arm64: tegra: Move clocks from RT5658 endpoint to device node
[linux-2.6-microblaze.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK        0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK        0x87c0ffff
26 #endif
27
28 /* Bits in XER */
29 #define XER_SO          0x80000000U
30 #define XER_OV          0x40000000U
31 #define XER_CA          0x20000000U
32 #define XER_OV32        0x00080000U
33 #define XER_CA32        0x00040000U
34
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61                     unsigned int *crp);
62 #endif
63
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE   1
66 #define IS_BE   0
67 #else
68 #define IS_LE   0
69 #define IS_BE   1
70 #endif
71
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76                                                         unsigned long val)
77 {
78 #ifdef __powerpc64__
79         if ((msr & MSR_64BIT) == 0)
80                 val &= 0xffffffffUL;
81 #endif
82         return val;
83 }
84
85 /*
86  * Determine whether a conditional branch instruction would branch.
87  */
88 static nokprobe_inline int branch_taken(unsigned int instr,
89                                         const struct pt_regs *regs,
90                                         struct instruction_op *op)
91 {
92         unsigned int bo = (instr >> 21) & 0x1f;
93         unsigned int bi;
94
95         if ((bo & 4) == 0) {
96                 /* decrement counter */
97                 op->type |= DECCTR;
98                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99                         return 0;
100         }
101         if ((bo & 0x10) == 0) {
102                 /* check bit from CR */
103                 bi = (instr >> 16) & 0x1f;
104                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105                         return 0;
106         }
107         return 1;
108 }
109
110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111                                        unsigned long ea, int nb)
112 {
113         if (!user_mode(regs))
114                 return 1;
115         if (__access_ok(ea, nb))
116                 return 1;
117         if (__access_ok(ea, 1))
118                 /* Access overlaps the end of the user region */
119                 regs->dar = TASK_SIZE_MAX - 1;
120         else
121                 regs->dar = ea;
122         return 0;
123 }
124
125 /*
126  * Calculate effective address for a D-form instruction
127  */
128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129                                               const struct pt_regs *regs)
130 {
131         int ra;
132         unsigned long ea;
133
134         ra = (instr >> 16) & 0x1f;
135         ea = (signed short) instr;              /* sign-extend */
136         if (ra)
137                 ea += regs->gpr[ra];
138
139         return ea;
140 }
141
142 #ifdef __powerpc64__
143 /*
144  * Calculate effective address for a DS-form instruction
145  */
146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147                                                const struct pt_regs *regs)
148 {
149         int ra;
150         unsigned long ea;
151
152         ra = (instr >> 16) & 0x1f;
153         ea = (signed short) (instr & ~3);       /* sign-extend */
154         if (ra)
155                 ea += regs->gpr[ra];
156
157         return ea;
158 }
159
160 /*
161  * Calculate effective address for a DQ-form instruction
162  */
163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164                                                const struct pt_regs *regs)
165 {
166         int ra;
167         unsigned long ea;
168
169         ra = (instr >> 16) & 0x1f;
170         ea = (signed short) (instr & ~0xf);     /* sign-extend */
171         if (ra)
172                 ea += regs->gpr[ra];
173
174         return ea;
175 }
176 #endif /* __powerpc64 */
177
178 /*
179  * Calculate effective address for an X-form instruction
180  */
181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182                                               const struct pt_regs *regs)
183 {
184         int ra, rb;
185         unsigned long ea;
186
187         ra = (instr >> 16) & 0x1f;
188         rb = (instr >> 11) & 0x1f;
189         ea = regs->gpr[rb];
190         if (ra)
191                 ea += regs->gpr[ra];
192
193         return ea;
194 }
195
196 /*
197  * Calculate effective address for a MLS:D-form / 8LS:D-form
198  * prefixed instruction
199  */
200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201                                                   unsigned int suffix,
202                                                   const struct pt_regs *regs)
203 {
204         int ra, prefix_r;
205         unsigned int  dd;
206         unsigned long ea, d0, d1, d;
207
208         prefix_r = GET_PREFIX_R(instr);
209         ra = GET_PREFIX_RA(suffix);
210
211         d0 = instr & 0x3ffff;
212         d1 = suffix & 0xffff;
213         d = (d0 << 16) | d1;
214
215         /*
216          * sign extend a 34 bit number
217          */
218         dd = (unsigned int)(d >> 2);
219         ea = (signed int)dd;
220         ea = (ea << 2) | (d & 0x3);
221
222         if (!prefix_r && ra)
223                 ea += regs->gpr[ra];
224         else if (!prefix_r && !ra)
225                 ; /* Leave ea as is */
226         else if (prefix_r)
227                 ea += regs->nip;
228
229         /*
230          * (prefix_r && ra) is an invalid form. Should already be
231          * checked for by caller!
232          */
233
234         return ea;
235 }
236
237 /*
238  * Return the largest power of 2, not greater than sizeof(unsigned long),
239  * such that x is a multiple of it.
240  */
241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243         x |= sizeof(unsigned long);
244         return x & -x;          /* isolates rightmost bit */
245 }
246
247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251
252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257
258 #ifdef __powerpc64__
259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261         return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264
265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267         switch (nb) {
268         case 2:
269                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
270                 break;
271         case 4:
272                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
273                 break;
274 #ifdef __powerpc64__
275         case 8:
276                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277                 break;
278         case 16: {
279                 unsigned long *up = (unsigned long *)ptr;
280                 unsigned long tmp;
281                 tmp = byterev_8(up[0]);
282                 up[0] = byterev_8(up[1]);
283                 up[1] = tmp;
284                 break;
285         }
286         case 32: {
287                 unsigned long *up = (unsigned long *)ptr;
288                 unsigned long tmp;
289
290                 tmp = byterev_8(up[0]);
291                 up[0] = byterev_8(up[3]);
292                 up[3] = tmp;
293                 tmp = byterev_8(up[2]);
294                 up[2] = byterev_8(up[1]);
295                 up[1] = tmp;
296                 break;
297         }
298
299 #endif
300         default:
301                 WARN_ON_ONCE(1);
302         }
303 }
304
305 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
306                                             unsigned long ea, int nb,
307                                             struct pt_regs *regs)
308 {
309         int err = 0;
310         unsigned long x = 0;
311
312         switch (nb) {
313         case 1:
314                 err = __get_user(x, (unsigned char __user *) ea);
315                 break;
316         case 2:
317                 err = __get_user(x, (unsigned short __user *) ea);
318                 break;
319         case 4:
320                 err = __get_user(x, (unsigned int __user *) ea);
321                 break;
322 #ifdef __powerpc64__
323         case 8:
324                 err = __get_user(x, (unsigned long __user *) ea);
325                 break;
326 #endif
327         }
328         if (!err)
329                 *dest = x;
330         else
331                 regs->dar = ea;
332         return err;
333 }
334
335 /*
336  * Copy from userspace to a buffer, using the largest possible
337  * aligned accesses, up to sizeof(long).
338  */
339 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
340                                        struct pt_regs *regs)
341 {
342         int err = 0;
343         int c;
344
345         for (; nb > 0; nb -= c) {
346                 c = max_align(ea);
347                 if (c > nb)
348                         c = max_align(nb);
349                 switch (c) {
350                 case 1:
351                         err = __get_user(*dest, (unsigned char __user *) ea);
352                         break;
353                 case 2:
354                         err = __get_user(*(u16 *)dest,
355                                          (unsigned short __user *) ea);
356                         break;
357                 case 4:
358                         err = __get_user(*(u32 *)dest,
359                                          (unsigned int __user *) ea);
360                         break;
361 #ifdef __powerpc64__
362                 case 8:
363                         err = __get_user(*(unsigned long *)dest,
364                                          (unsigned long __user *) ea);
365                         break;
366 #endif
367                 }
368                 if (err) {
369                         regs->dar = ea;
370                         return err;
371                 }
372                 dest += c;
373                 ea += c;
374         }
375         return 0;
376 }
377
378 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
379                                               unsigned long ea, int nb,
380                                               struct pt_regs *regs)
381 {
382         union {
383                 unsigned long ul;
384                 u8 b[sizeof(unsigned long)];
385         } u;
386         int i;
387         int err;
388
389         u.ul = 0;
390         i = IS_BE ? sizeof(unsigned long) - nb : 0;
391         err = copy_mem_in(&u.b[i], ea, nb, regs);
392         if (!err)
393                 *dest = u.ul;
394         return err;
395 }
396
397 /*
398  * Read memory at address ea for nb bytes, return 0 for success
399  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
400  * If nb < sizeof(long), the result is right-justified on BE systems.
401  */
402 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
403                               struct pt_regs *regs)
404 {
405         if (!address_ok(regs, ea, nb))
406                 return -EFAULT;
407         if ((ea & (nb - 1)) == 0)
408                 return read_mem_aligned(dest, ea, nb, regs);
409         return read_mem_unaligned(dest, ea, nb, regs);
410 }
411 NOKPROBE_SYMBOL(read_mem);
412
413 static nokprobe_inline int write_mem_aligned(unsigned long val,
414                                              unsigned long ea, int nb,
415                                              struct pt_regs *regs)
416 {
417         int err = 0;
418
419         switch (nb) {
420         case 1:
421                 err = __put_user(val, (unsigned char __user *) ea);
422                 break;
423         case 2:
424                 err = __put_user(val, (unsigned short __user *) ea);
425                 break;
426         case 4:
427                 err = __put_user(val, (unsigned int __user *) ea);
428                 break;
429 #ifdef __powerpc64__
430         case 8:
431                 err = __put_user(val, (unsigned long __user *) ea);
432                 break;
433 #endif
434         }
435         if (err)
436                 regs->dar = ea;
437         return err;
438 }
439
440 /*
441  * Copy from a buffer to userspace, using the largest possible
442  * aligned accesses, up to sizeof(long).
443  */
444 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
445                                         struct pt_regs *regs)
446 {
447         int err = 0;
448         int c;
449
450         for (; nb > 0; nb -= c) {
451                 c = max_align(ea);
452                 if (c > nb)
453                         c = max_align(nb);
454                 switch (c) {
455                 case 1:
456                         err = __put_user(*dest, (unsigned char __user *) ea);
457                         break;
458                 case 2:
459                         err = __put_user(*(u16 *)dest,
460                                          (unsigned short __user *) ea);
461                         break;
462                 case 4:
463                         err = __put_user(*(u32 *)dest,
464                                          (unsigned int __user *) ea);
465                         break;
466 #ifdef __powerpc64__
467                 case 8:
468                         err = __put_user(*(unsigned long *)dest,
469                                          (unsigned long __user *) ea);
470                         break;
471 #endif
472                 }
473                 if (err) {
474                         regs->dar = ea;
475                         return err;
476                 }
477                 dest += c;
478                 ea += c;
479         }
480         return 0;
481 }
482
483 static nokprobe_inline int write_mem_unaligned(unsigned long val,
484                                                unsigned long ea, int nb,
485                                                struct pt_regs *regs)
486 {
487         union {
488                 unsigned long ul;
489                 u8 b[sizeof(unsigned long)];
490         } u;
491         int i;
492
493         u.ul = val;
494         i = IS_BE ? sizeof(unsigned long) - nb : 0;
495         return copy_mem_out(&u.b[i], ea, nb, regs);
496 }
497
498 /*
499  * Write memory at address ea for nb bytes, return 0 for success
500  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
501  */
502 static int write_mem(unsigned long val, unsigned long ea, int nb,
503                                struct pt_regs *regs)
504 {
505         if (!address_ok(regs, ea, nb))
506                 return -EFAULT;
507         if ((ea & (nb - 1)) == 0)
508                 return write_mem_aligned(val, ea, nb, regs);
509         return write_mem_unaligned(val, ea, nb, regs);
510 }
511 NOKPROBE_SYMBOL(write_mem);
512
513 #ifdef CONFIG_PPC_FPU
514 /*
515  * These access either the real FP register or the image in the
516  * thread_struct, depending on regs->msr & MSR_FP.
