Merge tag 'spi-fix-v5.17-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[linux-2.6-microblaze.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_halt(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 /* XXX Deliver Program interrupt to guest. */
311                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312                 r = RESUME_HOST;
313                 break;
314         }
315         default:
316                 WARN_ON(1);
317                 r = RESUME_GUEST;
318         }
319
320         return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325               bool data)
326 {
327         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328         struct kvmppc_pte pte;
329         int r = -EINVAL;
330
331         vcpu->stat.st++;
332
333         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335                                                             size);
336
337         if ((!r) || (r == -EAGAIN))
338                 return r;
339
340         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341                          XLATE_WRITE, &pte);
342         if (r < 0)
343                 return r;
344
345         *eaddr = pte.raddr;
346
347         if (!pte.may_write)
348                 return -EPERM;
349
350         /* Magic page override */
351         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354                 void *magic = vcpu->arch.shared;
355                 magic += pte.eaddr & 0xfff;
356                 memcpy(magic, ptr, size);
357                 return EMULATE_DONE;
358         }
359
360         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361                 return EMULATE_DO_MMIO;
362
363         return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368                       bool data)
369 {
370         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371         struct kvmppc_pte pte;
372         int rc = -EINVAL;
373
374         vcpu->stat.ld++;
375
376         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378                                                               size);
379
380         if ((!rc) || (rc == -EAGAIN))
381                 return rc;
382
383         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384                           XLATE_READ, &pte);
385         if (rc)
386                 return rc;
387
388         *eaddr = pte.raddr;
389
390         if (!pte.may_read)
391                 return -EPERM;
392
393         if (!data && !pte.may_execute)
394                 return -ENOEXEC;
395
396         /* Magic page override */
397         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400                 void *magic = vcpu->arch.shared;
401                 magic += pte.eaddr & 0xfff;
402                 memcpy(ptr, magic, size);
403                 return EMULATE_DONE;
404         }
405
406         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
407         rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
408         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
409         if (rc)
410                 return EMULATE_DO_MMIO;
411
412         return EMULATE_DONE;
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_ld);
415
416 int kvm_arch_hardware_enable(void)
417 {
418         return 0;
419 }
420
421 int kvm_arch_hardware_setup(void *opaque)
422 {
423         return 0;
424 }
425
426 int kvm_arch_check_processor_compat(void *opaque)
427 {
428         return kvmppc_core_check_processor_compat();
429 }
430
431 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
432 {
433         struct kvmppc_ops *kvm_ops = NULL;
434         /*
435          * if we have both HV and PR enabled, default is HV
436          */
437         if (type == 0) {
438                 if (kvmppc_hv_ops)
439                         kvm_ops = kvmppc_hv_ops;
440                 else
441                         kvm_ops = kvmppc_pr_ops;
442                 if (!kvm_ops)
443                         goto err_out;
444         } else  if (type == KVM_VM_PPC_HV) {
445                 if (!kvmppc_hv_ops)
446                         goto err_out;
447                 kvm_ops = kvmppc_hv_ops;
448         } else if (type == KVM_VM_PPC_PR) {
449                 if (!kvmppc_pr_ops)
450                         goto err_out;
451                 kvm_ops = kvmppc_pr_ops;
452         } else
453                 goto err_out;
454
455         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
456                 return -ENOENT;
457
458         kvm->arch.kvm_ops = kvm_ops;
459         return kvmppc_core_init_vm(kvm);
460 err_out:
461         return -EINVAL;
462 }
463
464 void kvm_arch_destroy_vm(struct kvm *kvm)
465 {
466 #ifdef CONFIG_KVM_XICS
467         /*
468          * We call kick_all_cpus_sync() to ensure that all
469          * CPUs have executed any pending IPIs before we
470          * continue and free VCPUs structures below.
471          */
472         if (is_kvmppc_hv_enabled(kvm))
473                 kick_all_cpus_sync();
474 #endif
475
476         kvm_destroy_vcpus(kvm);
477
478         mutex_lock(&kvm->lock);
479
480         kvmppc_core_destroy_vm(kvm);
481
482         mutex_unlock(&kvm->lock);
483
484         /* drop the module reference */
485         module_put(kvm->arch.kvm_ops->owner);
486 }
487
488 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
489 {
490         int r;
491         /* Assume we're using HV mode when the HV module is loaded */
492         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
493
494         if (kvm) {
495                 /*
496                  * Hooray - we know which VM type we're running on. Depend on
497                  * that rather than the guess above.
