mask;
1151         int i;
1152
1153         out_val = 0;
1154         for (i = 0; i < 8; i++) {
1155                 mask = 0xffUL << (i * 8);
1156                 if ((v1 & mask) == (v2 & mask))
1157                         out_val |= mask;
1158         }
1159         op->val = out_val;
1160 }
1161
1162 /*
1163  * The size parameter is used to adjust the equivalent popcnt instruction.
1164  * popcntb = 8, popcntw = 32, popcntd = 64
1165  */
1166 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1167                                       struct instruction_op *op,
1168                                       unsigned long v1, int size)
1169 {
1170         unsigned long long out = v1;
1171
1172         out -= (out >> 1) & 0x5555555555555555ULL;
1173         out = (0x3333333333333333ULL & out) +
1174               (0x3333333333333333ULL & (out >> 2));
1175         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1176
1177         if (size == 8) {        /* popcntb */
1178                 op->val = out;
1179                 return;
1180         }
1181         out += out >> 8;
1182         out += out >> 16;
1183         if (size == 32) {       /* popcntw */
1184                 op->val = out & 0x0000003f0000003fULL;
1185                 return;
1186         }
1187
1188         out = (out + (out >> 32)) & 0x7f;
1189         op->val = out;  /* popcntd */
1190 }
1191
1192 #ifdef CONFIG_PPC64
1193 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1194                                       struct instruction_op *op,
1195                                       unsigned long v1, unsigned long v2)
1196 {
1197         unsigned char perm, idx;
1198         unsigned int i;
1199
1200         perm = 0;
1201         for (i = 0; i < 8; i++) {
1202                 idx = (v1 >> (i * 8)) & 0xff;
1203                 if (idx < 64)
1204                         if (v2 & PPC_BIT(idx))
1205                                 perm |= 1 << i;
1206         }
1207         op->val = perm;
1208 }
1209 #endif /* CONFIG_PPC64 */
1210 /*
1211  * The size parameter adjusts the equivalent prty instruction.
1212  * prtyw = 32, prtyd = 64
1213  */
1214 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1215                                     struct instruction_op *op,
1216                                     unsigned long v, int size)
1217 {
1218         unsigned long long res = v ^ (v >> 8);
1219
1220         res ^= res >> 16;
1221         if (size == 32) {               /* prtyw */
1222                 op->val = res & 0x0000000100000001ULL;
1223                 return;
1224         }
1225
1226         res ^= res >> 32;
1227         op->val = res & 1;      /*prtyd */
1228 }
1229
1230 static nokprobe_inline int trap_compare(long v1, long v2)
1231 {
1232         int ret = 0;
1233
1234         if (v1 < v2)
1235                 ret |= 0x10;
1236         else if (v1 > v2)
1237                 ret |= 0x08;
1238         else
1239                 ret |= 0x04;
1240         if ((unsigned long)v1 < (unsigned long)v2)
1241                 ret |= 0x02;
1242         else if ((unsigned long)v1 > (unsigned long)v2)
1243                 ret |= 0x01;
1244         return ret;
1245 }
1246
1247 /*
1248  * Elements of 32-bit rotate and mask instructions.
1249  */
1250 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1251                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1252 #ifdef __powerpc64__
1253 #define MASK64_L(mb)    (~0UL >> (mb))
1254 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1255 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1256 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1257 #else
1258 #define DATA32(x)       (x)
1259 #endif
1260 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1261
1262 /*
1263  * Decode an instruction, and return information about it in *op
1264  * without changing *regs.
1265  * Integer arithmetic and logical instructions, branches, and barrier
1266  * instructions can be emulated just using the information in *op.
1267  *
1268  * Return value is 1 if the instruction can be emulated just by
1269  * updating *regs with the information in *op, -1 if we need the
1270  * GPRs but *regs doesn't contain the full register set, or 0
1271  * otherwise.
1272  */
1273 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1274                   struct ppc_inst instr)
1275 {
1276 #ifdef CONFIG_PPC64
1277         unsigned int suffixopcode, prefixtype, prefix_r;
1278 #endif
1279         unsigned int opcode, ra, rb, rc, rd, spr, u;
1280         unsigned long int imm;
1281         unsigned long int val, val2;
1282         unsigned int mb, me, sh;
1283         unsigned int word, suffix;
1284         long ival;
1285
1286         word = ppc_inst_val(instr);
1287         suffix = ppc_inst_suffix(instr);
1288
1289         op->type = COMPUTE;
1290
1291         opcode = ppc_inst_primary_opcode(instr);
1292         switch (opcode) {
1293         case 16:        /* bc */
1294                 op->type = BRANCH;
1295                 imm = (signed short)(word & 0xfffc);
1296                 if ((word & 2) == 0)
1297                         imm += regs->nip;
1298                 op->val = truncate_if_32bit(regs->msr, imm);
1299                 if (word & 1)
1300                         op->type |= SETLK;
1301                 if (branch_taken(word, regs, op))
1302                         op->type |= BRTAKEN;
1303                 return 1;
1304 #ifdef CONFIG_PPC64
1305         case 17:        /* sc */
1306                 if ((word & 0xfe2) == 2)
1307                         op->type = SYSCALL;
1308                 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1309                                 (word & 0xfe3) == 1) {  /* scv */
1310                         op->type = SYSCALL_VECTORED_0;
1311                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312                                 goto unknown_opcode;
1313                 } else
1314                         op->type = UNKNOWN;
1315                 return 0;
1316 #endif
1317         case 18:        /* b */
1318                 op->type = BRANCH | BRTAKEN;
1319                 imm = word & 0x03fffffc;
1320                 if (imm & 0x02000000)
1321                         imm -= 0x04000000;
1322                 if ((word & 2) == 0)
1323                         imm += regs->nip;
1324                 op->val = truncate_if_32bit(regs->msr, imm);
1325                 if (word & 1)
1326                         op->type |= SETLK;
1327                 return 1;
1328         case 19:
1329                 switch ((word >> 1) & 0x3ff) {
1330                 case 0:         /* mcrf */
1331                         op->type = COMPUTE + SETCC;
1332                         rd = 7 - ((word >> 23) & 0x7);
1333                         ra = 7 - ((word >> 18) & 0x7);
1334                         rd *= 4;
1335                         ra *= 4;
1336                         val = (regs->ccr >> ra) & 0xf;
1337                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1338                         return 1;
1339
1340                 case 16:        /* bclr */
1341                 case 528:       /* bcctr */
1342                         op->type = BRANCH;
1343                         imm = (word & 0x400)? regs->ctr: regs->link;
1344                         op->val = truncate_if_32bit(regs->msr, imm);
1345                         if (word & 1)
1346                                 op->type |= SETLK;
1347                         if (branch_taken(word, regs, op))
1348                                 op->type |= BRTAKEN;
1349                         return 1;
1350
1351                 case 18:        /* rfid, scary */
1352                         if (regs->msr & MSR_PR)
1353                                 goto priv;
1354                         op->type = RFI;
1355                         return 0;
1356
1357                 case 150:       /* isync */
1358                         op->type = BARRIER | BARRIER_ISYNC;
1359                         return 1;
1360
1361                 case 33:        /* crnor */
1362                 case 129:       /* crandc */
1363                 case 193:       /* crxor */
1364                 case 225:       /* crnand */
1365                 case 257:       /* crand */
1366                 case 289:       /* creqv */
1367                 case 417:       /* crorc */
1368                 case 449:       /* cror */
1369                         op->type = COMPUTE + SETCC;
1370                         ra = (word >> 16) & 0x1f;
1371                         rb = (word >> 11) & 0x1f;
1372                         rd = (word >> 21) & 0x1f;
1373                         ra = (regs->ccr >> (31 - ra)) & 1;
1374                         rb = (regs->ccr >> (31 - rb)) & 1;
1375                         val = (word >> (6 + ra * 2 + rb)) & 1;
1376                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1377                                 (val << (31 - rd));
1378                         return 1;
1379                 }
1380                 break;
1381         case 31:
1382                 switch ((word >> 1) & 0x3ff) {
1383                 case 598:       /* sync */
1384                         op->type = BARRIER + BARRIER_SYNC;
1385 #ifdef __powerpc64__
1386                         switch ((word >> 21) & 3) {
1387                         case 1:         /* lwsync */
1388                                 op->type = BARRIER + BARRIER_LWSYNC;
1389                                 break;
1390                         case 2:         /* ptesync */
1391                                 op->type = BARRIER + BARRIER_PTESYNC;
1392                                 break;
1393                         }
1394 #endif
1395                         return 1;
1396
1397                 case 854:       /* eieio */
1398                         op->type = BARRIER + BARRIER_EIEIO;
1399                         return 1;
1400                 }
1401                 break;
1402         }
1403
1404         rd = (word >> 21) & 0x1f;
1405         ra = (word >> 16) & 0x1f;
1406         rb = (word >> 11) & 0x1f;
1407         rc = (word >> 6) & 0x1f;
1408
1409         switch (opcode) {
1410 #ifdef __powerpc64__
1411         case 1:
1412                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1413                         goto unknown_opcode;
1414
1415                 prefix_r = GET_PREFIX_R(word);
1416                 ra = GET_PREFIX_RA(suffix);
1417                 rd = (suffix >> 21) & 0x1f;
1418                 op->reg = rd;
1419                 op->val = regs->gpr[rd];
1420                 suffixopcode = get_op(suffix);
1421                 prefixtype = (word >> 24) & 0x3;
1422                 switch (prefixtype) {
1423                 case 2:
1424                         if (prefix_r && ra)
1425                                 return 0;
1426                         switch (suffixopcode) {
1427                         case 14:        /* paddi */
1428                                 op->type = COMPUTE | PREFIXED;
1429                                 op->val = mlsd_8lsd_ea(word, suffix, regs);
1430                                 goto compute_done;
1431                         }
1432                 }
1433                 break;
1434         case 2:         /* tdi */
1435                 if (rd & trap_compare(regs->gpr[ra], (short) word))
1436                         goto trap;
1437                 return 1;
1438 #endif
1439         case 3:         /* twi */
1440                 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1441                         goto trap;
1442                 return 1;
1443
1444 #ifdef __powerpc64__
1445         case 4:
1446                 /*
1447                  * There are very many instructions with this primary opcode
1448                  * introduced in the ISA as early as v2.03. However, the ones
1449                  * we currently emulate were all introduced with ISA 3.0
1450                  */
1451                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1452                         goto unknown_opcode;
1453
1454                 switch (word & 0x3f) {
1455                 case 48:        /* maddhd */
1456                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1457                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1458                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1459                         goto compute_done;
1460
1461                 case 49:        /* maddhdu */
1462                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1463                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1464                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1465                         goto compute_done;
1466
1467                 case 51:        /* maddld */
1468                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1469                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1470                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1471                         goto compute_done;
1472                 }
1473
1474                 /*
1475                  * There are other instructions from ISA 3.0 with the same
1476                  * primary opcode which do not have emulation support yet.
