Merge tag 'docs-4.18' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / arch / powerpc / lib / sstep.c
1 /*
2  * Single-step support.
3  *
4  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
20
21 extern char system_call_common[];
22
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK        0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK        0x87c0ffff
28 #endif
29
30 /* Bits in XER */
31 #define XER_SO          0x80000000U
32 #define XER_OV          0x40000000U
33 #define XER_CA          0x20000000U
34 #define XER_OV32        0x00080000U
35 #define XER_CA32        0x00040000U
36
37 #ifdef CONFIG_PPC_FPU
38 /*
39  * Functions in ldstfp.S
40  */
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
50
51 #ifdef __powerpc64__
52 /*
53  * Functions in quad.S
54  */
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59                     unsigned int *crp);
60 #endif
61
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE   1
64 #define IS_BE   0
65 #else
66 #define IS_LE   0
67 #define IS_BE   1
68 #endif
69
70 /*
71  * Emulate the truncation of 64 bit values in 32-bit mode.
72  */
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74                                                         unsigned long val)
75 {
76 #ifdef __powerpc64__
77         if ((msr & MSR_64BIT) == 0)
78                 val &= 0xffffffffUL;
79 #endif
80         return val;
81 }
82
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87                                         const struct pt_regs *regs,
88                                         struct instruction_op *op)
89 {
90         unsigned int bo = (instr >> 21) & 0x1f;
91         unsigned int bi;
92
93         if ((bo & 4) == 0) {
94                 /* decrement counter */
95                 op->type |= DECCTR;
96                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97                         return 0;
98         }
99         if ((bo & 0x10) == 0) {
100                 /* check bit from CR */
101                 bi = (instr >> 16) & 0x1f;
102                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103                         return 0;
104         }
105         return 1;
106 }
107
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109                                        unsigned long ea, int nb)
110 {
111         if (!user_mode(regs))
112                 return 1;
113         if (__access_ok(ea, nb, USER_DS))
114                 return 1;
115         if (__access_ok(ea, 1, USER_DS))
116                 /* Access overlaps the end of the user region */
117                 regs->dar = USER_DS.seg;
118         else
119                 regs->dar = ea;
120         return 0;
121 }
122
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127                                               const struct pt_regs *regs)
128 {
129         int ra;
130         unsigned long ea;
131
132         ra = (instr >> 16) & 0x1f;
133         ea = (signed short) instr;              /* sign-extend */
134         if (ra)
135                 ea += regs->gpr[ra];
136
137         return ea;
138 }
139
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145                                                const struct pt_regs *regs)
146 {
147         int ra;
148         unsigned long ea;
149
150         ra = (instr >> 16) & 0x1f;
151         ea = (signed short) (instr & ~3);       /* sign-extend */
152         if (ra)
153                 ea += regs->gpr[ra];
154
155         return ea;
156 }
157
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162                                                const struct pt_regs *regs)
163 {
164         int ra;
165         unsigned long ea;
166
167         ra = (instr >> 16) & 0x1f;
168         ea = (signed short) (instr & ~0xf);     /* sign-extend */
169         if (ra)
170                 ea += regs->gpr[ra];
171
172         return ea;
173 }
174 #endif /* __powerpc64 */
175
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180                                               const struct pt_regs *regs)
181 {
182         int ra, rb;
183         unsigned long ea;
184
185         ra = (instr >> 16) & 0x1f;
186         rb = (instr >> 11) & 0x1f;
187         ea = regs->gpr[rb];
188         if (ra)
189                 ea += regs->gpr[ra];
190
191         return ea;
192 }
193
194 /*
195  * Return the largest power of 2, not greater than sizeof(unsigned long),
196  * such that x is a multiple of it.
197  */
198 static nokprobe_inline unsigned long max_align(unsigned long x)
199 {
200         x |= sizeof(unsigned long);
201         return x & -x;          /* isolates rightmost bit */
202 }
203
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
205 {
206         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
207 }
208
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
210 {
211         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
213 }
214
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
217 {
218         return (byterev_4(x) << 32) | byterev_4(x >> 32);
219 }
220 #endif
221
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
223 {
224         switch (nb) {
225         case 2:
226                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227                 break;
228         case 4:
229                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230                 break;
231 #ifdef __powerpc64__
232         case 8:
233                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234                 break;
235         case 16: {
236                 unsigned long *up = (unsigned long *)ptr;
237                 unsigned long tmp;
238                 tmp = byterev_8(up[0]);
239                 up[0] = byterev_8(up[1]);
240                 up[1] = tmp;
241                 break;
242         }
243 #endif
244         default:
245                 WARN_ON_ONCE(1);
246         }
247 }
248
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250                                             unsigned long ea, int nb,
251                                             struct pt_regs *regs)
252 {
253         int err = 0;
254         unsigned long x = 0;
255
256         switch (nb) {
257         case 1:
258                 err = __get_user(x, (unsigned char __user *) ea);
259                 break;
260         case 2:
261                 err = __get_user(x, (unsigned short __user *) ea);
262                 break;
263         case 4:
264                 err = __get_user(x, (unsigned int __user *) ea);
265                 break;
266 #ifdef __powerpc64__
267         case 8:
268                 err = __get_user(x, (unsigned long __user *) ea);
269                 break;
270 #endif
271         }
272         if (!err)
273                 *dest = x;
274         else
275                 regs->dar = ea;
276         return err;
277 }
278
279 /*
280  * Copy from userspace to a buffer, using the largest possible
281  * aligned accesses, up to sizeof(long).
282  */
283 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
284                                        struct pt_regs *regs)
285 {
286         int err = 0;
287         int c;
288
289         for (; nb > 0; nb -= c) {
290                 c = max_align(ea);
291                 if (c > nb)
292                         c = max_align(nb);
293                 switch (c) {
294                 case 1:
295                         err = __get_user(*dest, (unsigned char __user *) ea);
296                         break;
297                 case 2:
298                         err = __get_user(*(u16 *)dest,
299                                          (unsigned short __user *) ea);
300                         break;
301                 case 4:
302                         err = __get_user(*(u32 *)dest,
303                                          (unsigned int __user *) ea);
304                         break;
305 #ifdef __powerpc64__
306                 case 8:
307                         err = __get_user(*(unsigned long *)dest,
308                                          (unsigned long __user *) ea);
309                         break;
310 #endif
311                 }
312                 if (err) {
313                         regs->dar = ea;
314                         return err;
315                 }
316                 dest += c;
317                 ea += c;
318         }
319         return 0;
320 }
321
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323                                               unsigned long ea, int nb,
324                                               struct pt_regs *regs)
325 {
326         union {
327                 unsigned long ul;
328                 u8 b[sizeof(unsigned long)];
329         } u;
330         int i;
331         int err;
332
333         u.ul = 0;
334         i = IS_BE ? sizeof(unsigned long) - nb : 0;
335         err = copy_mem_in(&u.b[i], ea, nb, regs);
336         if (!err)
337                 *dest = u.ul;
338         return err;
339 }
340
341 /*
342  * Read memory at address ea for nb bytes, return 0 for success
343  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
344  * If nb < sizeof(long), the result is right-justified on BE systems.
345  */
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347                               struct pt_regs *regs)
348 {
349         if (!address_ok(regs, ea, nb))
350                 return -EFAULT;
351         if ((ea & (nb - 1)) == 0)
352                 return read_mem_aligned(dest, ea, nb, regs);
353         return read_mem_unaligned(dest, ea, nb, regs);
354 }
355 NOKPROBE_SYMBOL(read_mem);
356
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358                                              unsigned long ea, int nb,
359                                              struct pt_regs *regs)
360 {
361         int err = 0;
362
363         switch (nb) {
364         case 1:
365                 err = __put_user(val, (unsigned char __user *) ea);
366                 break;
367         case 2:
368                 err = __put_user(val, (unsigned short __user *) ea);
369                 break;
370         case 4:
371                 err = __put_user(val, (unsigned int __user *) ea);
372                 break;
373 #ifdef __powerpc64__
374         case 8:
375                 err = __put_user(val, (unsigned long __user *) ea);
376                 break;
377 #endif
378         }
379         if (err)
380                 regs->dar = ea;
381         return err;
382 }
383
384 /*
385  * Copy from a buffer to userspace, using the largest possible
386  * aligned accesses, up to sizeof(long).
387  */
388 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
389                                         struct pt_regs *regs)
390 {
391         int err = 0;
392         int c;
393
394         for (; nb > 0; nb -= c) {
395                 c = max_align(ea);
396                 if (c > nb)
397                         c = max_align(nb);
398                 switch (c) {
399                 case 1:
400                         err = __put_user(*dest, (unsigned char __user *) ea);
401                         break;
402                 case 2:
403                         err = __put_user(*(u16 *)dest,
404                                          (unsigned short __user *) ea);
405                         break;
406                 case 4:
407                         err = __put_user(*(u32 *)dest,
408                                          (unsigned int __user *) ea);
409                         break;
410 #ifdef __powerpc64__
411                 case 8:
412                         err = __put_user(*(unsigned long *)dest,
413                                          (unsigned long __user *) ea);
414                         break;
415 #endif
416                 }
417                 if (err) {
418                         regs->dar = ea;
419                         return err;
420                 }
421                 dest += c;
422                 ea += c;
423         }
424         return 0;
425 }
426
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428                                                unsigned long ea, int nb,
429                                                struct pt_regs *regs)
430 {
431         union {
432                 unsigned long ul;
433                 u8 b[sizeof(unsigned long)];
434         } u;
435         int i;
436
437         u.ul = val;
438         i = IS_BE ? sizeof(unsigned long) - nb : 0;
439         return copy_mem_out(&u.b[i], ea, nb, regs);
440 }
441
442 /*
443  * Write memory at address ea for nb bytes, return 0 for success
444  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
445  */
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447                                struct pt_regs *regs)
448 {
449         if (!address_ok(regs, ea, nb))
450                 return -EFAULT;
451         if ((ea & (nb - 1)) == 0)
452                 return write_mem_aligned(val, ea, nb, regs);
453         return write_mem_unaligned(val, ea, nb, regs);
454 }
455 NOKPROBE_SYMBOL(write_mem);
456
457 #ifdef CONFIG_PPC_FPU
458 /*
459  * These access either the real FP register or the image in the
460  * thread_struct, depending on regs->msr & MSR_FP.