517  */
518 static int do_fp_load(struct instruction_op *op, unsigned long ea,
519                       struct pt_regs *regs, bool cross_endian)
520 {
521         int err, rn, nb;
522         union {
523                 int i;
524                 unsigned int u;
525                 float f;
526                 double d[2];
527                 unsigned long l[2];
528                 u8 b[2 * sizeof(double)];
529         } u;
530
531         nb = GETSIZE(op->type);
532         if (!address_ok(regs, ea, nb))
533                 return -EFAULT;
534         rn = op->reg;
535         err = copy_mem_in(u.b, ea, nb, regs);
536         if (err)
537                 return err;
538         if (unlikely(cross_endian)) {
539                 do_byte_reverse(u.b, min(nb, 8));
540                 if (nb == 16)
541                         do_byte_reverse(&u.b[8], 8);
542         }
543         preempt_disable();
544         if (nb == 4) {
545                 if (op->type & FPCONV)
546                         conv_sp_to_dp(&u.f, &u.d[0]);
547                 else if (op->type & SIGNEXT)
548                         u.l[0] = u.i;
549                 else
550                         u.l[0] = u.u;
551         }
552         if (regs->msr & MSR_FP)
553                 put_fpr(rn, &u.d[0]);
554         else
555                 current->thread.TS_FPR(rn) = u.l[0];
556         if (nb == 16) {
557                 /* lfdp */
558                 rn |= 1;
559                 if (regs->msr & MSR_FP)
560                         put_fpr(rn, &u.d[1]);
561                 else
562                         current->thread.TS_FPR(rn) = u.l[1];
563         }
564         preempt_enable();
565         return 0;
566 }
567 NOKPROBE_SYMBOL(do_fp_load);
568
569 static int do_fp_store(struct instruction_op *op, unsigned long ea,
570                        struct pt_regs *regs, bool cross_endian)
571 {
572         int rn, nb;
573         union {
574                 unsigned int u;
575                 float f;
576                 double d[2];
577                 unsigned long l[2];
578                 u8 b[2 * sizeof(double)];
579         } u;
580
581         nb = GETSIZE(op->type);
582         if (!address_ok(regs, ea, nb))
583                 return -EFAULT;
584         rn = op->reg;
585         preempt_disable();
586         if (regs->msr & MSR_FP)
587                 get_fpr(rn, &u.d[0]);
588         else
589                 u.l[0] = current->thread.TS_FPR(rn);
590         if (nb == 4) {
591                 if (op->type & FPCONV)
592                         conv_dp_to_sp(&u.d[0], &u.f);
593                 else
594                         u.u = u.l[0];
595         }
596         if (nb == 16) {
597                 rn |= 1;
598                 if (regs->msr & MSR_FP)
599                         get_fpr(rn, &u.d[1]);
600                 else
601                         u.l[1] = current->thread.TS_FPR(rn);
602         }
603         preempt_enable();
604         if (unlikely(cross_endian)) {
605                 do_byte_reverse(u.b, min(nb, 8));
606                 if (nb == 16)
607                         do_byte_reverse(&u.b[8], 8);
608         }
609         return copy_mem_out(u.b, ea, nb, regs);
610 }
611 NOKPROBE_SYMBOL(do_fp_store);
612 #endif
613
614 #ifdef CONFIG_ALTIVEC
615 /* For Altivec/VMX, no need to worry about alignment */
616 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
617                                        int size, struct pt_regs *regs,
618                                        bool cross_endian)
619 {
620         int err;
621         union {
622                 __vector128 v;
623                 u8 b[sizeof(__vector128)];
624         } u = {};
625
626         if (!address_ok(regs, ea & ~0xfUL, 16))
627                 return -EFAULT;
628         /* align to multiple of size */
629         ea &= ~(size - 1);
630         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
631         if (err)
632                 return err;
633         if (unlikely(cross_endian))
634                 do_byte_reverse(&u.b[ea & 0xf], size);
635         preempt_disable();
636         if (regs->msr & MSR_VEC)
637                 put_vr(rn, &u.v);
638         else
639                 current->thread.vr_state.vr[rn] = u.v;
640         preempt_enable();
641         return 0;
642 }
643
644 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
645                                         int size, struct pt_regs *regs,
646                                         bool cross_endian)
647 {
648         union {
649                 __vector128 v;
650                 u8 b[sizeof(__vector128)];
651         } u;
652
653         if (!address_ok(regs, ea & ~0xfUL, 16))
654                 return -EFAULT;
655         /* align to multiple of size */
656         ea &= ~(size - 1);
657
658         preempt_disable();
659         if (regs->msr & MSR_VEC)
660                 get_vr(rn, &u.v);
661         else
662                 u.v = current->thread.vr_state.vr[rn];
663         preempt_enable();
664         if (unlikely(cross_endian))
665                 do_byte_reverse(&u.b[ea & 0xf], size);
666         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
667 }
668 #endif /* CONFIG_ALTIVEC */
669
670 #ifdef __powerpc64__
671 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
672                                       int reg, bool cross_endian)
673 {
674         int err;
675
676         if (!address_ok(regs, ea, 16))
677                 return -EFAULT;
678         /* if aligned, should be atomic */
679         if ((ea & 0xf) == 0) {
680                 err = do_lq(ea, &regs->gpr[reg]);
681         } else {
682                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
683                 if (!err)
684                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
685         }
686         if (!err && unlikely(cross_endian))
687                 do_byte_reverse(&regs->gpr[reg], 16);
688         return err;
689 }
690
691 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
692                                        int reg, bool cross_endian)
693 {
694         int err;
695         unsigned long vals[2];
696
697         if (!address_ok(regs, ea, 16))
698                 return -EFAULT;
699         vals[0] = regs->gpr[reg];
700         vals[1] = regs->gpr[reg + 1];
701         if (unlikely(cross_endian))
702                 do_byte_reverse(vals, 16);
703
704         /* if aligned, should be atomic */
705         if ((ea & 0xf) == 0)
706                 return do_stq(ea, vals[0], vals[1]);
707
708         err = write_mem(vals[IS_LE], ea, 8, regs);
709         if (!err)
710                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
711         return err;
712 }
713 #endif /* __powerpc64 */
714
715 #ifdef CONFIG_VSX
716 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
717                       const void *mem, bool rev)
718 {
719         int size, read_size;
720         int i, j;
721         const unsigned int *wp;
722         const unsigned short *hp;
723         const unsigned char *bp;
724
725         size = GETSIZE(op->type);
726         reg->d[0] = reg->d[1] = 0;
727
728         switch (op->element_size) {
729         case 32:
730                 /* [p]lxvp[x] */
731         case 16:
732                 /* whole vector; lxv[x] or lxvl[l] */
733                 if (size == 0)
734                         break;
735                 memcpy(reg, mem, size);
736                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
737                         rev = !rev;
738                 if (rev)
739                         do_byte_reverse(reg, size);
740                 break;
741         case 8:
742                 /* scalar loads, lxvd2x, lxvdsx */
743                 read_size = (size >= 8) ? 8 : size;
744                 i = IS_LE ? 8 : 8 - read_size;
745                 memcpy(&reg->b[i], mem, read_size);
746                 if (rev)
747                         do_byte_reverse(&reg->b[i], 8);
748                 if (size < 8) {
749                         if (op->type & SIGNEXT) {
750                                 /* size == 4 is the only case here */
751                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
752                         } else if (op->vsx_flags & VSX_FPCONV) {
753                                 preempt_disable();
754                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
755                                               &reg->dp[IS_LE]);
756                                 preempt_enable();
757                         }
758                 } else {
759                         if (size == 16) {
760                                 unsigned long v = *(unsigned long *)(mem + 8);
761                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
762                         } else if (op->vsx_flags & VSX_SPLAT)
763                                 reg->d[IS_BE] = reg->d[IS_LE];
764                 }
765                 break;
766         case 4:
767                 /* lxvw4x, lxvwsx */
768                 wp = mem;
769                 for (j = 0; j < size / 4; ++j) {
770                         i = IS_LE ? 3 - j : j;
771                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
772                 }
773                 if (op->vsx_flags & VSX_SPLAT) {
774                         u32 val = reg->w[IS_LE ? 3 : 0];
775                         for (; j < 4; ++j) {
776                                 i = IS_LE ? 3 - j : j;
777                                 reg->w[i] = val;
778                         }
779                 }
780                 break;
781         case 2:
782                 /* lxvh8x */
783                 hp = mem;
784                 for (j = 0; j < size / 2; ++j) {
785                         i = IS_LE ? 7 - j : j;
786                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
787                 }
788                 break;
789         case 1:
790                 /* lxvb16x */
791                 bp = mem;
792                 for (j = 0; j < size; ++j) {
793                         i = IS_LE ? 15 - j : j;
794                         reg->b[i] = *bp++;
795                 }
796                 break;
797         }
798 }
799 EXPORT_SYMBOL_GPL(emulate_vsx_load);
800 NOKPROBE_SYMBOL(emulate_vsx_load);
801
802 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
803                        void *mem, bool rev)
804 {
805         int size, write_size;
806         int i, j;
807         union vsx_reg buf;
808         unsigned int *wp;
809         unsigned short *hp;
810         unsigned char *bp;
811
812         size = GETSIZE(op->type);
813
814         switch (op->element_size) {
815         case 32:
816                 /* [p]stxvp[x] */
817                 if (size == 0)
818                         break;
819                 if (rev) {
820                         /* reverse 32 bytes */
821                         union vsx_reg buf32[2];
822                         buf32[0].d[0] = byterev_8(reg[1].d[1]);
823                         buf32[0].d[1] = byterev_8(reg[1].d[0]);
824                         buf32[1].d[0] = byterev_8(reg[0].d[1]);
825                         buf32[1].d[1] = byterev_8(reg[0].d[0]);
826                         memcpy(mem, buf32, size);
827                 } else {
828                         memcpy(mem, reg, size);
829                 }
830                 break;
831         case 16:
832                 /* stxv, stxvx, stxvl, stxvll */
833                 if (size == 0)
834                         break;
835                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
836                         rev = !rev;
837                 if (rev) {
838                         /* reverse 16 bytes */
839                         buf.d[0] = byterev_8(reg->d[1]);
840                         buf.d[1] = byterev_8(reg->d[0]);
841                         reg = &buf;
842                 }
843                 memcpy(mem, reg, size);
844                 break;
845         case 8:
846                 /* scalar stores, stxvd2x */
847                 write_size = (size >= 8) ? 8 : size;
848                 i = IS_LE ? 8 : 8 - write_size;
849                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
850                         buf.d[0] = buf.d[1] = 0;
851                         preempt_disable();
852                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
853                         preempt_enable();
854                         reg = &buf;
855                 }
856                 memcpy(mem, &reg->b[i], write_size);
857                 if (size == 16)
858                         memcpy(mem + 8, &reg->d[IS_BE], 8);
859                 if (unlikely(rev)) {
860                         do_byte_reverse(mem, write_size);
861                         if (size == 16)
862                                 do_byte_reverse(mem + 8, 8);
863                 }
864                 break;
865         case 4:
866                 /* stxvw4x */
867                 wp = mem;
868                 for (j = 0; j < size / 4; ++j) {
869                         i = IS_LE ? 3 - j : j;
870                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
871                 }
872                 break;
873         case 2:
874                 /* stxvh8x */
875                 hp = mem;
876                 for (j = 0; j < size / 2; ++j) {
877                         i = IS_LE ? 7 - j : j;
878                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
879                 }
880                 break;
881         case 1:
882                 /* stvxb16x */
883                 bp = mem;
884                 for (j = 0; j < size; ++j) {
885                         i = IS_LE ? 15 - j : j;
886                         *bp++ = reg->b[i];
887                 }
888                 break;
889         }
890 }
891 EXPORT_SYMBOL_GPL(emulate_vsx_store);
892 NOKPROBE_SYMBOL(emulate_vsx_store);
893
894 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
895                                        unsigned long ea, struct pt_regs *regs,
896                                        bool cross_endian)
897 {
898         int reg = op->reg;
899         int i, j, nr_vsx_regs;
900         u8 mem[32];
901         union vsx_reg buf[2];
902         int size = GETSIZE(op->type);
903
904         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
905                 return -EFAULT;
906
907         nr_vsx_regs = size / sizeof(__vector128);
908         emulate_vsx_load(op, buf, mem, cross_endian);
909         preempt_disable();
910         if (reg < 32) {
911                 /* FP regs + extensions */
912                 if (regs->msr & MSR_FP) {
913                         for (i = 0; i < nr_vsx_regs; i++) {
914                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
915                                 load_vsrn(reg + i, &buf[j].v);
916                         }
917                 } else {
918                         for (i = 0; i < nr_vsx_regs; i++) {
919                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
920                                 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
921                                 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
922                         }
923                 }
924         } else {
925                 if (regs->msr & MSR_VEC) {
926                         for (i = 0; i < nr_vsx_regs; i++) {
927                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
928                                 load_vsrn(reg + i, &buf[j].v);
929                         }
930                 } else {
931                         for (i = 0; i < nr_vsx_regs; i++) {
932                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
933                                 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
934                         }
935                 }
936         }
937         preempt_enable();
938         return 0;
939 }
940
941 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
942                                         unsigned long ea, struct pt_regs *regs,
943                                         bool cross_endian)
944 {
945         int reg = op->reg;
946         int i, j, nr_vsx_regs;
947         u8 mem[32];
948         union vsx_reg buf[2];
949         int size = GETSIZE(op->type);
950
951         if (!address_ok(regs, ea, size))
952                 return -EFAULT;
953
954         nr_vsx_regs = size / sizeof(__vector128);
955         preempt_disable();
956         if (reg < 32) {
957                 /* FP regs + extensions */
958                 if (regs->msr & MSR_FP) {
959                         for (i = 0; i < nr_vsx_regs; i++) {
960                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
961                                 store_vsrn(reg + i, &buf[j].v);
962                         }
963                 } else {
964                         for (i = 0; i < nr_vsx_regs; i++) {
965                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
966                                 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
967                                 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
968                         }
969                 }
970         } else {
971                 if (regs->msr & MSR_VEC) {
972                         for (i = 0; i < nr_vsx_regs; i++) {
973                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
974                                 store_vsrn(reg + i, &buf[j].v);
975                         }
976                 } else {
977                         for (i = 0; i < nr_vsx_regs; i++) {
978                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
979                                 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
980                         }
981                 }
982         }
983         preempt_enable();
984         emulate_vsx_store(op, buf, mem, cross_endian);
985         return  copy_mem_out(mem, ea, size, regs);
986 }
987 #endif /* CONFIG_VSX */
988
989 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
990 {
991         int err;
992         unsigned long i, size;
993
994 #ifdef __powerpc64__
995         size = ppc64_caches.l1d.block_size;
996         if (!(regs->msr & MSR_64BIT))
997                 ea &= 0xffffffffUL;
998 #else
999         size = L1_CACHE_BYTES;
1000 #endif
1001         ea &= ~(size - 1);
1002         if (!address_ok(regs, ea, size))
1003                 return -EFAULT;
1004         for (i = 0; i < size; i += sizeof(long)) {
1005                 err = __put_user(0, (unsigned long __user *) (ea + i));
1006                 if (err) {
1007                         regs->dar = ea;
1008                         return err;
1009                 }
1010         }
1011         return 0;
1012 }
1013 NOKPROBE_SYMBOL(emulate_dcbz);
1014
1015 #define __put_user_asmx(x, addr, err, op, cr)           \
1016         __asm__ __volatile__(                           \
1017                 "1:     " op " %2,0,%3\n"               \
1018                 "       mfcr    %1\n"                   \
1019                 "2:\n"                                  \
1020                 ".section .fixup,\"ax\"\n"              \
1021                 "3:     li      %0,%4\n"                \
1022                 "       b       2b\n"                   \
1023                 ".previous\n"                           \
1024                 EX_TABLE(1b, 3b)                        \
1025                 : "=r" (err), "=r" (cr)                 \
1026                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1027
1028 #define __get_user_asmx(x, addr, err, op)               \
1029         __asm__ __volatile__(                           \
1030                 "1:     "op" %1,0,%2\n"                 \
1031                 "2:\n"                                  \
1032                 ".section .fixup,\"ax\"\n"              \
1033                 "3:     li      %0,%3\n"                \
1034                 "       b       2b\n"                   \
1035                 ".previous\n"                           \
1036                 EX_TABLE(1b, 3b)                        \
1037                 : "=r" (err), "=r" (x)                  \
1038                 : "r" (addr), "i" (-EFAULT), "0" (err))
1039
1040 #define __cacheop_user_asmx(addr, err, op)              \
1041         __asm__ __volatile__(                           \
1042                 "1:     "op" 0,%1\n"                    \
1043                 "2:\n"                                  \
1044                 ".section .fixup,\"ax\"\n"              \
1045                 "3:     li      %0,%3\n"                \
1046                 "       b       2b\n"                   \
1047                 ".previous\n"                           \
1048                 EX_TABLE(1b, 3b)                        \
1049                 : "=r" (err)                            \
1050                 : "r" (addr), "i" (-EFAULT), "0" (err))
1051
1052 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1053                                     struct instruction_op *op)
1054 {
1055         long val = op->val;
1056
1057         op->type |= SETCC;
1058         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1059 #ifdef __powerpc64__
1060         if (!(regs->msr & MSR_64BIT))
1061                 val = (int) val;
1062 #endif
1063         if (val < 0)
1064                 op->ccval |= 0x80000000;
1065         else if (val > 0)
1066                 op->ccval |= 0x40000000;
1067         else
1068                 op->ccval |= 0x20000000;
1069 }
1070
1071 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1072 {
1073         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1074                 if (val)
1075                         op->xerval |= XER_CA32;
1076                 else
1077                         op->xerval &= ~XER_CA32;
1078         }
1079 }
1080
1081 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1082                                      struct instruction_op *op, int rd,
1083                                      unsigned long val1, unsigned long val2,
1084                                      unsigned long carry_in)
1085 {
1086         unsigned long val = val1 + val2;
1087
1088         if (carry_in)
1089                 ++val;
1090         op->type = COMPUTE + SETREG + SETXER;
1091         op->reg = rd;
1092         op->val = val;
1093 #ifdef __powerpc64__
1094         if (!(regs->msr & MSR_64BIT)) {
1095                 val = (unsigned int) val;
1096                 val1 = (unsigned int) val1;
1097         }
1098 #endif
1099         op->xerval = regs->xer;
1100         if (val < val1 || (carry_in && val == val1))
1101                 op->xerval |= XER_CA;
1102         else
1103                 op->xerval &= ~XER_CA;
1104
1105         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1106                         (carry_in && (unsigned int)val == (unsigned int)val1));
1107 }
1108
1109 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1110                                           struct instruction_op *op,
1111                                           long v1, long v2, int crfld)
1112 {
1113         unsigned int crval, shift;
1114
1115         op->type = COMPUTE + SETCC;
1116         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1117         if (v1 < v2)
1118                 crval |= 8;
1119         else if (v1 > v2)
1120                 crval |= 4;
1121         else
1122                 crval |= 2;
1123         shift = (7 - crfld) * 4;
1124         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1125 }
1126
1127 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1128                                             struct instruction_op *op,
1129                                             unsigned long v1,
1130                                             unsigned long v2, int crfld)
1131 {
1132         unsigned int crval, shift;
1133
1134         op->type = COMPUTE + SETCC;
1135         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1136         if (v1 < v2)
1137                 crval |= 8;
1138         else if (v1 > v2)
1139                 crval |= 4;
1140         else
1141                 crval |= 2;
1142         shift = (7 - crfld) * 4;
1143         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1144 }
1145
1146 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1147                                     struct instruction_op *op,
1148                                     unsigned long v1, unsigned long v2)
1149 {
1150         unsigned long long out_val, mask;
1151         int i;
1152
1153         out_val = 0;
1154         for (i = 0; i < 8; i++) {
1155                 mask = 0xffUL << (i * 8);
1156                 if ((v1 & mask) == (v2 & mask))
1157                         out_val |= mask;
1158         }
1159         op->val = out_val;
1160 }
1161
1162 /*
1163  * The size parameter is used to adjust the equivalent popcnt instruction.