498                  */
499                 hv_enabled = is_kvmppc_hv_enabled(kvm);
500         }
501
502         switch (ext) {
503 #ifdef CONFIG_BOOKE
504         case KVM_CAP_PPC_BOOKE_SREGS:
505         case KVM_CAP_PPC_BOOKE_WATCHDOG:
506         case KVM_CAP_PPC_EPR:
507 #else
508         case KVM_CAP_PPC_SEGSTATE:
509         case KVM_CAP_PPC_HIOR:
510         case KVM_CAP_PPC_PAPR:
511 #endif
512         case KVM_CAP_PPC_UNSET_IRQ:
513         case KVM_CAP_PPC_IRQ_LEVEL:
514         case KVM_CAP_ENABLE_CAP:
515         case KVM_CAP_ONE_REG:
516         case KVM_CAP_IOEVENTFD:
517         case KVM_CAP_DEVICE_CTRL:
518         case KVM_CAP_IMMEDIATE_EXIT:
519         case KVM_CAP_SET_GUEST_DEBUG:
520                 r = 1;
521                 break;
522         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
523         case KVM_CAP_PPC_PAIRED_SINGLES:
524         case KVM_CAP_PPC_OSI:
525         case KVM_CAP_PPC_GET_PVINFO:
526 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
527         case KVM_CAP_SW_TLB:
528 #endif
529                 /* We support this only for PR */
530                 r = !hv_enabled;
531                 break;
532 #ifdef CONFIG_KVM_MPIC
533         case KVM_CAP_IRQ_MPIC:
534                 r = 1;
535                 break;
536 #endif
537
538 #ifdef CONFIG_PPC_BOOK3S_64
539         case KVM_CAP_SPAPR_TCE:
540         case KVM_CAP_SPAPR_TCE_64:
541                 r = 1;
542                 break;
543         case KVM_CAP_SPAPR_TCE_VFIO:
544                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
545                 break;
546         case KVM_CAP_PPC_RTAS:
547         case KVM_CAP_PPC_FIXUP_HCALL:
548         case KVM_CAP_PPC_ENABLE_HCALL:
549 #ifdef CONFIG_KVM_XICS
550         case KVM_CAP_IRQ_XICS:
551 #endif
552         case KVM_CAP_PPC_GET_CPU_CHAR:
553                 r = 1;
554                 break;
555 #ifdef CONFIG_KVM_XIVE
556         case KVM_CAP_PPC_IRQ_XIVE:
557                 /*
558                  * We need XIVE to be enabled on the platform (implies
559                  * a POWER9 processor) and the PowerNV platform, as
560                  * nested is not yet supported.
561                  */
562                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
563                         kvmppc_xive_native_supported();
564                 break;
565 #endif
566
567         case KVM_CAP_PPC_ALLOC_HTAB:
568                 r = hv_enabled;
569                 break;
570 #endif /* CONFIG_PPC_BOOK3S_64 */
571 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
572         case KVM_CAP_PPC_SMT:
573                 r = 0;
574                 if (kvm) {
575                         if (kvm->arch.emul_smt_mode > 1)
576                                 r = kvm->arch.emul_smt_mode;
577                         else
578                                 r = kvm->arch.smt_mode;
579                 } else if (hv_enabled) {
580                         if (cpu_has_feature(CPU_FTR_ARCH_300))
581                                 r = 1;
582                         else
583                                 r = threads_per_subcore;
584                 }
585                 break;
586         case KVM_CAP_PPC_SMT_POSSIBLE:
587                 r = 1;
588                 if (hv_enabled) {
589                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
590                                 r = ((threads_per_subcore << 1) - 1);
591                         else
592                                 /* P9 can emulate dbells, so allow any mode */
593                                 r = 8 | 4 | 2 | 1;
594                 }
595                 break;
596         case KVM_CAP_PPC_RMA:
597                 r = 0;
598                 break;
599         case KVM_CAP_PPC_HWRNG:
600                 r = kvmppc_hwrng_present();
601                 break;
602         case KVM_CAP_PPC_MMU_RADIX:
603                 r = !!(hv_enabled && radix_enabled());
604                 break;
605         case KVM_CAP_PPC_MMU_HASH_V3:
606                 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
607                        kvmppc_hv_ops->hash_v3_possible());
608                 break;
609         case KVM_CAP_PPC_NESTED_HV:
610                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
611                        !kvmppc_hv_ops->enable_nested(NULL));
612                 break;
613 #endif
614         case KVM_CAP_SYNC_MMU:
615 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
616                 r = hv_enabled;
617 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
618                 r = 1;
619 #else
620                 r = 0;
621 #endif
622                 break;
623 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624         case KVM_CAP_PPC_HTAB_FD:
625                 r = hv_enabled;
626                 break;
627 #endif
628         case KVM_CAP_NR_VCPUS:
629                 /*
630                  * Recommending a number of CPUs is somewhat arbitrary; we
631                  * return the number of present CPUs for -HV (since a host
632                  * will have secondary threads "offline"), and for other KVM
633                  * implementations just count online CPUs.
634                  */
635                 if (hv_enabled)
636                         r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
637                 else
638                         r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
639                 break;
640         case KVM_CAP_MAX_VCPUS:
641                 r = KVM_MAX_VCPUS;
642                 break;
643         case KVM_CAP_MAX_VCPU_ID:
644                 r = KVM_MAX_VCPU_IDS;
645                 break;
646 #ifdef CONFIG_PPC_BOOK3S_64
647         case KVM_CAP_PPC_GET_SMMU_INFO:
648                 r = 1;
649                 break;
650         case KVM_CAP_SPAPR_MULTITCE:
651                 r = 1;
652                 break;
653         case KVM_CAP_SPAPR_RESIZE_HPT:
654                 r = !!hv_enabled;
655                 break;
656 #endif
657 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
658         case KVM_CAP_PPC_FWNMI:
659                 r = hv_enabled;
660                 break;
661 #endif
662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
663         case KVM_CAP_PPC_HTM:
664                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
665                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
666                 break;
667 #endif
668 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
669         case KVM_CAP_PPC_SECURE_GUEST:
670                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
671                         !kvmppc_hv_ops->enable_svm(NULL);
672                 break;
673         case KVM_CAP_PPC_DAWR1:
674                 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
675                        !kvmppc_hv_ops->enable_dawr1(NULL));
676                 break;
677         case KVM_CAP_PPC_RPT_INVALIDATE:
678                 r = 1;
679                 break;
680 #endif
681         default:
682                 r = 0;
683                 break;
684         }
685         return r;
686
687 }
688
689 long kvm_arch_dev_ioctl(struct file *filp,
690                         unsigned int ioctl, unsigned long arg)
691 {
692         return -EINVAL;
693 }
694
695 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
696 {
