Merge tag 'exfat-for-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linkin...
[linux-2.6-microblaze.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_block(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 /* XXX Deliver Program interrupt to guest. */
311                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312                 r = RESUME_HOST;
313                 break;
314         }
315         default:
316                 WARN_ON(1);
317                 r = RESUME_GUEST;
318         }
319
320         return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325               bool data)
326 {
327         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328         struct kvmppc_pte pte;
329         int r = -EINVAL;
330
331         vcpu->stat.st++;
332
333         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335                                                             size);
336
337         if ((!r) || (r == -EAGAIN))
338                 return r;
339
340         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341                          XLATE_WRITE, &pte);
342         if (r < 0)
343                 return r;
344
345         *eaddr = pte.raddr;
346
347         if (!pte.may_write)
348                 return -EPERM;
349
350         /* Magic page override */
351         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354                 void *magic = vcpu->arch.shared;
355                 magic += pte.eaddr & 0xfff;
356                 memcpy(magic, ptr, size);
357                 return EMULATE_DONE;
358         }
359
360         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361                 return EMULATE_DO_MMIO;
362
363         return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368                       bool data)
369 {
370         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371         struct kvmppc_pte pte;
372         int rc = -EINVAL;
373
374         vcpu->stat.ld++;
375
376         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378                                                               size);
379
380         if ((!rc) || (rc == -EAGAIN))
381                 return rc;
382
383         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384                           XLATE_READ, &pte);
385         if (rc)
386                 return rc;
387
388         *eaddr = pte.raddr;
389
390         if (!pte.may_read)
391                 return -EPERM;
392
393         if (!data && !pte.may_execute)
394                 return -ENOEXEC;
395
396         /* Magic page override */
397         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400                 void *magic = vcpu->arch.shared;
401                 magic += pte.eaddr & 0xfff;
402                 memcpy(ptr, magic, size);
403                 return EMULATE_DONE;
404         }
405
406         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
407         rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
408         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
409         if (rc)
410                 return EMULATE_DO_MMIO;
411
412         return EMULATE_DONE;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_ld);
415
416 int kvm_arch_hardware_enable(void)
417 {
418         return 0;
419 }
420
421 int kvm_arch_hardware_setup(void *opaque)
422 {
423         return 0;
424 }
425
426 int kvm_arch_check_processor_compat(void *opaque)
427 {
428         return kvmppc_core_check_processor_compat();
429 }
430
431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
432 {
433         struct kvmppc_ops *kvm_ops = NULL;
434         /*
435          * if we have both HV and PR enabled, default is HV
436          */
437         if (type == 0) {
438                 if (kvmppc_hv_ops)
439                         kvm_ops = kvmppc_hv_ops;
440                 else
441                         kvm_ops = kvmppc_pr_ops;
442                 if (!kvm_ops)
443                         goto err_out;
444         } else  if (type == KVM_VM_PPC_HV) {
445                 if (!kvmppc_hv_ops)
446                         goto err_out;
447                 kvm_ops = kvmppc_hv_ops;
448         } else if (type == KVM_VM_PPC_PR) {
449                 if (!kvmppc_pr_ops)
450                         goto err_out;
451                 kvm_ops = kvmppc_pr_ops;
452         } else
453                 goto err_out;
454
455         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
456                 return -ENOENT;
457
458         kvm->arch.kvm_ops = kvm_ops;
459         return kvmppc_core_init_vm(kvm);
460 err_out:
461         return -EINVAL;
462 }
463
464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466         unsigned int i;
467         struct kvm_vcpu *vcpu;
468
469 #ifdef CONFIG_KVM_XICS
470         /*
471          * We call kick_all_cpus_sync() to ensure that all
472          * CPUs have executed any pending IPIs before we
473          * continue and free VCPUs structures below.
474          */
475         if (is_kvmppc_hv_enabled(kvm))
476                 kick_all_cpus_sync();
477 #endif
478
479         kvm_for_each_vcpu(i, vcpu, kvm)
480                 kvm_vcpu_destroy(vcpu);
481
482         mutex_lock(&kvm->lock);
483         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
484                 kvm->vcpus[i] = NULL;
485
486         atomic_set(&kvm->online_vcpus, 0);
487
488         kvmppc_core_destroy_vm(kvm);
489
490         mutex_unlock(&kvm->lock);
491
492         /* drop the module reference */
493         module_put(kvm->arch.kvm_ops->owner);
494 }
495
496 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
497 {
498         int r;
499         /* Assume we're using HV mode when the HV module is loaded */
500         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
501
502         if (kvm) {
503                 /*
504                  * Hooray - we know which VM type we're running on. Depend on
505                  * that rather than the guess above.
506                  */
507                 hv_enabled = is_kvmppc_hv_enabled(kvm);
508         }
509
510         switch (ext) {
511 #ifdef CONFIG_BOOKE
512         case KVM_CAP_PPC_BOOKE_SREGS:
513         case KVM_CAP_PPC_BOOKE_WATCHDOG:
514         case KVM_CAP_PPC_EPR:
515 #else
516         case KVM_CAP_PPC_SEGSTATE:
517         case KVM_CAP_PPC_HIOR:
518         case KVM_CAP_PPC_PAPR:
519 #endif
520         case KVM_CAP_PPC_UNSET_IRQ:
521         case KVM_CAP_PPC_IRQ_LEVEL:
522         case KVM_CAP_ENABLE_CAP:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527         case KVM_CAP_SET_GUEST_DEBUG:
528                 r = 1;
529                 break;
530         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
531         case KVM_CAP_PPC_PAIRED_SINGLES:
532         case KVM_CAP_PPC_OSI:
533         case KVM_CAP_PPC_GET_PVINFO:
534 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
535         case KVM_CAP_SW_TLB:
536 #endif
537                 /* We support this only for PR */
538                 r = !hv_enabled;
539                 break;
540 #ifdef CONFIG_KVM_MPIC
541         case KVM_CAP_IRQ_MPIC:
542                 r = 1;
543                 break;
544 #endif
545
546 #ifdef CONFIG_PPC_BOOK3S_64
547         case KVM_CAP_SPAPR_TCE:
548         case KVM_CAP_SPAPR_TCE_64:
549                 r = 1;
550                 break;
551         case KVM_CAP_SPAPR_TCE_VFIO:
552                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
553                 break;
554         case KVM_CAP_PPC_RTAS:
555         case KVM_CAP_PPC_FIXUP_HCALL:
556         case KVM_CAP_PPC_ENABLE_HCALL:
557 #ifdef CONFIG_KVM_XICS
558         case KVM_CAP_IRQ_XICS:
559 #endif
560         case KVM_CAP_PPC_GET_CPU_CHAR:
561                 r = 1;
562                 break;
563 #ifdef CONFIG_KVM_XIVE
564         case KVM_CAP_PPC_IRQ_XIVE:
565                 /*
566                  * We need XIVE to be enabled on the platform (implies
567                  * a POWER9 processor) and the PowerNV platform, as
568                  * nested is not yet supported.