461  */
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463                       struct pt_regs *regs, bool cross_endian)
464 {
465         int err, rn, nb;
466         union {
467                 int i;
468                 unsigned int u;
469                 float f;
470                 double d[2];
471                 unsigned long l[2];
472                 u8 b[2 * sizeof(double)];
473         } u;
474
475         nb = GETSIZE(op->type);
476         if (!address_ok(regs, ea, nb))
477                 return -EFAULT;
478         rn = op->reg;
479         err = copy_mem_in(u.b, ea, nb, regs);
480         if (err)
481                 return err;
482         if (unlikely(cross_endian)) {
483                 do_byte_reverse(u.b, min(nb, 8));
484                 if (nb == 16)
485                         do_byte_reverse(&u.b[8], 8);
486         }
487         preempt_disable();
488         if (nb == 4) {
489                 if (op->type & FPCONV)
490                         conv_sp_to_dp(&u.f, &u.d[0]);
491                 else if (op->type & SIGNEXT)
492                         u.l[0] = u.i;
493                 else
494                         u.l[0] = u.u;
495         }
496         if (regs->msr & MSR_FP)
497                 put_fpr(rn, &u.d[0]);
498         else
499                 current->thread.TS_FPR(rn) = u.l[0];
500         if (nb == 16) {
501                 /* lfdp */
502                 rn |= 1;
503                 if (regs->msr & MSR_FP)
504                         put_fpr(rn, &u.d[1]);
505                 else
506                         current->thread.TS_FPR(rn) = u.l[1];
507         }
508         preempt_enable();
509         return 0;
510 }
511 NOKPROBE_SYMBOL(do_fp_load);
512
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514                        struct pt_regs *regs, bool cross_endian)
515 {
516         int rn, nb;
517         union {
518                 unsigned int u;
519                 float f;
520                 double d[2];
521                 unsigned long l[2];
522                 u8 b[2 * sizeof(double)];
523         } u;
524
525         nb = GETSIZE(op->type);
526         if (!address_ok(regs, ea, nb))
527                 return -EFAULT;
528         rn = op->reg;
529         preempt_disable();
530         if (regs->msr & MSR_FP)
531                 get_fpr(rn, &u.d[0]);
532         else
533                 u.l[0] = current->thread.TS_FPR(rn);
534         if (nb == 4) {
535                 if (op->type & FPCONV)
536                         conv_dp_to_sp(&u.d[0], &u.f);
537                 else
538                         u.u = u.l[0];
539         }
540         if (nb == 16) {
541                 rn |= 1;
542                 if (regs->msr & MSR_FP)
543                         get_fpr(rn, &u.d[1]);
544                 else
545                         u.l[1] = current->thread.TS_FPR(rn);
546         }
547         preempt_enable();
548         if (unlikely(cross_endian)) {
549                 do_byte_reverse(u.b, min(nb, 8));
550                 if (nb == 16)
551                         do_byte_reverse(&u.b[8], 8);
552         }
553         return copy_mem_out(u.b, ea, nb, regs);
554 }
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
557
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561                                        int size, struct pt_regs *regs,
562                                        bool cross_endian)
563 {
564         int err;
565         union {
566                 __vector128 v;
567                 u8 b[sizeof(__vector128)];
568         } u = {};
569
570         if (!address_ok(regs, ea & ~0xfUL, 16))
571                 return -EFAULT;
572         /* align to multiple of size */
573         ea &= ~(size - 1);
574         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575         if (err)
576                 return err;
577         if (unlikely(cross_endian))
578                 do_byte_reverse(&u.b[ea & 0xf], size);
579         preempt_disable();
580         if (regs->msr & MSR_VEC)
581                 put_vr(rn, &u.v);
582         else
583                 current->thread.vr_state.vr[rn] = u.v;
584         preempt_enable();
585         return 0;
586 }
587
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589                                         int size, struct pt_regs *regs,
590                                         bool cross_endian)
591 {
592         union {
593                 __vector128 v;
594                 u8 b[sizeof(__vector128)];
595         } u;
596
597         if (!address_ok(regs, ea & ~0xfUL, 16))
598                 return -EFAULT;
599         /* align to multiple of size */
600         ea &= ~(size - 1);
601
602         preempt_disable();
603         if (regs->msr & MSR_VEC)
604                 get_vr(rn, &u.v);
605         else
606                 u.v = current->thread.vr_state.vr[rn];
607         preempt_enable();
608         if (unlikely(cross_endian))
609                 do_byte_reverse(&u.b[ea & 0xf], size);
610         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
611 }
612 #endif /* CONFIG_ALTIVEC */
613
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616                                       int reg, bool cross_endian)
617 {
618         int err;
619
620         if (!address_ok(regs, ea, 16))
621                 return -EFAULT;
622         /* if aligned, should be atomic */
623         if ((ea & 0xf) == 0) {
624                 err = do_lq(ea, &regs->gpr[reg]);
625         } else {
626                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627                 if (!err)
628                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
629         }
630         if (!err && unlikely(cross_endian))
631                 do_byte_reverse(&regs->gpr[reg], 16);
632         return err;
633 }
634
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636                                        int reg, bool cross_endian)
637 {
638         int err;
639         unsigned long vals[2];
640
641         if (!address_ok(regs, ea, 16))
642                 return -EFAULT;
643         vals[0] = regs->gpr[reg];
644         vals[1] = regs->gpr[reg + 1];
645         if (unlikely(cross_endian))
646                 do_byte_reverse(vals, 16);
647
648         /* if aligned, should be atomic */
649         if ((ea & 0xf) == 0)
650                 return do_stq(ea, vals[0], vals[1]);
651
652         err = write_mem(vals[IS_LE], ea, 8, regs);
653         if (!err)
654                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655         return err;
656 }
657 #endif /* __powerpc64 */
658
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661                       const void *mem, bool rev)
662 {
663         int size, read_size;
664         int i, j;
665         const unsigned int *wp;
666         const unsigned short *hp;
667         const unsigned char *bp;
668
669         size = GETSIZE(op->type);
670         reg->d[0] = reg->d[1] = 0;
671
672         switch (op->element_size) {
673         case 16:
674                 /* whole vector; lxv[x] or lxvl[l] */
675                 if (size == 0)
676                         break;
677                 memcpy(reg, mem, size);
678                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679                         rev = !rev;
680                 if (rev)
681                         do_byte_reverse(reg, 16);
682                 break;
683         case 8:
684                 /* scalar loads, lxvd2x, lxvdsx */
685                 read_size = (size >= 8) ? 8 : size;
686                 i = IS_LE ? 8 : 8 - read_size;
687                 memcpy(&reg->b[i], mem, read_size);
688                 if (rev)
689                         do_byte_reverse(&reg->b[i], 8);
690                 if (size < 8) {
691                         if (op->type & SIGNEXT) {
692                                 /* size == 4 is the only case here */
693                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694                         } else if (op->vsx_flags & VSX_FPCONV) {
695                                 preempt_disable();
696                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
697                                               &reg->dp[IS_LE]);
698                                 preempt_enable();
699                         }
700                 } else {
701                         if (size == 16) {
702                                 unsigned long v = *(unsigned long *)(mem + 8);
703                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704                         } else if (op->vsx_flags & VSX_SPLAT)
705                                 reg->d[IS_BE] = reg->d[IS_LE];
706                 }
707                 break;
708         case 4:
709                 /* lxvw4x, lxvwsx */
710                 wp = mem;
711                 for (j = 0; j < size / 4; ++j) {
712                         i = IS_LE ? 3 - j : j;
713                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
714                 }
715                 if (op->vsx_flags & VSX_SPLAT) {
716                         u32 val = reg->w[IS_LE ? 3 : 0];
717                         for (; j < 4; ++j) {
718                                 i = IS_LE ? 3 - j : j;
719                                 reg->w[i] = val;
720                         }
721                 }
722                 break;
723         case 2:
724                 /* lxvh8x */
725                 hp = mem;
726                 for (j = 0; j < size / 2; ++j) {
727                         i = IS_LE ? 7 - j : j;
728                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
729                 }
730                 break;
731         case 1:
732                 /* lxvb16x */
733                 bp = mem;
734                 for (j = 0; j < size; ++j) {
735                         i = IS_LE ? 15 - j : j;
736                         reg->b[i] = *bp++;
737                 }
738                 break;
739         }
740 }
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
743
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745                        void *mem, bool rev)
746 {
747         int size, write_size;
748         int i, j;
749         union vsx_reg buf;
750         unsigned int *wp;
751         unsigned short *hp;
752         unsigned char *bp;
753
754         size = GETSIZE(op->type);
755
756         switch (op->element_size) {
757         case 16:
758                 /* stxv, stxvx, stxvl, stxvll */
759                 if (size == 0)
760                         break;
761                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762                         rev = !rev;
763                 if (rev) {
764                         /* reverse 16 bytes */
765                         buf.d[0] = byterev_8(reg->d[1]);
766                         buf.d[1] = byterev_8(reg->d[0]);
767                         reg = &buf;
768                 }
769                 memcpy(mem, reg, size);
770                 break;
771         case 8:
772                 /* scalar stores, stxvd2x */
773                 write_size = (size >= 8) ? 8 : size;
774                 i = IS_LE ? 8 : 8 - write_size;
775                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776                         buf.d[0] = buf.d[1] = 0;
777                         preempt_disable();
778                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779                         preempt_enable();
780                         reg = &buf;
781                 }
782                 memcpy(mem, &reg->b[i], write_size);
783                 if (size == 16)
784                         memcpy(mem + 8, &reg->d[IS_BE], 8);
785                 if (unlikely(rev)) {
786                         do_byte_reverse(mem, write_size);
787                         if (size == 16)
788                                 do_byte_reverse(mem + 8, 8);
789                 }
790                 break;
791         case 4:
792                 /* stxvw4x */
793                 wp = mem;
794                 for (j = 0; j < size / 4; ++j) {
795                         i = IS_LE ? 3 - j : j;
796                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
797                 }
798                 break;
799         case 2:
800                 /* stxvh8x */
801                 hp = mem;
802                 for (j = 0; j < size / 2; ++j) {
803                         i = IS_LE ? 7 - j : j;
804                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
805                 }
806                 break;
807         case 1:
808                 /* stvxb16x */
809                 bp = mem;
810                 for (j = 0; j < size; ++j) {
811                         i = IS_LE ? 15 - j : j;
812                         *bp++ = reg->b[i];
813                 }
814                 break;
815         }
816 }
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
819
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821                                        unsigned long ea, struct pt_regs *regs,
822                                        bool cross_endian)
823 {
824         int reg = op->reg;
825         u8 mem[16];
826         union vsx_reg buf;
827         int size = GETSIZE(op->type);
828
829         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830                 return -EFAULT;
831
832         emulate_vsx_load(op, &buf, mem, cross_endian);
833         preempt_disable();
834         if (reg < 32) {
835                 /* FP regs + extensions */
836                 if (regs->msr & MSR_FP) {
837                         load_vsrn(reg, &buf);
838                 } else {
839                         current->thread.fp_state.fpr[reg][0] = buf.d[0];
840                         current->thread.fp_state.fpr[reg][1] = buf.d[1];
841                 }
842         } else {
843                 if (regs->msr & MSR_VEC)
844                         load_vsrn(reg, &buf);
845                 else
846                         current->thread.vr_state.vr[reg - 32] = buf.v;
847         }
848         preempt_enable();
849         return 0;
850 }
851
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853                                         unsigned long ea, struct pt_regs *regs,
854                                         bool cross_endian)
855 {
856         int reg = op->reg;
857         u8 mem[16];
858         union vsx_reg buf;
859         int size = GETSIZE(op->type);
860
861         if (!address_ok(regs, ea, size))
862                 return -EFAULT;
863
864         preempt_disable();
865         if (reg < 32) {
866                 /* FP regs + extensions */
867                 if (regs->msr & MSR_FP) {
868                         store_vsrn(reg, &buf);
869                 } else {
870                         buf.d[0] = current->thread.fp_state.fpr[reg][0];
871                         buf.d[1] = current->thread.fp_state.fpr[reg][1];
872                 }
873         } else {
874                 if (regs->msr & MSR_VEC)
875                         store_vsrn(reg, &buf);
876                 else
877                         buf.v = current->thread.vr_state.vr[reg - 32];
878         }
879         preempt_enable();
880         emulate_vsx_store(op, &buf, mem, cross_endian);