697         kvmppc_core_free_memslot(kvm, slot);
698 }
699
700 int kvm_arch_prepare_memory_region(struct kvm *kvm,
701                                    const struct kvm_memory_slot *old,
702                                    struct kvm_memory_slot *new,
703                                    enum kvm_mr_change change)
704 {
705         return kvmppc_core_prepare_memory_region(kvm, old, new, change);
706 }
707
708 void kvm_arch_commit_memory_region(struct kvm *kvm,
709                                    struct kvm_memory_slot *old,
710                                    const struct kvm_memory_slot *new,
711                                    enum kvm_mr_change change)
712 {
713         kvmppc_core_commit_memory_region(kvm, old, new, change);
714 }
715
716 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
717                                    struct kvm_memory_slot *slot)
718 {
719         kvmppc_core_flush_memslot(kvm, slot);
720 }
721
722 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
723 {
724         return 0;
725 }
726
727 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
728 {
729         struct kvm_vcpu *vcpu;
730
731         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
732         kvmppc_decrementer_func(vcpu);
733
734         return HRTIMER_NORESTART;
735 }
736
737 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
738 {
739         int err;
740
741         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
742         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
743         vcpu->arch.dec_expires = get_tb();
744
745 #ifdef CONFIG_KVM_EXIT_TIMING
746         mutex_init(&vcpu->arch.exit_timing_lock);
747 #endif
748         err = kvmppc_subarch_vcpu_init(vcpu);
749         if (err)
750                 return err;
751
752         err = kvmppc_core_vcpu_create(vcpu);
753         if (err)
754                 goto out_vcpu_uninit;
755
756         rcuwait_init(&vcpu->arch.wait);
757         vcpu->arch.waitp = &vcpu->arch.wait;
758         kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
759         return 0;
760
761 out_vcpu_uninit:
762         kvmppc_subarch_vcpu_uninit(vcpu);
763         return err;
764 }
765
766 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
767 {
768 }
769
770 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
771 {
772         /* Make sure we're not using the vcpu anymore */
773         hrtimer_cancel(&vcpu->arch.dec_timer);
774
775         kvmppc_remove_vcpu_debugfs(vcpu);
776
777         switch (vcpu->arch.irq_type) {
778         case KVMPPC_IRQ_MPIC:
779                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
780                 break;
781         case KVMPPC_IRQ_XICS:
782                 if (xics_on_xive())
783                         kvmppc_xive_cleanup_vcpu(vcpu);
784                 else
785                         kvmppc_xics_free_icp(vcpu);
786                 break;
787         case KVMPPC_IRQ_XIVE:
788                 kvmppc_xive_native_cleanup_vcpu(vcpu);
789                 break;
790         }
791
792         kvmppc_core_vcpu_free(vcpu);
793
794         kvmppc_subarch_vcpu_uninit(vcpu);
795 }
796
797 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
798 {
799         return kvmppc_core_pending_dec(vcpu);
800 }
801
802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
803 {
804 #ifdef CONFIG_BOOKE
805         /*
806          * vrsave (formerly usprg0) isn't used by Linux, but may
807          * be used by the guest.
808          *
809          * On non-booke this is associated with Altivec and
810          * is handled by code in book3s.c.
811          */
812         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
813 #endif
814         kvmppc_core_vcpu_load(vcpu, cpu);
815 }
816
817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
818 {
819         kvmppc_core_vcpu_put(vcpu);
820 #ifdef CONFIG_BOOKE
821         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
822 #endif
823 }
824
825 /*
826  * irq_bypass_add_producer and irq_bypass_del_producer are only
827  * useful if the architecture supports PCI passthrough.
828  * irq_bypass_stop and irq_bypass_start are not needed and so
829  * kvm_ops are not defined for them.
830  */
831 bool kvm_arch_has_irq_bypass(void)
832 {
833         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
834                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
835 }
836
837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
838                                      struct irq_bypass_producer *prod)
839 {
840         struct kvm_kernel_irqfd *irqfd =
841                 container_of(cons, struct kvm_kernel_irqfd, consumer);
842         struct kvm *kvm = irqfd->kvm;
843
844         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
845                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
846
847         return 0;
848 }
849
850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
851                                       struct irq_bypass_producer *prod)
852 {
853         struct kvm_kernel_irqfd *irqfd =
854                 container_of(cons, struct kvm_kernel_irqfd, consumer);
855         struct kvm *kvm = irqfd->kvm;
856
857         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
858                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
859 }
860
861 #ifdef CONFIG_VSX
862 static inline int kvmppc_get_vsr_dword_offset(int index)
863 {
864         int offset;
865
866         if ((index != 0) && (index != 1))
867                 return -1;
868
869 #ifdef __BIG_ENDIAN
870         offset =  index;
871 #else
872         offset = 1 - index;
873 #endif
874
875         return offset;
876 }
877
878 static inline int kvmppc_get_vsr_word_offset(int index)
879 {
880         int offset;
881
882         if ((index > 3) || (index < 0))
883                 return -1;
884
885 #ifdef __BIG_ENDIAN
886         offset = index;
887 #else
888         offset = 3 - index;
889 #endif
890         return offset;
891 }
892
893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
894         u64 gpr)
895 {
896         union kvmppc_one_reg val;
897         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
898         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
899
900         if (offset == -1)
901                 return;
902
903         if (index >= 32) {
904                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
905                 val.vsxval[offset] = gpr;
906                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
907         } else {
908                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
909         }
910 }
911
912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
913         u64 gpr)
914 {
915         union kvmppc_one_reg val;
916         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
917
918         if (index >= 32) {
919                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
920                 val.vsxval[0] = gpr;
921                 val.vsxval[1] = gpr;
922                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
923         } else {
924                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
925                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
926         }
927 }
928
929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
930         u32 gpr)
931 {