569                  */
570                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
571                         kvmppc_xive_native_supported();
572                 break;
573 #endif
574
575         case KVM_CAP_PPC_ALLOC_HTAB:
576                 r = hv_enabled;
577                 break;
578 #endif /* CONFIG_PPC_BOOK3S_64 */
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580         case KVM_CAP_PPC_SMT:
581                 r = 0;
582                 if (kvm) {
583                         if (kvm->arch.emul_smt_mode > 1)
584                                 r = kvm->arch.emul_smt_mode;
585                         else
586                                 r = kvm->arch.smt_mode;
587                 } else if (hv_enabled) {
588                         if (cpu_has_feature(CPU_FTR_ARCH_300))
589                                 r = 1;
590                         else
591                                 r = threads_per_subcore;
592                 }
593                 break;
594         case KVM_CAP_PPC_SMT_POSSIBLE:
595                 r = 1;
596                 if (hv_enabled) {
597                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
598                                 r = ((threads_per_subcore << 1) - 1);
599                         else
600                                 /* P9 can emulate dbells, so allow any mode */
601                                 r = 8 | 4 | 2 | 1;
602                 }
603                 break;
604         case KVM_CAP_PPC_RMA:
605                 r = 0;
606                 break;
607         case KVM_CAP_PPC_HWRNG:
608                 r = kvmppc_hwrng_present();
609                 break;
610         case KVM_CAP_PPC_MMU_RADIX:
611                 r = !!(hv_enabled && radix_enabled());
612                 break;
613         case KVM_CAP_PPC_MMU_HASH_V3:
614                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
615                        cpu_has_feature(CPU_FTR_HVMODE));
616                 break;
617         case KVM_CAP_PPC_NESTED_HV:
618                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
619                        !kvmppc_hv_ops->enable_nested(NULL));
620                 break;
621 #endif
622         case KVM_CAP_SYNC_MMU:
623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624                 r = hv_enabled;
625 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
626                 r = 1;
627 #else
628                 r = 0;
629 #endif
630                 break;
631 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632         case KVM_CAP_PPC_HTAB_FD:
633                 r = hv_enabled;
634                 break;
635 #endif
636         case KVM_CAP_NR_VCPUS:
637                 /*
638                  * Recommending a number of CPUs is somewhat arbitrary; we
639                  * return the number of present CPUs for -HV (since a host
640                  * will have secondary threads "offline"), and for other KVM
641                  * implementations just count online CPUs.
642                  */
643                 if (hv_enabled)
644                         r = num_present_cpus();
645                 else
646                         r = num_online_cpus();
647                 break;
648         case KVM_CAP_MAX_VCPUS:
649                 r = KVM_MAX_VCPUS;
650                 break;
651         case KVM_CAP_MAX_VCPU_ID:
652                 r = KVM_MAX_VCPU_ID;
653                 break;
654 #ifdef CONFIG_PPC_BOOK3S_64
655         case KVM_CAP_PPC_GET_SMMU_INFO:
656                 r = 1;
657                 break;
658         case KVM_CAP_SPAPR_MULTITCE:
659                 r = 1;
660                 break;
661         case KVM_CAP_SPAPR_RESIZE_HPT:
662                 r = !!hv_enabled;
663                 break;
664 #endif
665 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
666         case KVM_CAP_PPC_FWNMI:
667                 r = hv_enabled;
668                 break;
669 #endif
670 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671         case KVM_CAP_PPC_HTM:
672                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
673                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674                 break;
675 #endif
676 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
677         case KVM_CAP_PPC_SECURE_GUEST:
678                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
679                         !kvmppc_hv_ops->enable_svm(NULL);
680                 break;
681 #endif
682         default:
683                 r = 0;
684                 break;
685         }
686         return r;
687
688 }
689
690 long kvm_arch_dev_ioctl(struct file *filp,
691                         unsigned int ioctl, unsigned long arg)
692 {
693         return -EINVAL;
694 }
695
696 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
697 {
698         kvmppc_core_free_memslot(kvm, slot);
699 }
700
701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
702                                    struct kvm_memory_slot *memslot,
703                                    const struct kvm_userspace_memory_region *mem,
704                                    enum kvm_mr_change change)
705 {
706         return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
707 }
708
709 void kvm_arch_commit_memory_region(struct kvm *kvm,
710                                    const struct kvm_userspace_memory_region *mem,
711                                    struct kvm_memory_slot *old,
712                                    const struct kvm_memory_slot *new,
713                                    enum kvm_mr_change change)
714 {
715         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
716 }
717
718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
719                                    struct kvm_memory_slot *slot)
720 {
721         kvmppc_core_flush_memslot(kvm, slot);
722 }
723
724 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
725 {
726         return 0;
727 }
728
729 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
730 {
731         struct kvm_vcpu *vcpu;
732
733         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
734         kvmppc_decrementer_func(vcpu);
735
736         return HRTIMER_NORESTART;
737 }
738
739 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
740 {
741         int err;
742
743         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
744         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
745         vcpu->arch.dec_expires = get_tb();
746
747 #ifdef CONFIG_KVM_EXIT_TIMING
748         mutex_init(&vcpu->arch.exit_timing_lock);
749 #endif
750         err = kvmppc_subarch_vcpu_init(vcpu);
751         if (err)
752                 return err;
753
754         err = kvmppc_core_vcpu_create(vcpu);
755         if (err)
756                 goto out_vcpu_uninit;
757
758         vcpu->arch.waitp = &vcpu->wait;
759         kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
760         return 0;
761
762 out_vcpu_uninit:
763         kvmppc_subarch_vcpu_uninit(vcpu);
764         return err;
765 }
766
767 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
768 {
769 }
770
771 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
772 {
773         /* Make sure we're not using the vcpu anymore */
774         hrtimer_cancel(&vcpu->arch.dec_timer);
775
776         kvmppc_remove_vcpu_debugfs(vcpu);
777
778         switch (vcpu->arch.irq_type) {
779         case KVMPPC_IRQ_MPIC:
780                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
781                 break;
782         case KVMPPC_IRQ_XICS:
783                 if (xics_on_xive())
784                         kvmppc_xive_cleanup_vcpu(vcpu);
785                 else
786                         kvmppc_xics_free_icp(vcpu);
787                 break;
788         case KVMPPC_IRQ_XIVE:
789                 kvmppc_xive_native_cleanup_vcpu(vcpu);
790                 break;
791         }
792
793         kvmppc_core_vcpu_free(vcpu);
794
795         kvmppc_subarch_vcpu_uninit(vcpu);
796 }
797
798 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
799 {
800         return kvmppc_core_pending_dec(vcpu);
801 }
802
803 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
804 {
805 #ifdef CONFIG_BOOKE
806         /*
807          * vrsave (formerly usprg0) isn't used by Linux, but may
808          * be used by the guest.
809          *
810          * On non-booke this is associated with Altivec and
811          * is handled by code in book3s.c.
812          */
813         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
814 #endif
815         kvmppc_core_vcpu_load(vcpu, cpu);
816 }
817
818 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
819 {
820         kvmppc_core_vcpu_put(vcpu);
821 #ifdef CONFIG_BOOKE
822         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
823 #endif
824 }
825
826 /*
827  * irq_bypass_add_producer and irq_bypass_del_producer are only
828  * useful if the architecture supports PCI passthrough.
829  * irq_bypass_stop and irq_bypass_start are not needed and so
830  * kvm_ops are not defined for them.