1164  * popcntb = 8, popcntw = 32, popcntd = 64
1165  */
1166 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1167                                       struct instruction_op *op,
1168                                       unsigned long v1, int size)
1169 {
1170         unsigned long long out = v1;
1171
1172         out -= (out >> 1) & 0x5555555555555555ULL;
1173         out = (0x3333333333333333ULL & out) +
1174               (0x3333333333333333ULL & (out >> 2));
1175         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1176
1177         if (size == 8) {        /* popcntb */
1178                 op->val = out;
1179                 return;
1180         }
1181         out += out >> 8;
1182         out += out >> 16;
1183         if (size == 32) {       /* popcntw */
1184                 op->val = out & 0x0000003f0000003fULL;
1185                 return;
1186         }
1187
1188         out = (out + (out >> 32)) & 0x7f;
1189         op->val = out;  /* popcntd */
1190 }
1191
1192 #ifdef CONFIG_PPC64
1193 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1194                                       struct instruction_op *op,
1195                                       unsigned long v1, unsigned long v2)
1196 {
1197         unsigned char perm, idx;
1198         unsigned int i;
1199
1200         perm = 0;
1201         for (i = 0; i < 8; i++) {
1202                 idx = (v1 >> (i * 8)) & 0xff;
1203                 if (idx < 64)
1204                         if (v2 & PPC_BIT(idx))
1205                                 perm |= 1 << i;
1206         }
1207         op->val = perm;
1208 }
1209 #endif /* CONFIG_PPC64 */
1210 /*
1211  * The size parameter adjusts the equivalent prty instruction.
1212  * prtyw = 32, prtyd = 64
1213  */
1214 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1215                                     struct instruction_op *op,
1216                                     unsigned long v, int size)
1217 {
1218         unsigned long long res = v ^ (v >> 8);
1219
1220         res ^= res >> 16;
1221         if (size == 32) {               /* prtyw */
1222                 op->val = res & 0x0000000100000001ULL;
1223                 return;
1224         }
1225
1226         res ^= res >> 32;
1227         op->val = res & 1;      /*prtyd */
1228 }
1229
1230 static nokprobe_inline int trap_compare(long v1, long v2)
1231 {
1232         int ret = 0;
1233
1234         if (v1 < v2)
1235                 ret |= 0x10;
1236         else if (v1 > v2)
1237                 ret |= 0x08;
1238         else
1239                 ret |= 0x04;
1240         if ((unsigned long)v1 < (unsigned long)v2)
1241                 ret |= 0x02;
1242         else if ((unsigned long)v1 > (unsigned long)v2)
1243                 ret |= 0x01;
1244         return ret;
1245 }
1246
1247 /*
1248  * Elements of 32-bit rotate and mask instructions.
1249  */
1250 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1251                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1252 #ifdef __powerpc64__
1253 #define MASK64_L(mb)    (~0UL >> (mb))
1254 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1255 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1256 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1257 #else
1258 #define DATA32(x)       (x)
1259 #endif
1260 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1261
1262 /*
1263  * Decode an instruction, and return information about it in *op
1264  * without changing *regs.
1265  * Integer arithmetic and logical instructions, branches, and barrier
1266  * instructions can be emulated just using the information in *op.
1267  *
1268  * Return value is 1 if the instruction can be emulated just by
1269  * updating *regs with the information in *op, -1 if we need the
1270  * GPRs but *regs doesn't contain the full register set, or 0
1271  * otherwise.
1272  */
1273 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1274                   struct ppc_inst instr)
1275 {
1276 #ifdef CONFIG_PPC64
1277         unsigned int suffixopcode, prefixtype, prefix_r;
1278 #endif
1279         unsigned int opcode, ra, rb, rc, rd, spr, u;
1280         unsigned long int imm;
1281         unsigned long int val, val2;
1282         unsigned int mb, me, sh;
1283         unsigned int word, suffix;
1284         long ival;
1285
1286         word = ppc_inst_val(instr);
1287         suffix = ppc_inst_suffix(instr);
1288
1289         op->type = COMPUTE;
1290
1291         opcode = ppc_inst_primary_opcode(instr);
1292         switch (opcode) {
1293         case 16:        /* bc */
1294                 op->type = BRANCH;
1295                 imm = (signed short)(word & 0xfffc);
1296                 if ((word & 2) == 0)
1297                         imm += regs->nip;
1298                 op->val = truncate_if_32bit(regs->msr, imm);
1299                 if (word & 1)
1300                         op->type |= SETLK;
1301                 if (branch_taken(word, regs, op))
1302                         op->type |= BRTAKEN;
1303                 return 1;
1304 #ifdef CONFIG_PPC64
1305         case 17:        /* sc */
1306                 if ((word & 0xfe2) == 2)
1307                         op->type = SYSCALL;
1308                 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1309                                 (word & 0xfe3) == 1) {  /* scv */
1310                         op->type = SYSCALL_VECTORED_0;
1311                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312                                 goto unknown_opcode;
1313                 } else
1314                         op->type = UNKNOWN;
1315                 return 0;
1316 #endif
1317         case 18:        /* b */
1318                 op->type = BRANCH | BRTAKEN;
1319                 imm = word & 0x03fffffc;
1320                 if (imm & 0x02000000)
1321                         imm -= 0x04000000;
1322                 if ((word & 2) == 0)
1323                         imm += regs->nip;
1324                 op->val = truncate_if_32bit(regs->msr, imm);
1325                 if (word & 1)
1326                         op->type |= SETLK;
1327                 return 1;
1328         case 19:
1329                 switch ((word >> 1) & 0x3ff) {
1330                 case 0:         /* mcrf */
1331                         op->type = COMPUTE + SETCC;
1332                         rd = 7 - ((word >> 23) & 0x7);
1333                         ra = 7 - ((word >> 18) & 0x7);
1334                         rd *= 4;
1335                         ra *= 4;
1336                         val = (regs->ccr >> ra) & 0xf;
1337                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1338                         return 1;
1339
1340                 case 16:        /* bclr */
1341                 case 528:       /* bcctr */
1342                         op->type = BRANCH;
1343                         imm = (word & 0x400)? regs->ctr: regs->link;
1344                         op->val = truncate_if_32bit(regs->msr, imm);
1345                         if (word & 1)
1346                                 op->type |= SETLK;
1347                         if (branch_taken(word, regs, op))
1348                                 op->type |= BRTAKEN;
1349                         return 1;
1350
1351                 case 18:        /* rfid, scary */
1352                         if (regs->msr & MSR_PR)
1353                                 goto priv;
1354                         op->type = RFI;
1355                         return 0;
1356
1357                 case 150:       /* isync */
1358                         op->type = BARRIER | BARRIER_ISYNC;
1359                         return 1;
1360
1361                 case 33:        /* crnor */
1362                 case 129:       /* crandc */
1363                 case 193:       /* crxor */
1364                 case 225:       /* crnand */
1365                 case 257:       /* crand */
1366                 case 289:       /* creqv */
1367                 case 417:       /* crorc */
1368                 case 449:       /* cror */
1369                         op->type = COMPUTE + SETCC;
1370                         ra = (word >> 16) & 0x1f;
1371                         rb = (word >> 11) & 0x1f;
1372                         rd = (word >> 21) & 0x1f;
1373                         ra = (regs->ccr >> (31 - ra)) & 1;
1374                         rb = (regs->ccr >> (31 - rb)) & 1;
1375                         val = (word >> (6 + ra * 2 + rb)) & 1;
1376                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1377                                 (val << (31 - rd));
1378                         return 1;
1379                 }
1380                 break;
1381         case 31:
1382                 switch ((word >> 1) & 0x3ff) {
1383                 case 598:       /* sync */
1384                         op->type = BARRIER + BARRIER_SYNC;
1385 #ifdef __powerpc64__
1386                         switch ((word >> 21) & 3) {
1387                         case 1:         /* lwsync */
1388                                 op->type = BARRIER + BARRIER_LWSYNC;
1389                                 break;
1390                         case 2:         /* ptesync */
1391                                 op->type = BARRIER + BARRIER_PTESYNC;
1392                                 break;
1393                         }
1394 #endif
1395                         return 1;
1396
1397                 case 854:       /* eieio */
1398                         op->type = BARRIER + BARRIER_EIEIO;
1399                         return 1;
1400                 }
1401                 break;
1402         }
1403
1404         /* Following cases refer to regs->gpr[], so we need all regs */
1405         if (!FULL_REGS(regs))
1406                 return -1;
1407
1408         rd = (word >> 21) & 0x1f;
1409         ra = (word >> 16) & 0x1f;
1410         rb = (word >> 11) & 0x1f;
1411         rc = (word >> 6) & 0x1f;
1412
1413         switch (opcode) {
1414 #ifdef __powerpc64__
1415         case 1:
1416                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1417                         goto unknown_opcode;
1418
1419                 prefix_r = GET_PREFIX_R(word);
1420                 ra = GET_PREFIX_RA(suffix);
1421                 rd = (suffix >> 21) & 0x1f;
1422                 op->reg = rd;
1423                 op->val = regs->gpr[rd];
1424                 suffixopcode = get_op(suffix);
1425                 prefixtype = (word >> 24) & 0x3;
1426                 switch (prefixtype) {
1427                 case 2:
1428                         if (prefix_r && ra)
1429                                 return 0;
1430                         switch (suffixopcode) {
1431                         case 14:        /* paddi */
1432                                 op->type = COMPUTE | PREFIXED;
1433                                 op->val = mlsd_8lsd_ea(word, suffix, regs);
1434                                 goto compute_done;
1435                         }
1436                 }
1437                 break;
1438         case 2:         /* tdi */
1439                 if (rd & trap_compare(regs->gpr[ra], (short) word))
1440                         goto trap;
1441                 return 1;
1442 #endif
1443         case 3:         /* twi */
1444                 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1445                         goto trap;
1446                 return 1;
1447
1448 #ifdef __powerpc64__
1449         case 4:
1450                 /*
1451                  * There are very many instructions with this primary opcode
1452                  * introduced in the ISA as early as v2.03. However, the ones
1453                  * we currently emulate were all introduced with ISA 3.0
1454                  */
1455                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1456                         goto unknown_opcode;
1457
1458                 switch (word & 0x3f) {
1459                 case 48:        /* maddhd */
1460                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1461                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1462                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1463                         goto compute_done;
1464
1465                 case 49:        /* maddhdu */
1466                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1467                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1468                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1469                         goto compute_done;
1470
1471                 case 51:        /* maddld */
1472                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1473                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1474                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1475                         goto compute_done;
1476                 }
1477
1478                 /*
1479                  * There are other instructions from ISA 3.0 with the same
1480                  * primary opcode which do not have emulation support yet.