932         union kvmppc_one_reg val;
933         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934
935         if (index >= 32) {
936                 val.vsx32val[0] = gpr;
937                 val.vsx32val[1] = gpr;
938                 val.vsx32val[2] = gpr;
939                 val.vsx32val[3] = gpr;
940                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
941         } else {
942                 val.vsx32val[0] = gpr;
943                 val.vsx32val[1] = gpr;
944                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
945                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
946         }
947 }
948
949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
950         u32 gpr32)
951 {
952         union kvmppc_one_reg val;
953         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
954         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
955         int dword_offset, word_offset;
956
957         if (offset == -1)
958                 return;
959
960         if (index >= 32) {
961                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
962                 val.vsx32val[offset] = gpr32;
963                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964         } else {
965                 dword_offset = offset / 2;
966                 word_offset = offset % 2;
967                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
968                 val.vsx32val[word_offset] = gpr32;
969                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
970         }
971 }
972 #endif /* CONFIG_VSX */
973
974 #ifdef CONFIG_ALTIVEC
975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
976                 int index, int element_size)
977 {
978         int offset;
979         int elts = sizeof(vector128)/element_size;
980
981         if ((index < 0) || (index >= elts))
982                 return -1;
983
984         if (kvmppc_need_byteswap(vcpu))
985                 offset = elts - index - 1;
986         else
987                 offset = index;
988
989         return offset;
990 }
991
992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
993                 int index)
994 {
995         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
996 }
997
998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
999                 int index)
1000 {
1001         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1002 }
1003
1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1005                 int index)
1006 {
1007         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1008 }
1009
1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1011                 int index)
1012 {
1013         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1014 }
1015
1016
1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1018         u64 gpr)
1019 {
1020         union kvmppc_one_reg val;
1021         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1022                         vcpu->arch.mmio_vmx_offset);
1023         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1024
1025         if (offset == -1)
1026                 return;
1027
1028         val.vval = VCPU_VSX_VR(vcpu, index);
1029         val.vsxval[offset] = gpr;
1030         VCPU_VSX_VR(vcpu, index) = val.vval;
1031 }
1032
1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1034         u32 gpr32)
1035 {
1036         union kvmppc_one_reg val;
1037         int offset = kvmppc_get_vmx_word_offset(vcpu,
1038                         vcpu->arch.mmio_vmx_offset);
1039         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1040
1041         if (offset == -1)
1042                 return;
1043
1044         val.vval = VCPU_VSX_VR(vcpu, index);
1045         val.vsx32val[offset] = gpr32;
1046         VCPU_VSX_VR(vcpu, index) = val.vval;
1047 }
1048
1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1050         u16 gpr16)
1051 {
1052         union kvmppc_one_reg val;
1053         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1054                         vcpu->arch.mmio_vmx_offset);
1055         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1056
1057         if (offset == -1)
1058                 return;
1059
1060         val.vval = VCPU_VSX_VR(vcpu, index);
1061         val.vsx16val[offset] = gpr16;
1062         VCPU_VSX_VR(vcpu, index) = val.vval;
1063 }
1064
1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1066         u8 gpr8)
1067 {
1068         union kvmppc_one_reg val;
1069         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1070                         vcpu->arch.mmio_vmx_offset);
1071         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1072
1073         if (offset == -1)
1074                 return;
1075
1076         val.vval = VCPU_VSX_VR(vcpu, index);
1077         val.vsx8val[offset] = gpr8;
1078         VCPU_VSX_VR(vcpu, index) = val.vval;
1079 }
1080 #endif /* CONFIG_ALTIVEC */
1081
1082 #ifdef CONFIG_PPC_FPU
1083 static inline u64 sp_to_dp(u32 fprs)
1084 {
1085         u64 fprd;
1086
1087         preempt_disable();
1088         enable_kernel_fp();
1089         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1090              : "fr0");
1091         preempt_enable();
1092         return fprd;
1093 }
1094
1095 static inline u32 dp_to_sp(u64 fprd)
1096 {
1097         u32 fprs;
1098
1099         preempt_disable();
1100         enable_kernel_fp();
1101         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1102              : "fr0");
1103         preempt_enable();
1104         return fprs;
1105 }
1106
1107 #else
1108 #define sp_to_dp(x)     (x)
1109 #define dp_to_sp(x)     (x)
1110 #endif /* CONFIG_PPC_FPU */
1111
1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1113 {
1114         struct kvm_run *run = vcpu->run;
1115         u64 gpr;
1116
1117         if (run->mmio.len > sizeof(gpr)) {
1118                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1119                 return;
1120         }
1121
1122         if (!vcpu->arch.mmio_host_swabbed) {
1123                 switch (run->mmio.len) {
1124                 case 8: gpr = *(u64 *)run->mmio.data; break;
1125                 case 4: gpr = *(u32 *)run->mmio.data; break;
1126                 case 2: gpr = *(u16 *)run->mmio.data; break;
1127                 case 1: gpr = *(u8 *)run->mmio.data; break;
1128                 }
1129         } else {
1130                 switch (run->mmio.len) {
1131                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1132                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1133                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1134                 case 1: gpr = *(u8 *)run->mmio.data; break;
1135                 }
1136         }
1137
1138         /* conversion between single and double precision */
1139         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1140                 gpr = sp_to_dp(gpr);
1141
1142         if (vcpu->arch.mmio_sign_extend) {
1143                 switch (run->mmio.len) {
1144 #ifdef CONFIG_PPC64
1145                 case 4:
1146                         gpr = (s64)(s32)gpr;
1147                         break;
1148 #endif
1149                 case 2:
1150                         gpr = (s64)(s16)gpr;
1151                         break;
1152                 case 1:
1153                         gpr = (s64)(s8)gpr;
1154                         break;