881         return  copy_mem_out(mem, ea, size, regs);
882 }
883 #endif /* CONFIG_VSX */
884
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
886 {
887         int err;
888         unsigned long i, size;
889
890 #ifdef __powerpc64__
891         size = ppc64_caches.l1d.block_size;
892         if (!(regs->msr & MSR_64BIT))
893                 ea &= 0xffffffffUL;
894 #else
895         size = L1_CACHE_BYTES;
896 #endif
897         ea &= ~(size - 1);
898         if (!address_ok(regs, ea, size))
899                 return -EFAULT;
900         for (i = 0; i < size; i += sizeof(long)) {
901                 err = __put_user(0, (unsigned long __user *) (ea + i));
902                 if (err) {
903                         regs->dar = ea;
904                         return err;
905                 }
906         }
907         return 0;
908 }
909 NOKPROBE_SYMBOL(emulate_dcbz);
910
911 #define __put_user_asmx(x, addr, err, op, cr)           \
912         __asm__ __volatile__(                           \
913                 "1:     " op " %2,0,%3\n"               \
914                 "       mfcr    %1\n"                   \
915                 "2:\n"                                  \
916                 ".section .fixup,\"ax\"\n"              \
917                 "3:     li      %0,%4\n"                \
918                 "       b       2b\n"                   \
919                 ".previous\n"                           \
920                 EX_TABLE(1b, 3b)                        \
921                 : "=r" (err), "=r" (cr)                 \
922                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
923
924 #define __get_user_asmx(x, addr, err, op)               \
925         __asm__ __volatile__(                           \
926                 "1:     "op" %1,0,%2\n"                 \
927                 "2:\n"                                  \
928                 ".section .fixup,\"ax\"\n"              \
929                 "3:     li      %0,%3\n"                \
930                 "       b       2b\n"                   \
931                 ".previous\n"                           \
932                 EX_TABLE(1b, 3b)                        \
933                 : "=r" (err), "=r" (x)                  \
934                 : "r" (addr), "i" (-EFAULT), "0" (err))
935
936 #define __cacheop_user_asmx(addr, err, op)              \
937         __asm__ __volatile__(                           \
938                 "1:     "op" 0,%1\n"                    \
939                 "2:\n"                                  \
940                 ".section .fixup,\"ax\"\n"              \
941                 "3:     li      %0,%3\n"                \
942                 "       b       2b\n"                   \
943                 ".previous\n"                           \
944                 EX_TABLE(1b, 3b)                        \
945                 : "=r" (err)                            \
946                 : "r" (addr), "i" (-EFAULT), "0" (err))
947
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949                                     struct instruction_op *op)
950 {
951         long val = op->val;
952
953         op->type |= SETCC;
954         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956         if (!(regs->msr & MSR_64BIT))
957                 val = (int) val;
958 #endif
959         if (val < 0)
960                 op->ccval |= 0x80000000;
961         else if (val > 0)
962                 op->ccval |= 0x40000000;
963         else
964                 op->ccval |= 0x20000000;
965 }
966
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
968 {
969         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970                 if (val)
971                         op->xerval |= XER_CA32;
972                 else
973                         op->xerval &= ~XER_CA32;
974         }
975 }
976
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978                                      struct instruction_op *op, int rd,
979                                      unsigned long val1, unsigned long val2,
980                                      unsigned long carry_in)
981 {
982         unsigned long val = val1 + val2;
983
984         if (carry_in)
985                 ++val;
986         op->type = COMPUTE + SETREG + SETXER;
987         op->reg = rd;
988         op->val = val;
989 #ifdef __powerpc64__
990         if (!(regs->msr & MSR_64BIT)) {
991                 val = (unsigned int) val;
992                 val1 = (unsigned int) val1;
993         }
994 #endif
995         op->xerval = regs->xer;
996         if (val < val1 || (carry_in && val == val1))
997                 op->xerval |= XER_CA;
998         else
999                 op->xerval &= ~XER_CA;
1000
1001         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002                         (carry_in && (unsigned int)val == (unsigned int)val1));
1003 }
1004
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006                                           struct instruction_op *op,
1007                                           long v1, long v2, int crfld)
1008 {
1009         unsigned int crval, shift;
1010
1011         op->type = COMPUTE + SETCC;
1012         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1013         if (v1 < v2)
1014                 crval |= 8;
1015         else if (v1 > v2)
1016                 crval |= 4;
1017         else
1018                 crval |= 2;
1019         shift = (7 - crfld) * 4;
1020         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1021 }
1022
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024                                             struct instruction_op *op,
1025                                             unsigned long v1,
1026                                             unsigned long v2, int crfld)
1027 {
1028         unsigned int crval, shift;
1029
1030         op->type = COMPUTE + SETCC;
1031         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1032         if (v1 < v2)
1033                 crval |= 8;
1034         else if (v1 > v2)
1035                 crval |= 4;
1036         else
1037                 crval |= 2;
1038         shift = (7 - crfld) * 4;
1039         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1040 }
1041
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043                                     struct instruction_op *op,
1044                                     unsigned long v1, unsigned long v2)
1045 {
1046         unsigned long long out_val, mask;
1047         int i;
1048
1049         out_val = 0;
1050         for (i = 0; i < 8; i++) {
1051                 mask = 0xffUL << (i * 8);
1052                 if ((v1 & mask) == (v2 & mask))
1053                         out_val |= mask;
1054         }
1055         op->val = out_val;
1056 }
1057
1058 /*
1059  * The size parameter is used to adjust the equivalent popcnt instruction.
1060  * popcntb = 8, popcntw = 32, popcntd = 64
1061  */
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063                                       struct instruction_op *op,
1064                                       unsigned long v1, int size)
1065 {
1066         unsigned long long out = v1;
1067
1068         out -= (out >> 1) & 0x5555555555555555;
1069         out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1070         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1071
1072         if (size == 8) {        /* popcntb */
1073                 op->val = out;
1074                 return;
1075         }
1076         out += out >> 8;
1077         out += out >> 16;
1078         if (size == 32) {       /* popcntw */
1079                 op->val = out & 0x0000003f0000003f;
1080                 return;
1081         }
1082
1083         out = (out + (out >> 32)) & 0x7f;
1084         op->val = out;  /* popcntd */
1085 }
1086
1087 #ifdef CONFIG_PPC64
1088 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1089                                       struct instruction_op *op,
1090                                       unsigned long v1, unsigned long v2)
1091 {
1092         unsigned char perm, idx;
1093         unsigned int i;
1094
1095         perm = 0;
1096         for (i = 0; i < 8; i++) {
1097                 idx = (v1 >> (i * 8)) & 0xff;
1098                 if (idx < 64)
1099                         if (v2 & PPC_BIT(idx))
1100                                 perm |= 1 << i;
1101         }
1102         op->val = perm;
1103 }
1104 #endif /* CONFIG_PPC64 */
1105 /*
1106  * The size parameter adjusts the equivalent prty instruction.
1107  * prtyw = 32, prtyd = 64
1108  */
1109 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1110                                     struct instruction_op *op,
1111                                     unsigned long v, int size)
1112 {
1113         unsigned long long res = v ^ (v >> 8);
1114
1115         res ^= res >> 16;
1116         if (size == 32) {               /* prtyw */
1117                 op->val = res & 0x0000000100000001;
1118                 return;
1119         }
1120
1121         res ^= res >> 32;
1122         op->val = res & 1;      /*prtyd */
1123 }
1124
1125 static nokprobe_inline int trap_compare(long v1, long v2)
1126 {
1127         int ret = 0;
1128
1129         if (v1 < v2)
1130                 ret |= 0x10;
1131         else if (v1 > v2)
1132                 ret |= 0x08;
1133         else
1134                 ret |= 0x04;
1135         if ((unsigned long)v1 < (unsigned long)v2)
1136                 ret |= 0x02;
1137         else if ((unsigned long)v1 > (unsigned long)v2)
1138                 ret |= 0x01;
1139         return ret;
1140 }
1141
1142 /*
1143  * Elements of 32-bit rotate and mask instructions.
1144  */
1145 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1146                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1147 #ifdef __powerpc64__
1148 #define MASK64_L(mb)    (~0UL >> (mb))
1149 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1150 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1151 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1152 #else
1153 #define DATA32(x)       (x)
1154 #endif
1155 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1156
1157 /*
1158  * Decode an instruction, and return information about it in *op
1159  * without changing *regs.
1160  * Integer arithmetic and logical instructions, branches, and barrier
1161  * instructions can be emulated just using the information in *op.
1162  *
1163  * Return value is 1 if the instruction can be emulated just by
1164  * updating *regs with the information in *op, -1 if we need the
1165  * GPRs but *regs doesn't contain the full register set, or 0
1166  * otherwise.
1167  */
1168 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1169                   unsigned int instr)
1170 {
1171         unsigned int opcode, ra, rb, rd, spr, u;
1172         unsigned long int imm;
1173         unsigned long int val, val2;
1174         unsigned int mb, me, sh;
1175         long ival;
1176
1177         op->type = COMPUTE;
1178
1179         opcode = instr >> 26;
1180         switch (opcode) {
1181         case 16:        /* bc */
1182                 op->type = BRANCH;
1183                 imm = (signed short)(instr & 0xfffc);
1184                 if ((instr & 2) == 0)
1185                         imm += regs->nip;
1186                 op->val = truncate_if_32bit(regs->msr, imm);
1187                 if (instr & 1)
1188                         op->type |= SETLK;
1189                 if (branch_taken(instr, regs, op))
1190                         op->type |= BRTAKEN;
1191                 return 1;
1192 #ifdef CONFIG_PPC64
1193         case 17:        /* sc */
1194                 if ((instr & 0xfe2) == 2)
1195                         op->type = SYSCALL;
1196                 else
1197                         op->type = UNKNOWN;
1198                 return 0;
1199 #endif
1200         case 18:        /* b */
1201                 op->type = BRANCH | BRTAKEN;
1202                 imm = instr & 0x03fffffc;
1203                 if (imm & 0x02000000)
1204                         imm -= 0x04000000;
1205                 if ((instr & 2) == 0)
1206                         imm += regs->nip;
1207                 op->val = truncate_if_32bit(regs->msr, imm);
1208                 if (instr & 1)
1209                         op->type |= SETLK;
1210                 return 1;
1211         case 19:
1212                 switch ((instr >> 1) & 0x3ff) {
1213                 case 0:         /* mcrf */
1214                         op->type = COMPUTE + SETCC;
1215                         rd = 7 - ((instr >> 23) & 0x7);
1216                         ra = 7 - ((instr >> 18) & 0x7);
1217                         rd *= 4;
1218                         ra *= 4;
1219                         val = (regs->ccr >> ra) & 0xf;
1220                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1221                         return 1;
1222
1223                 case 16:        /* bclr */
1224                 case 528:       /* bcctr */
1225                         op->type = BRANCH;
1226                         imm = (instr & 0x400)? regs->ctr: regs->link;
1227                         op->val = truncate_if_32bit(regs->msr, imm);
1228                         if (instr & 1)
1229                                 op->type |= SETLK;
1230                         if (branch_taken(instr, regs, op))
1231                                 op->type |= BRTAKEN;
1232                         return 1;
1233
1234                 case 18:        /* rfid, scary */
1235                         if (regs->msr & MSR_PR)
1236                                 goto priv;
1237                         op->type = RFI;
1238                         return 0;
1239
1240                 case 150:       /* isync */
1241                         op->type = BARRIER | BARRIER_ISYNC;
1242                         return 1;
1243
1244                 case 33:        /* crnor */
1245                 case 129:       /* crandc */
1246                 case 193:       /* crxor */
1247                 case 225:       /* crnand */
1248                 case 257:       /* crand */
1249                 case 289:       /* creqv */
1250                 case 417:       /* crorc */
1251                 case 449:       /* cror */
1252                         op->type = COMPUTE + SETCC;
1253                         ra = (instr >> 16) & 0x1f;
1254                         rb = (instr >> 11) & 0x1f;
1255                         rd = (instr >> 21) & 0x1f;
1256                         ra = (regs->ccr >> (31 - ra)) & 1;
1257                         rb = (regs->ccr >> (31 - rb)) & 1;
1258                         val = (instr >> (6 + ra * 2 + rb)) & 1;
1259                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260                                 (val << (31 - rd));
1261                         return 1;
1262                 }
1263                 break;
1264         case 31:
1265                 switch ((instr >> 1) & 0x3ff) {
1266                 case 598:       /* sync */
1267                         op->type = BARRIER + BARRIER_SYNC;
1268 #ifdef __powerpc64__
1269                         switch ((instr >> 21) & 3) {