1481                  */
1482                 goto unknown_opcode;
1483 #endif
1484
1485         case 7:         /* mulli */
1486                 op->val = regs->gpr[ra] * (short) word;
1487                 goto compute_done;
1488
1489         case 8:         /* subfic */
1490                 imm = (short) word;
1491                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1492                 return 1;
1493
1494         case 10:        /* cmpli */
1495                 imm = (unsigned short) word;
1496                 val = regs->gpr[ra];
1497 #ifdef __powerpc64__
1498                 if ((rd & 1) == 0)
1499                         val = (unsigned int) val;
1500 #endif
1501                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1502                 return 1;
1503
1504         case 11:        /* cmpi */
1505                 imm = (short) word;
1506                 val = regs->gpr[ra];
1507 #ifdef __powerpc64__
1508                 if ((rd & 1) == 0)
1509                         val = (int) val;
1510 #endif
1511                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1512                 return 1;
1513
1514         case 12:        /* addic */
1515                 imm = (short) word;
1516                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1517                 return 1;
1518
1519         case 13:        /* addic. */
1520                 imm = (short) word;
1521                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1522                 set_cr0(regs, op);
1523                 return 1;
1524
1525         case 14:        /* addi */
1526                 imm = (short) word;
1527                 if (ra)
1528                         imm += regs->gpr[ra];
1529                 op->val = imm;
1530                 goto compute_done;
1531
1532         case 15:        /* addis */
1533                 imm = ((short) word) << 16;
1534                 if (ra)
1535                         imm += regs->gpr[ra];
1536                 op->val = imm;
1537                 goto compute_done;
1538
1539         case 19:
1540                 if (((word >> 1) & 0x1f) == 2) {
1541                         /* addpcis */
1542                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1543                                 goto unknown_opcode;
1544                         imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1545                         imm |= (word >> 15) & 0x3e;     /* d1 field */
1546                         op->val = regs->nip + (imm << 16) + 4;
1547                         goto compute_done;
1548                 }
1549                 op->type = UNKNOWN;
1550                 return 0;
1551
1552         case 20:        /* rlwimi */
1553                 mb = (word >> 6) & 0x1f;
1554                 me = (word >> 1) & 0x1f;
1555                 val = DATA32(regs->gpr[rd]);
1556                 imm = MASK32(mb, me);
1557                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1558                 goto logical_done;
1559
1560         case 21:        /* rlwinm */
1561                 mb = (word >> 6) & 0x1f;
1562                 me = (word >> 1) & 0x1f;
1563                 val = DATA32(regs->gpr[rd]);
1564                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1565                 goto logical_done;
1566
1567         case 23:        /* rlwnm */
1568                 mb = (word >> 6) & 0x1f;
1569                 me = (word >> 1) & 0x1f;
1570                 rb = regs->gpr[rb] & 0x1f;
1571                 val = DATA32(regs->gpr[rd]);
1572                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1573                 goto logical_done;
1574
1575         case 24:        /* ori */
1576                 op->val = regs->gpr[rd] | (unsigned short) word;
1577                 goto logical_done_nocc;
1578
1579         case 25:        /* oris */
1580                 imm = (unsigned short) word;
1581                 op->val = regs->gpr[rd] | (imm << 16);
1582                 goto logical_done_nocc;
1583
1584         case 26:        /* xori */
1585                 op->val = regs->gpr[rd] ^ (unsigned short) word;
1586                 goto logical_done_nocc;
1587
1588         case 27:        /* xoris */
1589                 imm = (unsigned short) word;
1590                 op->val = regs->gpr[rd] ^ (imm << 16);
1591                 goto logical_done_nocc;
1592
1593         case 28:        /* andi. */
1594                 op->val = regs->gpr[rd] & (unsigned short) word;
1595                 set_cr0(regs, op);
1596                 goto logical_done_nocc;
1597
1598         case 29:        /* andis. */
1599                 imm = (unsigned short) word;
1600                 op->val = regs->gpr[rd] & (imm << 16);
1601                 set_cr0(regs, op);
1602                 goto logical_done_nocc;
1603
1604 #ifdef __powerpc64__
1605         case 30:        /* rld* */
1606                 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1607                 val = regs->gpr[rd];
1608                 if ((word & 0x10) == 0) {
1609                         sh = rb | ((word & 2) << 4);
1610                         val = ROTATE(val, sh);
1611                         switch ((word >> 2) & 3) {
1612                         case 0:         /* rldicl */
1613                                 val &= MASK64_L(mb);
1614                                 break;
1615                         case 1:         /* rldicr */
1616                                 val &= MASK64_R(mb);
1617                                 break;
1618                         case 2:         /* rldic */
1619                                 val &= MASK64(mb, 63 - sh);
1620                                 break;
1621                         case 3:         /* rldimi */
1622                                 imm = MASK64(mb, 63 - sh);
1623                                 val = (regs->gpr[ra] & ~imm) |
1624                                         (val & imm);
1625                         }
1626                         op->val = val;
1627                         goto logical_done;
1628                 } else {
1629                         sh = regs->gpr[rb] & 0x3f;
1630                         val = ROTATE(val, sh);
1631                         switch ((word >> 1) & 7) {
1632                         case 0:         /* rldcl */
1633                                 op->val = val & MASK64_L(mb);
1634                                 goto logical_done;
1635                         case 1:         /* rldcr */
1636                                 op->val = val & MASK64_R(mb);
1637                                 goto logical_done;
1638                         }
1639                 }
1640 #endif
1641                 op->type = UNKNOWN;     /* illegal instruction */
1642                 return 0;
1643
1644         case 31:
1645                 /* isel occupies 32 minor opcodes */
1646                 if (((word >> 1) & 0x1f) == 15) {
1647                         mb = (word >> 6) & 0x1f; /* bc field */
1648                         val = (regs->ccr >> (31 - mb)) & 1;
1649                         val2 = (ra) ? regs->gpr[ra] : 0;
1650
1651                         op->val = (val) ? val2 : regs->gpr[rb];
1652                         goto compute_done;
1653                 }
1654
1655                 switch ((word >> 1) & 0x3ff) {
1656                 case 4:         /* tw */
1657                         if (rd == 0x1f ||
1658                             (rd & trap_compare((int)regs->gpr[ra],
1659                                                (int)regs->gpr[rb])))
1660                                 goto trap;
1661                         return 1;
1662 #ifdef __powerpc64__
1663                 case 68:        /* td */
1664                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1665                                 goto trap;
1666                         return 1;
1667 #endif
1668                 case 83:        /* mfmsr */
1669                         if (regs->msr & MSR_PR)
1670                                 goto priv;
1671                         op->type = MFMSR;
1672                         op->reg = rd;
1673                         return 0;
1674                 case 146:       /* mtmsr */
1675                         if (regs->msr & MSR_PR)
1676                                 goto priv;
1677                         op->type = MTMSR;
1678                         op->reg = rd;
1679                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1680                         return 0;
1681 #ifdef CONFIG_PPC64
1682                 case 178:       /* mtmsrd */
1683                         if (regs->msr & MSR_PR)
1684                                 goto priv;
1685                         op->type = MTMSR;
1686                         op->reg = rd;
1687                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1688                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1689                         imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1690                         op->val = imm;
1691                         return 0;
1692 #endif
1693
1694                 case 19:        /* mfcr */
1695                         imm = 0xffffffffUL;
1696                         if ((word >> 20) & 1) {
1697                                 imm = 0xf0000000UL;
1698                                 for (sh = 0; sh < 8; ++sh) {
1699                                         if (word & (0x80000 >> sh))
1700                                                 break;
1701                                         imm >>= 4;
1702                                 }
1703                         }
1704                         op->val = regs->ccr & imm;
1705                         goto compute_done;
1706
1707                 case 144:       /* mtcrf */
1708                         op->type = COMPUTE + SETCC;
1709                         imm = 0xf0000000UL;
1710                         val = regs->gpr[rd];
1711                         op->ccval = regs->ccr;
1712                         for (sh = 0; sh < 8; ++sh) {
1713                                 if (word & (0x80000 >> sh))
1714                                         op->ccval = (op->ccval & ~imm) |
1715                                                 (val & imm);
1716                                 imm >>= 4;
1717                         }
1718                         return 1;
1719
1720                 case 339:       /* mfspr */
1721                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1722                         op->type = MFSPR;
1723                         op->reg = rd;
1724                         op->spr = spr;
1725                         if (spr == SPRN_XER || spr == SPRN_LR ||
1726                             spr == SPRN_CTR)
1727                                 return 1;
1728                         return 0;
1729
1730                 case 467:       /* mtspr */
1731                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1732                         op->type = MTSPR;
1733                         op->val = regs->gpr[rd];
1734                         op->spr = spr;
1735                         if (spr == SPRN_XER || spr == SPRN_LR ||
1736                             spr == SPRN_CTR)
1737                                 return 1;
1738                         return 0;
1739
1740 /*
1741  * Compare instructions
1742  */
1743                 case 0: /* cmp */
1744                         val = regs->gpr[ra];
1745                         val2 = regs->gpr[rb];
1746 #ifdef __powerpc64__
1747                         if ((rd & 1) == 0) {
1748                                 /* word (32-bit) compare */
1749                                 val = (int) val;
1750                                 val2 = (int) val2;
1751                         }
1752 #endif
1753                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1754                         return 1;
1755
1756                 case 32:        /* cmpl */
1757                         val = regs->gpr[ra];
1758                         val2 = regs->gpr[rb];
1759 #ifdef __powerpc64__
1760                         if ((rd & 1) == 0) {
1761                                 /* word (32-bit) compare */
1762                                 val = (unsigned int) val;
1763                                 val2 = (unsigned int) val2;
1764                         }
1765 #endif
1766                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1767                         return 1;
1768
1769                 case 508: /* cmpb */
1770                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1771                         goto logical_done_nocc;
1772
1773 /*
1774  * Arithmetic instructions
1775  */
1776                 case 8: /* subfc */
1777                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1778                                        regs->gpr[rb], 1);
1779                         goto arith_done;
1780 #ifdef __powerpc64__
1781                 case 9: /* mulhdu */
1782                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1783                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1784                         goto arith_done;
1785 #endif
1786                 case 10:        /* addc */
1787                         add_with_carry(regs, op, rd, regs->gpr[ra],
1788                                        regs->gpr[rb], 0);
1789                         goto arith_done;
1790
1791                 case 11:        /* mulhwu */
1792                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1793                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1794                         goto arith_done;
1795
1796                 case 40:        /* subf */
1797                         op->val = regs->gpr[rb] - regs->gpr[ra];
1798                         goto arith_done;
1799 #ifdef __powerpc64__
1800                 case 73:        /* mulhd */
1801                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1802                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1803                         goto arith_done;
1804 #endif
1805                 case 75:        /* mulhw */
1806                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1807                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1808                         goto arith_done;
1809
1810                 case 104:       /* neg */
1811                         op->val = -regs->gpr[ra];
1812                         goto arith_done;
1813
1814                 case 136:       /* subfe */
1815                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1816                                        regs->gpr[rb], regs->xer & XER_CA);
1817                         goto arith_done;
1818
1819                 case 138:       /* adde */
1820                         add_with_carry(regs, op, rd, regs->gpr[ra],
1821                                        regs->gpr[rb], regs->xer & XER_CA);
1822                         goto arith_done;
1823
1824                 case 200:       /* subfze */
1825                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1826                                        regs->xer & XER_CA);
1827                         goto arith_done;
1828
1829                 case 202:       /* addze */
1830                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1831                                        regs->xer & XER_CA);
1832                         goto arith_done;
1833
1834                 case 232:       /* subfme */
1835                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1836                                        regs->xer & XER_CA);
1837                         goto arith_done;
1838 #ifdef __powerpc64__
1839                 case 233:       /* mulld */
1840                         op->val = regs->gpr[ra] * regs->gpr[rb];
1841                         goto arith_done;
1842 #endif
1843                 case 234:       /* addme */
1844                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1845                                        regs->xer & XER_CA);
1846                         goto arith_done;
1847
1848                 case 235:       /* mullw */
1849                         op->val = (long)(int) regs->gpr[ra] *
1850                                 (int) regs->gpr[rb];
1851
1852                         goto arith_done;
1853 #ifdef __powerpc64__
1854                 case 265:       /* modud */
1855                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1856                                 goto unknown_opcode;
1857                         op->val = regs->gpr[ra] % regs->gpr[rb];
1858                         goto compute_done;
1859 #endif
1860                 case 266:       /* add */
1861                         op->val = regs->gpr[ra] + regs->gpr[rb];
1862                         goto arith_done;
1863
1864                 case 267:       /* moduw */
1865                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1866                                 goto unknown_opcode;