1155                 }
1156         }
1157
1158         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1159         case KVM_MMIO_REG_GPR:
1160                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1161                 break;
1162         case KVM_MMIO_REG_FPR:
1163                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1164                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1165
1166                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1167                 break;
1168 #ifdef CONFIG_PPC_BOOK3S
1169         case KVM_MMIO_REG_QPR:
1170                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1171                 break;
1172         case KVM_MMIO_REG_FQPR:
1173                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1174                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1175                 break;
1176 #endif
1177 #ifdef CONFIG_VSX
1178         case KVM_MMIO_REG_VSX:
1179                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1180                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1181
1182                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1183                         kvmppc_set_vsr_dword(vcpu, gpr);
1184                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1185                         kvmppc_set_vsr_word(vcpu, gpr);
1186                 else if (vcpu->arch.mmio_copy_type ==
1187                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1188                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1189                 else if (vcpu->arch.mmio_copy_type ==
1190                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1191                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1192                 break;
1193 #endif
1194 #ifdef CONFIG_ALTIVEC
1195         case KVM_MMIO_REG_VMX:
1196                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1197                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1198
1199                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1200                         kvmppc_set_vmx_dword(vcpu, gpr);
1201                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1202                         kvmppc_set_vmx_word(vcpu, gpr);
1203                 else if (vcpu->arch.mmio_copy_type ==
1204                                 KVMPPC_VMX_COPY_HWORD)
1205                         kvmppc_set_vmx_hword(vcpu, gpr);
1206                 else if (vcpu->arch.mmio_copy_type ==
1207                                 KVMPPC_VMX_COPY_BYTE)
1208                         kvmppc_set_vmx_byte(vcpu, gpr);
1209                 break;
1210 #endif
1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1212         case KVM_MMIO_REG_NESTED_GPR:
1213                 if (kvmppc_need_byteswap(vcpu))
1214                         gpr = swab64(gpr);
1215                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1216                                      sizeof(gpr));
1217                 break;
1218 #endif
1219         default:
1220                 BUG();
1221         }
1222 }
1223
1224 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1225                                 unsigned int rt, unsigned int bytes,
1226                                 int is_default_endian, int sign_extend)
1227 {
1228         struct kvm_run *run = vcpu->run;
1229         int idx, ret;
1230         bool host_swabbed;
1231
1232         /* Pity C doesn't have a logical XOR operator */
1233         if (kvmppc_need_byteswap(vcpu)) {
1234                 host_swabbed = is_default_endian;
1235         } else {
1236                 host_swabbed = !is_default_endian;
1237         }
1238
1239         if (bytes > sizeof(run->mmio.data)) {
1240                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1241                        run->mmio.len);
1242         }
1243
1244         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1245         run->mmio.len = bytes;
1246         run->mmio.is_write = 0;
1247
1248         vcpu->arch.io_gpr = rt;
1249         vcpu->arch.mmio_host_swabbed = host_swabbed;
1250         vcpu->mmio_needed = 1;
1251         vcpu->mmio_is_write = 0;
1252         vcpu->arch.mmio_sign_extend = sign_extend;
1253
1254         idx = srcu_read_lock(&vcpu->kvm->srcu);
1255
1256         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1257                               bytes, &run->mmio.data);
1258
1259         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1260
1261         if (!ret) {
1262                 kvmppc_complete_mmio_load(vcpu);
1263                 vcpu->mmio_needed = 0;
1264                 return EMULATE_DONE;
1265         }
1266
1267         return EMULATE_DO_MMIO;
1268 }
1269
1270 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1271                        unsigned int rt, unsigned int bytes,
1272                        int is_default_endian)
1273 {
1274         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1275 }
1276 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1277
1278 /* Same as above, but sign extends */
1279 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1280                         unsigned int rt, unsigned int bytes,
1281                         int is_default_endian)
1282 {
1283         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1284 }
1285
1286 #ifdef CONFIG_VSX
1287 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1288                         unsigned int rt, unsigned int bytes,
1289                         int is_default_endian, int mmio_sign_extend)
1290 {
1291         enum emulation_result emulated = EMULATE_DONE;
1292
1293         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1294         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1295                 return EMULATE_FAIL;
1296
1297         while (vcpu->arch.mmio_vsx_copy_nums) {
1298                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1299                         is_default_endian, mmio_sign_extend);
1300
1301                 if (emulated != EMULATE_DONE)
1302                         break;
1303
1304                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1305
1306                 vcpu->arch.mmio_vsx_copy_nums--;
1307                 vcpu->arch.mmio_vsx_offset++;
1308         }
1309         return emulated;
1310 }
1311 #endif /* CONFIG_VSX */
1312
1313 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1314                         u64 val, unsigned int bytes, int is_default_endian)
1315 {
1316         struct kvm_run *run = vcpu->run;
1317         void *data = run->mmio.data;
1318         int idx, ret;
1319         bool host_swabbed;
1320
1321         /* Pity C doesn't have a logical XOR operator */
1322         if (kvmppc_need_byteswap(vcpu)) {
1323                 host_swabbed = is_default_endian;
1324         } else {
1325                 host_swabbed = !is_default_endian;
1326         }
1327
1328         if (bytes > sizeof(run->mmio.data)) {
1329                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1330                        run->mmio.len);
1331         }
1332
1333         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1334         run->mmio.len = bytes;
1335         run->mmio.is_write = 1;
1336         vcpu->mmio_needed = 1;