1270                         case 1:         /* lwsync */
1271                                 op->type = BARRIER + BARRIER_LWSYNC;
1272                                 break;
1273                         case 2:         /* ptesync */
1274                                 op->type = BARRIER + BARRIER_PTESYNC;
1275                                 break;
1276                         }
1277 #endif
1278                         return 1;
1279
1280                 case 854:       /* eieio */
1281                         op->type = BARRIER + BARRIER_EIEIO;
1282                         return 1;
1283                 }
1284                 break;
1285         }
1286
1287         /* Following cases refer to regs->gpr[], so we need all regs */
1288         if (!FULL_REGS(regs))
1289                 return -1;
1290
1291         rd = (instr >> 21) & 0x1f;
1292         ra = (instr >> 16) & 0x1f;
1293         rb = (instr >> 11) & 0x1f;
1294
1295         switch (opcode) {
1296 #ifdef __powerpc64__
1297         case 2:         /* tdi */
1298                 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1299                         goto trap;
1300                 return 1;
1301 #endif
1302         case 3:         /* twi */
1303                 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1304                         goto trap;
1305                 return 1;
1306
1307         case 7:         /* mulli */
1308                 op->val = regs->gpr[ra] * (short) instr;
1309                 goto compute_done;
1310
1311         case 8:         /* subfic */
1312                 imm = (short) instr;
1313                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1314                 return 1;
1315
1316         case 10:        /* cmpli */
1317                 imm = (unsigned short) instr;
1318                 val = regs->gpr[ra];
1319 #ifdef __powerpc64__
1320                 if ((rd & 1) == 0)
1321                         val = (unsigned int) val;
1322 #endif
1323                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1324                 return 1;
1325
1326         case 11:        /* cmpi */
1327                 imm = (short) instr;
1328                 val = regs->gpr[ra];
1329 #ifdef __powerpc64__
1330                 if ((rd & 1) == 0)
1331                         val = (int) val;
1332 #endif
1333                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1334                 return 1;
1335
1336         case 12:        /* addic */
1337                 imm = (short) instr;
1338                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1339                 return 1;
1340
1341         case 13:        /* addic. */
1342                 imm = (short) instr;
1343                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344                 set_cr0(regs, op);
1345                 return 1;
1346
1347         case 14:        /* addi */
1348                 imm = (short) instr;
1349                 if (ra)
1350                         imm += regs->gpr[ra];
1351                 op->val = imm;
1352                 goto compute_done;
1353
1354         case 15:        /* addis */
1355                 imm = ((short) instr) << 16;
1356                 if (ra)
1357                         imm += regs->gpr[ra];
1358                 op->val = imm;
1359                 goto compute_done;
1360
1361         case 19:
1362                 if (((instr >> 1) & 0x1f) == 2) {
1363                         /* addpcis */
1364                         imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1365                         imm |= (instr >> 15) & 0x3e;    /* d1 field */
1366                         op->val = regs->nip + (imm << 16) + 4;
1367                         goto compute_done;
1368                 }
1369                 op->type = UNKNOWN;
1370                 return 0;
1371
1372         case 20:        /* rlwimi */
1373                 mb = (instr >> 6) & 0x1f;
1374                 me = (instr >> 1) & 0x1f;
1375                 val = DATA32(regs->gpr[rd]);
1376                 imm = MASK32(mb, me);
1377                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378                 goto logical_done;
1379
1380         case 21:        /* rlwinm */
1381                 mb = (instr >> 6) & 0x1f;
1382                 me = (instr >> 1) & 0x1f;
1383                 val = DATA32(regs->gpr[rd]);
1384                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1385                 goto logical_done;
1386
1387         case 23:        /* rlwnm */
1388                 mb = (instr >> 6) & 0x1f;
1389                 me = (instr >> 1) & 0x1f;
1390                 rb = regs->gpr[rb] & 0x1f;
1391                 val = DATA32(regs->gpr[rd]);
1392                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1393                 goto logical_done;
1394
1395         case 24:        /* ori */
1396                 op->val = regs->gpr[rd] | (unsigned short) instr;
1397                 goto logical_done_nocc;
1398
1399         case 25:        /* oris */
1400                 imm = (unsigned short) instr;
1401                 op->val = regs->gpr[rd] | (imm << 16);
1402                 goto logical_done_nocc;
1403
1404         case 26:        /* xori */
1405                 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1406                 goto logical_done_nocc;
1407
1408         case 27:        /* xoris */
1409                 imm = (unsigned short) instr;
1410                 op->val = regs->gpr[rd] ^ (imm << 16);
1411                 goto logical_done_nocc;
1412
1413         case 28:        /* andi. */
1414                 op->val = regs->gpr[rd] & (unsigned short) instr;
1415                 set_cr0(regs, op);
1416                 goto logical_done_nocc;
1417
1418         case 29:        /* andis. */
1419                 imm = (unsigned short) instr;
1420                 op->val = regs->gpr[rd] & (imm << 16);
1421                 set_cr0(regs, op);
1422                 goto logical_done_nocc;
1423
1424 #ifdef __powerpc64__
1425         case 30:        /* rld* */
1426                 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1427                 val = regs->gpr[rd];
1428                 if ((instr & 0x10) == 0) {
1429                         sh = rb | ((instr & 2) << 4);
1430                         val = ROTATE(val, sh);
1431                         switch ((instr >> 2) & 3) {
1432                         case 0:         /* rldicl */
1433                                 val &= MASK64_L(mb);
1434                                 break;
1435                         case 1:         /* rldicr */
1436                                 val &= MASK64_R(mb);
1437                                 break;
1438                         case 2:         /* rldic */
1439                                 val &= MASK64(mb, 63 - sh);
1440                                 break;
1441                         case 3:         /* rldimi */
1442                                 imm = MASK64(mb, 63 - sh);
1443                                 val = (regs->gpr[ra] & ~imm) |
1444                                         (val & imm);
1445                         }
1446                         op->val = val;
1447                         goto logical_done;
1448                 } else {
1449                         sh = regs->gpr[rb] & 0x3f;
1450                         val = ROTATE(val, sh);
1451                         switch ((instr >> 1) & 7) {
1452                         case 0:         /* rldcl */
1453                                 op->val = val & MASK64_L(mb);
1454                                 goto logical_done;
1455                         case 1:         /* rldcr */
1456                                 op->val = val & MASK64_R(mb);
1457                                 goto logical_done;
1458                         }
1459                 }
1460 #endif
1461                 op->type = UNKNOWN;     /* illegal instruction */
1462                 return 0;
1463
1464         case 31:
1465                 /* isel occupies 32 minor opcodes */
1466                 if (((instr >> 1) & 0x1f) == 15) {
1467                         mb = (instr >> 6) & 0x1f; /* bc field */
1468                         val = (regs->ccr >> (31 - mb)) & 1;
1469                         val2 = (ra) ? regs->gpr[ra] : 0;
1470
1471                         op->val = (val) ? val2 : regs->gpr[rb];
1472                         goto compute_done;
1473                 }
1474
1475                 switch ((instr >> 1) & 0x3ff) {
1476                 case 4:         /* tw */
1477                         if (rd == 0x1f ||
1478                             (rd & trap_compare((int)regs->gpr[ra],
1479                                                (int)regs->gpr[rb])))
1480                                 goto trap;
1481                         return 1;
1482 #ifdef __powerpc64__
1483                 case 68:        /* td */
1484                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1485                                 goto trap;
1486                         return 1;
1487 #endif
1488                 case 83:        /* mfmsr */
1489                         if (regs->msr & MSR_PR)
1490                                 goto priv;
1491                         op->type = MFMSR;
1492                         op->reg = rd;
1493                         return 0;
1494                 case 146:       /* mtmsr */
1495                         if (regs->msr & MSR_PR)
1496                                 goto priv;
1497                         op->type = MTMSR;
1498                         op->reg = rd;
1499                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1500                         return 0;
1501 #ifdef CONFIG_PPC64
1502                 case 178:       /* mtmsrd */
1503                         if (regs->msr & MSR_PR)
1504                                 goto priv;
1505                         op->type = MTMSR;
1506                         op->reg = rd;
1507                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1508                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1509                         imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1510                         op->val = imm;
1511                         return 0;
1512 #endif
1513
1514                 case 19:        /* mfcr */
1515                         imm = 0xffffffffUL;
1516                         if ((instr >> 20) & 1) {
1517                                 imm = 0xf0000000UL;
1518                                 for (sh = 0; sh < 8; ++sh) {
1519                                         if (instr & (0x80000 >> sh))
1520                                                 break;
1521                                         imm >>= 4;
1522                                 }
1523                         }
1524                         op->val = regs->ccr & imm;
1525                         goto compute_done;
1526
1527                 case 144:       /* mtcrf */
1528                         op->type = COMPUTE + SETCC;
1529                         imm = 0xf0000000UL;
1530                         val = regs->gpr[rd];
1531                         op->ccval = regs->ccr;
1532                         for (sh = 0; sh < 8; ++sh) {
1533                                 if (instr & (0x80000 >> sh))
1534                                         op->ccval = (op->ccval & ~imm) |
1535                                                 (val & imm);
1536                                 imm >>= 4;
1537                         }
1538                         return 1;
1539
1540                 case 339:       /* mfspr */
1541                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542                         op->type = MFSPR;
1543                         op->reg = rd;
1544                         op->spr = spr;
1545                         if (spr == SPRN_XER || spr == SPRN_LR ||
1546                             spr == SPRN_CTR)
1547                                 return 1;
1548                         return 0;
1549
1550                 case 467:       /* mtspr */
1551                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552                         op->type = MTSPR;
1553                         op->val = regs->gpr[rd];
1554                         op->spr = spr;
1555                         if (spr == SPRN_XER || spr == SPRN_LR ||
1556                             spr == SPRN_CTR)
1557                                 return 1;
1558                         return 0;
1559
1560 /*
1561  * Compare instructions
1562  */
1563                 case 0: /* cmp */
1564                         val = regs->gpr[ra];
1565                         val2 = regs->gpr[rb];
1566 #ifdef __powerpc64__
1567                         if ((rd & 1) == 0) {
1568                                 /* word (32-bit) compare */
1569                                 val = (int) val;
1570                                 val2 = (int) val2;
1571                         }
1572 #endif
1573                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1574                         return 1;
1575
1576                 case 32:        /* cmpl */
1577                         val = regs->gpr[ra];
1578                         val2 = regs->gpr[rb];
1579 #ifdef __powerpc64__
1580                         if ((rd & 1) == 0) {
1581                                 /* word (32-bit) compare */
1582                                 val = (unsigned int) val;
1583                                 val2 = (unsigned int) val2;
1584                         }
1585 #endif
1586                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1587                         return 1;
1588
1589                 case 508: /* cmpb */
1590                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1591                         goto logical_done_nocc;
1592
1593 /*
1594  * Arithmetic instructions
1595  */
1596                 case 8: /* subfc */
1597                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598                                        regs->gpr[rb], 1);
1599                         goto arith_done;
1600 #ifdef __powerpc64__
1601                 case 9: /* mulhdu */
1602                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1604                         goto arith_done;
1605 #endif
1606                 case 10:        /* addc */
1607                         add_with_carry(regs, op, rd, regs->gpr[ra],
1608                                        regs->gpr[rb], 0);
1609                         goto arith_done;
1610
1611                 case 11:        /* mulhwu */
1612                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1614                         goto arith_done;
1615
1616                 case 40:        /* subf */
1617                         op->val = regs->gpr[rb] - regs->gpr[ra];
1618                         goto arith_done;
1619 #ifdef __powerpc64__
1620                 case 73:        /* mulhd */
1621                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1623                         goto arith_done;
1624 #endif
1625                 case 75:        /* mulhw */
1626                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1628                         goto arith_done;