1867                         op->val = (unsigned int) regs->gpr[ra] %
1868                                 (unsigned int) regs->gpr[rb];
1869                         goto compute_done;
1870 #ifdef __powerpc64__
1871                 case 457:       /* divdu */
1872                         op->val = regs->gpr[ra] / regs->gpr[rb];
1873                         goto arith_done;
1874 #endif
1875                 case 459:       /* divwu */
1876                         op->val = (unsigned int) regs->gpr[ra] /
1877                                 (unsigned int) regs->gpr[rb];
1878                         goto arith_done;
1879 #ifdef __powerpc64__
1880                 case 489:       /* divd */
1881                         op->val = (long int) regs->gpr[ra] /
1882                                 (long int) regs->gpr[rb];
1883                         goto arith_done;
1884 #endif
1885                 case 491:       /* divw */
1886                         op->val = (int) regs->gpr[ra] /
1887                                 (int) regs->gpr[rb];
1888                         goto arith_done;
1889 #ifdef __powerpc64__
1890                 case 425:       /* divde[.] */
1891                         asm volatile(PPC_DIVDE(%0, %1, %2) :
1892                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1893                                 "r" (regs->gpr[rb]));
1894                         goto arith_done;
1895                 case 393:       /* divdeu[.] */
1896                         asm volatile(PPC_DIVDEU(%0, %1, %2) :
1897                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1898                                 "r" (regs->gpr[rb]));
1899                         goto arith_done;
1900 #endif
1901                 case 755:       /* darn */
1902                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1903                                 goto unknown_opcode;
1904                         switch (ra & 0x3) {
1905                         case 0:
1906                                 /* 32-bit conditioned */
1907                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1908                                 goto compute_done;
1909
1910                         case 1:
1911                                 /* 64-bit conditioned */
1912                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1913                                 goto compute_done;
1914
1915                         case 2:
1916                                 /* 64-bit raw */
1917                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1918                                 goto compute_done;
1919                         }
1920
1921                         goto unknown_opcode;
1922 #ifdef __powerpc64__
1923                 case 777:       /* modsd */
1924                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1925                                 goto unknown_opcode;
1926                         op->val = (long int) regs->gpr[ra] %
1927                                 (long int) regs->gpr[rb];
1928                         goto compute_done;
1929 #endif
1930                 case 779:       /* modsw */
1931                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1932                                 goto unknown_opcode;
1933                         op->val = (int) regs->gpr[ra] %
1934                                 (int) regs->gpr[rb];
1935                         goto compute_done;
1936
1937
1938 /*
1939  * Logical instructions
1940  */
1941                 case 26:        /* cntlzw */
1942                         val = (unsigned int) regs->gpr[rd];
1943                         op->val = ( val ? __builtin_clz(val) : 32 );
1944                         goto logical_done;
1945 #ifdef __powerpc64__
1946                 case 58:        /* cntlzd */
1947                         val = regs->gpr[rd];
1948                         op->val = ( val ? __builtin_clzl(val) : 64 );
1949                         goto logical_done;
1950 #endif
1951                 case 28:        /* and */
1952                         op->val = regs->gpr[rd] & regs->gpr[rb];
1953                         goto logical_done;
1954
1955                 case 60:        /* andc */
1956                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1957                         goto logical_done;
1958
1959                 case 122:       /* popcntb */
1960                         do_popcnt(regs, op, regs->gpr[rd], 8);
1961                         goto logical_done_nocc;
1962
1963                 case 124:       /* nor */
1964                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1965                         goto logical_done;
1966
1967                 case 154:       /* prtyw */
1968                         do_prty(regs, op, regs->gpr[rd], 32);
1969                         goto logical_done_nocc;
1970
1971                 case 186:       /* prtyd */
1972                         do_prty(regs, op, regs->gpr[rd], 64);
1973                         goto logical_done_nocc;
1974 #ifdef CONFIG_PPC64
1975                 case 252:       /* bpermd */
1976                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1977                         goto logical_done_nocc;
1978 #endif
1979                 case 284:       /* xor */
1980                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1981                         goto logical_done;
1982
1983                 case 316:       /* xor */
1984                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1985                         goto logical_done;
1986
1987                 case 378:       /* popcntw */
1988                         do_popcnt(regs, op, regs->gpr[rd], 32);
1989                         goto logical_done_nocc;
1990
1991                 case 412:       /* orc */
1992                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1993                         goto logical_done;
1994
1995                 case 444:       /* or */
1996                         op->val = regs->gpr[rd] | regs->gpr[rb];
1997                         goto logical_done;
1998
1999                 case 476:       /* nand */
2000                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2001                         goto logical_done;
2002 #ifdef CONFIG_PPC64
2003                 case 506:       /* popcntd */
2004                         do_popcnt(regs, op, regs->gpr[rd], 64);
2005                         goto logical_done_nocc;
2006 #endif
2007                 case 538:       /* cnttzw */
2008                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2009                                 goto unknown_opcode;
2010                         val = (unsigned int) regs->gpr[rd];
2011                         op->val = (val ? __builtin_ctz(val) : 32);
2012                         goto logical_done;
2013 #ifdef __powerpc64__
2014                 case 570:       /* cnttzd */
2015                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2016                                 goto unknown_opcode;
2017                         val = regs->gpr[rd];
2018                         op->val = (val ? __builtin_ctzl(val) : 64);
2019                         goto logical_done;
2020 #endif
2021                 case 922:       /* extsh */
2022                         op->val = (signed short) regs->gpr[rd];
2023                         goto logical_done;
2024
2025                 case 954:       /* extsb */
2026                         op->val = (signed char) regs->gpr[rd];
2027                         goto logical_done;
2028 #ifdef __powerpc64__
2029                 case 986:       /* extsw */
2030                         op->val = (signed int) regs->gpr[rd];
2031                         goto logical_done;
2032 #endif
2033
2034 /*
2035  * Shift instructions
2036  */
2037                 case 24:        /* slw */
2038                         sh = regs->gpr[rb] & 0x3f;
2039                         if (sh < 32)
2040                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2041                         else
2042                                 op->val = 0;
2043                         goto logical_done;
2044
2045                 case 536:       /* srw */
2046                         sh = regs->gpr[rb] & 0x3f;
2047                         if (sh < 32)
2048                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2049                         else
2050                                 op->val = 0;
2051                         goto logical_done;
2052
2053                 case 792:       /* sraw */
2054                         op->type = COMPUTE + SETREG + SETXER;
2055                         sh = regs->gpr[rb] & 0x3f;
2056                         ival = (signed int) regs->gpr[rd];
2057                         op->val = ival >> (sh < 32 ? sh : 31);
2058                         op->xerval = regs->xer;
2059                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2060                                 op->xerval |= XER_CA;
2061                         else
2062                                 op->xerval &= ~XER_CA;
2063                         set_ca32(op, op->xerval & XER_CA);
2064                         goto logical_done;
2065
2066                 case 824:       /* srawi */
2067                         op->type = COMPUTE + SETREG + SETXER;
2068                         sh = rb;
2069                         ival = (signed int) regs->gpr[rd];
2070                         op->val = ival >> sh;
2071                         op->xerval = regs->xer;
2072                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2073                                 op->xerval |= XER_CA;
2074                         else
2075                                 op->xerval &= ~XER_CA;
2076                         set_ca32(op, op->xerval & XER_CA);
2077                         goto logical_done;
2078
2079 #ifdef __powerpc64__
2080                 case 27:        /* sld */
2081                         sh = regs->gpr[rb] & 0x7f;
2082                         if (sh < 64)
2083                                 op->val = regs->gpr[rd] << sh;
2084                         else
2085                                 op->val = 0;
2086                         goto logical_done;
2087
2088                 case 539:       /* srd */
2089                         sh = regs->gpr[rb] & 0x7f;
2090                         if (sh < 64)
2091                                 op->val = regs->gpr[rd] >> sh;
2092                         else
2093                                 op->val = 0;
2094                         goto logical_done;
2095
2096                 case 794:       /* srad */
2097                         op->type = COMPUTE + SETREG + SETXER;
2098                         sh = regs->gpr[rb] & 0x7f;
2099                         ival = (signed long int) regs->gpr[rd];
2100                         op->val = ival >> (sh < 64 ? sh : 63);
2101                         op->xerval = regs->xer;
2102                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2103                                 op->xerval |= XER_CA;
2104                         else
2105                                 op->xerval &= ~XER_CA;
2106                         set_ca32(op, op->xerval & XER_CA);
2107                         goto logical_done;
2108
2109                 case 826:       /* sradi with sh_5 = 0 */
2110                 case 827:       /* sradi with sh_5 = 1 */
2111                         op->type = COMPUTE + SETREG + SETXER;
2112                         sh = rb | ((word & 2) << 4);
2113                         ival = (signed long int) regs->gpr[rd];
2114                         op->val = ival >> sh;
2115                         op->xerval = regs->xer;
2116                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2117                                 op->xerval |= XER_CA;
2118                         else
2119                                 op->xerval &= ~XER_CA;
2120                         set_ca32(op, op->xerval & XER_CA);
2121                         goto logical_done;
2122
2123                 case 890:       /* extswsli with sh_5 = 0 */
2124                 case 891:       /* extswsli with sh_5 = 1 */
2125                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2126                                 goto unknown_opcode;
2127                         op->type = COMPUTE + SETREG;
2128                         sh = rb | ((word & 2) << 4);
2129                         val = (signed int) regs->gpr[rd];
2130                         if (sh)
2131                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2132                         else
2133                                 op->val = val;
2134                         goto logical_done;
2135
2136 #endif /* __powerpc64__ */
2137
2138 /*
2139  * Cache instructions
2140  */
2141                 case 54:        /* dcbst */
2142                         op->type = MKOP(CACHEOP, DCBST, 0);
2143                         op->ea = xform_ea(word, regs);
2144                         return 0;
2145
2146                 case 86:        /* dcbf */
2147                         op->type = MKOP(CACHEOP, DCBF, 0);
2148                         op->ea = xform_ea(word, regs);
2149                         return 0;
2150
2151                 case 246:       /* dcbtst */
2152                         op->type = MKOP(CACHEOP, DCBTST, 0);
2153                         op->ea = xform_ea(word, regs);
2154                         op->reg = rd;
2155                         return 0;
2156
2157                 case 278:       /* dcbt */
2158                         op->type = MKOP(CACHEOP, DCBTST, 0);
2159                         op->ea = xform_ea(word, regs);
2160                         op->reg = rd;
2161                         return 0;
2162
2163                 case 982:       /* icbi */
2164                         op->type = MKOP(CACHEOP, ICBI, 0);
2165                         op->ea = xform_ea(word, regs);
2166                         return 0;
2167
2168                 case 1014:      /* dcbz */
2169                         op->type = MKOP(CACHEOP, DCBZ, 0);
2170                         op->ea = xform_ea(word, regs);
2171                         return 0;
2172                 }
2173                 break;
2174         }
2175
2176 /*
2177  * Loads and stores.
2178  */
2179         op->type = UNKNOWN;
2180         op->update_reg = ra;
2181         op->reg = rd;
2182         op->val = regs->gpr[rd];
2183         u = (word >> 20) & UPDATE;
2184         op->vsx_flags = 0;
2185
2186         switch (opcode) {
2187         case 31:
2188                 u = word & UPDATE;
2189                 op->ea = xform_ea(word, regs);
2190                 switch ((word >> 1) & 0x3ff) {
2191                 case 20:        /* lwarx */
2192                         op->type = MKOP(LARX, 0, 4);
2193                         break;
2194
2195                 case 150:       /* stwcx. */
2196                         op->type = MKOP(STCX, 0, 4);
2197                         break;
2198
2199 #ifdef __powerpc64__
2200                 case 84:        /* ldarx */
2201                         op->type = MKOP(LARX, 0, 8);
2202                         break;
2203
2204                 case 214:       /* stdcx. */
2205                         op->type = MKOP(STCX, 0, 8);
2206                         break;
2207
2208                 case 52:        /* lbarx */
2209                         op->type = MKOP(LARX, 0, 1);
2210                         break;
2211
2212                 case 694:       /* stbcx. */
2213                         op->type = MKOP(STCX, 0, 1);
2214                         break;
2215
2216                 case 116:       /* lharx */
2217                         op->type = MKOP(LARX, 0, 2);
2218                         break;
2219
2220                 case 726:       /* sthcx. */
2221                         op->type = MKOP(STCX, 0, 2);
2222                         break;
2223
2224                 case 276:       /* lqarx */
2225                         if (!((rd & 1) || rd == ra || rd == rb))
2226                                 op->type = MKOP(LARX, 0, 16);
2227                         break;
2228
2229                 case 182:       /* stqcx. */
2230                         if (!(rd & 1))
2231                                 op->type = MKOP(STCX, 0, 16);
2232                         break;
2233 #endif
2234
2235                 case 23:        /* lwzx */
2236                 case 55:        /* lwzux */
2237                         op->type = MKOP(LOAD, u, 4);
2238                         break;
2239
2240                 case 87:        /* lbzx */
2241                 case 119:       /* lbzux */
2242                         op->type = MKOP(LOAD, u, 1);
2243                         break;
2244
2245 #ifdef CONFIG_ALTIVEC
2246                 /*
2247                  * Note: for the load/store vector element instructions,
2248                  * bits of the EA say which field of the VMX register to use.