1477                  */
1478                 goto unknown_opcode;
1479 #endif
1480
1481         case 7:         /* mulli */
1482                 op->val = regs->gpr[ra] * (short) word;
1483                 goto compute_done;
1484
1485         case 8:         /* subfic */
1486                 imm = (short) word;
1487                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1488                 return 1;
1489
1490         case 10:        /* cmpli */
1491                 imm = (unsigned short) word;
1492                 val = regs->gpr[ra];
1493 #ifdef __powerpc64__
1494                 if ((rd & 1) == 0)
1495                         val = (unsigned int) val;
1496 #endif
1497                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1498                 return 1;
1499
1500         case 11:        /* cmpi */
1501                 imm = (short) word;
1502                 val = regs->gpr[ra];
1503 #ifdef __powerpc64__
1504                 if ((rd & 1) == 0)
1505                         val = (int) val;
1506 #endif
1507                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1508                 return 1;
1509
1510         case 12:        /* addic */
1511                 imm = (short) word;
1512                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1513                 return 1;
1514
1515         case 13:        /* addic. */
1516                 imm = (short) word;
1517                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1518                 set_cr0(regs, op);
1519                 return 1;
1520
1521         case 14:        /* addi */
1522                 imm = (short) word;
1523                 if (ra)
1524                         imm += regs->gpr[ra];
1525                 op->val = imm;
1526                 goto compute_done;
1527
1528         case 15:        /* addis */
1529                 imm = ((short) word) << 16;
1530                 if (ra)
1531                         imm += regs->gpr[ra];
1532                 op->val = imm;
1533                 goto compute_done;
1534
1535         case 19:
1536                 if (((word >> 1) & 0x1f) == 2) {
1537                         /* addpcis */
1538                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1539                                 goto unknown_opcode;
1540                         imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1541                         imm |= (word >> 15) & 0x3e;     /* d1 field */
1542                         op->val = regs->nip + (imm << 16) + 4;
1543                         goto compute_done;
1544                 }
1545                 op->type = UNKNOWN;
1546                 return 0;
1547
1548         case 20:        /* rlwimi */
1549                 mb = (word >> 6) & 0x1f;
1550                 me = (word >> 1) & 0x1f;
1551                 val = DATA32(regs->gpr[rd]);
1552                 imm = MASK32(mb, me);
1553                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1554                 goto logical_done;
1555
1556         case 21:        /* rlwinm */
1557                 mb = (word >> 6) & 0x1f;
1558                 me = (word >> 1) & 0x1f;
1559                 val = DATA32(regs->gpr[rd]);
1560                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1561                 goto logical_done;
1562
1563         case 23:        /* rlwnm */
1564                 mb = (word >> 6) & 0x1f;
1565                 me = (word >> 1) & 0x1f;
1566                 rb = regs->gpr[rb] & 0x1f;
1567                 val = DATA32(regs->gpr[rd]);
1568                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1569                 goto logical_done;
1570
1571         case 24:        /* ori */
1572                 op->val = regs->gpr[rd] | (unsigned short) word;
1573                 goto logical_done_nocc;
1574
1575         case 25:        /* oris */
1576                 imm = (unsigned short) word;
1577                 op->val = regs->gpr[rd] | (imm << 16);
1578                 goto logical_done_nocc;
1579
1580         case 26:        /* xori */
1581                 op->val = regs->gpr[rd] ^ (unsigned short) word;
1582                 goto logical_done_nocc;
1583
1584         case 27:        /* xoris */
1585                 imm = (unsigned short) word;
1586                 op->val = regs->gpr[rd] ^ (imm << 16);
1587                 goto logical_done_nocc;
1588
1589         case 28:        /* andi. */
1590                 op->val = regs->gpr[rd] & (unsigned short) word;
1591                 set_cr0(regs, op);
1592                 goto logical_done_nocc;
1593
1594         case 29:        /* andis. */
1595                 imm = (unsigned short) word;
1596                 op->val = regs->gpr[rd] & (imm << 16);
1597                 set_cr0(regs, op);
1598                 goto logical_done_nocc;
1599
1600 #ifdef __powerpc64__
1601         case 30:        /* rld* */
1602                 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1603                 val = regs->gpr[rd];
1604                 if ((word & 0x10) == 0) {
1605                         sh = rb | ((word & 2) << 4);
1606                         val = ROTATE(val, sh);
1607                         switch ((word >> 2) & 3) {
1608                         case 0:         /* rldicl */
1609                                 val &= MASK64_L(mb);
1610                                 break;
1611                         case 1:         /* rldicr */
1612                                 val &= MASK64_R(mb);
1613                                 break;
1614                         case 2:         /* rldic */
1615                                 val &= MASK64(mb, 63 - sh);
1616                                 break;
1617                         case 3:         /* rldimi */
1618                                 imm = MASK64(mb, 63 - sh);
1619                                 val = (regs->gpr[ra] & ~imm) |
1620                                         (val & imm);
1621                         }
1622                         op->val = val;
1623                         goto logical_done;
1624                 } else {
1625                         sh = regs->gpr[rb] & 0x3f;
1626                         val = ROTATE(val, sh);
1627                         switch ((word >> 1) & 7) {
1628                         case 0:         /* rldcl */
1629                                 op->val = val & MASK64_L(mb);
1630                                 goto logical_done;
1631                         case 1:         /* rldcr */
1632                                 op->val = val & MASK64_R(mb);
1633                                 goto logical_done;
1634                         }
1635                 }
1636 #endif
1637                 op->type = UNKNOWN;     /* illegal instruction */
1638                 return 0;
1639
1640         case 31:
1641                 /* isel occupies 32 minor opcodes */
1642                 if (((word >> 1) & 0x1f) == 15) {
1643                         mb = (word >> 6) & 0x1f; /* bc field */
1644                         val = (regs->ccr >> (31 - mb)) & 1;
1645                         val2 = (ra) ? regs->gpr[ra] : 0;
1646
1647                         op->val = (val) ? val2 : regs->gpr[rb];
1648                         goto compute_done;
1649                 }
1650
1651                 switch ((word >> 1) & 0x3ff) {
1652                 case 4:         /* tw */
1653                         if (rd == 0x1f ||
1654                             (rd & trap_compare((int)regs->gpr[ra],
1655                                                (int)regs->gpr[rb])))
1656                                 goto trap;
1657                         return 1;
1658 #ifdef __powerpc64__
1659                 case 68:        /* td */
1660                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1661                                 goto trap;
1662                         return 1;
1663 #endif
1664                 case 83:        /* mfmsr */
1665                         if (regs->msr & MSR_PR)
1666                                 goto priv;
1667                         op->type = MFMSR;
1668                         op->reg = rd;
1669                         return 0;
1670                 case 146:       /* mtmsr */
1671                         if (regs->msr & MSR_PR)
1672                                 goto priv;
1673                         op->type = MTMSR;
1674                         op->reg = rd;
1675                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1676                         return 0;
1677 #ifdef CONFIG_PPC64
1678                 case 178:       /* mtmsrd */
1679                         if (regs->msr & MSR_PR)
1680                                 goto priv;
1681                         op->type = MTMSR;
1682                         op->reg = rd;
1683                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1684                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1685                         imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1686                         op->val = imm;
1687                         return 0;
1688 #endif
1689
1690                 case 19:        /* mfcr */
1691                         imm = 0xffffffffUL;
1692                         if ((word >> 20) & 1) {
1693                                 imm = 0xf0000000UL;
1694                                 for (sh = 0; sh < 8; ++sh) {
1695                                         if (word & (0x80000 >> sh))
1696                                                 break;
1697                                         imm >>= 4;
1698                                 }
1699                         }
1700                         op->val = regs->ccr & imm;
1701                         goto compute_done;
1702
1703                 case 128:       /* setb */
1704                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1705                                 goto unknown_opcode;
1706                         /*
1707                          * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1708                          * Since each CR field is 4 bits,
1709                          * we can simply mask off the bottom two bits (bfa * 4)
1710                          * to yield the first bit in the CR field.