1629
1630                 case 104:       /* neg */
1631                         op->val = -regs->gpr[ra];
1632                         goto arith_done;
1633
1634                 case 136:       /* subfe */
1635                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1636                                        regs->gpr[rb], regs->xer & XER_CA);
1637                         goto arith_done;
1638
1639                 case 138:       /* adde */
1640                         add_with_carry(regs, op, rd, regs->gpr[ra],
1641                                        regs->gpr[rb], regs->xer & XER_CA);
1642                         goto arith_done;
1643
1644                 case 200:       /* subfze */
1645                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646                                        regs->xer & XER_CA);
1647                         goto arith_done;
1648
1649                 case 202:       /* addze */
1650                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651                                        regs->xer & XER_CA);
1652                         goto arith_done;
1653
1654                 case 232:       /* subfme */
1655                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656                                        regs->xer & XER_CA);
1657                         goto arith_done;
1658 #ifdef __powerpc64__
1659                 case 233:       /* mulld */
1660                         op->val = regs->gpr[ra] * regs->gpr[rb];
1661                         goto arith_done;
1662 #endif
1663                 case 234:       /* addme */
1664                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665                                        regs->xer & XER_CA);
1666                         goto arith_done;
1667
1668                 case 235:       /* mullw */
1669                         op->val = (long)(int) regs->gpr[ra] *
1670                                 (int) regs->gpr[rb];
1671
1672                         goto arith_done;
1673
1674                 case 266:       /* add */
1675                         op->val = regs->gpr[ra] + regs->gpr[rb];
1676                         goto arith_done;
1677 #ifdef __powerpc64__
1678                 case 457:       /* divdu */
1679                         op->val = regs->gpr[ra] / regs->gpr[rb];
1680                         goto arith_done;
1681 #endif
1682                 case 459:       /* divwu */
1683                         op->val = (unsigned int) regs->gpr[ra] /
1684                                 (unsigned int) regs->gpr[rb];
1685                         goto arith_done;
1686 #ifdef __powerpc64__
1687                 case 489:       /* divd */
1688                         op->val = (long int) regs->gpr[ra] /
1689                                 (long int) regs->gpr[rb];
1690                         goto arith_done;
1691 #endif
1692                 case 491:       /* divw */
1693                         op->val = (int) regs->gpr[ra] /
1694                                 (int) regs->gpr[rb];
1695                         goto arith_done;
1696
1697
1698 /*
1699  * Logical instructions
1700  */
1701                 case 26:        /* cntlzw */
1702                         val = (unsigned int) regs->gpr[rd];
1703                         op->val = ( val ? __builtin_clz(val) : 32 );
1704                         goto logical_done;
1705 #ifdef __powerpc64__
1706                 case 58:        /* cntlzd */
1707                         val = regs->gpr[rd];
1708                         op->val = ( val ? __builtin_clzl(val) : 64 );
1709                         goto logical_done;
1710 #endif
1711                 case 28:        /* and */
1712                         op->val = regs->gpr[rd] & regs->gpr[rb];
1713                         goto logical_done;
1714
1715                 case 60:        /* andc */
1716                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1717                         goto logical_done;
1718
1719                 case 122:       /* popcntb */
1720                         do_popcnt(regs, op, regs->gpr[rd], 8);
1721                         goto logical_done_nocc;
1722
1723                 case 124:       /* nor */
1724                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1725                         goto logical_done;
1726
1727                 case 154:       /* prtyw */
1728                         do_prty(regs, op, regs->gpr[rd], 32);
1729                         goto logical_done_nocc;
1730
1731                 case 186:       /* prtyd */
1732                         do_prty(regs, op, regs->gpr[rd], 64);
1733                         goto logical_done_nocc;
1734 #ifdef CONFIG_PPC64
1735                 case 252:       /* bpermd */
1736                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1737                         goto logical_done_nocc;
1738 #endif
1739                 case 284:       /* xor */
1740                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1741                         goto logical_done;
1742
1743                 case 316:       /* xor */
1744                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1745                         goto logical_done;
1746
1747                 case 378:       /* popcntw */
1748                         do_popcnt(regs, op, regs->gpr[rd], 32);
1749                         goto logical_done_nocc;
1750
1751                 case 412:       /* orc */
1752                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1753                         goto logical_done;
1754
1755                 case 444:       /* or */
1756                         op->val = regs->gpr[rd] | regs->gpr[rb];
1757                         goto logical_done;
1758
1759                 case 476:       /* nand */
1760                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1761                         goto logical_done;
1762 #ifdef CONFIG_PPC64
1763                 case 506:       /* popcntd */
1764                         do_popcnt(regs, op, regs->gpr[rd], 64);
1765                         goto logical_done_nocc;
1766 #endif
1767                 case 922:       /* extsh */
1768                         op->val = (signed short) regs->gpr[rd];
1769                         goto logical_done;
1770
1771                 case 954:       /* extsb */
1772                         op->val = (signed char) regs->gpr[rd];
1773                         goto logical_done;
1774 #ifdef __powerpc64__
1775                 case 986:       /* extsw */
1776                         op->val = (signed int) regs->gpr[rd];
1777                         goto logical_done;
1778 #endif
1779
1780 /*
1781  * Shift instructions
1782  */
1783                 case 24:        /* slw */
1784                         sh = regs->gpr[rb] & 0x3f;
1785                         if (sh < 32)
1786                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1787                         else
1788                                 op->val = 0;
1789                         goto logical_done;
1790
1791                 case 536:       /* srw */
1792                         sh = regs->gpr[rb] & 0x3f;
1793                         if (sh < 32)
1794                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1795                         else
1796                                 op->val = 0;
1797                         goto logical_done;
1798
1799                 case 792:       /* sraw */
1800                         op->type = COMPUTE + SETREG + SETXER;
1801                         sh = regs->gpr[rb] & 0x3f;
1802                         ival = (signed int) regs->gpr[rd];
1803                         op->val = ival >> (sh < 32 ? sh : 31);
1804                         op->xerval = regs->xer;
1805                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1806                                 op->xerval |= XER_CA;
1807                         else
1808                                 op->xerval &= ~XER_CA;
1809                         set_ca32(op, op->xerval & XER_CA);
1810                         goto logical_done;
1811
1812                 case 824:       /* srawi */
1813                         op->type = COMPUTE + SETREG + SETXER;
1814                         sh = rb;
1815                         ival = (signed int) regs->gpr[rd];
1816                         op->val = ival >> sh;
1817                         op->xerval = regs->xer;
1818                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1819                                 op->xerval |= XER_CA;
1820                         else
1821                                 op->xerval &= ~XER_CA;
1822                         set_ca32(op, op->xerval & XER_CA);
1823                         goto logical_done;
1824
1825 #ifdef __powerpc64__
1826                 case 27:        /* sld */
1827                         sh = regs->gpr[rb] & 0x7f;
1828                         if (sh < 64)
1829                                 op->val = regs->gpr[rd] << sh;
1830                         else
1831                                 op->val = 0;
1832                         goto logical_done;
1833
1834                 case 539:       /* srd */
1835                         sh = regs->gpr[rb] & 0x7f;
1836                         if (sh < 64)
1837                                 op->val = regs->gpr[rd] >> sh;
1838                         else
1839                                 op->val = 0;
1840                         goto logical_done;
1841
1842                 case 794:       /* srad */
1843                         op->type = COMPUTE + SETREG + SETXER;
1844                         sh = regs->gpr[rb] & 0x7f;
1845                         ival = (signed long int) regs->gpr[rd];
1846                         op->val = ival >> (sh < 64 ? sh : 63);
1847                         op->xerval = regs->xer;
1848                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1849                                 op->xerval |= XER_CA;
1850                         else
1851                                 op->xerval &= ~XER_CA;
1852                         set_ca32(op, op->xerval & XER_CA);
1853                         goto logical_done;
1854
1855                 case 826:       /* sradi with sh_5 = 0 */
1856                 case 827:       /* sradi with sh_5 = 1 */
1857                         op->type = COMPUTE + SETREG + SETXER;
1858                         sh = rb | ((instr & 2) << 4);
1859                         ival = (signed long int) regs->gpr[rd];
1860                         op->val = ival >> sh;
1861                         op->xerval = regs->xer;
1862                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1863                                 op->xerval |= XER_CA;
1864                         else
1865                                 op->xerval &= ~XER_CA;
1866                         set_ca32(op, op->xerval & XER_CA);
1867                         goto logical_done;
1868 #endif /* __powerpc64__ */
1869
1870 /*
1871  * Cache instructions
1872  */
1873                 case 54:        /* dcbst */
1874                         op->type = MKOP(CACHEOP, DCBST, 0);
1875                         op->ea = xform_ea(instr, regs);
1876                         return 0;
1877
1878                 case 86:        /* dcbf */
1879                         op->type = MKOP(CACHEOP, DCBF, 0);
1880                         op->ea = xform_ea(instr, regs);
1881                         return 0;
1882
1883                 case 246:       /* dcbtst */
1884                         op->type = MKOP(CACHEOP, DCBTST, 0);
1885                         op->ea = xform_ea(instr, regs);
1886                         op->reg = rd;
1887                         return 0;
1888
1889                 case 278:       /* dcbt */
1890                         op->type = MKOP(CACHEOP, DCBTST, 0);
1891                         op->ea = xform_ea(instr, regs);
1892                         op->reg = rd;
1893                         return 0;
1894
1895                 case 982:       /* icbi */
1896                         op->type = MKOP(CACHEOP, ICBI, 0);
1897                         op->ea = xform_ea(instr, regs);
1898                         return 0;
1899
1900                 case 1014:      /* dcbz */
1901                         op->type = MKOP(CACHEOP, DCBZ, 0);
1902                         op->ea = xform_ea(instr, regs);
1903                         return 0;
1904                 }
1905                 break;
1906         }
1907
1908 /*
1909  * Loads and stores.
1910  */
1911         op->type = UNKNOWN;
1912         op->update_reg = ra;
1913         op->reg = rd;
1914         op->val = regs->gpr[rd];
1915         u = (instr >> 20) & UPDATE;
1916         op->vsx_flags = 0;
1917
1918         switch (opcode) {
1919         case 31:
1920                 u = instr & UPDATE;
1921                 op->ea = xform_ea(instr, regs);
1922                 switch ((instr >> 1) & 0x3ff) {
1923                 case 20:        /* lwarx */
1924                         op->type = MKOP(LARX, 0, 4);
1925                         break;
1926
1927                 case 150:       /* stwcx. */
1928                         op->type = MKOP(STCX, 0, 4);
1929                         break;
1930
1931 #ifdef __powerpc64__
1932                 case 84:        /* ldarx */
1933                         op->type = MKOP(LARX, 0, 8);
1934                         break;
1935
1936                 case 214:       /* stdcx. */
1937                         op->type = MKOP(STCX, 0, 8);
1938                         break;
1939
1940                 case 52:        /* lbarx */
1941                         op->type = MKOP(LARX, 0, 1);
1942                         break;
1943
1944                 case 694:       /* stbcx. */
1945                         op->type = MKOP(STCX, 0, 1);
1946                         break;
1947
1948                 case 116:       /* lharx */
1949                         op->type = MKOP(LARX, 0, 2);
1950                         break;
1951
1952                 case 726:       /* sthcx. */
1953                         op->type = MKOP(STCX, 0, 2);
1954                         break;
1955
1956                 case 276:       /* lqarx */
1957                         if (!((rd & 1) || rd == ra || rd == rb))
1958                                 op->type = MKOP(LARX, 0, 16);
1959                         break;
1960
1961                 case 182:       /* stqcx. */
1962                         if (!(rd & 1))
1963                                 op->type = MKOP(STCX, 0, 16);
1964                         break;
1965 #endif
1966
1967                 case 23:        /* lwzx */
1968                 case 55:        /* lwzux */
1969                         op->type = MKOP(LOAD, u, 4);
1970                         break;
1971
1972                 case 87:        /* lbzx */
1973                 case 119:       /* lbzux */
1974                         op->type = MKOP(LOAD, u, 1);
1975                         break;
1976
1977 #ifdef CONFIG_ALTIVEC
1978                 /*
1979                  * Note: for the load/store vector element instructions,
1980                  * bits of the EA say which field of the VMX register to use.