1337         vcpu->mmio_is_write = 1;
1338
1339         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1340                 val = dp_to_sp(val);
1341
1342         /* Store the value at the lowest bytes in 'data'. */
1343         if (!host_swabbed) {
1344                 switch (bytes) {
1345                 case 8: *(u64 *)data = val; break;
1346                 case 4: *(u32 *)data = val; break;
1347                 case 2: *(u16 *)data = val; break;
1348                 case 1: *(u8  *)data = val; break;
1349                 }
1350         } else {
1351                 switch (bytes) {
1352                 case 8: *(u64 *)data = swab64(val); break;
1353                 case 4: *(u32 *)data = swab32(val); break;
1354                 case 2: *(u16 *)data = swab16(val); break;
1355                 case 1: *(u8  *)data = val; break;
1356                 }
1357         }
1358
1359         idx = srcu_read_lock(&vcpu->kvm->srcu);
1360
1361         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1362                                bytes, &run->mmio.data);
1363
1364         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1365
1366         if (!ret) {
1367                 vcpu->mmio_needed = 0;
1368                 return EMULATE_DONE;
1369         }
1370
1371         return EMULATE_DO_MMIO;
1372 }
1373 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1374
1375 #ifdef CONFIG_VSX
1376 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1377 {
1378         u32 dword_offset, word_offset;
1379         union kvmppc_one_reg reg;
1380         int vsx_offset = 0;
1381         int copy_type = vcpu->arch.mmio_copy_type;
1382         int result = 0;
1383
1384         switch (copy_type) {
1385         case KVMPPC_VSX_COPY_DWORD:
1386                 vsx_offset =
1387                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1388
1389                 if (vsx_offset == -1) {
1390                         result = -1;
1391                         break;
1392                 }
1393
1394                 if (rs < 32) {
1395                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1396                 } else {
1397                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1398                         *val = reg.vsxval[vsx_offset];
1399                 }
1400                 break;
1401
1402         case KVMPPC_VSX_COPY_WORD:
1403                 vsx_offset =
1404                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1405
1406                 if (vsx_offset == -1) {
1407                         result = -1;
1408                         break;
1409                 }
1410
1411                 if (rs < 32) {
1412                         dword_offset = vsx_offset / 2;
1413                         word_offset = vsx_offset % 2;
1414                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1415                         *val = reg.vsx32val[word_offset];
1416                 } else {
1417                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1418                         *val = reg.vsx32val[vsx_offset];
1419                 }
1420                 break;
1421
1422         default:
1423                 result = -1;
1424                 break;
1425         }
1426
1427         return result;
1428 }
1429
1430 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1431                         int rs, unsigned int bytes, int is_default_endian)
1432 {
1433         u64 val;
1434         enum emulation_result emulated = EMULATE_DONE;
1435
1436         vcpu->arch.io_gpr = rs;
1437
1438         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1439         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1440                 return EMULATE_FAIL;
1441
1442         while (vcpu->arch.mmio_vsx_copy_nums) {
1443                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1444                         return EMULATE_FAIL;
1445
1446                 emulated = kvmppc_handle_store(vcpu,
1447                          val, bytes, is_default_endian);
1448
1449                 if (emulated != EMULATE_DONE)
1450                         break;
1451
1452                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1453
1454                 vcpu->arch.mmio_vsx_copy_nums--;
1455                 vcpu->arch.mmio_vsx_offset++;
1456         }
1457
1458         return emulated;
1459 }
1460
1461 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1462 {
1463         struct kvm_run *run = vcpu->run;
1464         enum emulation_result emulated = EMULATE_FAIL;
1465         int r;
1466
1467         vcpu->arch.paddr_accessed += run->mmio.len;
1468
1469         if (!vcpu->mmio_is_write) {
1470                 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1471                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1472         } else {
1473                 emulated = kvmppc_handle_vsx_store(vcpu,
1474                          vcpu->arch.io_gpr, run->mmio.len, 1);
1475         }
1476
1477         switch (emulated) {
1478         case EMULATE_DO_MMIO:
1479                 run->exit_reason = KVM_EXIT_MMIO;
1480                 r = RESUME_HOST;
1481                 break;
1482         case EMULATE_FAIL:
1483                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1484                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1485                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1486                 r = RESUME_HOST;
1487                 break;
1488         default:
1489                 r = RESUME_GUEST;
1490                 break;
1491         }
1492         return r;
1493 }
1494 #endif /* CONFIG_VSX */
1495
1496 #ifdef CONFIG_ALTIVEC
1497 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1498                 unsigned int rt, unsigned int bytes, int is_default_endian)
1499 {
1500         enum emulation_result emulated = EMULATE_DONE;
1501
1502         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1503                 return EMULATE_FAIL;
1504
1505         while (vcpu->arch.mmio_vmx_copy_nums) {
1506                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1507                                 is_default_endian, 0);
1508
1509                 if (emulated != EMULATE_DONE)
1510                         break;
1511
1512                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1513                 vcpu->arch.mmio_vmx_copy_nums--;
1514                 vcpu->arch.mmio_vmx_offset++;
1515         }
1516
1517         return emulated;
1518 }
1519
1520 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1521 {
1522         union kvmppc_one_reg reg;
1523         int vmx_offset = 0;
1524         int result = 0;
1525
1526         vmx_offset =
1527                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1528
1529         if (vmx_offset == -1)
1530                 return -1;
1531
1532         reg.vval = VCPU_VSX_VR(vcpu, index);
1533         *val = reg.vsxval[vmx_offset];
1534
1535         return result;
1536 }
1537
1538 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1539 {
1540         union kvmppc_one_reg reg;
1541         int vmx_offset = 0;
1542         int result = 0;
1543
1544         vmx_offset =
1545                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1546
1547         if (vmx_offset == -1)
1548                 return -1;
1549
1550         reg.vval = VCPU_VSX_VR(vcpu, index);