1711                          */
1712                         ra = ra & ~0x3;
1713                         /* 'val' stores bits of the CR field (bfa) */
1714                         val = regs->ccr >> (CR0_SHIFT - ra);
1715                         /* checks if the LT bit of CR field (bfa) is set */
1716                         if (val & 8)
1717                                 op->val = -1;
1718                         /* checks if the GT bit of CR field (bfa) is set */
1719                         else if (val & 4)
1720                                 op->val = 1;
1721                         else
1722                                 op->val = 0;
1723                         goto compute_done;
1724
1725                 case 144:       /* mtcrf */
1726                         op->type = COMPUTE + SETCC;
1727                         imm = 0xf0000000UL;
1728                         val = regs->gpr[rd];
1729                         op->ccval = regs->ccr;
1730                         for (sh = 0; sh < 8; ++sh) {
1731                                 if (word & (0x80000 >> sh))
1732                                         op->ccval = (op->ccval & ~imm) |
1733                                                 (val & imm);
1734                                 imm >>= 4;
1735                         }
1736                         return 1;
1737
1738                 case 339:       /* mfspr */
1739                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1740                         op->type = MFSPR;
1741                         op->reg = rd;
1742                         op->spr = spr;
1743                         if (spr == SPRN_XER || spr == SPRN_LR ||
1744                             spr == SPRN_CTR)
1745                                 return 1;
1746                         return 0;
1747
1748                 case 467:       /* mtspr */
1749                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1750                         op->type = MTSPR;
1751                         op->val = regs->gpr[rd];
1752                         op->spr = spr;
1753                         if (spr == SPRN_XER || spr == SPRN_LR ||
1754                             spr == SPRN_CTR)
1755                                 return 1;
1756                         return 0;
1757
1758 /*
1759  * Compare instructions
1760  */
1761                 case 0: /* cmp */
1762                         val = regs->gpr[ra];
1763                         val2 = regs->gpr[rb];
1764 #ifdef __powerpc64__
1765                         if ((rd & 1) == 0) {
1766                                 /* word (32-bit) compare */
1767                                 val = (int) val;
1768                                 val2 = (int) val2;
1769                         }
1770 #endif
1771                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1772                         return 1;
1773
1774                 case 32:        /* cmpl */
1775                         val = regs->gpr[ra];
1776                         val2 = regs->gpr[rb];
1777 #ifdef __powerpc64__
1778                         if ((rd & 1) == 0) {
1779                                 /* word (32-bit) compare */
1780                                 val = (unsigned int) val;
1781                                 val2 = (unsigned int) val2;
1782                         }
1783 #endif
1784                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1785                         return 1;
1786
1787                 case 508: /* cmpb */
1788                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1789                         goto logical_done_nocc;
1790
1791 /*
1792  * Arithmetic instructions
1793  */
1794                 case 8: /* subfc */
1795                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1796                                        regs->gpr[rb], 1);
1797                         goto arith_done;
1798 #ifdef __powerpc64__
1799                 case 9: /* mulhdu */
1800                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1801                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1802                         goto arith_done;
1803 #endif
1804                 case 10:        /* addc */
1805                         add_with_carry(regs, op, rd, regs->gpr[ra],
1806                                        regs->gpr[rb], 0);
1807                         goto arith_done;
1808
1809                 case 11:        /* mulhwu */
1810                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1811                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1812                         goto arith_done;
1813
1814                 case 40:        /* subf */
1815                         op->val = regs->gpr[rb] - regs->gpr[ra];
1816                         goto arith_done;
1817 #ifdef __powerpc64__
1818                 case 73:        /* mulhd */
1819                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1820                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1821                         goto arith_done;
1822 #endif
1823                 case 75:        /* mulhw */
1824                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1825                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1826                         goto arith_done;
1827
1828                 case 104:       /* neg */
1829                         op->val = -regs->gpr[ra];
1830                         goto arith_done;
1831
1832                 case 136:       /* subfe */
1833                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1834                                        regs->gpr[rb], regs->xer & XER_CA);
1835                         goto arith_done;
1836
1837                 case 138:       /* adde */
1838                         add_with_carry(regs, op, rd, regs->gpr[ra],
1839                                        regs->gpr[rb], regs->xer & XER_CA);
1840                         goto arith_done;
1841
1842                 case 200:       /* subfze */
1843                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1844                                        regs->xer & XER_CA);
1845                         goto arith_done;
1846
1847                 case 202:       /* addze */
1848                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1849                                        regs->xer & XER_CA);
1850                         goto arith_done;
1851
1852                 case 232:       /* subfme */
1853                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1854                                        regs->xer & XER_CA);
1855                         goto arith_done;
1856 #ifdef __powerpc64__
1857                 case 233:       /* mulld */
1858                         op->val = regs->gpr[ra] * regs->gpr[rb];
1859                         goto arith_done;
1860 #endif
1861                 case 234:       /* addme */
1862                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1863                                        regs->xer & XER_CA);
1864                         goto arith_done;
1865
1866                 case 235:       /* mullw */
1867                         op->val = (long)(int) regs->gpr[ra] *
1868                                 (int) regs->gpr[rb];
1869
1870                         goto arith_done;
1871 #ifdef __powerpc64__
1872                 case 265:       /* modud */
1873                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1874                                 goto unknown_opcode;
1875                         op->val = regs->gpr[ra] % regs->gpr[rb];
1876                         goto compute_done;
1877 #endif
1878                 case 266:       /* add */
1879                         op->val = regs->gpr[ra] + regs->gpr[rb];
1880                         goto arith_done;
1881
1882                 case 267:       /* moduw */
1883                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1884                                 goto unknown_opcode;
1885                         op->val = (unsigned int) regs->gpr[ra] %
1886                                 (unsigned int) regs->gpr[rb];
1887                         goto compute_done;
1888 #ifdef __powerpc64__
1889                 case 457:       /* divdu */
1890                         op->val = regs->gpr[ra] / regs->gpr[rb];
1891                         goto arith_done;
1892 #endif
1893                 case 459:       /* divwu */
1894                         op->val = (unsigned int) regs->gpr[ra] /
1895                                 (unsigned int) regs->gpr[rb];
1896                         goto arith_done;
1897 #ifdef __powerpc64__
1898                 case 489:       /* divd */
1899                         op->val = (long int) regs->gpr[ra] /
1900                                 (long int) regs->gpr[rb];
1901                         goto arith_done;
1902 #endif
1903                 case 491:       /* divw */
1904                         op->val = (int) regs->gpr[ra] /
1905                                 (int) regs->gpr[rb];
1906                         goto arith_done;
1907 #ifdef __powerpc64__
1908                 case 425:       /* divde[.] */
1909                         asm volatile(PPC_DIVDE(%0, %1, %2) :
1910                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1911                                 "r" (regs->gpr[rb]));
1912                         goto arith_done;
1913                 case 393:       /* divdeu[.] */
1914                         asm volatile(PPC_DIVDEU(%0, %1, %2) :
1915                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1916                                 "r" (regs->gpr[rb]));
1917                         goto arith_done;
1918 #endif
1919                 case 755:       /* darn */
1920                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1921                                 goto unknown_opcode;
1922                         switch (ra & 0x3) {
1923                         case 0:
1924                                 /* 32-bit conditioned */
1925                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1926                                 goto compute_done;
1927
1928                         case 1:
1929                                 /* 64-bit conditioned */
1930                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1931                                 goto compute_done;
1932
1933                         case 2:
1934                                 /* 64-bit raw */
1935                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1936                                 goto compute_done;
1937                         }
1938
1939                         goto unknown_opcode;
1940 #ifdef __powerpc64__
1941                 case 777:       /* modsd */
1942                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1943                                 goto unknown_opcode;
1944                         op->val = (long int) regs->gpr[ra] %
1945                                 (long int) regs->gpr[rb];
1946                         goto compute_done;
1947 #endif
1948                 case 779:       /* modsw */
1949                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950                                 goto unknown_opcode;
1951                         op->val = (int) regs->gpr[ra] %
1952                                 (int) regs->gpr[rb];
1953                         goto compute_done;
1954
1955
1956 /*
1957  * Logical instructions
1958  */
1959                 case 26:        /* cntlzw */
1960                         val = (unsigned int) regs->gpr[rd];
1961                         op->val = ( val ? __builtin_clz(val) : 32 );
1962                         goto logical_done;
1963 #ifdef __powerpc64__
1964                 case 58:        /* cntlzd */
1965                         val = regs->gpr[rd];
1966                         op->val = ( val ? __builtin_clzl(val) : 64 );
1967                         goto logical_done;
1968 #endif
1969                 case 28:        /* and */
1970                         op->val = regs->gpr[rd] & regs->gpr[rb];
1971                         goto logical_done;
1972
1973                 case 60:        /* andc */
1974                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1975                         goto logical_done;
1976
1977                 case 122:       /* popcntb */
1978                         do_popcnt(regs, op, regs->gpr[rd], 8);
1979                         goto logical_done_nocc;
1980
1981                 case 124:       /* nor */
1982                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1983                         goto logical_done;
1984
1985                 case 154:       /* prtyw */
1986                         do_prty(regs, op, regs->gpr[rd], 32);
1987                         goto logical_done_nocc;
1988
1989                 case 186:       /* prtyd */
1990                         do_prty(regs, op, regs->gpr[rd], 64);
1991                         goto logical_done_nocc;
1992 #ifdef CONFIG_PPC64
1993                 case 252:       /* bpermd */
1994                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1995                         goto logical_done_nocc;
1996 #endif
1997                 case 284:       /* xor */