2249                  */
2250                 case 7:         /* lvebx */
2251                         op->type = MKOP(LOAD_VMX, 0, 1);
2252                         op->element_size = 1;
2253                         break;
2254
2255                 case 39:        /* lvehx */
2256                         op->type = MKOP(LOAD_VMX, 0, 2);
2257                         op->element_size = 2;
2258                         break;
2259
2260                 case 71:        /* lvewx */
2261                         op->type = MKOP(LOAD_VMX, 0, 4);
2262                         op->element_size = 4;
2263                         break;
2264
2265                 case 103:       /* lvx */
2266                 case 359:       /* lvxl */
2267                         op->type = MKOP(LOAD_VMX, 0, 16);
2268                         op->element_size = 16;
2269                         break;
2270
2271                 case 135:       /* stvebx */
2272                         op->type = MKOP(STORE_VMX, 0, 1);
2273                         op->element_size = 1;
2274                         break;
2275
2276                 case 167:       /* stvehx */
2277                         op->type = MKOP(STORE_VMX, 0, 2);
2278                         op->element_size = 2;
2279                         break;
2280
2281                 case 199:       /* stvewx */
2282                         op->type = MKOP(STORE_VMX, 0, 4);
2283                         op->element_size = 4;
2284                         break;
2285
2286                 case 231:       /* stvx */
2287                 case 487:       /* stvxl */
2288                         op->type = MKOP(STORE_VMX, 0, 16);
2289                         break;
2290 #endif /* CONFIG_ALTIVEC */
2291
2292 #ifdef __powerpc64__
2293                 case 21:        /* ldx */
2294                 case 53:        /* ldux */
2295                         op->type = MKOP(LOAD, u, 8);
2296                         break;
2297
2298                 case 149:       /* stdx */
2299                 case 181:       /* stdux */
2300                         op->type = MKOP(STORE, u, 8);
2301                         break;
2302 #endif
2303
2304                 case 151:       /* stwx */
2305                 case 183:       /* stwux */
2306                         op->type = MKOP(STORE, u, 4);
2307                         break;
2308
2309                 case 215:       /* stbx */
2310                 case 247:       /* stbux */
2311                         op->type = MKOP(STORE, u, 1);
2312                         break;
2313
2314                 case 279:       /* lhzx */
2315                 case 311:       /* lhzux */
2316                         op->type = MKOP(LOAD, u, 2);
2317                         break;
2318
2319 #ifdef __powerpc64__
2320                 case 341:       /* lwax */
2321                 case 373:       /* lwaux */
2322                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2323                         break;
2324 #endif
2325
2326                 case 343:       /* lhax */
2327                 case 375:       /* lhaux */
2328                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2329                         break;
2330
2331                 case 407:       /* sthx */
2332                 case 439:       /* sthux */
2333                         op->type = MKOP(STORE, u, 2);
2334                         break;
2335
2336 #ifdef __powerpc64__
2337                 case 532:       /* ldbrx */
2338                         op->type = MKOP(LOAD, BYTEREV, 8);
2339                         break;
2340
2341 #endif
2342                 case 533:       /* lswx */
2343                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2344                         break;
2345
2346                 case 534:       /* lwbrx */
2347                         op->type = MKOP(LOAD, BYTEREV, 4);
2348                         break;
2349
2350                 case 597:       /* lswi */
2351                         if (rb == 0)
2352                                 rb = 32;        /* # bytes to load */
2353                         op->type = MKOP(LOAD_MULTI, 0, rb);
2354                         op->ea = ra ? regs->gpr[ra] : 0;
2355                         break;
2356
2357 #ifdef CONFIG_PPC_FPU
2358                 case 535:       /* lfsx */
2359                 case 567:       /* lfsux */
2360                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2361                         break;
2362
2363                 case 599:       /* lfdx */
2364                 case 631:       /* lfdux */
2365                         op->type = MKOP(LOAD_FP, u, 8);
2366                         break;
2367
2368                 case 663:       /* stfsx */
2369                 case 695:       /* stfsux */
2370                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2371                         break;
2372
2373                 case 727:       /* stfdx */
2374                 case 759:       /* stfdux */
2375                         op->type = MKOP(STORE_FP, u, 8);
2376                         break;
2377
2378 #ifdef __powerpc64__
2379                 case 791:       /* lfdpx */
2380                         op->type = MKOP(LOAD_FP, 0, 16);
2381                         break;
2382
2383                 case 855:       /* lfiwax */
2384                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2385                         break;
2386
2387                 case 887:       /* lfiwzx */
2388                         op->type = MKOP(LOAD_FP, 0, 4);
2389                         break;
2390
2391                 case 919:       /* stfdpx */
2392                         op->type = MKOP(STORE_FP, 0, 16);
2393                         break;
2394
2395                 case 983:       /* stfiwx */
2396                         op->type = MKOP(STORE_FP, 0, 4);
2397                         break;
2398 #endif /* __powerpc64 */
2399 #endif /* CONFIG_PPC_FPU */
2400
2401 #ifdef __powerpc64__
2402                 case 660:       /* stdbrx */
2403                         op->type = MKOP(STORE, BYTEREV, 8);
2404                         op->val = byterev_8(regs->gpr[rd]);
2405                         break;
2406
2407 #endif
2408                 case 661:       /* stswx */
2409                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2410                         break;
2411
2412                 case 662:       /* stwbrx */
2413                         op->type = MKOP(STORE, BYTEREV, 4);
2414                         op->val = byterev_4(regs->gpr[rd]);
2415                         break;
2416
2417                 case 725:       /* stswi */
2418                         if (rb == 0)
2419                                 rb = 32;        /* # bytes to store */
2420                         op->type = MKOP(STORE_MULTI, 0, rb);
2421                         op->ea = ra ? regs->gpr[ra] : 0;
2422                         break;
2423
2424                 case 790:       /* lhbrx */
2425                         op->type = MKOP(LOAD, BYTEREV, 2);
2426                         break;
2427
2428                 case 918:       /* sthbrx */
2429                         op->type = MKOP(STORE, BYTEREV, 2);
2430                         op->val = byterev_2(regs->gpr[rd]);
2431                         break;
2432
2433 #ifdef CONFIG_VSX
2434                 case 12:        /* lxsiwzx */
2435                         op->reg = rd | ((word & 1) << 5);
2436                         op->type = MKOP(LOAD_VSX, 0, 4);
2437                         op->element_size = 8;
2438                         break;
2439
2440                 case 76:        /* lxsiwax */
2441                         op->reg = rd | ((word & 1) << 5);
2442                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2443                         op->element_size = 8;
2444                         break;
2445
2446                 case 140:       /* stxsiwx */
2447                         op->reg = rd | ((word & 1) << 5);
2448                         op->type = MKOP(STORE_VSX, 0, 4);
2449                         op->element_size = 8;
2450                         break;
2451
2452                 case 268:       /* lxvx */
2453                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2454                                 goto unknown_opcode;
2455                         op->reg = rd | ((word & 1) << 5);
2456                         op->type = MKOP(LOAD_VSX, 0, 16);
2457                         op->element_size = 16;
2458                         op->vsx_flags = VSX_CHECK_VEC;
2459                         break;
2460
2461                 case 269:       /* lxvl */
2462                 case 301: {     /* lxvll */
2463                         int nb;
2464                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2465                                 goto unknown_opcode;
2466                         op->reg = rd | ((word & 1) << 5);
2467                         op->ea = ra ? regs->gpr[ra] : 0;
2468                         nb = regs->gpr[rb] & 0xff;
2469                         if (nb > 16)
2470                                 nb = 16;
2471                         op->type = MKOP(LOAD_VSX, 0, nb);
2472                         op->element_size = 16;
2473                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2474                                 VSX_CHECK_VEC;
2475                         break;
2476                 }
2477                 case 332:       /* lxvdsx */
2478                         op->reg = rd | ((word & 1) << 5);
2479                         op->type = MKOP(LOAD_VSX, 0, 8);
2480                         op->element_size = 8;
2481                         op->vsx_flags = VSX_SPLAT;
2482                         break;
2483
2484                 case 333:       /* lxvpx */
2485                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2486                                 goto unknown_opcode;
2487                         op->reg = VSX_REGISTER_XTP(rd);
2488                         op->type = MKOP(LOAD_VSX, 0, 32);
2489                         op->element_size = 32;
2490                         break;
2491
2492                 case 364:       /* lxvwsx */
2493                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2494                                 goto unknown_opcode;
2495                         op->reg = rd | ((word & 1) << 5);
2496                         op->type = MKOP(LOAD_VSX, 0, 4);
2497                         op->element_size = 4;
2498                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2499                         break;
2500
2501                 case 396:       /* stxvx */
2502                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2503                                 goto unknown_opcode;
2504                         op->reg = rd | ((word & 1) << 5);
2505                         op->type = MKOP(STORE_VSX, 0, 16);
2506                         op->element_size = 16;
2507                         op->vsx_flags = VSX_CHECK_VEC;
2508                         break;
2509
2510                 case 397:       /* stxvl */
2511                 case 429: {     /* stxvll */
2512                         int nb;
2513                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2514                                 goto unknown_opcode;
2515                         op->reg = rd | ((word & 1) << 5);
2516                         op->ea = ra ? regs->gpr[ra] : 0;
2517                         nb = regs->gpr[rb] & 0xff;
2518                         if (nb > 16)
2519                                 nb = 16;
2520                         op->type = MKOP(STORE_VSX, 0, nb);
2521                         op->element_size = 16;
2522                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2523                                 VSX_CHECK_VEC;
2524                         break;
2525                 }
2526                 case 461:       /* stxvpx */
2527                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2528                                 goto unknown_opcode;
2529                         op->reg = VSX_REGISTER_XTP(rd);
2530                         op->type = MKOP(STORE_VSX, 0, 32);
2531                         op->element_size = 32;
2532                         break;
2533                 case 524:       /* lxsspx */
2534                         op->reg = rd | ((word & 1) << 5);
2535                         op->type = MKOP(LOAD_VSX, 0, 4);
2536                         op->element_size = 8;
2537                         op->vsx_flags = VSX_FPCONV;
2538                         break;
2539
2540                 case 588:       /* lxsdx */
2541                         op->reg = rd | ((word & 1) << 5);
2542                         op->type = MKOP(LOAD_VSX, 0, 8);
2543                         op->element_size = 8;
2544                         break;
2545
2546                 case 652:       /* stxsspx */
2547                         op->reg = rd | ((word & 1) << 5);
2548                         op->type = MKOP(STORE_VSX, 0, 4);
2549                         op->element_size = 8;
2550                         op->vsx_flags = VSX_FPCONV;
2551                         break;
2552
2553                 case 716:       /* stxsdx */
2554                         op->reg = rd | ((word & 1) << 5);
2555                         op->type = MKOP(STORE_VSX, 0, 8);
2556                         op->element_size = 8;
2557                         break;
2558
2559                 case 780:       /* lxvw4x */
2560                         op->reg = rd | ((word & 1) << 5);
2561                         op->type = MKOP(LOAD_VSX, 0, 16);
2562                         op->element_size = 4;
2563                         break;
2564
2565                 case 781:       /* lxsibzx */
2566                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2567                                 goto unknown_opcode;
2568                         op->reg = rd | ((word & 1) << 5);
2569                         op->type = MKOP(LOAD_VSX, 0, 1);
2570                         op->element_size = 8;
2571                         op->vsx_flags = VSX_CHECK_VEC;
2572                         break;
2573
2574                 case 812:       /* lxvh8x */
2575                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2576                                 goto unknown_opcode;
2577                         op->reg = rd | ((word & 1) << 5);
2578                         op->type = MKOP(LOAD_VSX, 0, 16);
2579                         op->element_size = 2;
2580                         op->vsx_flags = VSX_CHECK_VEC;
2581                         break;
2582
2583                 case 813:       /* lxsihzx */
2584                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2585                                 goto unknown_opcode;
2586                         op->reg = rd | ((word & 1) << 5);
2587                         op->type = MKOP(LOAD_VSX, 0, 2);
2588                         op->element_size = 8;
2589                         op->vsx_flags = VSX_CHECK_VEC;
2590                         break;
2591
2592                 case 844:       /* lxvd2x */
2593                         op->reg = rd | ((word & 1) << 5);
2594                         op->type = MKOP(LOAD_VSX, 0, 16);
2595                         op->element_size = 8;
2596                         break;
2597
2598                 case 876:       /* lxvb16x */
2599                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2600                                 goto unknown_opcode;
2601                         op->reg = rd | ((word & 1) << 5);
2602                         op->type = MKOP(LOAD_VSX, 0, 16);
2603                         op->element_size = 1;
2604                         op->vsx_flags = VSX_CHECK_VEC;
2605                         break;
2606
2607                 case 908:       /* stxvw4x */
2608                         op->reg = rd | ((word & 1) << 5);
2609                         op->type = MKOP(STORE_VSX, 0, 16);
2610                         op->element_size = 4;
2611                         break;
2612
2613                 case 909:       /* stxsibx */
2614                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2615                                 goto unknown_opcode;
2616                         op->reg = rd | ((word & 1) << 5);
2617                         op->type = MKOP(STORE_VSX, 0, 1);
2618                         op->element_size = 8;
2619                         op->vsx_flags = VSX_CHECK_VEC;
2620                         break;
2621
2622                 case 940:       /* stxvh8x */
2623                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2624                                 goto unknown_opcode;
2625                         op->reg = rd | ((word & 1) << 5);
2626                         op->type = MKOP(STORE_VSX, 0, 16);
2627                         op->element_size = 2;
2628                         op->vsx_flags = VSX_CHECK_VEC;
2629                         break;
2630
2631                 case 941:       /* stxsihx */
2632                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2633                                 goto unknown_opcode;
2634                         op->reg = rd | ((word & 1) << 5);
2635                         op->type = MKOP(STORE_VSX, 0, 2);
2636                         op->element_size = 8;
2637                         op->vsx_flags = VSX_CHECK_VEC;
2638                         break;
2639
2640                 case 972:       /* stxvd2x */
2641                         op->reg = rd | ((word & 1) << 5);
2642                         op->type = MKOP(STORE_VSX, 0, 16);
2643                         op->element_size = 8;
2644                         break;
2645
2646                 case 1004:      /* stxvb16x */
2647                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2648                                 goto unknown_opcode;
2649                         op->reg = rd | ((word & 1) << 5);
2650                         op->type = MKOP(STORE_VSX, 0, 16);
2651                         op->element_size = 1;
2652                         op->vsx_flags = VSX_CHECK_VEC;
2653                         break;
2654
2655 #endif /* CONFIG_VSX */
2656                 }
2657                 break;
2658
2659         case 32:        /* lwz */
2660         case 33:        /* lwzu */
2661                 op->type = MKOP(LOAD, u, 4);
2662                 op->ea = dform_ea(word, regs);
2663                 break;
2664
2665         case 34:        /* lbz */
2666         case 35:        /* lbzu */
2667                 op->type = MKOP(LOAD, u, 1);
2668                 op->ea = dform_ea(word, regs);
2669                 break;
2670
2671         case 36:        /* stw */
2672         case 37:        /* stwu */
2673                 op->type = MKOP(STORE, u, 4);
2674                 op->ea = dform_ea(word, regs);
2675                 break;
2676
2677         case 38:        /* stb */
2678         case 39:        /* stbu */
2679                 op->type = MKOP(STORE, u, 1);
2680                 op->ea = dform_ea(word, regs);
2681                 break;
2682
2683         case 40:        /* lhz */
2684         case 41:        /* lhzu */
2685                 op->type = MKOP(LOAD, u, 2);
2686                 op->ea = dform_ea(word, regs);
2687                 break;
2688
2689         case 42:        /* lha */
2690         case 43:        /* lhau */
2691                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2692                 op->ea = dform_ea(word, regs);