1551         *val = reg.vsx32val[vmx_offset];
1552
1553         return result;
1554 }
1555
1556 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1557 {
1558         union kvmppc_one_reg reg;
1559         int vmx_offset = 0;
1560         int result = 0;
1561
1562         vmx_offset =
1563                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1564
1565         if (vmx_offset == -1)
1566                 return -1;
1567
1568         reg.vval = VCPU_VSX_VR(vcpu, index);
1569         *val = reg.vsx16val[vmx_offset];
1570
1571         return result;
1572 }
1573
1574 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1575 {
1576         union kvmppc_one_reg reg;
1577         int vmx_offset = 0;
1578         int result = 0;
1579
1580         vmx_offset =
1581                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1582
1583         if (vmx_offset == -1)
1584                 return -1;
1585
1586         reg.vval = VCPU_VSX_VR(vcpu, index);
1587         *val = reg.vsx8val[vmx_offset];
1588
1589         return result;
1590 }
1591
1592 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1593                 unsigned int rs, unsigned int bytes, int is_default_endian)
1594 {
1595         u64 val = 0;
1596         unsigned int index = rs & KVM_MMIO_REG_MASK;
1597         enum emulation_result emulated = EMULATE_DONE;
1598
1599         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1600                 return EMULATE_FAIL;
1601
1602         vcpu->arch.io_gpr = rs;
1603
1604         while (vcpu->arch.mmio_vmx_copy_nums) {
1605                 switch (vcpu->arch.mmio_copy_type) {
1606                 case KVMPPC_VMX_COPY_DWORD:
1607                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1608                                 return EMULATE_FAIL;
1609
1610                         break;
1611                 case KVMPPC_VMX_COPY_WORD:
1612                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1613                                 return EMULATE_FAIL;
1614                         break;
1615                 case KVMPPC_VMX_COPY_HWORD:
1616                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1617                                 return EMULATE_FAIL;
1618                         break;
1619                 case KVMPPC_VMX_COPY_BYTE:
1620                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1621                                 return EMULATE_FAIL;
1622                         break;
1623                 default:
1624                         return EMULATE_FAIL;
1625                 }
1626
1627                 emulated = kvmppc_handle_store(vcpu, val, bytes,
1628                                 is_default_endian);
1629                 if (emulated != EMULATE_DONE)
1630                         break;
1631
1632                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1633                 vcpu->arch.mmio_vmx_copy_nums--;
1634                 vcpu->arch.mmio_vmx_offset++;
1635         }
1636
1637         return emulated;
1638 }
1639
1640 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1641 {
1642         struct kvm_run *run = vcpu->run;
1643         enum emulation_result emulated = EMULATE_FAIL;
1644         int r;
1645
1646         vcpu->arch.paddr_accessed += run->mmio.len;
1647
1648         if (!vcpu->mmio_is_write) {
1649                 emulated = kvmppc_handle_vmx_load(vcpu,
1650                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1651         } else {
1652                 emulated = kvmppc_handle_vmx_store(vcpu,
1653                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1654         }
1655
1656         switch (emulated) {
1657         case EMULATE_DO_MMIO:
1658                 run->exit_reason = KVM_EXIT_MMIO;
1659                 r = RESUME_HOST;
1660                 break;
1661         case EMULATE_FAIL:
1662                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1663                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1664                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1665                 r = RESUME_HOST;
1666                 break;
1667         default:
1668                 r = RESUME_GUEST;
1669                 break;
1670         }
1671         return r;
1672 }
1673 #endif /* CONFIG_ALTIVEC */
1674
1675 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1676 {
1677         int r = 0;
1678         union kvmppc_one_reg val;
1679         int size;
1680
1681         size = one_reg_size(reg->id);
1682         if (size > sizeof(val))
1683                 return -EINVAL;
1684
1685         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1686         if (r == -EINVAL) {
1687                 r = 0;
1688                 switch (reg->id) {
1689 #ifdef CONFIG_ALTIVEC
1690                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1691                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1692                                 r = -ENXIO;
1693                                 break;
1694                         }
1695                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1696                         break;
1697                 case KVM_REG_PPC_VSCR:
1698                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1699                                 r = -ENXIO;
1700                                 break;
1701                         }
1702                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1703                         break;
1704                 case KVM_REG_PPC_VRSAVE:
1705                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1706                         break;
1707 #endif /* CONFIG_ALTIVEC */
1708                 default:
1709                         r = -EINVAL;
1710                         break;
1711                 }
1712         }
1713
1714         if (r)
1715                 return r;
1716
1717         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1718                 r = -EFAULT;
1719
1720         return r;
1721 }
1722
1723 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1724 {
1725         int r;
1726         union kvmppc_one_reg val;
1727         int size;
1728
1729         size = one_reg_size(reg->id);
1730         if (size > sizeof(val))
1731                 return -EINVAL;
1732
1733         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1734                 return -EFAULT;
1735
1736         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1737         if (r == -EINVAL) {
1738                 r = 0;
1739                 switch (reg->id) {
1740 #ifdef CONFIG_ALTIVEC
1741                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1742                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1743                                 r = -ENXIO;
1744                                 break;
1745                         }
1746                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1747                         break;
1748                 case KVM_REG_PPC_VSCR:
1749                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1750                                 r = -ENXIO;
1751                                 break;
1752                         }
1753                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1754                         break;