1998                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1999                         goto logical_done;
2000
2001                 case 316:       /* xor */
2002                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
2003                         goto logical_done;
2004
2005                 case 378:       /* popcntw */
2006                         do_popcnt(regs, op, regs->gpr[rd], 32);
2007                         goto logical_done_nocc;
2008
2009                 case 412:       /* orc */
2010                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
2011                         goto logical_done;
2012
2013                 case 444:       /* or */
2014                         op->val = regs->gpr[rd] | regs->gpr[rb];
2015                         goto logical_done;
2016
2017                 case 476:       /* nand */
2018                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2019                         goto logical_done;
2020 #ifdef CONFIG_PPC64
2021                 case 506:       /* popcntd */
2022                         do_popcnt(regs, op, regs->gpr[rd], 64);
2023                         goto logical_done_nocc;
2024 #endif
2025                 case 538:       /* cnttzw */
2026                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2027                                 goto unknown_opcode;
2028                         val = (unsigned int) regs->gpr[rd];
2029                         op->val = (val ? __builtin_ctz(val) : 32);
2030                         goto logical_done;
2031 #ifdef __powerpc64__
2032                 case 570:       /* cnttzd */
2033                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2034                                 goto unknown_opcode;
2035                         val = regs->gpr[rd];
2036                         op->val = (val ? __builtin_ctzl(val) : 64);
2037                         goto logical_done;
2038 #endif
2039                 case 922:       /* extsh */
2040                         op->val = (signed short) regs->gpr[rd];
2041                         goto logical_done;
2042
2043                 case 954:       /* extsb */
2044                         op->val = (signed char) regs->gpr[rd];
2045                         goto logical_done;
2046 #ifdef __powerpc64__
2047                 case 986:       /* extsw */
2048                         op->val = (signed int) regs->gpr[rd];
2049                         goto logical_done;
2050 #endif
2051
2052 /*
2053  * Shift instructions
2054  */
2055                 case 24:        /* slw */
2056                         sh = regs->gpr[rb] & 0x3f;
2057                         if (sh < 32)
2058                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2059                         else
2060                                 op->val = 0;
2061                         goto logical_done;
2062
2063                 case 536:       /* srw */
2064                         sh = regs->gpr[rb] & 0x3f;
2065                         if (sh < 32)
2066                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2067                         else
2068                                 op->val = 0;
2069                         goto logical_done;
2070
2071                 case 792:       /* sraw */
2072                         op->type = COMPUTE + SETREG + SETXER;
2073                         sh = regs->gpr[rb] & 0x3f;
2074                         ival = (signed int) regs->gpr[rd];
2075                         op->val = ival >> (sh < 32 ? sh : 31);
2076                         op->xerval = regs->xer;
2077                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2078                                 op->xerval |= XER_CA;
2079                         else
2080                                 op->xerval &= ~XER_CA;
2081                         set_ca32(op, op->xerval & XER_CA);
2082                         goto logical_done;
2083
2084                 case 824:       /* srawi */
2085                         op->type = COMPUTE + SETREG + SETXER;
2086                         sh = rb;
2087                         ival = (signed int) regs->gpr[rd];
2088                         op->val = ival >> sh;
2089                         op->xerval = regs->xer;
2090                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2091                                 op->xerval |= XER_CA;
2092                         else
2093                                 op->xerval &= ~XER_CA;
2094                         set_ca32(op, op->xerval & XER_CA);
2095                         goto logical_done;
2096
2097 #ifdef __powerpc64__
2098                 case 27:        /* sld */
2099                         sh = regs->gpr[rb] & 0x7f;
2100                         if (sh < 64)
2101                                 op->val = regs->gpr[rd] << sh;
2102                         else
2103                                 op->val = 0;
2104                         goto logical_done;
2105
2106                 case 539:       /* srd */
2107                         sh = regs->gpr[rb] & 0x7f;
2108                         if (sh < 64)
2109                                 op->val = regs->gpr[rd] >> sh;
2110                         else
2111                                 op->val = 0;
2112                         goto logical_done;
2113
2114                 case 794:       /* srad */
2115                         op->type = COMPUTE + SETREG + SETXER;
2116                         sh = regs->gpr[rb] & 0x7f;
2117                         ival = (signed long int) regs->gpr[rd];
2118                         op->val = ival >> (sh < 64 ? sh : 63);
2119                         op->xerval = regs->xer;
2120                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2121                                 op->xerval |= XER_CA;
2122                         else
2123                                 op->xerval &= ~XER_CA;
2124                         set_ca32(op, op->xerval & XER_CA);
2125                         goto logical_done;
2126
2127                 case 826:       /* sradi with sh_5 = 0 */
2128                 case 827:       /* sradi with sh_5 = 1 */
2129                         op->type = COMPUTE + SETREG + SETXER;
2130                         sh = rb | ((word & 2) << 4);
2131                         ival = (signed long int) regs->gpr[rd];
2132                         op->val = ival >> sh;
2133                         op->xerval = regs->xer;
2134                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2135                                 op->xerval |= XER_CA;
2136                         else
2137                                 op->xerval &= ~XER_CA;
2138                         set_ca32(op, op->xerval & XER_CA);
2139                         goto logical_done;
2140
2141                 case 890:       /* extswsli with sh_5 = 0 */
2142                 case 891:       /* extswsli with sh_5 = 1 */
2143                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2144                                 goto unknown_opcode;
2145                         op->type = COMPUTE + SETREG;
2146                         sh = rb | ((word & 2) << 4);
2147                         val = (signed int) regs->gpr[rd];
2148                         if (sh)
2149                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2150                         else
2151                                 op->val = val;
2152                         goto logical_done;
2153
2154 #endif /* __powerpc64__ */
2155
2156 /*
2157  * Cache instructions
2158  */
2159                 case 54:        /* dcbst */
2160                         op->type = MKOP(CACHEOP, DCBST, 0);
2161                         op->ea = xform_ea(word, regs);
2162                         return 0;
2163
2164                 case 86:        /* dcbf */
2165                         op->type = MKOP(CACHEOP, DCBF, 0);
2166                         op->ea = xform_ea(word, regs);
2167                         return 0;
2168
2169                 case 246:       /* dcbtst */
2170                         op->type = MKOP(CACHEOP, DCBTST, 0);
2171                         op->ea = xform_ea(word, regs);
2172                         op->reg = rd;
2173                         return 0;
2174
2175                 case 278:       /* dcbt */
2176                         op->type = MKOP(CACHEOP, DCBTST, 0);
2177                         op->ea = xform_ea(word, regs);
2178                         op->reg = rd;
2179                         return 0;
2180
2181                 case 982:       /* icbi */
2182                         op->type = MKOP(CACHEOP, ICBI, 0);
2183                         op->ea = xform_ea(word, regs);
2184                         return 0;
2185
2186                 case 1014:      /* dcbz */
2187                         op->type = MKOP(CACHEOP, DCBZ, 0);
2188                         op->ea = xform_ea(word, regs);
2189                         return 0;
2190                 }
2191                 break;
2192         }
2193
2194 /*
2195  * Loads and stores.
2196  */
2197         op->type = UNKNOWN;
2198         op->update_reg = ra;
2199         op->reg = rd;
2200         op->val = regs->gpr[rd];
2201         u = (word >> 20) & UPDATE;
2202         op->vsx_flags = 0;
2203
2204         switch (opcode) {
2205         case 31:
2206                 u = word & UPDATE;
2207                 op->ea = xform_ea(word, regs);
2208                 switch ((word >> 1) & 0x3ff) {
2209                 case 20:        /* lwarx */
2210                         op->type = MKOP(LARX, 0, 4);
2211                         break;
2212
2213                 case 150:       /* stwcx. */
2214                         op->type = MKOP(STCX, 0, 4);
2215                         break;
2216
2217 #ifdef __powerpc64__
2218                 case 84:        /* ldarx */
2219                         op->type = MKOP(LARX, 0, 8);
2220                         break;
2221
2222                 case 214:       /* stdcx. */
2223                         op->type = MKOP(STCX, 0, 8);
2224                         break;
2225
2226                 case 52:        /* lbarx */
2227                         op->type = MKOP(LARX, 0, 1);
2228                         break;
2229
2230                 case 694:       /* stbcx. */
2231                         op->type = MKOP(STCX, 0, 1);
2232                         break;
2233
2234                 case 116:       /* lharx */
2235                         op->type = MKOP(LARX, 0, 2);
2236                         break;
2237
2238                 case 726:       /* sthcx. */
2239                         op->type = MKOP(STCX, 0, 2);
2240                         break;
2241
2242                 case 276:       /* lqarx */
2243                         if (!((rd & 1) || rd == ra || rd == rb))
2244                                 op->type = MKOP(LARX, 0, 16);
2245                         break;
2246
2247                 case 182:       /* stqcx. */
2248                         if (!(rd & 1))
2249                                 op->type = MKOP(STCX, 0, 16);
2250                         break;
2251 #endif
2252
2253                 case 23:        /* lwzx */
2254                 case 55:        /* lwzux */
2255                         op->type = MKOP(LOAD, u, 4);
2256                         break;
2257
2258                 case 87:        /* lbzx */
2259                 case 119:       /* lbzux */
2260                         op->type = MKOP(LOAD, u, 1);
2261                         break;
2262
2263 #ifdef CONFIG_ALTIVEC
2264                 /*
2265                  * Note: for the load/store vector element instructions,
2266                  * bits of the EA say which field of the VMX register to use.
2267                  */
2268                 case 7:         /* lvebx */
2269                         op->type = MKOP(LOAD_VMX, 0, 1);
2270                         op->element_size = 1;
2271                         break;
2272
2273                 case 39:        /* lvehx */
2274                         op->type = MKOP(LOAD_VMX, 0, 2);
2275                         op->element_size = 2;
2276                         break;
2277
2278                 case 71:        /* lvewx */
2279                         op->type = MKOP(LOAD_VMX, 0, 4);
2280                         op->element_size = 4;
2281                         break;
2282
2283                 case 103:       /* lvx */
2284                 case 359:       /* lvxl */
2285                         op->type = MKOP(LOAD_VMX, 0, 16);
2286                         op->element_size = 16;
2287                         break;
2288
2289                 case 135:       /* stvebx */
2290                         op->type = MKOP(STORE_VMX, 0, 1);
2291                         op->element_size = 1;
2292                         break;
2293
2294                 case 167:       /* stvehx */
2295                         op->type = MKOP(STORE_VMX, 0, 2);
2296                         op->element_size = 2;
2297                         break;
2298
2299                 case 199:       /* stvewx */
2300                         op->type = MKOP(STORE_VMX, 0, 4);
2301                         op->element_size = 4;
2302                         break;
2303
2304                 case 231:       /* stvx */
2305                 case 487:       /* stvxl */
2306                         op->type = MKOP(STORE_VMX, 0, 16);
2307                         break;
2308 #endif /* CONFIG_ALTIVEC */