1981                  */
1982                 case 7:         /* lvebx */
1983                         op->type = MKOP(LOAD_VMX, 0, 1);
1984                         op->element_size = 1;
1985                         break;
1986
1987                 case 39:        /* lvehx */
1988                         op->type = MKOP(LOAD_VMX, 0, 2);
1989                         op->element_size = 2;
1990                         break;
1991
1992                 case 71:        /* lvewx */
1993                         op->type = MKOP(LOAD_VMX, 0, 4);
1994                         op->element_size = 4;
1995                         break;
1996
1997                 case 103:       /* lvx */
1998                 case 359:       /* lvxl */
1999                         op->type = MKOP(LOAD_VMX, 0, 16);
2000                         op->element_size = 16;
2001                         break;
2002
2003                 case 135:       /* stvebx */
2004                         op->type = MKOP(STORE_VMX, 0, 1);
2005                         op->element_size = 1;
2006                         break;
2007
2008                 case 167:       /* stvehx */
2009                         op->type = MKOP(STORE_VMX, 0, 2);
2010                         op->element_size = 2;
2011                         break;
2012
2013                 case 199:       /* stvewx */
2014                         op->type = MKOP(STORE_VMX, 0, 4);
2015                         op->element_size = 4;
2016                         break;
2017
2018                 case 231:       /* stvx */
2019                 case 487:       /* stvxl */
2020                         op->type = MKOP(STORE_VMX, 0, 16);
2021                         break;
2022 #endif /* CONFIG_ALTIVEC */
2023
2024 #ifdef __powerpc64__
2025                 case 21:        /* ldx */
2026                 case 53:        /* ldux */
2027                         op->type = MKOP(LOAD, u, 8);
2028                         break;
2029
2030                 case 149:       /* stdx */
2031                 case 181:       /* stdux */
2032                         op->type = MKOP(STORE, u, 8);
2033                         break;
2034 #endif
2035
2036                 case 151:       /* stwx */
2037                 case 183:       /* stwux */
2038                         op->type = MKOP(STORE, u, 4);
2039                         break;
2040
2041                 case 215:       /* stbx */
2042                 case 247:       /* stbux */
2043                         op->type = MKOP(STORE, u, 1);
2044                         break;
2045
2046                 case 279:       /* lhzx */
2047                 case 311:       /* lhzux */
2048                         op->type = MKOP(LOAD, u, 2);
2049                         break;
2050
2051 #ifdef __powerpc64__
2052                 case 341:       /* lwax */
2053                 case 373:       /* lwaux */
2054                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2055                         break;
2056 #endif
2057
2058                 case 343:       /* lhax */
2059                 case 375:       /* lhaux */
2060                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2061                         break;
2062
2063                 case 407:       /* sthx */
2064                 case 439:       /* sthux */
2065                         op->type = MKOP(STORE, u, 2);
2066                         break;
2067
2068 #ifdef __powerpc64__
2069                 case 532:       /* ldbrx */
2070                         op->type = MKOP(LOAD, BYTEREV, 8);
2071                         break;
2072
2073 #endif
2074                 case 533:       /* lswx */
2075                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2076                         break;
2077
2078                 case 534:       /* lwbrx */
2079                         op->type = MKOP(LOAD, BYTEREV, 4);
2080                         break;
2081
2082                 case 597:       /* lswi */
2083                         if (rb == 0)
2084                                 rb = 32;        /* # bytes to load */
2085                         op->type = MKOP(LOAD_MULTI, 0, rb);
2086                         op->ea = ra ? regs->gpr[ra] : 0;
2087                         break;
2088
2089 #ifdef CONFIG_PPC_FPU
2090                 case 535:       /* lfsx */
2091                 case 567:       /* lfsux */
2092                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2093                         break;
2094
2095                 case 599:       /* lfdx */
2096                 case 631:       /* lfdux */
2097                         op->type = MKOP(LOAD_FP, u, 8);
2098                         break;
2099
2100                 case 663:       /* stfsx */
2101                 case 695:       /* stfsux */
2102                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2103                         break;
2104
2105                 case 727:       /* stfdx */
2106                 case 759:       /* stfdux */
2107                         op->type = MKOP(STORE_FP, u, 8);
2108                         break;
2109
2110 #ifdef __powerpc64__
2111                 case 791:       /* lfdpx */
2112                         op->type = MKOP(LOAD_FP, 0, 16);
2113                         break;
2114
2115                 case 855:       /* lfiwax */
2116                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2117                         break;
2118
2119                 case 887:       /* lfiwzx */
2120                         op->type = MKOP(LOAD_FP, 0, 4);
2121                         break;
2122
2123                 case 919:       /* stfdpx */
2124                         op->type = MKOP(STORE_FP, 0, 16);
2125                         break;
2126
2127                 case 983:       /* stfiwx */
2128                         op->type = MKOP(STORE_FP, 0, 4);
2129                         break;
2130 #endif /* __powerpc64 */
2131 #endif /* CONFIG_PPC_FPU */
2132
2133 #ifdef __powerpc64__
2134                 case 660:       /* stdbrx */
2135                         op->type = MKOP(STORE, BYTEREV, 8);
2136                         op->val = byterev_8(regs->gpr[rd]);
2137                         break;
2138
2139 #endif
2140                 case 661:       /* stswx */
2141                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2142                         break;
2143
2144                 case 662:       /* stwbrx */
2145                         op->type = MKOP(STORE, BYTEREV, 4);
2146                         op->val = byterev_4(regs->gpr[rd]);
2147                         break;
2148
2149                 case 725:       /* stswi */
2150                         if (rb == 0)
2151                                 rb = 32;        /* # bytes to store */
2152                         op->type = MKOP(STORE_MULTI, 0, rb);
2153                         op->ea = ra ? regs->gpr[ra] : 0;
2154                         break;
2155
2156                 case 790:       /* lhbrx */
2157                         op->type = MKOP(LOAD, BYTEREV, 2);
2158                         break;
2159
2160                 case 918:       /* sthbrx */
2161                         op->type = MKOP(STORE, BYTEREV, 2);
2162                         op->val = byterev_2(regs->gpr[rd]);
2163                         break;
2164
2165 #ifdef CONFIG_VSX
2166                 case 12:        /* lxsiwzx */
2167                         op->reg = rd | ((instr & 1) << 5);
2168                         op->type = MKOP(LOAD_VSX, 0, 4);
2169                         op->element_size = 8;
2170                         break;
2171
2172                 case 76:        /* lxsiwax */
2173                         op->reg = rd | ((instr & 1) << 5);
2174                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2175                         op->element_size = 8;
2176                         break;
2177
2178                 case 140:       /* stxsiwx */
2179                         op->reg = rd | ((instr & 1) << 5);
2180                         op->type = MKOP(STORE_VSX, 0, 4);
2181                         op->element_size = 8;
2182                         break;
2183
2184                 case 268:       /* lxvx */
2185                         op->reg = rd | ((instr & 1) << 5);
2186                         op->type = MKOP(LOAD_VSX, 0, 16);
2187                         op->element_size = 16;
2188                         op->vsx_flags = VSX_CHECK_VEC;
2189                         break;
2190
2191                 case 269:       /* lxvl */
2192                 case 301: {     /* lxvll */
2193                         int nb;
2194                         op->reg = rd | ((instr & 1) << 5);
2195                         op->ea = ra ? regs->gpr[ra] : 0;
2196                         nb = regs->gpr[rb] & 0xff;
2197                         if (nb > 16)
2198                                 nb = 16;
2199                         op->type = MKOP(LOAD_VSX, 0, nb);
2200                         op->element_size = 16;
2201                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2202                                 VSX_CHECK_VEC;
2203                         break;
2204                 }
2205                 case 332:       /* lxvdsx */
2206                         op->reg = rd | ((instr & 1) << 5);
2207                         op->type = MKOP(LOAD_VSX, 0, 8);
2208                         op->element_size = 8;
2209                         op->vsx_flags = VSX_SPLAT;
2210                         break;
2211
2212                 case 364:       /* lxvwsx */
2213                         op->reg = rd | ((instr & 1) << 5);
2214                         op->type = MKOP(LOAD_VSX, 0, 4);
2215                         op->element_size = 4;
2216                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2217                         break;
2218
2219                 case 396:       /* stxvx */
2220                         op->reg = rd | ((instr & 1) << 5);
2221                         op->type = MKOP(STORE_VSX, 0, 16);
2222                         op->element_size = 16;
2223                         op->vsx_flags = VSX_CHECK_VEC;
2224                         break;
2225
2226                 case 397:       /* stxvl */
2227                 case 429: {     /* stxvll */
2228                         int nb;
2229                         op->reg = rd | ((instr & 1) << 5);
2230                         op->ea = ra ? regs->gpr[ra] : 0;
2231                         nb = regs->gpr[rb] & 0xff;
2232                         if (nb > 16)
2233                                 nb = 16;
2234                         op->type = MKOP(STORE_VSX, 0, nb);
2235                         op->element_size = 16;
2236                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2237                                 VSX_CHECK_VEC;
2238                         break;
2239                 }
2240                 case 524:       /* lxsspx */
2241                         op->reg = rd | ((instr & 1) << 5);
2242                         op->type = MKOP(LOAD_VSX, 0, 4);
2243                         op->element_size = 8;
2244                         op->vsx_flags = VSX_FPCONV;
2245                         break;
2246
2247                 case 588:       /* lxsdx */
2248                         op->reg = rd | ((instr & 1) << 5);
2249                         op->type = MKOP(LOAD_VSX, 0, 8);
2250                         op->element_size = 8;
2251                         break;
2252
2253                 case 652:       /* stxsspx */
2254                         op->reg = rd | ((instr & 1) << 5);
2255                         op->type = MKOP(STORE_VSX, 0, 4);
2256                         op->element_size = 8;
2257                         op->vsx_flags = VSX_FPCONV;
2258                         break;
2259
2260                 case 716:       /* stxsdx */
2261                         op->reg = rd | ((instr & 1) << 5);
2262                         op->type = MKOP(STORE_VSX, 0, 8);
2263                         op->element_size = 8;
2264                         break;
2265
2266                 case 780:       /* lxvw4x */
2267                         op->reg = rd | ((instr & 1) << 5);
2268                         op->type = MKOP(LOAD_VSX, 0, 16);
2269                         op->element_size = 4;
2270                         break;
2271
2272                 case 781:       /* lxsibzx */
2273                         op->reg = rd | ((instr & 1) << 5);
2274                         op->type = MKOP(LOAD_VSX, 0, 1);
2275                         op->element_size = 8;
2276                         op->vsx_flags = VSX_CHECK_VEC;
2277                         break;
2278
2279                 case 812:       /* lxvh8x */
2280                         op->reg = rd | ((instr & 1) << 5);
2281                         op->type = MKOP(LOAD_VSX, 0, 16);
2282                         op->element_size = 2;
2283                         op->vsx_flags = VSX_CHECK_VEC;
2284                         break;
2285
2286                 case 813:       /* lxsihzx */
2287                         op->reg = rd | ((instr & 1) << 5);
2288                         op->type = MKOP(LOAD_VSX, 0, 2);
2289                         op->element_size = 8;
2290                         op->vsx_flags = VSX_CHECK_VEC;
2291                         break;
2292
2293                 case 844:       /* lxvd2x */
2294                         op->reg = rd | ((instr & 1) << 5);
2295                         op->type = MKOP(LOAD_VSX, 0, 16);
2296                         op->element_size = 8;
2297                         break;
2298
2299                 case 876:       /* lxvb16x */
2300                         op->reg = rd | ((instr & 1) << 5);
2301                         op->type = MKOP(LOAD_VSX, 0, 16);
2302                         op->element_size = 1;
2303                         op->vsx_flags = VSX_CHECK_VEC;
2304                         break;
2305
2306                 case 908:       /* stxvw4x */
2307                         op->reg = rd | ((instr & 1) << 5);
2308                         op->type = MKOP(STORE_VSX, 0, 16);
2309                         op->element_size = 4;
2310                         break;
2311
2312                 case 909:       /* stxsibx */
2313                         op->reg = rd | ((instr & 1) << 5);
2314                         op->type = MKOP(STORE_VSX, 0, 1);
2315                         op->element_size = 8;
2316                         op->vsx_flags = VSX_CHECK_VEC;
2317                         break;
2318
2319                 case 940:       /* stxvh8x */
2320                         op->reg = rd | ((instr & 1) << 5);
2321                         op->type = MKOP(STORE_VSX, 0, 16);
2322                         op->element_size = 2;
2323                         op->vsx_flags = VSX_CHECK_VEC;
2324                         break;
2325
2326                 case 941:       /* stxsihx */
2327                         op->reg = rd | ((instr & 1) << 5);