831  */
832 bool kvm_arch_has_irq_bypass(void)
833 {
834         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
835                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
836 }
837
838 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
839                                      struct irq_bypass_producer *prod)
840 {
841         struct kvm_kernel_irqfd *irqfd =
842                 container_of(cons, struct kvm_kernel_irqfd, consumer);
843         struct kvm *kvm = irqfd->kvm;
844
845         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
846                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
847
848         return 0;
849 }
850
851 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
852                                       struct irq_bypass_producer *prod)
853 {
854         struct kvm_kernel_irqfd *irqfd =
855                 container_of(cons, struct kvm_kernel_irqfd, consumer);
856         struct kvm *kvm = irqfd->kvm;
857
858         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
859                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
860 }
861
862 #ifdef CONFIG_VSX
863 static inline int kvmppc_get_vsr_dword_offset(int index)
864 {
865         int offset;
866
867         if ((index != 0) && (index != 1))
868                 return -1;
869
870 #ifdef __BIG_ENDIAN
871         offset =  index;
872 #else
873         offset = 1 - index;
874 #endif
875
876         return offset;
877 }
878
879 static inline int kvmppc_get_vsr_word_offset(int index)
880 {
881         int offset;
882
883         if ((index > 3) || (index < 0))
884                 return -1;
885
886 #ifdef __BIG_ENDIAN
887         offset = index;
888 #else
889         offset = 3 - index;
890 #endif
891         return offset;
892 }
893
894 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
895         u64 gpr)
896 {
897         union kvmppc_one_reg val;
898         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
899         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
900
901         if (offset == -1)
902                 return;
903
904         if (index >= 32) {
905                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
906                 val.vsxval[offset] = gpr;
907                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
908         } else {
909                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
910         }
911 }
912
913 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
914         u64 gpr)
915 {
916         union kvmppc_one_reg val;
917         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
918
919         if (index >= 32) {
920                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
921                 val.vsxval[0] = gpr;
922                 val.vsxval[1] = gpr;
923                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
924         } else {
925                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
926                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
927         }
928 }
929
930 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
931         u32 gpr)
932 {
933         union kvmppc_one_reg val;
934         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
935
936         if (index >= 32) {
937                 val.vsx32val[0] = gpr;
938                 val.vsx32val[1] = gpr;
939                 val.vsx32val[2] = gpr;
940                 val.vsx32val[3] = gpr;
941                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
942         } else {
943                 val.vsx32val[0] = gpr;
944                 val.vsx32val[1] = gpr;
945                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
946                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
947         }
948 }
949
950 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
951         u32 gpr32)
952 {
953         union kvmppc_one_reg val;
954         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
955         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
956         int dword_offset, word_offset;
957
958         if (offset == -1)
959                 return;
960
961         if (index >= 32) {
962                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
963                 val.vsx32val[offset] = gpr32;
964                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
965         } else {
966                 dword_offset = offset / 2;
967                 word_offset = offset % 2;
968                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
969                 val.vsx32val[word_offset] = gpr32;
970                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
971         }
972 }
973 #endif /* CONFIG_VSX */
974
975 #ifdef CONFIG_ALTIVEC
976 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
977                 int index, int element_size)
978 {
979         int offset;
980         int elts = sizeof(vector128)/element_size;
981
982         if ((index < 0) || (index >= elts))
983                 return -1;
984
985         if (kvmppc_need_byteswap(vcpu))
986                 offset = elts - index - 1;
987         else
988                 offset = index;
989
990         return offset;
991 }
992
993 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
994                 int index)
995 {
996         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
997 }
998
999 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1000                 int index)
1001 {
1002         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1003 }
1004
1005 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1006                 int index)
1007 {
1008         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1009 }
1010
1011 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1012                 int index)
1013 {
1014         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1015 }
1016
1017
1018 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1019         u64 gpr)
1020 {
1021         union kvmppc_one_reg val;
1022         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1023                         vcpu->arch.mmio_vmx_offset);
1024         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1025
1026         if (offset == -1)
1027                 return;
1028
1029         val.vval = VCPU_VSX_VR(vcpu, index);
1030         val.vsxval[offset] = gpr;
1031         VCPU_VSX_VR(vcpu, index) = val.vval;
1032 }
1033
1034 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1035         u32 gpr32)
1036 {
1037         union kvmppc_one_reg val;
1038         int offset = kvmppc_get_vmx_word_offset(vcpu,
1039                         vcpu->arch.mmio_vmx_offset);
1040         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1041
1042         if (offset == -1)
1043                 return;
1044
1045         val.vval = VCPU_VSX_VR(vcpu, index);
1046         val.vsx32val[offset] = gpr32;
1047         VCPU_VSX_VR(vcpu, index) = val.vval;
1048 }
1049
1050 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1051         u16 gpr16)
1052 {
1053         union kvmppc_one_reg val;
1054         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1055                         vcpu->arch.mmio_vmx_offset);
1056         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1057
1058         if (offset == -1)
1059                 return;
1060
1061         val.vval = VCPU_VSX_VR(vcpu, index);
1062         val.vsx16val[offset] = gpr16;
1063         VCPU_VSX_VR(vcpu, index) = val.vval;
1064 }
1065
1066 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1067         u8 gpr8)
1068 {
1069         union kvmppc_one_reg val;
1070         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1071                         vcpu->arch.mmio_vmx_offset);
1072         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1073
1074         if (offset == -1)
1075                 return;
1076
1077         val.vval = VCPU_VSX_VR(vcpu, index);
1078         val.vsx8val[offset] = gpr8;
1079         VCPU_VSX_VR(vcpu, index) = val.vval;
1080 }
1081 #endif /* CONFIG_ALTIVEC */
1082
1083 #ifdef CONFIG_PPC_FPU
1084 static inline u64 sp_to_dp(u32 fprs)
1085 {
1086         u64 fprd;
1087
1088         preempt_disable();
1089         enable_kernel_fp();
1090         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1091              : "fr0");
1092         preempt_enable();
1093         return fprd;
1094 }
1095
1096 static inline u32 dp_to_sp(u64 fprd)
1097 {
1098         u32 fprs;
1099
1100         preempt_disable();
1101         enable_kernel_fp();
1102         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1103              : "fr0");
1104         preempt_enable();
1105         return fprs;
1106 }
1107
1108 #else
1109 #define sp_to_dp(x)     (x)
1110 #define dp_to_sp(x)     (x)
1111 #endif /* CONFIG_PPC_FPU */
1112
1113 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1114 {
1115         struct kvm_run *run = vcpu->run;
1116         u64 gpr;
1117
1118         if (run->mmio.len > sizeof(gpr)) {
1119                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1120                 return;
1121         }
1122
1123         if (!vcpu->arch.mmio_host_swabbed) {
1124                 switch (run->mmio.len) {
1125                 case 8: gpr = *(u64 *)run->mmio.data; break;
1126                 case 4: gpr = *(u32 *)run->mmio.data; break;
1127                 case 2: gpr = *(u16 *)run->mmio.data; break;
1128                 case 1: gpr = *(u8 *)run->mmio.data; break;
1129                 }
1130         } else {
1131                 switch (run->mmio.len) {