2309
2310 #ifdef __powerpc64__
2311                 case 21:        /* ldx */
2312                 case 53:        /* ldux */
2313                         op->type = MKOP(LOAD, u, 8);
2314                         break;
2315
2316                 case 149:       /* stdx */
2317                 case 181:       /* stdux */
2318                         op->type = MKOP(STORE, u, 8);
2319                         break;
2320 #endif
2321
2322                 case 151:       /* stwx */
2323                 case 183:       /* stwux */
2324                         op->type = MKOP(STORE, u, 4);
2325                         break;
2326
2327                 case 215:       /* stbx */
2328                 case 247:       /* stbux */
2329                         op->type = MKOP(STORE, u, 1);
2330                         break;
2331
2332                 case 279:       /* lhzx */
2333                 case 311:       /* lhzux */
2334                         op->type = MKOP(LOAD, u, 2);
2335                         break;
2336
2337 #ifdef __powerpc64__
2338                 case 341:       /* lwax */
2339                 case 373:       /* lwaux */
2340                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2341                         break;
2342 #endif
2343
2344                 case 343:       /* lhax */
2345                 case 375:       /* lhaux */
2346                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2347                         break;
2348
2349                 case 407:       /* sthx */
2350                 case 439:       /* sthux */
2351                         op->type = MKOP(STORE, u, 2);
2352                         break;
2353
2354 #ifdef __powerpc64__
2355                 case 532:       /* ldbrx */
2356                         op->type = MKOP(LOAD, BYTEREV, 8);
2357                         break;
2358
2359 #endif
2360                 case 533:       /* lswx */
2361                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2362                         break;
2363
2364                 case 534:       /* lwbrx */
2365                         op->type = MKOP(LOAD, BYTEREV, 4);
2366                         break;
2367
2368                 case 597:       /* lswi */
2369                         if (rb == 0)
2370                                 rb = 32;        /* # bytes to load */
2371                         op->type = MKOP(LOAD_MULTI, 0, rb);
2372                         op->ea = ra ? regs->gpr[ra] : 0;
2373                         break;
2374
2375 #ifdef CONFIG_PPC_FPU
2376                 case 535:       /* lfsx */
2377                 case 567:       /* lfsux */
2378                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2379                         break;
2380
2381                 case 599:       /* lfdx */
2382                 case 631:       /* lfdux */
2383                         op->type = MKOP(LOAD_FP, u, 8);
2384                         break;
2385
2386                 case 663:       /* stfsx */
2387                 case 695:       /* stfsux */
2388                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2389                         break;
2390
2391                 case 727:       /* stfdx */
2392                 case 759:       /* stfdux */
2393                         op->type = MKOP(STORE_FP, u, 8);
2394                         break;
2395
2396 #ifdef __powerpc64__
2397                 case 791:       /* lfdpx */
2398                         op->type = MKOP(LOAD_FP, 0, 16);
2399                         break;
2400
2401                 case 855:       /* lfiwax */
2402                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2403                         break;
2404
2405                 case 887:       /* lfiwzx */
2406                         op->type = MKOP(LOAD_FP, 0, 4);
2407                         break;
2408
2409                 case 919:       /* stfdpx */
2410                         op->type = MKOP(STORE_FP, 0, 16);
2411                         break;
2412
2413                 case 983:       /* stfiwx */
2414                         op->type = MKOP(STORE_FP, 0, 4);
2415                         break;
2416 #endif /* __powerpc64 */
2417 #endif /* CONFIG_PPC_FPU */
2418
2419 #ifdef __powerpc64__
2420                 case 660:       /* stdbrx */
2421                         op->type = MKOP(STORE, BYTEREV, 8);
2422                         op->val = byterev_8(regs->gpr[rd]);
2423                         break;
2424
2425 #endif
2426                 case 661:       /* stswx */
2427                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2428                         break;
2429
2430                 case 662:       /* stwbrx */
2431                         op->type = MKOP(STORE, BYTEREV, 4);
2432                         op->val = byterev_4(regs->gpr[rd]);
2433                         break;
2434
2435                 case 725:       /* stswi */
2436                         if (rb == 0)
2437                                 rb = 32;        /* # bytes to store */
2438                         op->type = MKOP(STORE_MULTI, 0, rb);
2439                         op->ea = ra ? regs->gpr[ra] : 0;
2440                         break;
2441
2442                 case 790:       /* lhbrx */
2443                         op->type = MKOP(LOAD, BYTEREV, 2);
2444                         break;
2445
2446                 case 918:       /* sthbrx */
2447                         op->type = MKOP(STORE, BYTEREV, 2);
2448                         op->val = byterev_2(regs->gpr[rd]);
2449                         break;
2450
2451 #ifdef CONFIG_VSX
2452                 case 12:        /* lxsiwzx */
2453                         op->reg = rd | ((word & 1) << 5);
2454                         op->type = MKOP(LOAD_VSX, 0, 4);
2455                         op->element_size = 8;
2456                         break;
2457
2458                 case 76:        /* lxsiwax */
2459                         op->reg = rd | ((word & 1) << 5);
2460                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2461                         op->element_size = 8;
2462                         break;
2463
2464                 case 140:       /* stxsiwx */
2465                         op->reg = rd | ((word & 1) << 5);
2466                         op->type = MKOP(STORE_VSX, 0, 4);
2467                         op->element_size = 8;
2468                         break;
2469
2470                 case 268:       /* lxvx */
2471                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2472                                 goto unknown_opcode;
2473                         op->reg = rd | ((word & 1) << 5);
2474                         op->type = MKOP(LOAD_VSX, 0, 16);
2475                         op->element_size = 16;
2476                         op->vsx_flags = VSX_CHECK_VEC;
2477                         break;
2478
2479                 case 269:       /* lxvl */
2480                 case 301: {     /* lxvll */
2481                         int nb;
2482                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2483                                 goto unknown_opcode;
2484                         op->reg = rd | ((word & 1) << 5);
2485                         op->ea = ra ? regs->gpr[ra] : 0;
2486                         nb = regs->gpr[rb] & 0xff;
2487                         if (nb > 16)
2488                                 nb = 16;
2489                         op->type = MKOP(LOAD_VSX, 0, nb);
2490                         op->element_size = 16;
2491                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2492                                 VSX_CHECK_VEC;
2493                         break;
2494                 }
2495                 case 332:       /* lxvdsx */
2496                         op->reg = rd | ((word & 1) << 5);
2497                         op->type = MKOP(LOAD_VSX, 0, 8);
2498                         op->element_size = 8;
2499                         op->vsx_flags = VSX_SPLAT;
2500                         break;
2501
2502                 case 333:       /* lxvpx */
2503                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2504                                 goto unknown_opcode;
2505                         op->reg = VSX_REGISTER_XTP(rd);
2506                         op->type = MKOP(LOAD_VSX, 0, 32);
2507                         op->element_size = 32;
2508                         break;
2509
2510                 case 364:       /* lxvwsx */
2511                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2512                                 goto unknown_opcode;
2513                         op->reg = rd | ((word & 1) << 5);
2514                         op->type = MKOP(LOAD_VSX, 0, 4);
2515                         op->element_size = 4;
2516                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2517                         break;
2518
2519                 case 396:       /* stxvx */
2520                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2521                                 goto unknown_opcode;
2522                         op->reg = rd | ((word & 1) << 5);
2523                         op->type = MKOP(STORE_VSX, 0, 16);
2524                         op->element_size = 16;
2525                         op->vsx_flags = VSX_CHECK_VEC;
2526                         break;
2527
2528                 case 397:       /* stxvl */
2529                 case 429: {     /* stxvll */
2530                         int nb;
2531                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2532                                 goto unknown_opcode;
2533                         op->reg = rd | ((word & 1) << 5);
2534                         op->ea = ra ? regs->gpr[ra] : 0;
2535                         nb = regs->gpr[rb] & 0xff;
2536                         if (nb > 16)
2537                                 nb = 16;
2538                         op->type = MKOP(STORE_VSX, 0, nb);
2539                         op->element_size = 16;
2540                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2541                                 VSX_CHECK_VEC;
2542                         break;
2543                 }
2544                 case 461:       /* stxvpx */
2545                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2546                                 goto unknown_opcode;
2547                         op->reg = VSX_REGISTER_XTP(rd);
2548                         op->type = MKOP(STORE_VSX, 0, 32);
2549                         op->element_size = 32;
2550                         break;
2551                 case 524:       /* lxsspx */
2552                         op->reg = rd | ((word & 1) << 5);
2553                         op->type = MKOP(LOAD_VSX, 0, 4);
2554                         op->element_size = 8;
2555                         op->vsx_flags = VSX_FPCONV;
2556                         break;
2557
2558                 case 588:       /* lxsdx */
2559                         op->reg = rd | ((word & 1) << 5);
2560                         op->type = MKOP(LOAD_VSX, 0, 8);
2561                         op->element_size = 8;
2562                         break;
2563
2564                 case 652:       /* stxsspx */
2565                         op->reg = rd | ((word & 1) << 5);
2566                         op->type = MKOP(STORE_VSX, 0, 4);
2567                         op->element_size = 8;
2568                         op->vsx_flags = VSX_FPCONV;
2569                         break;
2570
2571                 case 716:       /* stxsdx */
2572                         op->reg = rd | ((word & 1) << 5);
2573                         op->type = MKOP(STORE_VSX, 0, 8);
2574                         op->element_size = 8;
2575                         break;
2576
2577                 case 780:       /* lxvw4x */
2578                         op->reg = rd | ((word & 1) << 5);
2579                         op->type = MKOP(LOAD_VSX, 0, 16);
2580                         op->element_size = 4;
2581                         break;
2582
2583                 case 781:       /* lxsibzx */
2584                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2585                                 goto unknown_opcode;
2586                         op->reg = rd | ((word & 1) << 5);
2587                         op->type = MKOP(LOAD_VSX, 0, 1);
2588                         op->element_size = 8;
2589                         op->vsx_flags = VSX_CHECK_VEC;
2590                         break;
2591
2592                 case 812:       /* lxvh8x */
2593                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2594                                 goto unknown_opcode;
2595                         op->reg = rd | ((word & 1) << 5);
2596                         op->type = MKOP(LOAD_VSX, 0, 16);
2597                         op->element_size = 2;
2598                         op->vsx_flags = VSX_CHECK_VEC;
2599                         break;
2600
2601                 case 813:       /* lxsihzx */
2602                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2603                                 goto unknown_opcode;
2604                         op->reg = rd | ((word & 1) << 5);
2605                         op->type = MKOP(LOAD_VSX, 0, 2);
2606                         op->element_size = 8;
2607                         op->vsx_flags = VSX_CHECK_VEC;
2608                         break;