2693                 break;
2694
2695         case 44:        /* sth */
2696         case 45:        /* sthu */
2697                 op->type = MKOP(STORE, u, 2);
2698                 op->ea = dform_ea(word, regs);
2699                 break;
2700
2701         case 46:        /* lmw */
2702                 if (ra >= rd)
2703                         break;          /* invalid form, ra in range to load */
2704                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2705                 op->ea = dform_ea(word, regs);
2706                 break;
2707
2708         case 47:        /* stmw */
2709                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2710                 op->ea = dform_ea(word, regs);
2711                 break;
2712
2713 #ifdef CONFIG_PPC_FPU
2714         case 48:        /* lfs */
2715         case 49:        /* lfsu */
2716                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2717                 op->ea = dform_ea(word, regs);
2718                 break;
2719
2720         case 50:        /* lfd */
2721         case 51:        /* lfdu */
2722                 op->type = MKOP(LOAD_FP, u, 8);
2723                 op->ea = dform_ea(word, regs);
2724                 break;
2725
2726         case 52:        /* stfs */
2727         case 53:        /* stfsu */
2728                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2729                 op->ea = dform_ea(word, regs);
2730                 break;
2731
2732         case 54:        /* stfd */
2733         case 55:        /* stfdu */
2734                 op->type = MKOP(STORE_FP, u, 8);
2735                 op->ea = dform_ea(word, regs);
2736                 break;
2737 #endif
2738
2739 #ifdef __powerpc64__
2740         case 56:        /* lq */
2741                 if (!((rd & 1) || (rd == ra)))
2742                         op->type = MKOP(LOAD, 0, 16);
2743                 op->ea = dqform_ea(word, regs);
2744                 break;
2745 #endif
2746
2747 #ifdef CONFIG_VSX
2748         case 57:        /* lfdp, lxsd, lxssp */
2749                 op->ea = dsform_ea(word, regs);
2750                 switch (word & 3) {
2751                 case 0:         /* lfdp */
2752                         if (rd & 1)
2753                                 break;          /* reg must be even */
2754                         op->type = MKOP(LOAD_FP, 0, 16);
2755                         break;
2756                 case 2:         /* lxsd */
2757                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2758                                 goto unknown_opcode;
2759                         op->reg = rd + 32;
2760                         op->type = MKOP(LOAD_VSX, 0, 8);
2761                         op->element_size = 8;
2762                         op->vsx_flags = VSX_CHECK_VEC;
2763                         break;
2764                 case 3:         /* lxssp */
2765                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2766                                 goto unknown_opcode;
2767                         op->reg = rd + 32;
2768                         op->type = MKOP(LOAD_VSX, 0, 4);
2769                         op->element_size = 8;
2770                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2771                         break;
2772                 }
2773                 break;
2774 #endif /* CONFIG_VSX */
2775
2776 #ifdef __powerpc64__
2777         case 58:        /* ld[u], lwa */
2778                 op->ea = dsform_ea(word, regs);
2779                 switch (word & 3) {
2780                 case 0:         /* ld */
2781                         op->type = MKOP(LOAD, 0, 8);
2782                         break;
2783                 case 1:         /* ldu */
2784                         op->type = MKOP(LOAD, UPDATE, 8);
2785                         break;
2786                 case 2:         /* lwa */
2787                         op->type = MKOP(LOAD, SIGNEXT, 4);
2788                         break;
2789                 }
2790                 break;
2791 #endif
2792
2793 #ifdef CONFIG_VSX
2794         case 6:
2795                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2796                         goto unknown_opcode;
2797                 op->ea = dqform_ea(word, regs);
2798                 op->reg = VSX_REGISTER_XTP(rd);
2799                 op->element_size = 32;
2800                 switch (word & 0xf) {
2801                 case 0:         /* lxvp */
2802                         op->type = MKOP(LOAD_VSX, 0, 32);
2803                         break;
2804                 case 1:         /* stxvp */
2805                         op->type = MKOP(STORE_VSX, 0, 32);
2806                         break;
2807                 }
2808                 break;
2809
2810         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2811                 switch (word & 7) {
2812                 case 0:         /* stfdp with LSB of DS field = 0 */
2813                 case 4:         /* stfdp with LSB of DS field = 1 */
2814                         op->ea = dsform_ea(word, regs);
2815                         op->type = MKOP(STORE_FP, 0, 16);
2816                         break;
2817
2818                 case 1:         /* lxv */
2819                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2820                                 goto unknown_opcode;
2821                         op->ea = dqform_ea(word, regs);
2822                         if (word & 8)
2823                                 op->reg = rd + 32;
2824                         op->type = MKOP(LOAD_VSX, 0, 16);
2825                         op->element_size = 16;
2826                         op->vsx_flags = VSX_CHECK_VEC;
2827                         break;
2828
2829                 case 2:         /* stxsd with LSB of DS field = 0 */
2830                 case 6:         /* stxsd with LSB of DS field = 1 */
2831                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2832                                 goto unknown_opcode;
2833                         op->ea = dsform_ea(word, regs);
2834                         op->reg = rd + 32;
2835                         op->type = MKOP(STORE_VSX, 0, 8);
2836                         op->element_size = 8;
2837                         op->vsx_flags = VSX_CHECK_VEC;
2838                         break;
2839
2840                 case 3:         /* stxssp with LSB of DS field = 0 */
2841                 case 7:         /* stxssp with LSB of DS field = 1 */
2842                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2843                                 goto unknown_opcode;
2844                         op->ea = dsform_ea(word, regs);
2845                         op->reg = rd + 32;
2846                         op->type = MKOP(STORE_VSX, 0, 4);
2847                         op->element_size = 8;
2848                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2849                         break;
2850
2851                 case 5:         /* stxv */
2852                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2853                                 goto unknown_opcode;
2854                         op->ea = dqform_ea(word, regs);
2855                         if (word & 8)
2856                                 op->reg = rd + 32;
2857                         op->type = MKOP(STORE_VSX, 0, 16);
2858                         op->element_size = 16;
2859                         op->vsx_flags = VSX_CHECK_VEC;
2860                         break;
2861                 }
2862                 break;
2863 #endif /* CONFIG_VSX */
2864
2865 #ifdef __powerpc64__
2866         case 62:        /* std[u] */
2867                 op->ea = dsform_ea(word, regs);
2868                 switch (word & 3) {
2869                 case 0:         /* std */
2870                         op->type = MKOP(STORE, 0, 8);
2871                         break;
2872                 case 1:         /* stdu */
2873                         op->type = MKOP(STORE, UPDATE, 8);
2874                         break;
2875                 case 2:         /* stq */
2876                         if (!(rd & 1))
2877                                 op->type = MKOP(STORE, 0, 16);
2878                         break;
2879                 }
2880                 break;
2881         case 1: /* Prefixed instructions */
2882                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2883                         goto unknown_opcode;
2884
2885                 prefix_r = GET_PREFIX_R(word);
2886                 ra = GET_PREFIX_RA(suffix);
2887                 op->update_reg = ra;
2888                 rd = (suffix >> 21) & 0x1f;
2889                 op->reg = rd;
2890                 op->val = regs->gpr[rd];
2891
2892                 suffixopcode = get_op(suffix);
2893                 prefixtype = (word >> 24) & 0x3;
2894                 switch (prefixtype) {
2895                 case 0: /* Type 00  Eight-Byte Load/Store */
2896                         if (prefix_r && ra)
2897                                 break;
2898                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2899                         switch (suffixopcode) {
2900                         case 41:        /* plwa */
2901                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2902                                 break;
2903 #ifdef CONFIG_VSX
2904                         case 42:        /* plxsd */
2905                                 op->reg = rd + 32;
2906                                 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2907                                 op->element_size = 8;
2908                                 op->vsx_flags = VSX_CHECK_VEC;
2909                                 break;
2910                         case 43:        /* plxssp */
2911                                 op->reg = rd + 32;
2912                                 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2913                                 op->element_size = 8;
2914                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2915                                 break;
2916                         case 46:        /* pstxsd */
2917                                 op->reg = rd + 32;
2918                                 op->type = MKOP(STORE_VSX, PREFIXED, 8);
2919                                 op->element_size = 8;
2920                                 op->vsx_flags = VSX_CHECK_VEC;
2921                                 break;
2922                         case 47:        /* pstxssp */
2923                                 op->reg = rd + 32;
2924                                 op->type = MKOP(STORE_VSX, PREFIXED, 4);
2925                                 op->element_size = 8;
2926                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2927                                 break;
2928                         case 51:        /* plxv1 */
2929                                 op->reg += 32;
2930                                 fallthrough;
2931                         case 50:        /* plxv0 */
2932                                 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2933                                 op->element_size = 16;
2934                                 op->vsx_flags = VSX_CHECK_VEC;
2935                                 break;
2936                         case 55:        /* pstxv1 */
2937                                 op->reg = rd + 32;
2938                                 fallthrough;
2939                         case 54:        /* pstxv0 */
2940                                 op->type = MKOP(STORE_VSX, PREFIXED, 16);
2941                                 op->element_size = 16;
2942                                 op->vsx_flags = VSX_CHECK_VEC;
2943                                 break;
2944 #endif /* CONFIG_VSX */
2945                         case 56:        /* plq */
2946                                 op->type = MKOP(LOAD, PREFIXED, 16);
2947                                 break;
2948                         case 57:        /* pld */
2949                                 op->type = MKOP(LOAD, PREFIXED, 8);
2950                                 break;
2951 #ifdef CONFIG_VSX
2952                         case 58:        /* plxvp */
2953                                 op->reg = VSX_REGISTER_XTP(rd);
2954                                 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
2955                                 op->element_size = 32;
2956                                 break;
2957 #endif /* CONFIG_VSX */
2958                         case 60:        /* pstq */
2959                                 op->type = MKOP(STORE, PREFIXED, 16);
2960                                 break;
2961                         case 61:        /* pstd */
2962                                 op->type = MKOP(STORE, PREFIXED, 8);
2963                                 break;
2964 #ifdef CONFIG_VSX
2965                         case 62:        /* pstxvp */
2966                                 op->reg = VSX_REGISTER_XTP(rd);
2967                                 op->type = MKOP(STORE_VSX, PREFIXED, 32);
2968                                 op->element_size = 32;
2969                                 break;
2970 #endif /* CONFIG_VSX */
2971                         }
2972                         break;
2973                 case 1: /* Type 01 Eight-Byte Register-to-Register */
2974                         break;
2975                 case 2: /* Type 10 Modified Load/Store */
2976                         if (prefix_r && ra)
2977                                 break;
2978                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2979                         switch (suffixopcode) {
2980                         case 32:        /* plwz */
2981                                 op->type = MKOP(LOAD, PREFIXED, 4);
2982                                 break;
2983                         case 34:        /* plbz */
2984                                 op->type = MKOP(LOAD, PREFIXED, 1);
2985                                 break;
2986                         case 36:        /* pstw */
2987                                 op->type = MKOP(STORE, PREFIXED, 4);
2988                                 break;
2989                         case 38:        /* pstb */
2990                                 op->type = MKOP(STORE, PREFIXED, 1);
2991                                 break;
2992                         case 40:        /* plhz */
2993                                 op->type = MKOP(LOAD, PREFIXED, 2);
2994                                 break;
2995                         case 42:        /* plha */
2996                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
2997                                 break;
2998                         case 44:        /* psth */
2999                                 op->type = MKOP(STORE, PREFIXED, 2);
3000                                 break;
3001                         case 48:        /* plfs */
3002                                 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3003                                 break;
3004                         case 50:        /* plfd */
3005                                 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3006                                 break;
3007                         case 52:        /* pstfs */
3008                                 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3009                                 break;
3010                         case 54:        /* pstfd */
3011                                 op->type = MKOP(STORE_FP, PREFIXED, 8);
3012                                 break;
3013                         }
3014                         break;
3015                 case 3: /* Type 11 Modified Register-to-Register */
3016                         break;
3017                 }
3018 #endif /* __powerpc64__ */
3019
3020         }
3021
3022         if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3023                 switch (GETTYPE(op->type)) {
3024                 case LOAD:
3025                         if (ra == rd)
3026                                 goto unknown_opcode;
3027                         fallthrough;
3028                 case STORE:
3029                 case LOAD_FP:
3030                 case STORE_FP:
3031                         if (ra == 0)
3032                                 goto unknown_opcode;
3033                 }
3034         }
3035
3036 #ifdef CONFIG_VSX
3037         if ((GETTYPE(op->type) == LOAD_VSX ||
3038              GETTYPE(op->type) == STORE_VSX) &&
3039             !cpu_has_feature(CPU_FTR_VSX)) {
3040                 return -1;
3041         }
3042 #endif /* CONFIG_VSX */
3043
3044         return 0;
3045
3046  unknown_opcode:
3047         op->type = UNKNOWN;
3048         return 0;
3049
3050  logical_done:
3051         if (word & 1)
3052                 set_cr0(regs, op);
3053  logical_done_nocc:
3054         op->reg = ra;
3055         op->type |= SETREG;
3056         return 1;
3057
3058  arith_done:
3059         if (word & 1)
3060                 set_cr0(regs, op);
3061  compute_done:
3062         op->reg = rd;
3063         op->type |= SETREG;
3064         return 1;
3065
3066  priv:
3067         op->type = INTERRUPT | 0x700;
3068         op->val = SRR1_PROGPRIV;
3069         return 0;
3070
3071  trap:
3072         op->type = INTERRUPT | 0x700;
3073         op->val = SRR1_PROGTRAP;
3074         return 0;
3075 }
3076 EXPORT_SYMBOL_GPL(analyse_instr);
3077 NOKPROBE_SYMBOL(analyse_instr);
3078
3079 /*
3080  * For PPC32 we always use stwu with r1 to change the stack pointer.
3081  * So this emulated store may corrupt the exception frame, now we
3082  * have to provide the exception frame trampoline, which is pushed
3083  * below the kprobed function stack. So we only update gpr[1] but
3084  * don't emulate the real store operation. We will do real store
3085  * operation safely in exception return code by checking this flag.
3086  */
3087 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3088 {
3089 #ifdef CONFIG_PPC32
3090         /*
3091          * Check if we will touch kernel stack overflow
3092          */
3093         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
3094                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
3095                 return -EINVAL;
3096         }
3097 #endif /* CONFIG_PPC32 */
3098         /*
3099          * Check if we already set since that means we'll
3100          * lose the previous value.
3101          */
3102         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3103         set_thread_flag(TIF_EMULATE_STACK_STORE);
3104         return 0;
3105 }
3106
3107 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3108 {
3109         switch (size) {
3110         case 2:
3111                 *valp = (signed short) *valp;
3112                 break;
3113         case 4:
3114                 *valp = (signed int) *valp;
3115                 break;
3116         }
3117 }
3118
3119 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3120 {
3121         switch (size) {
3122         case 2:
3123                 *valp = byterev_2(*valp);
3124                 break;
3125         case 4:
3126                 *valp = byterev_4(*valp);
3127                 break;
3128 #ifdef __powerpc64__
3129         case 8:
3130                 *valp = byterev_8(*valp);
3131                 break;
3132 #endif
3133         }
3134 }
3135
3136 /*
3137  * Emulate an instruction that can be executed just by updating
3138  * fields in *regs.