1132                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1133                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1134                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1135                 case 1: gpr = *(u8 *)run->mmio.data; break;
1136                 }
1137         }
1138
1139         /* conversion between single and double precision */
1140         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1141                 gpr = sp_to_dp(gpr);
1142
1143         if (vcpu->arch.mmio_sign_extend) {
1144                 switch (run->mmio.len) {
1145 #ifdef CONFIG_PPC64
1146                 case 4:
1147                         gpr = (s64)(s32)gpr;
1148                         break;
1149 #endif
1150                 case 2:
1151                         gpr = (s64)(s16)gpr;
1152                         break;
1153                 case 1:
1154                         gpr = (s64)(s8)gpr;
1155                         break;
1156                 }
1157         }
1158
1159         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1160         case KVM_MMIO_REG_GPR:
1161                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1162                 break;
1163         case KVM_MMIO_REG_FPR:
1164                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1165                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1166
1167                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1168                 break;
1169 #ifdef CONFIG_PPC_BOOK3S
1170         case KVM_MMIO_REG_QPR:
1171                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172                 break;
1173         case KVM_MMIO_REG_FQPR:
1174                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1175                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1176                 break;
1177 #endif
1178 #ifdef CONFIG_VSX
1179         case KVM_MMIO_REG_VSX:
1180                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1181                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1182
1183                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1184                         kvmppc_set_vsr_dword(vcpu, gpr);
1185                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1186                         kvmppc_set_vsr_word(vcpu, gpr);
1187                 else if (vcpu->arch.mmio_copy_type ==
1188                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1189                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1190                 else if (vcpu->arch.mmio_copy_type ==
1191                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1192                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1193                 break;
1194 #endif
1195 #ifdef CONFIG_ALTIVEC
1196         case KVM_MMIO_REG_VMX:
1197                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1198                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1199
1200                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1201                         kvmppc_set_vmx_dword(vcpu, gpr);
1202                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1203                         kvmppc_set_vmx_word(vcpu, gpr);
1204                 else if (vcpu->arch.mmio_copy_type ==
1205                                 KVMPPC_VMX_COPY_HWORD)
1206                         kvmppc_set_vmx_hword(vcpu, gpr);
1207                 else if (vcpu->arch.mmio_copy_type ==
1208                                 KVMPPC_VMX_COPY_BYTE)
1209                         kvmppc_set_vmx_byte(vcpu, gpr);
1210                 break;
1211 #endif
1212 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1213         case KVM_MMIO_REG_NESTED_GPR:
1214                 if (kvmppc_need_byteswap(vcpu))
1215                         gpr = swab64(gpr);
1216                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1217                                      sizeof(gpr));
1218                 break;
1219 #endif
1220         default:
1221                 BUG();
1222         }
1223 }
1224
1225 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1226                                 unsigned int rt, unsigned int bytes,
1227                                 int is_default_endian, int sign_extend)
1228 {
1229         struct kvm_run *run = vcpu->run;
1230         int idx, ret;
1231         bool host_swabbed;
1232
1233         /* Pity C doesn't have a logical XOR operator */
1234         if (kvmppc_need_byteswap(vcpu)) {
1235                 host_swabbed = is_default_endian;
1236         } else {
1237                 host_swabbed = !is_default_endian;
1238         }
1239
1240         if (bytes > sizeof(run->mmio.data)) {
1241                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1242                        run->mmio.len);
1243         }
1244
1245         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1246         run->mmio.len = bytes;
1247         run->mmio.is_write = 0;
1248
1249         vcpu->arch.io_gpr = rt;
1250         vcpu->arch.mmio_host_swabbed = host_swabbed;
1251         vcpu->mmio_needed = 1;
1252         vcpu->mmio_is_write = 0;
1253         vcpu->arch.mmio_sign_extend = sign_extend;
1254
1255         idx = srcu_read_lock(&vcpu->kvm->srcu);
1256
1257         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1258                               bytes, &run->mmio.data);
1259
1260         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1261
1262         if (!ret) {
1263                 kvmppc_complete_mmio_load(vcpu);
1264                 vcpu->mmio_needed = 0;
1265                 return EMULATE_DONE;
1266         }
1267
1268         return EMULATE_DO_MMIO;
1269 }
1270
1271 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1272                        unsigned int rt, unsigned int bytes,
1273                        int is_default_endian)
1274 {
1275         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1276 }
1277 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1278
1279 /* Same as above, but sign extends */
1280 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1281                         unsigned int rt, unsigned int bytes,
1282                         int is_default_endian)
1283 {
1284         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1285 }
1286
1287 #ifdef CONFIG_VSX
1288 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1289                         unsigned int rt, unsigned int bytes,
1290                         int is_default_endian, int mmio_sign_extend)
1291 {
1292         enum emulation_result emulated = EMULATE_DONE;
1293
1294         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1295         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1296                 return EMULATE_FAIL;
1297
1298         while (vcpu->arch.mmio_vsx_copy_nums) {
1299                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1300                         is_default_endian, mmio_sign_extend);
1301
1302                 if (emulated != EMULATE_DONE)
1303                         break;
1304
1305                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1306
1307                 vcpu->arch.mmio_vsx_copy_nums--;
1308                 vcpu->arch.mmio_vsx_offset++;
1309         }
1310         return emulated;
1311 }
1312 #endif /* CONFIG_VSX */
1313
1314 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1315                         u64 val, unsigned int bytes, int is_default_endian)
1316 {
1317         struct kvm_run *run = vcpu->run;
1318         void *data = run->mmio.data;
1319         int idx, ret;
1320         bool host_swabbed;
1321
1322         /* Pity C doesn't have a logical XOR operator */
1323         if (kvmppc_need_byteswap(vcpu)) {
1324                 host_swabbed = is_default_endian;
1325         } else {
1326                 host_swabbed = !is_default_endian;
1327         }
1328
1329         if (bytes > sizeof(run->mmio.data)) {
1330                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1331                        run->mmio.len);
1332         }
1333
1334         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1335         run->mmio.len = bytes;
1336         run->mmio.is_write = 1;
1337         vcpu->mmio_needed = 1;
1338         vcpu->mmio_is_write = 1;
1339
1340         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1341                 val = dp_to_sp(val);
1342
1343         /* Store the value at the lowest bytes in 'data'. */
1344         if (!host_swabbed) {
1345                 switch (bytes) {
1346                 case 8: *(u64 *)data = val; break;
1347                 case 4: *(u32 *)data = val; break;
1348                 case 2: *(u16 *)data = val; break;
1349                 case 1: *(u8  *)data = val; break;
1350                 }
1351         } else {
1352                 switch (bytes) {
1353                 case 8: *(u64 *)data = swab64(val); break;
1354                 case 4: *(u32 *)data = swab32(val); break;
1355                 case 2: *(u16 *)data = swab16(val); break;
1356                 case 1: *(u8  *)data = val; break;
1357                 }
1358         }
1359
1360         idx = srcu_read_lock(&vcpu->kvm->srcu);
1361
1362         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1363                                bytes, &run->mmio.data);
1364
1365         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1366
1367         if (!ret) {
1368                 vcpu->mmio_needed = 0;
1369                 return EMULATE_DONE;
1370         }
1371
1372         return EMULATE_DO_MMIO;
1373 }
1374 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1375