2609
2610                 case 844:       /* lxvd2x */
2611                         op->reg = rd | ((word & 1) << 5);
2612                         op->type = MKOP(LOAD_VSX, 0, 16);
2613                         op->element_size = 8;
2614                         break;
2615
2616                 case 876:       /* lxvb16x */
2617                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2618                                 goto unknown_opcode;
2619                         op->reg = rd | ((word & 1) << 5);
2620                         op->type = MKOP(LOAD_VSX, 0, 16);
2621                         op->element_size = 1;
2622                         op->vsx_flags = VSX_CHECK_VEC;
2623                         break;
2624
2625                 case 908:       /* stxvw4x */
2626                         op->reg = rd | ((word & 1) << 5);
2627                         op->type = MKOP(STORE_VSX, 0, 16);
2628                         op->element_size = 4;
2629                         break;
2630
2631                 case 909:       /* stxsibx */
2632                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2633                                 goto unknown_opcode;
2634                         op->reg = rd | ((word & 1) << 5);
2635                         op->type = MKOP(STORE_VSX, 0, 1);
2636                         op->element_size = 8;
2637                         op->vsx_flags = VSX_CHECK_VEC;
2638                         break;
2639
2640                 case 940:       /* stxvh8x */
2641                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2642                                 goto unknown_opcode;
2643                         op->reg = rd | ((word & 1) << 5);
2644                         op->type = MKOP(STORE_VSX, 0, 16);
2645                         op->element_size = 2;
2646                         op->vsx_flags = VSX_CHECK_VEC;
2647                         break;
2648
2649                 case 941:       /* stxsihx */
2650                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2651                                 goto unknown_opcode;
2652                         op->reg = rd | ((word & 1) << 5);
2653                         op->type = MKOP(STORE_VSX, 0, 2);
2654                         op->element_size = 8;
2655                         op->vsx_flags = VSX_CHECK_VEC;
2656                         break;
2657
2658                 case 972:       /* stxvd2x */
2659                         op->reg = rd | ((word & 1) << 5);
2660                         op->type = MKOP(STORE_VSX, 0, 16);
2661                         op->element_size = 8;
2662                         break;
2663
2664                 case 1004:      /* stxvb16x */
2665                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2666                                 goto unknown_opcode;
2667                         op->reg = rd | ((word & 1) << 5);
2668                         op->type = MKOP(STORE_VSX, 0, 16);
2669                         op->element_size = 1;
2670                         op->vsx_flags = VSX_CHECK_VEC;
2671                         break;
2672
2673 #endif /* CONFIG_VSX */
2674                 }
2675                 break;
2676
2677         case 32:        /* lwz */
2678         case 33:        /* lwzu */
2679                 op->type = MKOP(LOAD, u, 4);
2680                 op->ea = dform_ea(word, regs);
2681                 break;
2682
2683         case 34:        /* lbz */
2684         case 35:        /* lbzu */
2685                 op->type = MKOP(LOAD, u, 1);
2686                 op->ea = dform_ea(word, regs);
2687                 break;
2688
2689         case 36:        /* stw */
2690         case 37:        /* stwu */
2691                 op->type = MKOP(STORE, u, 4);
2692                 op->ea = dform_ea(word, regs);
2693                 break;
2694
2695         case 38:        /* stb */
2696         case 39:        /* stbu */
2697                 op->type = MKOP(STORE, u, 1);
2698                 op->ea = dform_ea(word, regs);
2699                 break;
2700
2701         case 40:        /* lhz */
2702         case 41:        /* lhzu */
2703                 op->type = MKOP(LOAD, u, 2);
2704                 op->ea = dform_ea(word, regs);
2705                 break;
2706
2707         case 42:        /* lha */
2708         case 43:        /* lhau */
2709                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2710                 op->ea = dform_ea(word, regs);
2711                 break;
2712
2713         case 44:        /* sth */
2714         case 45:        /* sthu */
2715                 op->type = MKOP(STORE, u, 2);
2716                 op->ea = dform_ea(word, regs);
2717                 break;
2718
2719         case 46:        /* lmw */
2720                 if (ra >= rd)
2721                         break;          /* invalid form, ra in range to load */
2722                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2723                 op->ea = dform_ea(word, regs);
2724                 break;
2725
2726         case 47:        /* stmw */
2727                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2728                 op->ea = dform_ea(word, regs);
2729                 break;
2730
2731 #ifdef CONFIG_PPC_FPU
2732         case 48:        /* lfs */
2733         case 49:        /* lfsu */
2734                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2735                 op->ea = dform_ea(word, regs);
2736                 break;
2737
2738         case 50:        /* lfd */
2739         case 51:        /* lfdu */
2740                 op->type = MKOP(LOAD_FP, u, 8);
2741                 op->ea = dform_ea(word, regs);
2742                 break;
2743
2744         case 52:        /* stfs */
2745         case 53:        /* stfsu */
2746                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2747                 op->ea = dform_ea(word, regs);
2748                 break;
2749
2750         case 54:        /* stfd */
2751         case 55:        /* stfdu */
2752                 op->type = MKOP(STORE_FP, u, 8);
2753                 op->ea = dform_ea(word, regs);
2754                 break;
2755 #endif
2756
2757 #ifdef __powerpc64__
2758         case 56:        /* lq */
2759                 if (!((rd & 1) || (rd == ra)))
2760                         op->type = MKOP(LOAD, 0, 16);
2761                 op->ea = dqform_ea(word, regs);
2762                 break;
2763 #endif
2764
2765 #ifdef CONFIG_VSX
2766         case 57:        /* lfdp, lxsd, lxssp */
2767                 op->ea = dsform_ea(word, regs);
2768                 switch (word & 3) {
2769                 case 0:         /* lfdp */
2770                         if (rd & 1)
2771                                 break;          /* reg must be even */
2772                         op->type = MKOP(LOAD_FP, 0, 16);
2773                         break;
2774                 case 2:         /* lxsd */
2775                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2776                                 goto unknown_opcode;
2777                         op->reg = rd + 32;
2778                         op->type = MKOP(LOAD_VSX, 0, 8);
2779                         op->element_size = 8;
2780                         op->vsx_flags = VSX_CHECK_VEC;
2781                         break;
2782                 case 3:         /* lxssp */
2783                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2784                                 goto unknown_opcode;
2785                         op->reg = rd + 32;
2786                         op->type = MKOP(LOAD_VSX, 0, 4);
2787                         op->element_size = 8;
2788                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2789                         break;
2790                 }
2791                 break;
2792 #endif /* CONFIG_VSX */
2793
2794 #ifdef __powerpc64__
2795         case 58:        /* ld[u], lwa */
2796                 op->ea = dsform_ea(word, regs);
2797                 switch (word & 3) {
2798                 case 0:         /* ld */
2799                         op->type = MKOP(LOAD, 0, 8);
2800                         break;
2801                 case 1:         /* ldu */
2802                         op->type = MKOP(LOAD, UPDATE, 8);
2803                         break;
2804                 case 2:         /* lwa */
2805                         op->type = MKOP(LOAD, SIGNEXT, 4);
2806                         break;
2807                 }
2808                 break;
2809 #endif
2810
2811 #ifdef CONFIG_VSX
2812         case 6:
2813                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2814                         goto unknown_opcode;
2815                 op->ea = dqform_ea(word, regs);
2816                 op->reg = VSX_REGISTER_XTP(rd);
2817                 op->element_size = 32;
2818                 switch (word & 0xf) {
2819                 case 0:         /* lxvp */
2820                         op->type = MKOP(LOAD_VSX, 0, 32);
2821                         break;
2822                 case 1:         /* stxvp */
2823                         op->type = MKOP(STORE_VSX, 0, 32);
2824                         break;
2825                 }
2826                 break;
2827
2828         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2829                 switch (word & 7) {
2830                 case 0:         /* stfdp with LSB of DS field = 0 */
2831                 case 4:         /* stfdp with LSB of DS field = 1 */
2832                         op->ea = dsform_ea(word, regs);
2833                         op->type = MKOP(STORE_FP, 0, 16);
2834                         break;
2835
2836                 case 1:         /* lxv */
2837                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2838                                 goto unknown_opcode;
2839                         op->ea = dqform_ea(word, regs);
2840                         if (word & 8)
2841                                 op->reg = rd + 32;
2842                         op->type = MKOP(LOAD_VSX, 0, 16);
2843                         op->element_size = 16;
2844                         op->vsx_flags = VSX_CHECK_VEC;
2845                         break;
2846
2847                 case 2:         /* stxsd with LSB of DS field = 0 */
2848                 case 6:         /* stxsd with LSB of DS field = 1 */
2849                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2850                                 goto unknown_opcode;
2851                         op->ea = dsform_ea(word, regs);
2852                         op->reg = rd + 32;
2853                         op->type = MKOP(STORE_VSX, 0, 8);
2854                         op->element_size = 8;
2855                         op->vsx_flags = VSX_CHECK_VEC;
2856                         break;
2857
2858                 case 3:         /* stxssp with LSB of DS field = 0 */
2859                 case 7:         /* stxssp with LSB of DS field = 1 */
2860                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861                                 goto unknown_opcode;
2862                         op->ea = dsform_ea(word, regs);
2863                         op->reg = rd + 32;
2864                         op->type = MKOP(STORE_VSX, 0, 4);
2865                         op->element_size = 8;
2866                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2867                         break;
2868
2869                 case 5:         /* stxv */
2870                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2871                                 goto unknown_opcode;
2872                         op->ea = dqform_ea(word, regs);
2873                         if (word & 8)
2874                                 op->reg = rd + 32;
2875                         op->type = MKOP(STORE_VSX, 0, 16);
2876                         op->element_size = 16;
2877                         op->vsx_flags = VSX_CHECK_VEC;
2878                         break;
2879                 }
2880                 break;
2881 #endif /* CONFIG_VSX */
2882
2883 #ifdef __powerpc64__
2884         case 62:        /* std[u] */
2885                 op->ea = dsform_ea(word, regs);
2886                 switch (word & 3) {
2887                 case 0:         /* std */
2888                         op->type = MKOP(STORE, 0, 8);
2889                         break;
2890                 case 1:         /* stdu */
2891                         op->type = MKOP(STORE, UPDATE, 8);
2892                         break;
2893                 case 2:         /* stq */
2894                         if (!(rd & 1))
2895                                 op->type = MKOP(STORE, 0, 16);
2896                         break;
2897                 }
2898                 break;
2899         case 1: /* Prefixed instructions */
2900                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2901                         goto unknown_opcode;
2902
2903                 prefix_r = GET_PREFIX_R(word);
2904                 ra = GET_PREFIX_RA(suffix);
2905                 op->update_reg = ra;
2906                 rd = (suffix >> 21) & 0x1f;
2907                 op->reg = rd;
2908                 op->val = regs->gpr[rd];
2909
2910                 suffixopcode = get_op(suffix);
2911                 prefixtype = (word >> 24) & 0x3;
2912                 switch (prefixtype) {
2913                 case 0: /* Type 00  Eight-Byte Load/Store */