3139  */
3140 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3141 {
3142         unsigned long next_pc;
3143
3144         next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3145         switch (GETTYPE(op->type)) {
3146         case COMPUTE:
3147                 if (op->type & SETREG)
3148                         regs->gpr[op->reg] = op->val;
3149                 if (op->type & SETCC)
3150                         regs->ccr = op->ccval;
3151                 if (op->type & SETXER)
3152                         regs->xer = op->xerval;
3153                 break;
3154
3155         case BRANCH:
3156                 if (op->type & SETLK)
3157                         regs->link = next_pc;
3158                 if (op->type & BRTAKEN)
3159                         next_pc = op->val;
3160                 if (op->type & DECCTR)
3161                         --regs->ctr;
3162                 break;
3163
3164         case BARRIER:
3165                 switch (op->type & BARRIER_MASK) {
3166                 case BARRIER_SYNC:
3167                         mb();
3168                         break;
3169                 case BARRIER_ISYNC:
3170                         isync();
3171                         break;
3172                 case BARRIER_EIEIO:
3173                         eieio();
3174                         break;
3175                 case BARRIER_LWSYNC:
3176                         asm volatile("lwsync" : : : "memory");
3177                         break;
3178                 case BARRIER_PTESYNC:
3179                         asm volatile("ptesync" : : : "memory");
3180                         break;
3181                 }
3182                 break;
3183
3184         case MFSPR:
3185                 switch (op->spr) {
3186                 case SPRN_XER:
3187                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3188                         break;
3189                 case SPRN_LR:
3190                         regs->gpr[op->reg] = regs->link;
3191                         break;
3192                 case SPRN_CTR:
3193                         regs->gpr[op->reg] = regs->ctr;
3194                         break;
3195                 default:
3196                         WARN_ON_ONCE(1);
3197                 }
3198                 break;
3199
3200         case MTSPR:
3201                 switch (op->spr) {
3202                 case SPRN_XER:
3203                         regs->xer = op->val & 0xffffffffUL;
3204                         break;
3205                 case SPRN_LR:
3206                         regs->link = op->val;
3207                         break;
3208                 case SPRN_CTR:
3209                         regs->ctr = op->val;
3210                         break;
3211                 default:
3212                         WARN_ON_ONCE(1);
3213                 }
3214                 break;
3215
3216         default:
3217                 WARN_ON_ONCE(1);
3218         }
3219         regs->nip = next_pc;
3220 }
3221 NOKPROBE_SYMBOL(emulate_update_regs);
3222
3223 /*
3224  * Emulate a previously-analysed load or store instruction.
3225  * Return values are:
3226  * 0 = instruction emulated successfully
3227  * -EFAULT = address out of range or access faulted (regs->dar
3228  *           contains the faulting address)
3229  * -EACCES = misaligned access, instruction requires alignment
3230  * -EINVAL = unknown operation in *op
3231  */
3232 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3233 {
3234         int err, size, type;
3235         int i, rd, nb;
3236         unsigned int cr;
3237         unsigned long val;
3238         unsigned long ea;
3239         bool cross_endian;
3240
3241         err = 0;
3242         size = GETSIZE(op->type);
3243         type = GETTYPE(op->type);
3244         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3245         ea = truncate_if_32bit(regs->msr, op->ea);
3246
3247         switch (type) {
3248         case LARX:
3249                 if (ea & (size - 1))
3250                         return -EACCES;         /* can't handle misaligned */
3251                 if (!address_ok(regs, ea, size))
3252                         return -EFAULT;
3253                 err = 0;
3254                 val = 0;
3255                 switch (size) {
3256 #ifdef __powerpc64__
3257                 case 1:
3258                         __get_user_asmx(val, ea, err, "lbarx");
3259                         break;
3260                 case 2:
3261                         __get_user_asmx(val, ea, err, "lharx");
3262                         break;
3263 #endif
3264                 case 4:
3265                         __get_user_asmx(val, ea, err, "lwarx");
3266                         break;
3267 #ifdef __powerpc64__
3268                 case 8:
3269                         __get_user_asmx(val, ea, err, "ldarx");
3270                         break;
3271                 case 16:
3272                         err = do_lqarx(ea, &regs->gpr[op->reg]);
3273                         break;
3274 #endif
3275                 default:
3276                         return -EINVAL;
3277                 }
3278                 if (err) {
3279                         regs->dar = ea;
3280                         break;
3281                 }
3282                 if (size < 16)
3283                         regs->gpr[op->reg] = val;
3284                 break;
3285
3286         case STCX:
3287                 if (ea & (size - 1))
3288                         return -EACCES;         /* can't handle misaligned */
3289                 if (!address_ok(regs, ea, size))
3290                         return -EFAULT;
3291                 err = 0;
3292                 switch (size) {
3293 #ifdef __powerpc64__
3294                 case 1:
3295                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3296                         break;
3297                 case 2:
3298                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3299                         break;
3300 #endif
3301                 case 4:
3302                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3303                         break;
3304 #ifdef __powerpc64__
3305                 case 8:
3306                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3307                         break;
3308                 case 16:
3309                         err = do_stqcx(ea, regs->gpr[op->reg],
3310                                        regs->gpr[op->reg + 1], &cr);
3311                         break;
3312 #endif
3313                 default:
3314                         return -EINVAL;
3315                 }
3316                 if (!err)
3317                         regs->ccr = (regs->ccr & 0x0fffffff) |
3318                                 (cr & 0xe0000000) |
3319                                 ((regs->xer >> 3) & 0x10000000);
3320                 else
3321                         regs->dar = ea;
3322                 break;
3323
3324         case LOAD:
3325 #ifdef __powerpc64__
3326                 if (size == 16) {
3327                         err = emulate_lq(regs, ea, op->reg, cross_endian);
3328                         break;
3329                 }
3330 #endif
3331                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3332                 if (!err) {
3333                         if (op->type & SIGNEXT)
3334                                 do_signext(&regs->gpr[op->reg], size);
3335                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3336                                 do_byterev(&regs->gpr[op->reg], size);
3337                 }
3338                 break;
3339
3340 #ifdef CONFIG_PPC_FPU
3341         case LOAD_FP:
3342                 /*
3343                  * If the instruction is in userspace, we can emulate it even
3344                  * if the VMX state is not live, because we have the state
3345                  * stored in the thread_struct.  If the instruction is in
3346                  * the kernel, we must not touch the state in the thread_struct.
3347                  */
3348                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3349                         return 0;
3350                 err = do_fp_load(op, ea, regs, cross_endian);
3351                 break;
3352 #endif
3353 #ifdef CONFIG_ALTIVEC
3354         case LOAD_VMX:
3355                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3356                         return 0;
3357                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3358                 break;
3359 #endif
3360 #ifdef CONFIG_VSX
3361         case LOAD_VSX: {
3362                 unsigned long msrbit = MSR_VSX;
3363
3364                 /*
3365                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3366                  * when the target of the instruction is a vector register.
3367                  */
3368                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3369                         msrbit = MSR_VEC;
3370                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3371                         return 0;
3372                 err = do_vsx_load(op, ea, regs, cross_endian);
3373                 break;
3374         }
3375 #endif
3376         case LOAD_MULTI:
3377                 if (!address_ok(regs, ea, size))
3378                         return -EFAULT;
3379                 rd = op->reg;
3380                 for (i = 0; i < size; i += 4) {
3381                         unsigned int v32 = 0;
3382
3383                         nb = size - i;
3384                         if (nb > 4)
3385                                 nb = 4;
3386                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3387                         if (err)
3388                                 break;
3389                         if (unlikely(cross_endian))
3390                                 v32 = byterev_4(v32);
3391                         regs->gpr[rd] = v32;
3392                         ea += 4;
3393                         /* reg number wraps from 31 to 0 for lsw[ix] */
3394                         rd = (rd + 1) & 0x1f;
3395                 }
3396                 break;
3397
3398         case STORE:
3399 #ifdef __powerpc64__
3400                 if (size == 16) {
3401                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3402                         break;
3403                 }
3404 #endif
3405                 if ((op->type & UPDATE) && size == sizeof(long) &&
3406                     op->reg == 1 && op->update_reg == 1 &&
3407                     !(regs->msr & MSR_PR) &&
3408                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3409                         err = handle_stack_update(ea, regs);
3410                         break;
3411                 }
3412                 if (unlikely(cross_endian))
3413                         do_byterev(&op->val, size);
3414                 err = write_mem(op->val, ea, size, regs);
3415                 break;
3416
3417 #ifdef CONFIG_PPC_FPU
3418         case STORE_FP:
3419                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3420                         return 0;
3421                 err = do_fp_store(op, ea, regs, cross_endian);
3422                 break;
3423 #endif
3424 #ifdef CONFIG_ALTIVEC
3425         case STORE_VMX:
3426                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3427                         return 0;
3428                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3429                 break;
3430 #endif
3431 #ifdef CONFIG_VSX
3432         case STORE_VSX: {
3433                 unsigned long msrbit = MSR_VSX;
3434
3435                 /*
3436                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3437                  * when the target of the instruction is a vector register.
3438                  */
3439                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3440                         msrbit = MSR_VEC;
3441                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3442                         return 0;
3443                 err = do_vsx_store(op, ea, regs, cross_endian);
3444                 break;
3445         }
3446 #endif
3447         case STORE_MULTI:
3448                 if (!address_ok(regs, ea, size))
3449                         return -EFAULT;
3450                 rd = op->reg;
3451                 for (i = 0; i < size; i += 4) {
3452                         unsigned int v32 = regs->gpr[rd];
3453
3454                         nb = size - i;
3455                         if (nb > 4)
3456                                 nb = 4;
3457                         if (unlikely(cross_endian))
3458                                 v32 = byterev_4(v32);
3459                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3460                         if (err)
3461                                 break;
3462                         ea += 4;
3463                         /* reg number wraps from 31 to 0 for stsw[ix] */
3464                         rd = (rd + 1) & 0x1f;
3465                 }
3466                 break;
3467
3468         default:
3469                 return -EINVAL;
3470         }
3471
3472         if (err)
3473                 return err;
3474
3475         if (op->type & UPDATE)
3476                 regs->gpr[op->update_reg] = op->ea;
3477
3478         return 0;
3479 }
3480 NOKPROBE_SYMBOL(emulate_loadstore);
3481
3482 /*
3483  * Emulate instructions that cause a transfer of control,
3484  * loads and stores, and a few other instructions.
3485  * Returns 1 if the step was emulated, 0 if not,
3486  * or -1 if the instruction is one that should not be stepped,
3487  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3488  */
3489 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3490 {
3491         struct instruction_op op;
3492         int r, err, type;
3493         unsigned long val;
3494         unsigned long ea;
3495
3496         r = analyse_instr(&op, regs, instr);
3497         if (r < 0)
3498                 return r;
3499         if (r > 0) {
3500                 emulate_update_regs(regs, &op);
3501                 return 1;
3502         }
3503
3504         err = 0;
3505         type = GETTYPE(op.type);
3506
3507         if (OP_IS_LOAD_STORE(type)) {
3508                 err = emulate_loadstore(regs, &op);
3509                 if (err)
3510                         return 0;
3511                 goto instr_done;
3512         }
3513
3514         switch (type) {
3515         case CACHEOP:
3516                 ea = truncate_if_32bit(regs->msr, op.ea);
3517                 if (!address_ok(regs, ea, 8))
3518                         return 0;
3519                 switch (op.type & CACHEOP_MASK) {
3520                 case DCBST:
3521                         __cacheop_user_asmx(ea, err, "dcbst");
3522                         break;
3523                 case DCBF:
3524                         __cacheop_user_asmx(ea, err, "dcbf");
3525                         break;
3526                 case DCBTST:
3527                         if (op.reg == 0)
3528                                 prefetchw((void *) ea);
3529                         break;
3530                 case DCBT:
3531                         if (op.reg == 0)
3532                                 prefetch((void *) ea);
3533                         break;
3534                 case ICBI:
3535                         __cacheop_user_asmx(ea, err, "icbi");
3536                         break;
3537                 case DCBZ:
3538                         err = emulate_dcbz(ea, regs);
3539                         break;
3540                 }
3541                 if (err) {
3542                         regs->dar = ea;
3543                         return 0;
3544                 }
3545                 goto instr_done;
3546
3547         case MFMSR:
3548                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3549                 goto instr_done;
3550
3551         case MTMSR:
3552                 val = regs->gpr[op.reg];
3553                 if ((val & MSR_RI) == 0)
3554                         /* can't step mtmsr[d] that would clear MSR_RI */
3555                         return -1;
3556                 /* here op.val is the mask of bits to change */
3557                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3558                 goto instr_done;
3559
3560 #ifdef CONFIG_PPC64
3561         case SYSCALL:   /* sc */
3562                 /*
3563                  * N.B. this uses knowledge about how the syscall
3564                  * entry code works.  If that is changed, this will
3565                  * need to be changed also.
3566                  */
3567                 if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3568                                 cpu_has_feature(CPU_FTR_REAL_LE) &&
3569                                 regs->gpr[0] == 0x1ebe) {
3570                         regs->msr ^= MSR_LE;
3571                         goto instr_done;
3572                 }
3573                 regs->gpr[9] = regs->gpr[13];
3574                 regs->gpr[10] = MSR_KERNEL;
3575                 regs->gpr[11] = regs->nip + 4;
3576                 regs->gpr[12] = regs->msr & MSR_MASK;
3577                 regs->gpr[13] = (unsigned long) get_paca();
3578                 regs->nip = (unsigned long) &system_call_common;
3579                 regs->msr = MSR_KERNEL;
3580                 return 1;
3581
3582 #ifdef CONFIG_PPC_BOOK3S_64
3583         case SYSCALL_VECTORED_0:        /* scv 0 */
3584                 regs->gpr[9] = regs->gpr[13];
3585                 regs->gpr[10] = MSR_KERNEL;
3586                 regs->gpr[11] = regs->nip + 4;
3587                 regs->gpr[12] = regs->msr & MSR_MASK;
3588                 regs->gpr[13] = (unsigned long) get_paca();
3589                 regs->nip = (unsigned long) &system_call_vectored_emulate;
3590                 regs->msr = MSR_KERNEL;
3591                 return 1;
3592 #endif
3593
3594         case RFI:
3595                 return -1;
3596 #endif
3597         }
3598         return 0;
3599
3600  instr_done:
3601         regs->nip = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type));
3602         return 1;
3603 }
3604 NOKPROBE_SYMBOL(emulate_step);