2328                         op->type = MKOP(STORE_VSX, 0, 2);
2329                         op->element_size = 8;
2330                         op->vsx_flags = VSX_CHECK_VEC;
2331                         break;
2332
2333                 case 972:       /* stxvd2x */
2334                         op->reg = rd | ((instr & 1) << 5);
2335                         op->type = MKOP(STORE_VSX, 0, 16);
2336                         op->element_size = 8;
2337                         break;
2338
2339                 case 1004:      /* stxvb16x */
2340                         op->reg = rd | ((instr & 1) << 5);
2341                         op->type = MKOP(STORE_VSX, 0, 16);
2342                         op->element_size = 1;
2343                         op->vsx_flags = VSX_CHECK_VEC;
2344                         break;
2345
2346 #endif /* CONFIG_VSX */
2347                 }
2348                 break;
2349
2350         case 32:        /* lwz */
2351         case 33:        /* lwzu */
2352                 op->type = MKOP(LOAD, u, 4);
2353                 op->ea = dform_ea(instr, regs);
2354                 break;
2355
2356         case 34:        /* lbz */
2357         case 35:        /* lbzu */
2358                 op->type = MKOP(LOAD, u, 1);
2359                 op->ea = dform_ea(instr, regs);
2360                 break;
2361
2362         case 36:        /* stw */
2363         case 37:        /* stwu */
2364                 op->type = MKOP(STORE, u, 4);
2365                 op->ea = dform_ea(instr, regs);
2366                 break;
2367
2368         case 38:        /* stb */
2369         case 39:        /* stbu */
2370                 op->type = MKOP(STORE, u, 1);
2371                 op->ea = dform_ea(instr, regs);
2372                 break;
2373
2374         case 40:        /* lhz */
2375         case 41:        /* lhzu */
2376                 op->type = MKOP(LOAD, u, 2);
2377                 op->ea = dform_ea(instr, regs);
2378                 break;
2379
2380         case 42:        /* lha */
2381         case 43:        /* lhau */
2382                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2383                 op->ea = dform_ea(instr, regs);
2384                 break;
2385
2386         case 44:        /* sth */
2387         case 45:        /* sthu */
2388                 op->type = MKOP(STORE, u, 2);
2389                 op->ea = dform_ea(instr, regs);
2390                 break;
2391
2392         case 46:        /* lmw */
2393                 if (ra >= rd)
2394                         break;          /* invalid form, ra in range to load */
2395                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2396                 op->ea = dform_ea(instr, regs);
2397                 break;
2398
2399         case 47:        /* stmw */
2400                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2401                 op->ea = dform_ea(instr, regs);
2402                 break;
2403
2404 #ifdef CONFIG_PPC_FPU
2405         case 48:        /* lfs */
2406         case 49:        /* lfsu */
2407                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2408                 op->ea = dform_ea(instr, regs);
2409                 break;
2410
2411         case 50:        /* lfd */
2412         case 51:        /* lfdu */
2413                 op->type = MKOP(LOAD_FP, u, 8);
2414                 op->ea = dform_ea(instr, regs);
2415                 break;
2416
2417         case 52:        /* stfs */
2418         case 53:        /* stfsu */
2419                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2420                 op->ea = dform_ea(instr, regs);
2421                 break;
2422
2423         case 54:        /* stfd */
2424         case 55:        /* stfdu */
2425                 op->type = MKOP(STORE_FP, u, 8);
2426                 op->ea = dform_ea(instr, regs);
2427                 break;
2428 #endif
2429
2430 #ifdef __powerpc64__
2431         case 56:        /* lq */
2432                 if (!((rd & 1) || (rd == ra)))
2433                         op->type = MKOP(LOAD, 0, 16);
2434                 op->ea = dqform_ea(instr, regs);
2435                 break;
2436 #endif
2437
2438 #ifdef CONFIG_VSX
2439         case 57:        /* lfdp, lxsd, lxssp */
2440                 op->ea = dsform_ea(instr, regs);
2441                 switch (instr & 3) {
2442                 case 0:         /* lfdp */
2443                         if (rd & 1)
2444                                 break;          /* reg must be even */
2445                         op->type = MKOP(LOAD_FP, 0, 16);
2446                         break;
2447                 case 2:         /* lxsd */
2448                         op->reg = rd + 32;
2449                         op->type = MKOP(LOAD_VSX, 0, 8);
2450                         op->element_size = 8;
2451                         op->vsx_flags = VSX_CHECK_VEC;
2452                         break;
2453                 case 3:         /* lxssp */
2454                         op->reg = rd + 32;
2455                         op->type = MKOP(LOAD_VSX, 0, 4);
2456                         op->element_size = 8;
2457                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2458                         break;
2459                 }
2460                 break;
2461 #endif /* CONFIG_VSX */
2462
2463 #ifdef __powerpc64__
2464         case 58:        /* ld[u], lwa */
2465                 op->ea = dsform_ea(instr, regs);
2466                 switch (instr & 3) {
2467                 case 0:         /* ld */
2468                         op->type = MKOP(LOAD, 0, 8);
2469                         break;
2470                 case 1:         /* ldu */
2471                         op->type = MKOP(LOAD, UPDATE, 8);
2472                         break;
2473                 case 2:         /* lwa */
2474                         op->type = MKOP(LOAD, SIGNEXT, 4);
2475                         break;
2476                 }
2477                 break;
2478 #endif
2479
2480 #ifdef CONFIG_VSX
2481         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2482                 switch (instr & 7) {
2483                 case 0:         /* stfdp with LSB of DS field = 0 */
2484                 case 4:         /* stfdp with LSB of DS field = 1 */
2485                         op->ea = dsform_ea(instr, regs);
2486                         op->type = MKOP(STORE_FP, 0, 16);
2487                         break;
2488
2489                 case 1:         /* lxv */
2490                         op->ea = dqform_ea(instr, regs);
2491                         if (instr & 8)
2492                                 op->reg = rd + 32;
2493                         op->type = MKOP(LOAD_VSX, 0, 16);
2494                         op->element_size = 16;
2495                         op->vsx_flags = VSX_CHECK_VEC;
2496                         break;
2497
2498                 case 2:         /* stxsd with LSB of DS field = 0 */
2499                 case 6:         /* stxsd with LSB of DS field = 1 */
2500                         op->ea = dsform_ea(instr, regs);
2501                         op->reg = rd + 32;
2502                         op->type = MKOP(STORE_VSX, 0, 8);
2503                         op->element_size = 8;
2504                         op->vsx_flags = VSX_CHECK_VEC;
2505                         break;
2506
2507                 case 3:         /* stxssp with LSB of DS field = 0 */
2508                 case 7:         /* stxssp with LSB of DS field = 1 */
2509                         op->ea = dsform_ea(instr, regs);
2510                         op->reg = rd + 32;
2511                         op->type = MKOP(STORE_VSX, 0, 4);
2512                         op->element_size = 8;
2513                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2514                         break;
2515
2516                 case 5:         /* stxv */
2517                         op->ea = dqform_ea(instr, regs);
2518                         if (instr & 8)
2519                                 op->reg = rd + 32;
2520                         op->type = MKOP(STORE_VSX, 0, 16);
2521                         op->element_size = 16;
2522                         op->vsx_flags = VSX_CHECK_VEC;
2523                         break;
2524                 }
2525                 break;
2526 #endif /* CONFIG_VSX */
2527
2528 #ifdef __powerpc64__
2529         case 62:        /* std[u] */
2530                 op->ea = dsform_ea(instr, regs);
2531                 switch (instr & 3) {
2532                 case 0:         /* std */
2533                         op->type = MKOP(STORE, 0, 8);
2534                         break;
2535                 case 1:         /* stdu */
2536                         op->type = MKOP(STORE, UPDATE, 8);
2537                         break;
2538                 case 2:         /* stq */
2539                         if (!(rd & 1))
2540                                 op->type = MKOP(STORE, 0, 16);
2541                         break;
2542                 }
2543                 break;
2544 #endif /* __powerpc64__ */
2545
2546         }
2547         return 0;
2548
2549  logical_done:
2550         if (instr & 1)
2551                 set_cr0(regs, op);
2552  logical_done_nocc:
2553         op->reg = ra;
2554         op->type |= SETREG;
2555         return 1;
2556
2557  arith_done:
2558         if (instr & 1)
2559                 set_cr0(regs, op);
2560  compute_done:
2561         op->reg = rd;
2562         op->type |= SETREG;
2563         return 1;
2564
2565  priv:
2566         op->type = INTERRUPT | 0x700;
2567         op->val = SRR1_PROGPRIV;
2568         return 0;
2569
2570  trap:
2571         op->type = INTERRUPT | 0x700;
2572         op->val = SRR1_PROGTRAP;
2573         return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(analyse_instr);
2576 NOKPROBE_SYMBOL(analyse_instr);
2577
2578 /*
2579  * For PPC32 we always use stwu with r1 to change the stack pointer.
2580  * So this emulated store may corrupt the exception frame, now we
2581  * have to provide the exception frame trampoline, which is pushed
2582  * below the kprobed function stack. So we only update gpr[1] but
2583  * don't emulate the real store operation. We will do real store
2584  * operation safely in exception return code by checking this flag.
2585  */
2586 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2587 {
2588 #ifdef CONFIG_PPC32
2589         /*
2590          * Check if we will touch kernel stack overflow
2591          */
2592         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2593                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2594                 return -EINVAL;
2595         }
2596 #endif /* CONFIG_PPC32 */
2597         /*
2598          * Check if we already set since that means we'll
2599          * lose the previous value.
2600          */
2601         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2602         set_thread_flag(TIF_EMULATE_STACK_STORE);
2603         return 0;
2604 }
2605
2606 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2607 {
2608         switch (size) {
2609         case 2:
2610                 *valp = (signed short) *valp;
2611                 break;
2612         case 4:
2613                 *valp = (signed int) *valp;
2614                 break;
2615         }
2616 }
2617
2618 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2619 {
2620         switch (size) {
2621         case 2:
2622                 *valp = byterev_2(*valp);
2623                 break;
2624         case 4:
2625                 *valp = byterev_4(*valp);
2626                 break;
2627 #ifdef __powerpc64__
2628         case 8:
2629                 *valp = byterev_8(*valp);
2630                 break;
2631 #endif
2632         }
2633 }
2634
2635 /*
2636  * Emulate an instruction that can be executed just by updating
2637  * fields in *regs.
2638  */
2639 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2640 {
2641         unsigned long next_pc;
2642
2643         next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2644         switch (op->type & INSTR_TYPE_MASK) {
2645         case COMPUTE:
2646                 if (op->type & SETREG)
2647                         regs->gpr[op->reg] = op->val;
2648                 if (op->type & SETCC)
2649                         regs->ccr = op->ccval;
2650                 if (op->type & SETXER)
2651                         regs->xer = op->xerval;
2652                 break;
2653
2654         case BRANCH:
2655                 if (op->type & SETLK)
2656                         regs->link = next_pc;
2657                 if (op->type & BRTAKEN)
2658                         next_pc = op->val;
2659                 if (op->type & DECCTR)
2660                         --regs->ctr;
2661                 break;
2662
2663         case BARRIER:
2664                 switch (op->type & BARRIER_MASK) {
2665                 case BARRIER_SYNC:
2666                         mb();
2667                         break;
2668                 case BARRIER_ISYNC:
2669                         isync();
2670                         break;
2671                 case BARRIER_EIEIO:
2672                         eieio();
2673                         break;
2674                 case BARRIER_LWSYNC:
2675                         asm volatile("lwsync" : : : "memory");
2676                         break;
2677                 case BARRIER_PTESYNC:
2678                         asm volatile("ptesync" : : : "memory");
2679                         break;
2680                 }
2681                 break;
2682
2683         case MFSPR:
2684                 switch (op->spr) {
2685                 case SPRN_XER:
2686                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2687                         break;
2688                 case SPRN_LR:
2689                         regs->gpr[op->reg] = regs->link;
2690                         break;
2691                 case SPRN_CTR:
2692                         regs->gpr[op->reg] = regs->ctr;
2693                         break;
2694                 default:
2695                         WARN_ON_ONCE(1);
2696                 }
2697                 break;
2698
2699         case MTSPR:
2700                 switch (op->spr) {
2701                 case SPRN_XER:
2702                         regs->xer = op->val & 0xffffffffUL;
2703                         break;
2704                 case SPRN_LR:
2705                         regs->link = op->val;
2706                         break;
2707                 case SPRN_CTR:
2708                         regs->ctr = op->val;
2709                         break;
2710                 default:
2711                         WARN_ON_ONCE(1);
2712                 }
2713                 break;
2714
2715         default:
2716                 WARN_ON_ONCE(1);
2717         }
2718         regs->nip = next_pc;
2719 }
2720 NOKPROBE_SYMBOL(emulate_update_regs);
2721
2722 /*
2723  * Emulate a previously-analysed load or store instruction.