1376 #ifdef CONFIG_VSX
1377 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1378 {
1379         u32 dword_offset, word_offset;
1380         union kvmppc_one_reg reg;
1381         int vsx_offset = 0;
1382         int copy_type = vcpu->arch.mmio_copy_type;
1383         int result = 0;
1384
1385         switch (copy_type) {
1386         case KVMPPC_VSX_COPY_DWORD:
1387                 vsx_offset =
1388                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1389
1390                 if (vsx_offset == -1) {
1391                         result = -1;
1392                         break;
1393                 }
1394
1395                 if (rs < 32) {
1396                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1397                 } else {
1398                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1399                         *val = reg.vsxval[vsx_offset];
1400                 }
1401                 break;
1402
1403         case KVMPPC_VSX_COPY_WORD:
1404                 vsx_offset =
1405                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1406
1407                 if (vsx_offset == -1) {
1408                         result = -1;
1409                         break;
1410                 }
1411
1412                 if (rs < 32) {
1413                         dword_offset = vsx_offset / 2;
1414                         word_offset = vsx_offset % 2;
1415                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1416                         *val = reg.vsx32val[word_offset];
1417                 } else {
1418                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1419                         *val = reg.vsx32val[vsx_offset];
1420                 }
1421                 break;
1422
1423         default:
1424                 result = -1;
1425                 break;
1426         }
1427
1428         return result;
1429 }
1430
1431 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1432                         int rs, unsigned int bytes, int is_default_endian)
1433 {
1434         u64 val;
1435         enum emulation_result emulated = EMULATE_DONE;
1436
1437         vcpu->arch.io_gpr = rs;
1438
1439         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1440         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1441                 return EMULATE_FAIL;
1442
1443         while (vcpu->arch.mmio_vsx_copy_nums) {
1444                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1445                         return EMULATE_FAIL;
1446
1447                 emulated = kvmppc_handle_store(vcpu,
1448                          val, bytes, is_default_endian);
1449
1450                 if (emulated != EMULATE_DONE)
1451                         break;
1452
1453                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1454
1455                 vcpu->arch.mmio_vsx_copy_nums--;
1456                 vcpu->arch.mmio_vsx_offset++;
1457         }
1458
1459         return emulated;
1460 }
1461
1462 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1463 {
1464         struct kvm_run *run = vcpu->run;
1465         enum emulation_result emulated = EMULATE_FAIL;
1466         int r;
1467
1468         vcpu->arch.paddr_accessed += run->mmio.len;
1469
1470         if (!vcpu->mmio_is_write) {
1471                 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1472                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1473         } else {
1474                 emulated = kvmppc_handle_vsx_store(vcpu,
1475                          vcpu->arch.io_gpr, run->mmio.len, 1);
1476         }
1477
1478         switch (emulated) {
1479         case EMULATE_DO_MMIO:
1480                 run->exit_reason = KVM_EXIT_MMIO;
1481                 r = RESUME_HOST;
1482                 break;
1483         case EMULATE_FAIL:
1484                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1485                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1486                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1487                 r = RESUME_HOST;
1488                 break;
1489         default:
1490                 r = RESUME_GUEST;
1491                 break;
1492         }
1493         return r;
1494 }
1495 #endif /* CONFIG_VSX */
1496
1497 #ifdef CONFIG_ALTIVEC
1498 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1499                 unsigned int rt, unsigned int bytes, int is_default_endian)
1500 {
1501         enum emulation_result emulated = EMULATE_DONE;
1502
1503         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1504                 return EMULATE_FAIL;
1505
1506         while (vcpu->arch.mmio_vmx_copy_nums) {
1507                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1508                                 is_default_endian, 0);
1509
1510                 if (emulated != EMULATE_DONE)
1511                         break;
1512
1513                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1514                 vcpu->arch.mmio_vmx_copy_nums--;
1515                 vcpu->arch.mmio_vmx_offset++;
1516         }
1517
1518         return emulated;
1519 }
1520
1521 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1522 {
1523         union kvmppc_one_reg reg;
1524         int vmx_offset = 0;
1525         int result = 0;
1526
1527         vmx_offset =
1528                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1529
1530         if (vmx_offset == -1)
1531                 return -1;
1532
1533         reg.vval = VCPU_VSX_VR(vcpu, index);
1534         *val = reg.vsxval[vmx_offset];
1535
1536         return result;
1537 }
1538
1539 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1540 {
1541         union kvmppc_one_reg reg;
1542         int vmx_offset = 0;
1543         int result = 0;
1544
1545         vmx_offset =
1546                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1547
1548         if (vmx_offset == -1)
1549                 return -1;
1550
1551         reg.vval = VCPU_VSX_VR(vcpu, index);
1552         *val = reg.vsx32val[vmx_offset];
1553
1554         return result;
1555 }
1556
1557 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1558 {
1559         union kvmppc_one_reg reg;
1560         int vmx_offset = 0;
1561         int result = 0;
1562
1563         vmx_offset =
1564                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1565
1566         if (vmx_offset == -1)
1567                 return -1;
1568
1569         reg.vval = VCPU_VSX_VR(vcpu, index);
1570         *val = reg.vsx16val[vmx_offset];
1571
1572         return result;
1573 }
1574
1575 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1576 {
1577         union kvmppc_one_reg reg;
1578         int vmx_offset = 0;
1579         int result = 0;
1580
1581         vmx_offset =
1582                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1583
1584         if (vmx_offset == -1)
1585                 return -1;
1586
1587         reg.vval = VCPU_VSX_VR(vcpu, index);
1588         *val = reg.vsx8val[vmx_offset];
1589
1590         return result;
1591 }
1592
1593 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1594                 unsigned int rs, unsigned int bytes, int is_default_endian)
1595 {
1596         u64 val = 0;
1597         unsigned int index = rs & KVM_MMIO_REG_MASK;
1598         enum emulation_result emulated = EMULATE_DONE;
1599
1600         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1601                 return EMULATE_FAIL;
1602
1603         vcpu->arch.io_gpr = rs;
1604
1605         while (vcpu->arch.mmio_vmx_copy_nums) {
1606                 switch (vcpu->arch.mmio_copy_type) {
1607                 case KVMPPC_VMX_COPY_DWORD:
1608                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1609                                 return EMULATE_FAIL;
1610
1611                         break;
1612                 case KVMPPC_VMX_COPY_WORD:
1613                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1614                                 return EMULATE_FAIL;
1615                         break;
1616                 case KVMPPC_VMX_COPY_HWORD:
1617                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1618                                 return EMULATE_FAIL;
1619                         break;
1620                 case KVMPPC_VMX_COPY_BYTE:
1621                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1622                                 return EMULATE_FAIL;
1623                         break;
1624                 default:
1625                         return EMULATE_FAIL;
1626                 }
1627
1628                 emulated = kvmppc_handle_store(vcpu, val, bytes,
1629                                 is_default_endian);
1630                 if (emulated != EMULATE_DONE)
1631                         break;
1632
1633                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1634                 vcpu->arch.mmio_vmx_copy_nums--;
1635                 vcpu->arch.mmio_vmx_offset++;
1636         }
1637
1638         return emulated;
1639 }
1640
1641 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1642 {
1643         struct kvm_run *run = vcpu->run;
1644         enum emulation_result emulated = EMULATE_FAIL;
1645         int r;
1646
1647         vcpu->arch.paddr_accessed += run->mmio.len;
1648
1649         if (!vcpu->mmio_is_write) {
1650                 emulated = kvmppc_handle_vmx_load(vcpu,
1651                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1652         } else {
1653                 emulated = kvmppc_handle_vmx_store(vcpu,
1654                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1655         }