2914                         if (prefix_r && ra)
2915                                 break;
2916                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2917                         switch (suffixopcode) {
2918                         case 41:        /* plwa */
2919                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2920                                 break;
2921 #ifdef CONFIG_VSX
2922                         case 42:        /* plxsd */
2923                                 op->reg = rd + 32;
2924                                 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2925                                 op->element_size = 8;
2926                                 op->vsx_flags = VSX_CHECK_VEC;
2927                                 break;
2928                         case 43:        /* plxssp */
2929                                 op->reg = rd + 32;
2930                                 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2931                                 op->element_size = 8;
2932                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2933                                 break;
2934                         case 46:        /* pstxsd */
2935                                 op->reg = rd + 32;
2936                                 op->type = MKOP(STORE_VSX, PREFIXED, 8);
2937                                 op->element_size = 8;
2938                                 op->vsx_flags = VSX_CHECK_VEC;
2939                                 break;
2940                         case 47:        /* pstxssp */
2941                                 op->reg = rd + 32;
2942                                 op->type = MKOP(STORE_VSX, PREFIXED, 4);
2943                                 op->element_size = 8;
2944                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2945                                 break;
2946                         case 51:        /* plxv1 */
2947                                 op->reg += 32;
2948                                 fallthrough;
2949                         case 50:        /* plxv0 */
2950                                 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2951                                 op->element_size = 16;
2952                                 op->vsx_flags = VSX_CHECK_VEC;
2953                                 break;
2954                         case 55:        /* pstxv1 */
2955                                 op->reg = rd + 32;
2956                                 fallthrough;
2957                         case 54:        /* pstxv0 */
2958                                 op->type = MKOP(STORE_VSX, PREFIXED, 16);
2959                                 op->element_size = 16;
2960                                 op->vsx_flags = VSX_CHECK_VEC;
2961                                 break;
2962 #endif /* CONFIG_VSX */
2963                         case 56:        /* plq */
2964                                 op->type = MKOP(LOAD, PREFIXED, 16);
2965                                 break;
2966                         case 57:        /* pld */
2967                                 op->type = MKOP(LOAD, PREFIXED, 8);
2968                                 break;
2969 #ifdef CONFIG_VSX
2970                         case 58:        /* plxvp */
2971                                 op->reg = VSX_REGISTER_XTP(rd);
2972                                 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
2973                                 op->element_size = 32;
2974                                 break;
2975 #endif /* CONFIG_VSX */
2976                         case 60:        /* pstq */
2977                                 op->type = MKOP(STORE, PREFIXED, 16);
2978                                 break;
2979                         case 61:        /* pstd */
2980                                 op->type = MKOP(STORE, PREFIXED, 8);
2981                                 break;
2982 #ifdef CONFIG_VSX
2983                         case 62:        /* pstxvp */
2984                                 op->reg = VSX_REGISTER_XTP(rd);
2985                                 op->type = MKOP(STORE_VSX, PREFIXED, 32);
2986                                 op->element_size = 32;
2987                                 break;
2988 #endif /* CONFIG_VSX */
2989                         }
2990                         break;
2991                 case 1: /* Type 01 Eight-Byte Register-to-Register */
2992                         break;
2993                 case 2: /* Type 10 Modified Load/Store */
2994                         if (prefix_r && ra)
2995                                 break;
2996                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2997                         switch (suffixopcode) {
2998                         case 32:        /* plwz */
2999                                 op->type = MKOP(LOAD, PREFIXED, 4);
3000                                 break;
3001                         case 34:        /* plbz */
3002                                 op->type = MKOP(LOAD, PREFIXED, 1);
3003                                 break;
3004                         case 36:        /* pstw */
3005                                 op->type = MKOP(STORE, PREFIXED, 4);
3006                                 break;
3007                         case 38:        /* pstb */
3008                                 op->type = MKOP(STORE, PREFIXED, 1);
3009                                 break;
3010                         case 40:        /* plhz */
3011                                 op->type = MKOP(LOAD, PREFIXED, 2);
3012                                 break;
3013                         case 42:        /* plha */
3014                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3015                                 break;
3016                         case 44:        /* psth */
3017                                 op->type = MKOP(STORE, PREFIXED, 2);
3018                                 break;
3019                         case 48:        /* plfs */
3020                                 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3021                                 break;
3022                         case 50:        /* plfd */
3023                                 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3024                                 break;
3025                         case 52:        /* pstfs */
3026                                 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3027                                 break;
3028                         case 54:        /* pstfd */
3029                                 op->type = MKOP(STORE_FP, PREFIXED, 8);
3030                                 break;
3031                         }
3032                         break;
3033                 case 3: /* Type 11 Modified Register-to-Register */
3034                         break;
3035                 }
3036 #endif /* __powerpc64__ */
3037
3038         }
3039
3040         if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3041                 switch (GETTYPE(op->type)) {
3042                 case LOAD:
3043                         if (ra == rd)
3044                                 goto unknown_opcode;
3045                         fallthrough;
3046                 case STORE:
3047                 case LOAD_FP:
3048                 case STORE_FP:
3049                         if (ra == 0)
3050                                 goto unknown_opcode;
3051                 }
3052         }
3053
3054 #ifdef CONFIG_VSX
3055         if ((GETTYPE(op->type) == LOAD_VSX ||
3056              GETTYPE(op->type) == STORE_VSX) &&
3057             !cpu_has_feature(CPU_FTR_VSX)) {
3058                 return -1;
3059         }
3060 #endif /* CONFIG_VSX */
3061
3062         return 0;
3063
3064  unknown_opcode:
3065         op->type = UNKNOWN;
3066         return 0;
3067
3068  logical_done:
3069         if (word & 1)
3070                 set_cr0(regs, op);
3071  logical_done_nocc:
3072         op->reg = ra;
3073         op->type |= SETREG;
3074         return 1;
3075
3076  arith_done:
3077         if (word & 1)
3078                 set_cr0(regs, op);
3079  compute_done:
3080         op->reg = rd;
3081         op->type |= SETREG;
3082         return 1;
3083
3084  priv:
3085         op->type = INTERRUPT | 0x700;
3086         op->val = SRR1_PROGPRIV;
3087         return 0;
3088
3089  trap:
3090         op->type = INTERRUPT | 0x700;
3091         op->val = SRR1_PROGTRAP;
3092         return 0;
3093 }
3094 EXPORT_SYMBOL_GPL(analyse_instr);
3095 NOKPROBE_SYMBOL(analyse_instr);
3096
3097 /*
3098  * For PPC32 we always use stwu with r1 to change the stack pointer.
3099  * So this emulated store may corrupt the exception frame, now we
3100  * have to provide the exception frame trampoline, which is pushed
3101  * below the kprobed function stack. So we only update gpr[1] but
3102  * don't emulate the real store operation. We will do real store
3103  * operation safely in exception return code by checking this flag.
3104  */
3105 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3106 {
3107         /*
3108          * Check if we already set since that means we'll
3109          * lose the previous value.
3110          */
3111         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3112         set_thread_flag(TIF_EMULATE_STACK_STORE);
3113         return 0;
3114 }
3115
3116 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3117 {
3118         switch (size) {
3119         case 2:
3120                 *valp = (signed short) *valp;
3121                 break;
3122         case 4:
3123                 *valp = (signed int) *valp;
3124                 break;
3125         }
3126 }
3127
3128 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3129 {
3130         switch (size) {
3131         case 2:
3132                 *valp = byterev_2(*valp);
3133                 break;
3134         case 4:
3135                 *valp = byterev_4(*valp);
3136                 break;
3137 #ifdef __powerpc64__
3138         case 8:
3139                 *valp = byterev_8(*valp);
3140                 break;
3141 #endif
3142         }
3143 }
3144
3145 /*
3146  * Emulate an instruction that can be executed just by updating
3147  * fields in *regs.
3148  */
3149 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3150 {
3151         unsigned long next_pc;
3152
3153         next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3154         switch (GETTYPE(op->type)) {
3155         case COMPUTE:
3156                 if (op->type & SETREG)
3157                         regs->gpr[op->reg] = op->val;
3158                 if (op->type & SETCC)
3159                         regs->ccr = op->ccval;
3160                 if (op->type & SETXER)
3161                         regs->xer = op->xerval;
3162                 break;
3163
3164         case BRANCH:
3165                 if (op->type & SETLK)
3166                         regs->link = next_pc;
3167                 if (op->type & BRTAKEN)
3168                         next_pc = op->val;
3169                 if (op->type & DECCTR)
3170                         --regs->ctr;
3171                 break;
3172
3173         case BARRIER:
3174                 switch (op->type & BARRIER_MASK) {
3175                 case BARRIER_SYNC:
3176                         mb();
3177                         break;
3178                 case BARRIER_ISYNC:
3179                         isync();
3180                         break;
3181                 case BARRIER_EIEIO:
3182                         eieio();
3183                         break;
3184                 case BARRIER_LWSYNC:
3185                         asm volatile("lwsync" : : : "memory");
3186                         break;
3187                 case BARRIER_PTESYNC:
3188                         asm volatile("ptesync" : : : "memory");
3189                         break;
3190                 }
3191                 break;
3192
3193         case MFSPR:
3194                 switch (op->spr) {
3195                 case SPRN_XER:
3196                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3197                         break;
3198                 case SPRN_LR:
3199                         regs->gpr[op->reg] = regs->link;
3200                         break;
3201                 case SPRN_CTR:
3202                         regs->gpr[op->reg] = regs->ctr;
3203                         break;
3204                 default:
3205                         WARN_ON_ONCE(1);
3206                 }
3207                 break;
3208
3209         case MTSPR:
3210                 switch (op->spr) {
3211                 case SPRN_XER:
3212                         regs->xer = op->val & 0xffffffffUL;
3213                         break;
3214                 case SPRN_LR:
3215                         regs->link = op->val;
3216                         break;
3217                 case SPRN_CTR:
3218                         regs->ctr = op->val;
3219                         break;
3220                 default:
3221                         WARN_ON_ONCE(1);
3222                 }
3223                 break;
3224
3225         default:
3226                 WARN_ON_ONCE(1);
3227         }
3228         regs_set_return_ip(regs, next_pc);
3229 }
3230 NOKPROBE_SYMBOL(emulate_update_regs);
3231
3232 /*
3233  * Emulate a previously-analysed load or store instruction.