2724  * Return values are:
2725  * 0 = instruction emulated successfully
2726  * -EFAULT = address out of range or access faulted (regs->dar
2727  *           contains the faulting address)
2728  * -EACCES = misaligned access, instruction requires alignment
2729  * -EINVAL = unknown operation in *op
2730  */
2731 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2732 {
2733         int err, size, type;
2734         int i, rd, nb;
2735         unsigned int cr;
2736         unsigned long val;
2737         unsigned long ea;
2738         bool cross_endian;
2739
2740         err = 0;
2741         size = GETSIZE(op->type);
2742         type = op->type & INSTR_TYPE_MASK;
2743         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2744         ea = truncate_if_32bit(regs->msr, op->ea);
2745
2746         switch (type) {
2747         case LARX:
2748                 if (ea & (size - 1))
2749                         return -EACCES;         /* can't handle misaligned */
2750                 if (!address_ok(regs, ea, size))
2751                         return -EFAULT;
2752                 err = 0;
2753                 val = 0;
2754                 switch (size) {
2755 #ifdef __powerpc64__
2756                 case 1:
2757                         __get_user_asmx(val, ea, err, "lbarx");
2758                         break;
2759                 case 2:
2760                         __get_user_asmx(val, ea, err, "lharx");
2761                         break;
2762 #endif
2763                 case 4:
2764                         __get_user_asmx(val, ea, err, "lwarx");
2765                         break;
2766 #ifdef __powerpc64__
2767                 case 8:
2768                         __get_user_asmx(val, ea, err, "ldarx");
2769                         break;
2770                 case 16:
2771                         err = do_lqarx(ea, &regs->gpr[op->reg]);
2772                         break;
2773 #endif
2774                 default:
2775                         return -EINVAL;
2776                 }
2777                 if (err) {
2778                         regs->dar = ea;
2779                         break;
2780                 }
2781                 if (size < 16)
2782                         regs->gpr[op->reg] = val;
2783                 break;
2784
2785         case STCX:
2786                 if (ea & (size - 1))
2787                         return -EACCES;         /* can't handle misaligned */
2788                 if (!address_ok(regs, ea, size))
2789                         return -EFAULT;
2790                 err = 0;
2791                 switch (size) {
2792 #ifdef __powerpc64__
2793                 case 1:
2794                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2795                         break;
2796                 case 2:
2797                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2798                         break;
2799 #endif
2800                 case 4:
2801                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2802                         break;
2803 #ifdef __powerpc64__
2804                 case 8:
2805                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2806                         break;
2807                 case 16:
2808                         err = do_stqcx(ea, regs->gpr[op->reg],
2809                                        regs->gpr[op->reg + 1], &cr);
2810                         break;
2811 #endif
2812                 default:
2813                         return -EINVAL;
2814                 }
2815                 if (!err)
2816                         regs->ccr = (regs->ccr & 0x0fffffff) |
2817                                 (cr & 0xe0000000) |
2818                                 ((regs->xer >> 3) & 0x10000000);
2819                 else
2820                         regs->dar = ea;
2821                 break;
2822
2823         case LOAD:
2824 #ifdef __powerpc64__
2825                 if (size == 16) {
2826                         err = emulate_lq(regs, ea, op->reg, cross_endian);
2827                         break;
2828                 }
2829 #endif
2830                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2831                 if (!err) {
2832                         if (op->type & SIGNEXT)
2833                                 do_signext(&regs->gpr[op->reg], size);
2834                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2835                                 do_byterev(&regs->gpr[op->reg], size);
2836                 }
2837                 break;
2838
2839 #ifdef CONFIG_PPC_FPU
2840         case LOAD_FP:
2841                 /*
2842                  * If the instruction is in userspace, we can emulate it even
2843                  * if the VMX state is not live, because we have the state
2844                  * stored in the thread_struct.  If the instruction is in
2845                  * the kernel, we must not touch the state in the thread_struct.
2846                  */
2847                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2848                         return 0;
2849                 err = do_fp_load(op, ea, regs, cross_endian);
2850                 break;
2851 #endif
2852 #ifdef CONFIG_ALTIVEC
2853         case LOAD_VMX:
2854                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2855                         return 0;
2856                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2857                 break;
2858 #endif
2859 #ifdef CONFIG_VSX
2860         case LOAD_VSX: {
2861                 unsigned long msrbit = MSR_VSX;
2862
2863                 /*
2864                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2865                  * when the target of the instruction is a vector register.
2866                  */
2867                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2868                         msrbit = MSR_VEC;
2869                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2870                         return 0;
2871                 err = do_vsx_load(op, ea, regs, cross_endian);
2872                 break;
2873         }
2874 #endif
2875         case LOAD_MULTI:
2876                 if (!address_ok(regs, ea, size))
2877                         return -EFAULT;
2878                 rd = op->reg;
2879                 for (i = 0; i < size; i += 4) {
2880                         unsigned int v32 = 0;
2881
2882                         nb = size - i;
2883                         if (nb > 4)
2884                                 nb = 4;
2885                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2886                         if (err)
2887                                 break;
2888                         if (unlikely(cross_endian))
2889                                 v32 = byterev_4(v32);
2890                         regs->gpr[rd] = v32;
2891                         ea += 4;
2892                         /* reg number wraps from 31 to 0 for lsw[ix] */
2893                         rd = (rd + 1) & 0x1f;
2894                 }
2895                 break;
2896
2897         case STORE:
2898 #ifdef __powerpc64__
2899                 if (size == 16) {
2900                         err = emulate_stq(regs, ea, op->reg, cross_endian);
2901                         break;
2902                 }
2903 #endif
2904                 if ((op->type & UPDATE) && size == sizeof(long) &&
2905                     op->reg == 1 && op->update_reg == 1 &&
2906                     !(regs->msr & MSR_PR) &&
2907                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2908                         err = handle_stack_update(ea, regs);
2909                         break;
2910                 }
2911                 if (unlikely(cross_endian))
2912                         do_byterev(&op->val, size);
2913                 err = write_mem(op->val, ea, size, regs);
2914                 break;
2915
2916 #ifdef CONFIG_PPC_FPU
2917         case STORE_FP:
2918                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2919                         return 0;
2920                 err = do_fp_store(op, ea, regs, cross_endian);
2921                 break;
2922 #endif
2923 #ifdef CONFIG_ALTIVEC
2924         case STORE_VMX:
2925                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2926                         return 0;
2927                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2928                 break;
2929 #endif
2930 #ifdef CONFIG_VSX
2931         case STORE_VSX: {
2932                 unsigned long msrbit = MSR_VSX;
2933
2934                 /*
2935                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2936                  * when the target of the instruction is a vector register.
2937                  */
2938                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2939                         msrbit = MSR_VEC;
2940                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2941                         return 0;
2942                 err = do_vsx_store(op, ea, regs, cross_endian);
2943                 break;
2944         }
2945 #endif
2946         case STORE_MULTI:
2947                 if (!address_ok(regs, ea, size))
2948                         return -EFAULT;
2949                 rd = op->reg;
2950                 for (i = 0; i < size; i += 4) {
2951                         unsigned int v32 = regs->gpr[rd];
2952
2953                         nb = size - i;
2954                         if (nb > 4)
2955                                 nb = 4;
2956                         if (unlikely(cross_endian))
2957                                 v32 = byterev_4(v32);
2958                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2959                         if (err)
2960                                 break;
2961                         ea += 4;
2962                         /* reg number wraps from 31 to 0 for stsw[ix] */
2963                         rd = (rd + 1) & 0x1f;
2964                 }
2965                 break;
2966
2967         default:
2968                 return -EINVAL;
2969         }
2970
2971         if (err)
2972                 return err;
2973
2974         if (op->type & UPDATE)
2975                 regs->gpr[op->update_reg] = op->ea;
2976
2977         return 0;
2978 }
2979 NOKPROBE_SYMBOL(emulate_loadstore);
2980
2981 /*
2982  * Emulate instructions that cause a transfer of control,
2983  * loads and stores, and a few other instructions.
2984  * Returns 1 if the step was emulated, 0 if not,
2985  * or -1 if the instruction is one that should not be stepped,
2986  * such as an rfid, or a mtmsrd that would clear MSR_RI.
2987  */
2988 int emulate_step(struct pt_regs *regs, unsigned int instr)
2989 {
2990         struct instruction_op op;
2991         int r, err, type;
2992         unsigned long val;
2993         unsigned long ea;
2994
2995         r = analyse_instr(&op, regs, instr);
2996         if (r < 0)
2997                 return r;
2998         if (r > 0) {
2999                 emulate_update_regs(regs, &op);
3000                 return 1;
3001         }
3002
3003         err = 0;
3004         type = op.type & INSTR_TYPE_MASK;
3005
3006         if (OP_IS_LOAD_STORE(type)) {
3007                 err = emulate_loadstore(regs, &op);
3008                 if (err)
3009                         return 0;
3010                 goto instr_done;
3011         }
3012
3013         switch (type) {
3014         case CACHEOP:
3015                 ea = truncate_if_32bit(regs->msr, op.ea);
3016                 if (!address_ok(regs, ea, 8))
3017                         return 0;
3018                 switch (op.type & CACHEOP_MASK) {
3019                 case DCBST:
3020                         __cacheop_user_asmx(ea, err, "dcbst");
3021                         break;
3022                 case DCBF:
3023                         __cacheop_user_asmx(ea, err, "dcbf");
3024                         break;
3025                 case DCBTST:
3026                         if (op.reg == 0)
3027                                 prefetchw((void *) ea);
3028                         break;
3029                 case DCBT:
3030                         if (op.reg == 0)
3031                                 prefetch((void *) ea);
3032                         break;
3033                 case ICBI:
3034                         __cacheop_user_asmx(ea, err, "icbi");
3035                         break;
3036                 case DCBZ:
3037                         err = emulate_dcbz(ea, regs);
3038                         break;
3039                 }
3040                 if (err) {
3041                         regs->dar = ea;
3042                         return 0;
3043                 }
3044                 goto instr_done;
3045
3046         case MFMSR:
3047                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3048                 goto instr_done;
3049
3050         case MTMSR:
3051                 val = regs->gpr[op.reg];
3052                 if ((val & MSR_RI) == 0)
3053                         /* can't step mtmsr[d] that would clear MSR_RI */
3054                         return -1;
3055                 /* here op.val is the mask of bits to change */
3056                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3057                 goto instr_done;
3058
3059 #ifdef CONFIG_PPC64
3060         case SYSCALL:   /* sc */
3061                 /*
3062                  * N.B. this uses knowledge about how the syscall
3063                  * entry code works.  If that is changed, this will
3064                  * need to be changed also.
3065                  */
3066                 if (regs->gpr[0] == 0x1ebe &&
3067                     cpu_has_feature(CPU_FTR_REAL_LE)) {
3068                         regs->msr ^= MSR_LE;
3069                         goto instr_done;
3070                 }
3071                 regs->gpr[9] = regs->gpr[13];
3072                 regs->gpr[10] = MSR_KERNEL;
3073                 regs->gpr[11] = regs->nip + 4;
3074                 regs->gpr[12] = regs->msr & MSR_MASK;
3075                 regs->gpr[13] = (unsigned long) get_paca();
3076                 regs->nip = (unsigned long) &system_call_common;
3077                 regs->msr = MSR_KERNEL;
3078                 return 1;
3079
3080         case RFI:
3081                 return -1;
3082 #endif
3083         }
3084         return 0;
3085
3086  instr_done:
3087         regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3088         return 1;
3089 }
3090 NOKPROBE_SYMBOL(emulate_step);