1656
1657         switch (emulated) {
1658         case EMULATE_DO_MMIO:
1659                 run->exit_reason = KVM_EXIT_MMIO;
1660                 r = RESUME_HOST;
1661                 break;
1662         case EMULATE_FAIL:
1663                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1664                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1665                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1666                 r = RESUME_HOST;
1667                 break;
1668         default:
1669                 r = RESUME_GUEST;
1670                 break;
1671         }
1672         return r;
1673 }
1674 #endif /* CONFIG_ALTIVEC */
1675
1676 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1677 {
1678         int r = 0;
1679         union kvmppc_one_reg val;
1680         int size;
1681
1682         size = one_reg_size(reg->id);
1683         if (size > sizeof(val))
1684                 return -EINVAL;
1685
1686         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1687         if (r == -EINVAL) {
1688                 r = 0;
1689                 switch (reg->id) {
1690 #ifdef CONFIG_ALTIVEC
1691                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1692                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1693                                 r = -ENXIO;
1694                                 break;
1695                         }
1696                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1697                         break;
1698                 case KVM_REG_PPC_VSCR:
1699                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1700                                 r = -ENXIO;
1701                                 break;
1702                         }
1703                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1704                         break;
1705                 case KVM_REG_PPC_VRSAVE:
1706                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1707                         break;
1708 #endif /* CONFIG_ALTIVEC */
1709                 default:
1710                         r = -EINVAL;
1711                         break;
1712                 }
1713         }
1714
1715         if (r)
1716                 return r;
1717
1718         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1719                 r = -EFAULT;
1720
1721         return r;
1722 }
1723
1724 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1725 {
1726         int r;
1727         union kvmppc_one_reg val;
1728         int size;
1729
1730         size = one_reg_size(reg->id);
1731         if (size > sizeof(val))
1732                 return -EINVAL;
1733
1734         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1735                 return -EFAULT;
1736
1737         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1738         if (r == -EINVAL) {
1739                 r = 0;
1740                 switch (reg->id) {
1741 #ifdef CONFIG_ALTIVEC
1742                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1743                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1744                                 r = -ENXIO;
1745                                 break;
1746                         }
1747                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1748                         break;
1749                 case KVM_REG_PPC_VSCR:
1750                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1751                                 r = -ENXIO;
1752                                 break;
1753                         }
1754                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1755                         break;
1756                 case KVM_REG_PPC_VRSAVE:
1757                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1758                                 r = -ENXIO;
1759                                 break;
1760                         }
1761                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1762                         break;
1763 #endif /* CONFIG_ALTIVEC */
1764                 default:
1765                         r = -EINVAL;
1766                         break;
1767                 }
1768         }
1769
1770         return r;
1771 }
1772
1773 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1774 {
1775         struct kvm_run *run = vcpu->run;
1776         int r;
1777
1778         vcpu_load(vcpu);
1779
1780         if (vcpu->mmio_needed) {
1781                 vcpu->mmio_needed = 0;
1782                 if (!vcpu->mmio_is_write)
1783                         kvmppc_complete_mmio_load(vcpu);
1784 #ifdef CONFIG_VSX
1785                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1786                         vcpu->arch.mmio_vsx_copy_nums--;
1787                         vcpu->arch.mmio_vsx_offset++;
1788                 }
1789
1790                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1791                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1792                         if (r == RESUME_HOST) {
1793                                 vcpu->mmio_needed = 1;
1794                                 goto out;
1795                         }
1796                 }
1797 #endif
1798 #ifdef CONFIG_ALTIVEC
1799                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1800                         vcpu->arch.mmio_vmx_copy_nums--;
1801                         vcpu->arch.mmio_vmx_offset++;
1802                 }
1803
1804                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1805                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1806                         if (r == RESUME_HOST) {
1807                                 vcpu->mmio_needed = 1;
1808                                 goto out;
1809                         }
1810                 }
1811 #endif
1812         } else if (vcpu->arch.osi_needed) {
1813                 u64 *gprs = run->osi.gprs;
1814                 int i;
1815
1816                 for (i = 0; i < 32; i++)
1817                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1818                 vcpu->arch.osi_needed = 0;
1819         } else if (vcpu->arch.hcall_needed) {
1820                 int i;
1821
1822                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1823                 for (i = 0; i < 9; ++i)
1824                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1825                 vcpu->arch.hcall_needed = 0;
1826 #ifdef CONFIG_BOOKE
1827         } else if (vcpu->arch.epr_needed) {
1828                 kvmppc_set_epr(vcpu, run->epr.epr);
1829                 vcpu->arch.epr_needed = 0;
1830 #endif
1831         }
1832
1833         kvm_sigset_activate(vcpu);
1834
1835         if (run->immediate_exit)
1836                 r = -EINTR;
1837         else
1838                 r = kvmppc_vcpu_run(vcpu);
1839
1840         kvm_sigset_deactivate(vcpu);
1841
1842 #ifdef CONFIG_ALTIVEC
1843 out:
1844 #endif
1845         vcpu_put(vcpu);
1846         return r;
1847 }
1848
1849 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1850 {
1851         if (irq->irq == KVM_INTERRUPT_UNSET) {
1852                 kvmppc_core_dequeue_external(vcpu);
1853                 return 0;
1854         }
1855
1856         kvmppc_core_queue_external(vcpu, irq);
1857
1858         kvm_vcpu_kick(vcpu);
1859
1860         return 0;
1861 }
1862
1863 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1864                                      struct kvm_enable_cap *cap)
1865 {
1866         int r;
1867
1868         if (cap->flags)
1869                 return -EINVAL;
1870
1871         switch (cap->cap) {
1872         case KVM_CAP_PPC_OSI:
1873                 r = 0;
1874                 vcpu->arch.osi_enabled = true;
1875                 break;
1876         case KVM_CAP_PPC_PAPR:
1877                 r = 0;
1878                 vcpu->arch.papr_enabled = true;
1879                 break;
1880         case KVM_CAP_PPC_EPR:
1881                 r = 0;
1882                 if (cap->args[0])
1883                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1884                 else
1885                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1886                 break;
1887 #ifdef CONFIG_BOOKE
1888         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1889                 r = 0;
1890                 vcpu->arch.watchdog_enabled = true;
1891                 break;
1892 #endif
1893 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1894         case KVM_CAP_SW_TLB: {
1895                 struct kvm_config_tlb cfg;
1896                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1897
1898                 r = -EFAULT;
1899                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1900                         break;
1901
1902                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1903                 break;
1904         }
1905 #endif
1906 #ifdef CONFIG_KVM_MPIC
1907         case KVM_CAP_IRQ_MPIC: {
1908                 struct fd f;
1909                 struct kvm_device *dev;
1910
1911                 r = -EBADF;
1912                 f = fdget(cap->args[0]);
1913                 if (!f.file)
1914                         break;
1915
1916                 r = -EPERM;
1917                 dev = kvm_device_from_filp(f.file);
1918                 if (dev)
1919                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1920
1921                 fdput(f);
1922                 break;
1923         }
1924 #endif
1925 #ifdef CONFIG_KVM_XICS
1926         case KVM_CAP_IRQ_XICS: {
1927                 struct fd f;
1928                 struct kvm_device *dev;