3234  * Return values are:
3235  * 0 = instruction emulated successfully
3236  * -EFAULT = address out of range or access faulted (regs->dar
3237  *           contains the faulting address)
3238  * -EACCES = misaligned access, instruction requires alignment
3239  * -EINVAL = unknown operation in *op
3240  */
3241 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3242 {
3243         int err, size, type;
3244         int i, rd, nb;
3245         unsigned int cr;
3246         unsigned long val;
3247         unsigned long ea;
3248         bool cross_endian;
3249
3250         err = 0;
3251         size = GETSIZE(op->type);
3252         type = GETTYPE(op->type);
3253         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3254         ea = truncate_if_32bit(regs->msr, op->ea);
3255
3256         switch (type) {
3257         case LARX:
3258                 if (ea & (size - 1))
3259                         return -EACCES;         /* can't handle misaligned */
3260                 if (!address_ok(regs, ea, size))
3261                         return -EFAULT;
3262                 err = 0;
3263                 val = 0;
3264                 switch (size) {
3265 #ifdef __powerpc64__
3266                 case 1:
3267                         __get_user_asmx(val, ea, err, "lbarx");
3268                         break;
3269                 case 2:
3270                         __get_user_asmx(val, ea, err, "lharx");
3271                         break;
3272 #endif
3273                 case 4:
3274                         __get_user_asmx(val, ea, err, "lwarx");
3275                         break;
3276 #ifdef __powerpc64__
3277                 case 8:
3278                         __get_user_asmx(val, ea, err, "ldarx");
3279                         break;
3280                 case 16:
3281                         err = do_lqarx(ea, &regs->gpr[op->reg]);
3282                         break;
3283 #endif
3284                 default:
3285                         return -EINVAL;
3286                 }
3287                 if (err) {
3288                         regs->dar = ea;
3289                         break;
3290                 }
3291                 if (size < 16)
3292                         regs->gpr[op->reg] = val;
3293                 break;
3294
3295         case STCX:
3296                 if (ea & (size - 1))
3297                         return -EACCES;         /* can't handle misaligned */
3298                 if (!address_ok(regs, ea, size))
3299                         return -EFAULT;
3300                 err = 0;
3301                 switch (size) {
3302 #ifdef __powerpc64__
3303                 case 1:
3304                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3305                         break;
3306                 case 2:
3307                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3308                         break;
3309 #endif
3310                 case 4:
3311                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3312                         break;
3313 #ifdef __powerpc64__
3314                 case 8:
3315                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3316                         break;
3317                 case 16:
3318                         err = do_stqcx(ea, regs->gpr[op->reg],
3319                                        regs->gpr[op->reg + 1], &cr);
3320                         break;
3321 #endif
3322                 default:
3323                         return -EINVAL;
3324                 }
3325                 if (!err)
3326                         regs->ccr = (regs->ccr & 0x0fffffff) |
3327                                 (cr & 0xe0000000) |
3328                                 ((regs->xer >> 3) & 0x10000000);
3329                 else
3330                         regs->dar = ea;
3331                 break;
3332
3333         case LOAD:
3334 #ifdef __powerpc64__
3335                 if (size == 16) {
3336                         err = emulate_lq(regs, ea, op->reg, cross_endian);
3337                         break;
3338                 }
3339 #endif
3340                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3341                 if (!err) {
3342                         if (op->type & SIGNEXT)
3343                                 do_signext(&regs->gpr[op->reg], size);
3344                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3345                                 do_byterev(&regs->gpr[op->reg], size);
3346                 }
3347                 break;
3348
3349 #ifdef CONFIG_PPC_FPU
3350         case LOAD_FP:
3351                 /*
3352                  * If the instruction is in userspace, we can emulate it even
3353                  * if the VMX state is not live, because we have the state
3354                  * stored in the thread_struct.  If the instruction is in
3355                  * the kernel, we must not touch the state in the thread_struct.
3356                  */
3357                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3358                         return 0;
3359                 err = do_fp_load(op, ea, regs, cross_endian);
3360                 break;
3361 #endif
3362 #ifdef CONFIG_ALTIVEC
3363         case LOAD_VMX:
3364                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3365                         return 0;
3366                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3367                 break;
3368 #endif
3369 #ifdef CONFIG_VSX
3370         case LOAD_VSX: {
3371                 unsigned long msrbit = MSR_VSX;
3372
3373                 /*
3374                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3375                  * when the target of the instruction is a vector register.
3376                  */
3377                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3378                         msrbit = MSR_VEC;
3379                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3380                         return 0;
3381                 err = do_vsx_load(op, ea, regs, cross_endian);
3382                 break;
3383         }
3384 #endif
3385         case LOAD_MULTI:
3386                 if (!address_ok(regs, ea, size))
3387                         return -EFAULT;
3388                 rd = op->reg;
3389                 for (i = 0; i < size; i += 4) {
3390                         unsigned int v32 = 0;
3391
3392                         nb = size - i;
3393                         if (nb > 4)
3394                                 nb = 4;
3395                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3396                         if (err)
3397                                 break;
3398                         if (unlikely(cross_endian))
3399                                 v32 = byterev_4(v32);
3400                         regs->gpr[rd] = v32;
3401                         ea += 4;
3402                         /* reg number wraps from 31 to 0 for lsw[ix] */
3403                         rd = (rd + 1) & 0x1f;
3404                 }
3405                 break;
3406
3407         case STORE:
3408 #ifdef __powerpc64__
3409                 if (size == 16) {
3410                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3411                         break;
3412                 }
3413 #endif
3414                 if ((op->type & UPDATE) && size == sizeof(long) &&
3415                     op->reg == 1 && op->update_reg == 1 &&
3416                     !(regs->msr & MSR_PR) &&
3417                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3418                         err = handle_stack_update(ea, regs);
3419                         break;
3420                 }
3421                 if (unlikely(cross_endian))
3422                         do_byterev(&op->val, size);
3423                 err = write_mem(op->val, ea, size, regs);
3424                 break;
3425
3426 #ifdef CONFIG_PPC_FPU
3427         case STORE_FP:
3428                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3429                         return 0;
3430                 err = do_fp_store(op, ea, regs, cross_endian);
3431                 break;
3432 #endif
3433 #ifdef CONFIG_ALTIVEC
3434         case STORE_VMX:
3435                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3436                         return 0;
3437                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3438                 break;
3439 #endif
3440 #ifdef CONFIG_VSX
3441         case STORE_VSX: {
3442                 unsigned long msrbit = MSR_VSX;
3443
3444                 /*
3445                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3446                  * when the target of the instruction is a vector register.
3447                  */
3448                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3449                         msrbit = MSR_VEC;
3450                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3451                         return 0;
3452                 err = do_vsx_store(op, ea, regs, cross_endian);
3453                 break;
3454         }
3455 #endif
3456         case STORE_MULTI:
3457                 if (!address_ok(regs, ea, size))
3458                         return -EFAULT;
3459                 rd = op->reg;
3460                 for (i = 0; i < size; i += 4) {
3461                         unsigned int v32 = regs->gpr[rd];
3462
3463                         nb = size - i;
3464                         if (nb > 4)
3465                                 nb = 4;
3466                         if (unlikely(cross_endian))
3467                                 v32 = byterev_4(v32);
3468                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3469                         if (err)
3470                                 break;
3471                         ea += 4;
3472                         /* reg number wraps from 31 to 0 for stsw[ix] */
3473                         rd = (rd + 1) & 0x1f;
3474                 }
3475                 break;
3476
3477         default:
3478                 return -EINVAL;
3479         }
3480
3481         if (err)
3482                 return err;
3483
3484         if (op->type & UPDATE)
3485                 regs->gpr[op->update_reg] = op->ea;
3486
3487         return 0;
3488 }
3489 NOKPROBE_SYMBOL(emulate_loadstore);
3490
3491 /*
3492  * Emulate instructions that cause a transfer of control,
3493  * loads and stores, and a few other instructions.
3494  * Returns 1 if the step was emulated, 0 if not,
3495  * or -1 if the instruction is one that should not be stepped,
3496  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3497  */
3498 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3499 {
3500         struct instruction_op op;
3501         int r, err, type;
3502         unsigned long val;
3503         unsigned long ea;
3504
3505         r = analyse_instr(&op, regs, instr);
3506         if (r < 0)
3507                 return r;
3508         if (r > 0) {
3509                 emulate_update_regs(regs, &op);
3510                 return 1;
3511         }
3512
3513         err = 0;
3514         type = GETTYPE(op.type);
3515
3516         if (OP_IS_LOAD_STORE(type)) {
3517                 err = emulate_loadstore(regs, &op);
3518                 if (err)
3519                         return 0;
3520                 goto instr_done;
3521         }
3522
3523         switch (type) {
3524         case CACHEOP:
3525                 ea = truncate_if_32bit(regs->msr, op.ea);
3526                 if (!address_ok(regs, ea, 8))
3527                         return 0;
3528                 switch (op.type & CACHEOP_MASK) {
3529                 case DCBST:
3530                         __cacheop_user_asmx(ea, err, "dcbst");
3531                         break;
3532                 case DCBF:
3533                         __cacheop_user_asmx(ea, err, "dcbf");
3534                         break;
3535                 case DCBTST:
3536                         if (op.reg == 0)
3537                                 prefetchw((void *) ea);
3538                         break;
3539                 case DCBT:
3540                         if (op.reg == 0)
3541                                 prefetch((void *) ea);
3542                         break;
3543                 case ICBI:
3544                         __cacheop_user_asmx(ea, err, "icbi");
3545                         break;
3546                 case DCBZ:
3547                         err = emulate_dcbz(ea, regs);
3548                         break;
3549                 }
3550                 if (err) {
3551                         regs->dar = ea;
3552                         return 0;
3553                 }
3554                 goto instr_done;
3555
3556         case MFMSR:
3557                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3558                 goto instr_done;
3559
3560         case MTMSR:
3561                 val = regs->gpr[op.reg];
3562                 if ((val & MSR_RI) == 0)
3563                         /* can't step mtmsr[d] that would clear MSR_RI */
3564                         return -1;
3565                 /* here op.val is the mask of bits to change */
3566                 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3567                 goto instr_done;
3568
3569 #ifdef CONFIG_PPC64
3570         case SYSCALL:   /* sc */
3571                 /*
3572                  * N.B. this uses knowledge about how the syscall
3573                  * entry code works.  If that is changed, this will
3574                  * need to be changed also.
3575                  */
3576                 if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3577                                 cpu_has_feature(CPU_FTR_REAL_LE) &&
3578                                 regs->gpr[0] == 0x1ebe) {
3579                         regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3580                         goto instr_done;
3581                 }
3582                 regs->gpr[9] = regs->gpr[13];
3583                 regs->gpr[10] = MSR_KERNEL;
3584                 regs->gpr[11] = regs->nip + 4;
3585                 regs->gpr[12] = regs->msr & MSR_MASK;
3586                 regs->gpr[13] = (unsigned long) get_paca();
3587                 regs_set_return_ip(regs, (unsigned long) &system_call_common);
3588                 regs_set_return_msr(regs, MSR_KERNEL);
3589                 return 1;
3590
3591 #ifdef CONFIG_PPC_BOOK3S_64
3592         case SYSCALL_VECTORED_0:        /* scv 0 */
3593                 regs->gpr[9] = regs->gpr[13];
3594                 regs->gpr[10] = MSR_KERNEL;
3595                 regs->gpr[11] = regs->nip + 4;
3596                 regs->gpr[12] = regs->msr & MSR_MASK;
3597                 regs->gpr[13] = (unsigned long) get_paca();
3598                 regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3599                 regs_set_return_msr(regs, MSR_KERNEL);
3600                 return 1;
3601 #endif
3602
3603         case RFI:
3604                 return -1;
3605 #endif
3606         }
3607         return 0;
3608
3609  instr_done:
3610         regs_set_return_ip(regs,
3611                 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3612         return 1;
3613 }
3614 NOKPROBE_SYMBOL(emulate_step);