1929
1930                 r = -EBADF;
1931                 f = fdget(cap->args[0]);
1932                 if (!f.file)
1933                         break;
1934
1935                 r = -EPERM;
1936                 dev = kvm_device_from_filp(f.file);
1937                 if (dev) {
1938                         if (xics_on_xive())
1939                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1940                         else
1941                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1942                 }
1943
1944                 fdput(f);
1945                 break;
1946         }
1947 #endif /* CONFIG_KVM_XICS */
1948 #ifdef CONFIG_KVM_XIVE
1949         case KVM_CAP_PPC_IRQ_XIVE: {
1950                 struct fd f;
1951                 struct kvm_device *dev;
1952
1953                 r = -EBADF;
1954                 f = fdget(cap->args[0]);
1955                 if (!f.file)
1956                         break;
1957
1958                 r = -ENXIO;
1959                 if (!xive_enabled())
1960                         break;
1961
1962                 r = -EPERM;
1963                 dev = kvm_device_from_filp(f.file);
1964                 if (dev)
1965                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1966                                                             cap->args[1]);
1967
1968                 fdput(f);
1969                 break;
1970         }
1971 #endif /* CONFIG_KVM_XIVE */
1972 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1973         case KVM_CAP_PPC_FWNMI:
1974                 r = -EINVAL;
1975                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1976                         break;
1977                 r = 0;
1978                 vcpu->kvm->arch.fwnmi_enabled = true;
1979                 break;
1980 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1981         default:
1982                 r = -EINVAL;
1983                 break;
1984         }
1985
1986         if (!r)
1987                 r = kvmppc_sanity_check(vcpu);
1988
1989         return r;
1990 }
1991
1992 bool kvm_arch_intc_initialized(struct kvm *kvm)
1993 {
1994 #ifdef CONFIG_KVM_MPIC
1995         if (kvm->arch.mpic)
1996                 return true;
1997 #endif
1998 #ifdef CONFIG_KVM_XICS
1999         if (kvm->arch.xics || kvm->arch.xive)
2000                 return true;
2001 #endif
2002         return false;
2003 }
2004
2005 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2006                                     struct kvm_mp_state *mp_state)
2007 {
2008         return -EINVAL;
2009 }
2010
2011 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2012                                     struct kvm_mp_state *mp_state)
2013 {
2014         return -EINVAL;
2015 }
2016
2017 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2018                                unsigned int ioctl, unsigned long arg)
2019 {
2020         struct kvm_vcpu *vcpu = filp->private_data;
2021         void __user *argp = (void __user *)arg;
2022
2023         if (ioctl == KVM_INTERRUPT) {
2024                 struct kvm_interrupt irq;
2025                 if (copy_from_user(&irq, argp, sizeof(irq)))
2026                         return -EFAULT;
2027                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2028         }
2029         return -ENOIOCTLCMD;
2030 }
2031
2032 long kvm_arch_vcpu_ioctl(struct file *filp,
2033                          unsigned int ioctl, unsigned long arg)
2034 {
2035         struct kvm_vcpu *vcpu = filp->private_data;
2036         void __user *argp = (void __user *)arg;
2037         long r;
2038
2039         switch (ioctl) {
2040         case KVM_ENABLE_CAP:
2041         {
2042                 struct kvm_enable_cap cap;
2043                 r = -EFAULT;
2044                 vcpu_load(vcpu);
2045                 if (copy_from_user(&cap, argp, sizeof(cap)))
2046                         goto out;
2047                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2048                 vcpu_put(vcpu);
2049                 break;
2050         }
2051
2052         case KVM_SET_ONE_REG:
2053         case KVM_GET_ONE_REG:
2054         {
2055                 struct kvm_one_reg reg;
2056                 r = -EFAULT;
2057                 if (copy_from_user(&reg, argp, sizeof(reg)))
2058                         goto out;
2059                 if (ioctl == KVM_SET_ONE_REG)
2060                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2061                 else
2062                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2063                 break;
2064         }
2065
2066 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2067         case KVM_DIRTY_TLB: {
2068                 struct kvm_dirty_tlb dirty;
2069                 r = -EFAULT;
2070                 vcpu_load(vcpu);
2071                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2072                         goto out;
2073                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2074                 vcpu_put(vcpu);
2075                 break;
2076         }
2077 #endif
2078         default:
2079                 r = -EINVAL;
2080         }
2081
2082 out:
2083         return r;
2084 }
2085
2086 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2087 {
2088         return VM_FAULT_SIGBUS;
2089 }
2090
2091 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2092 {
2093         u32 inst_nop = 0x60000000;
2094 #ifdef CONFIG_KVM_BOOKE_HV
2095         u32 inst_sc1 = 0x44000022;
2096         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2097         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2098         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2099         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2100 #else
2101         u32 inst_lis = 0x3c000000;
2102         u32 inst_ori = 0x60000000;
2103         u32 inst_sc = 0x44000002;
2104         u32 inst_imm_mask = 0xffff;
2105
2106         /*
2107          * The hypercall to get into KVM from within guest context is as
2108          * follows:
2109          *
2110          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2111          *    ori r0, KVM_SC_MAGIC_R0@l
2112          *    sc
2113          *    nop
2114          */
2115         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2116         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2117         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2118         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2119 #endif
2120
2121         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2122
2123         return 0;
2124 }
2125
2126 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2127                           bool line_status)
2128 {
2129         if (!irqchip_in_kernel(kvm))
2130                 return -ENXIO;
2131
2132         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2133                                         irq_event->irq, irq_event->level,
2134                                         line_status);
2135         return 0;
2136 }
2137
2138
2139 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2140                             struct kvm_enable_cap *cap)
2141 {
2142         int r;
2143
2144         if (cap->flags)
2145                 return -EINVAL;
2146
2147         switch (cap->cap) {
2148 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2149         case KVM_CAP_PPC_ENABLE_HCALL: {
2150                 unsigned long hcall = cap->args[0];
2151
2152                 r = -EINVAL;
2153                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2154                     cap->args[1] > 1)
2155                         break;
2156                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2157                         break;
2158                 if (cap->args[1])
2159                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2160                 else
2161                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2162                 r = 0;
2163                 break;
2164         }
2165         case KVM_CAP_PPC_SMT: {
2166                 unsigned long mode = cap->args[0];
2167                 unsigned long flags = cap->args[1];
2168
2169                 r = -EINVAL;
2170                 if (kvm->arch.kvm_ops->set_smt_mode)
2171                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2172                 break;
2173         }
2174
2175         case KVM_CAP_PPC_NESTED_HV:
2176                 r = -EINVAL;
2177                 if (!is_kvmppc_hv_enabled(kvm) ||
2178                     !kvm->arch.kvm_ops->enable_nested)
2179                         break;
2180                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2181                 break;
2182 #endif
2183 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2184         case KVM_CAP_PPC_SECURE_GUEST:
2185                 r = -EINVAL;
2186                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2187                         break;
2188                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2189                 break;
2190 #endif
2191         default:
2192                 r = -EINVAL;
2193                 break;
2194         }
2195
2196         return r;
2197 }
2198
2199 #ifdef CONFIG_PPC_BOOK3S_64
2200 /*
2201  * These functions check whether the underlying hardware is safe
2202  * against attacks based on observing the effects of speculatively
2203  * executed instructions, and whether it supplies instructions for
2204  * use in workarounds.  The information comes from firmware, either
2205  * via the device tree on powernv platforms or from an hcall on
2206  * pseries platforms.
2207  */
2208 #ifdef CONFIG_PPC_PSERIES
2209 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2210 {
2211         struct h_cpu_char_result c;
2212         unsigned long rc;
2213
2214         if (!machine_is(pseries))
2215                 return -ENOTTY;
2216
2217         rc = plpar_get_cpu_characteristics(&c);
2218         if (rc == H_SUCCESS) {
2219                 cp->character = c.character;
2220                 cp->behaviour = c.behaviour;
2221                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2222                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2223                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2224                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2225                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2226                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2227                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2228                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2229                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2230                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2231                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2232                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2233                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2234         }
2235         return 0;
2236 }
2237 #else
2238 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2239 {
2240         return -ENOTTY;
2241 }
2242 #endif
2243
2244 static inline bool have_fw_feat(struct device_node *fw_features,
2245                                 const char *state, const char *name)
2246 {
2247         struct device_node *np;
2248         bool r = false;
2249
2250         np = of_get_child_by_name(fw_features, name);
2251         if (np) {
2252                 r = of_property_read_bool(np, state);
2253                 of_node_put(np);
2254         }
2255         return r;
2256 }
2257
2258 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2259 {
2260         struct device_node *np, *fw_features;
2261         int r;
2262
2263         memset(cp, 0, sizeof(*cp));
2264         r = pseries_get_cpu_char(cp);
2265         if (r != -ENOTTY)
2266                 return r;
2267
2268         np = of_find_node_by_name(NULL, "ibm,opal");
2269         if (np) {
2270                 fw_features = of_get_child_by_name(np, "fw-features");
2271                 of_node_put(np);
2272                 if (!fw_features)
2273                         return 0;
2274                 if (have_fw_feat(fw_features, "enabled",
2275                                  "inst-spec-barrier-ori31,31,0"))
2276                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2277                 if (have_fw_feat(fw_features, "enabled",
2278                                  "fw-bcctrl-serialized"))
2279                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2280                 if (have_fw_feat(fw_features, "enabled",
2281                                  "inst-l1d-flush-ori30,30,0"))
2282                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2283                 if (have_fw_feat(fw_features, "enabled",
2284                                  "inst-l1d-flush-trig2"))
2285                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2286                 if (have_fw_feat(fw_features, "enabled",
2287                                  "fw-l1d-thread-split"))
2288                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2289                 if (have_fw_feat(fw_features, "enabled",
2290                                  "fw-count-cache-disabled"))
2291                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2292                 if (have_fw_feat(fw_features, "enabled",
2293                                  "fw-count-cache-flush-bcctr2,0,0"))
2294                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2295                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2296                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2297                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2298                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2299                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2300                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2301                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2302
2303                 if (have_fw_feat(fw_features, "enabled",
2304                                  "speculation-policy-favor-security"))
2305                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2306                 if (!have_fw_feat(fw_features, "disabled",
2307                                   "needs-l1d-flush-msr-pr-0-to-1"))
2308                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2309                 if (!have_fw_feat(fw_features, "disabled",
2310                                   "needs-spec-barrier-for-bound-checks"))
2311                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2312                 if (have_fw_feat(fw_features, "enabled",
2313                                  "needs-count-cache-flush-on-context-switch"))
2314                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2315                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2316                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2317                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2318                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2319
2320                 of_node_put(fw_features);
2321         }
2322
2323         return 0;
2324 }
2325 #endif
2326
2327 long kvm_arch_vm_ioctl(struct file *filp,
2328                        unsigned int ioctl, unsigned long arg)
2329 {
2330         struct kvm *kvm __maybe_unused = filp->private_data;
2331         void __user *argp = (void __user *)arg;
2332         long r;
2333
2334         switch (ioctl) {
2335         case KVM_PPC_GET_PVINFO: {
2336                 struct kvm_ppc_pvinfo pvinfo;
2337                 memset(&pvinfo, 0, sizeof(pvinfo));
2338                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2339                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2340                         r = -EFAULT;
2341                         goto out;
2342                 }
2343
2344                 break;
2345         }
2346 #ifdef CONFIG_SPAPR_TCE_IOMMU
2347         case KVM_CREATE_SPAPR_TCE_64: {
2348                 struct kvm_create_spapr_tce_64 create_tce_64;
2349
2350                 r = -EFAULT;
2351                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2352                         goto out;
2353                 if (create_tce_64.flags) {
2354                         r = -EINVAL;
2355                         goto out;
2356                 }
2357                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2358                 goto out;
2359         }
2360         case KVM_CREATE_SPAPR_TCE: {
2361                 struct kvm_create_spapr_tce create_tce;
2362                 struct kvm_create_spapr_tce_64 create_tce_64;
2363
2364                 r = -EFAULT;
2365                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2366                         goto out;
2367
2368                 create_tce_64.liobn = create_tce.liobn;
2369                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2370                 create_tce_64.offset = 0;
2371                 create_tce_64.size = create_tce.window_size >>
2372                                 IOMMU_PAGE_SHIFT_4K;
2373                 create_tce_64.flags = 0;
2374                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2375                 goto out;
2376         }
2377 #endif
2378 #ifdef CONFIG_PPC_BOOK3S_64
2379         case KVM_PPC_GET_SMMU_INFO: {
2380                 struct kvm_ppc_smmu_info info;
2381                 struct kvm *kvm = filp->private_data;
2382
2383                 memset(&info, 0, sizeof(info));
2384                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2385                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2386                         r = -EFAULT;
2387                 break;
2388         }
2389         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2390                 struct kvm *kvm = filp->private_data;
2391
2392                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2393                 break;
2394         }
2395         case KVM_PPC_CONFIGURE_V3_MMU: {
2396                 struct kvm *kvm = filp->private_data;
2397                 struct kvm_ppc_mmuv3_cfg cfg;
2398
2399                 r = -EINVAL;
2400                 if (!kvm->arch.kvm_ops->configure_mmu)
2401                         goto out;
2402                 r = -EFAULT;
2403                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2404                         goto out;
2405                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2406                 break;
2407         }
2408         case KVM_PPC_GET_RMMU_INFO: {
2409                 struct kvm *kvm = filp->private_data;
2410                 struct kvm_ppc_rmmu_info info;
2411
2412                 r = -EINVAL;
2413                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2414                         goto out;
2415                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2416                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2417                         r = -EFAULT;
2418                 break;
2419         }
2420         case KVM_PPC_GET_CPU_CHAR: {
2421                 struct kvm_ppc_cpu_char cpuchar;
2422
2423                 r = kvmppc_get_cpu_char(&cpuchar);
2424                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2425                         r = -EFAULT;
2426                 break;
2427         }
2428         case KVM_PPC_SVM_OFF: {
2429                 struct kvm *kvm = filp->private_data;
2430
2431                 r = 0;
2432                 if (!kvm->arch.kvm_ops->svm_off)
2433                         goto out;
2434
2435                 r = kvm->arch.kvm_ops->svm_off(kvm);
2436                 break;
2437         }
2438         default: {
2439                 struct kvm *kvm = filp->private_data;
2440                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2441         }
2442 #else /* CONFIG_PPC_BOOK3S_64 */
2443         default:
2444                 r = -ENOTTY;
2445 #endif
2446         }
2447 out:
2448         return r;
2449 }
2450
2451 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2452 static unsigned long nr_lpids;
2453
2454 long kvmppc_alloc_lpid(void)
2455 {
2456         long lpid;
2457
2458         do {
2459                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2460                 if (lpid >= nr_lpids) {
2461                         pr_err("%s: No LPIDs free\n", __func__);
2462                         return -ENOMEM;
2463                 }
2464         } while (test_and_set_bit(lpid, lpid_inuse));
2465
2466         return lpid;
2467 }
2468 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2469
2470 void kvmppc_claim_lpid(long lpid)
2471 {
2472         set_bit(lpid, lpid_inuse);
2473 }
2474 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2475
2476 void kvmppc_free_lpid(long lpid)
2477 {
2478         clear_bit(lpid, lpid_inuse);
2479 }
2480 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2481
2482 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2483 {
2484         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2485         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2486 }
2487 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2488
2489 int kvm_arch_init(void *opaque)
2490 {
2491         return 0;
2492 }
2493
2494 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);