1755                 case KVM_REG_PPC_VRSAVE:
1756                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1757                                 r = -ENXIO;
1758                                 break;
1759                         }
1760                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1761                         break;
1762 #endif /* CONFIG_ALTIVEC */
1763                 default:
1764                         r = -EINVAL;
1765                         break;
1766                 }
1767         }
1768
1769         return r;
1770 }
1771
1772 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1773 {
1774         struct kvm_run *run = vcpu->run;
1775         int r;
1776
1777         vcpu_load(vcpu);
1778
1779         if (vcpu->mmio_needed) {
1780                 vcpu->mmio_needed = 0;
1781                 if (!vcpu->mmio_is_write)
1782                         kvmppc_complete_mmio_load(vcpu);
1783 #ifdef CONFIG_VSX
1784                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1785                         vcpu->arch.mmio_vsx_copy_nums--;
1786                         vcpu->arch.mmio_vsx_offset++;
1787                 }
1788
1789                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1790                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1791                         if (r == RESUME_HOST) {
1792                                 vcpu->mmio_needed = 1;
1793                                 goto out;
1794                         }
1795                 }
1796 #endif
1797 #ifdef CONFIG_ALTIVEC
1798                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1799                         vcpu->arch.mmio_vmx_copy_nums--;
1800                         vcpu->arch.mmio_vmx_offset++;
1801                 }
1802
1803                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1804                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1805                         if (r == RESUME_HOST) {
1806                                 vcpu->mmio_needed = 1;
1807                                 goto out;
1808                         }
1809                 }
1810 #endif
1811         } else if (vcpu->arch.osi_needed) {
1812                 u64 *gprs = run->osi.gprs;
1813                 int i;
1814
1815                 for (i = 0; i < 32; i++)
1816                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1817                 vcpu->arch.osi_needed = 0;
1818         } else if (vcpu->arch.hcall_needed) {
1819                 int i;
1820
1821                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1822                 for (i = 0; i < 9; ++i)
1823                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1824                 vcpu->arch.hcall_needed = 0;
1825 #ifdef CONFIG_BOOKE
1826         } else if (vcpu->arch.epr_needed) {
1827                 kvmppc_set_epr(vcpu, run->epr.epr);
1828                 vcpu->arch.epr_needed = 0;
1829 #endif
1830         }
1831
1832         kvm_sigset_activate(vcpu);
1833
1834         if (run->immediate_exit)
1835                 r = -EINTR;
1836         else
1837                 r = kvmppc_vcpu_run(vcpu);
1838
1839         kvm_sigset_deactivate(vcpu);
1840
1841 #ifdef CONFIG_ALTIVEC
1842 out:
1843 #endif
1844         vcpu_put(vcpu);
1845         return r;
1846 }
1847
1848 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1849 {
1850         if (irq->irq == KVM_INTERRUPT_UNSET) {
1851                 kvmppc_core_dequeue_external(vcpu);
1852                 return 0;
1853         }
1854
1855         kvmppc_core_queue_external(vcpu, irq);
1856
1857         kvm_vcpu_kick(vcpu);
1858
1859         return 0;
1860 }
1861
1862 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1863                                      struct kvm_enable_cap *cap)
1864 {
1865         int r;
1866
1867         if (cap->flags)
1868                 return -EINVAL;
1869
1870         switch (cap->cap) {
1871         case KVM_CAP_PPC_OSI:
1872                 r = 0;
1873                 vcpu->arch.osi_enabled = true;
1874                 break;
1875         case KVM_CAP_PPC_PAPR:
1876                 r = 0;
1877                 vcpu->arch.papr_enabled = true;
1878                 break;
1879         case KVM_CAP_PPC_EPR:
1880                 r = 0;
1881                 if (cap->args[0])
1882                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1883                 else
1884                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1885                 break;
1886 #ifdef CONFIG_BOOKE
1887         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1888                 r = 0;
1889                 vcpu->arch.watchdog_enabled = true;
1890                 break;
1891 #endif
1892 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1893         case KVM_CAP_SW_TLB: {
1894                 struct kvm_config_tlb cfg;
1895                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1896
1897                 r = -EFAULT;
1898                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1899                         break;
1900
1901                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1902                 break;
1903         }
1904 #endif
1905 #ifdef CONFIG_KVM_MPIC
1906         case KVM_CAP_IRQ_MPIC: {
1907                 struct fd f;
1908                 struct kvm_device *dev;
1909
1910                 r = -EBADF;
1911                 f = fdget(cap->args[0]);
1912                 if (!f.file)
1913                         break;
1914
1915                 r = -EPERM;
1916                 dev = kvm_device_from_filp(f.file);
1917                 if (dev)
1918                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1919
1920                 fdput(f);
1921                 break;
1922         }
1923 #endif
1924 #ifdef CONFIG_KVM_XICS
1925         case KVM_CAP_IRQ_XICS: {
1926                 struct fd f;
1927                 struct kvm_device *dev;
1928
1929                 r = -EBADF;
1930                 f = fdget(cap->args[0]);
1931                 if (!f.file)
1932                         break;
1933
1934                 r = -EPERM;
1935                 dev = kvm_device_from_filp(f.file);
1936                 if (dev) {
1937                         if (xics_on_xive())
1938                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1939                         else
1940                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1941                 }
1942
1943                 fdput(f);
1944                 break;
1945         }
1946 #endif /* CONFIG_KVM_XICS */
1947 #ifdef CONFIG_KVM_XIVE
1948         case KVM_CAP_PPC_IRQ_XIVE: {
1949                 struct fd f;
1950                 struct kvm_device *dev;
1951
1952                 r = -EBADF;
1953                 f = fdget(cap->args[0]);
1954                 if (!f.file)
1955                         break;
1956
1957                 r = -ENXIO;
1958                 if (!xive_enabled())
1959                         break;
1960
1961                 r = -EPERM;
1962                 dev = kvm_device_from_filp(f.file);
1963                 if (dev)
1964                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1965                                                             cap->args[1]);
1966
1967                 fdput(f);
1968                 break;
1969         }
1970 #endif /* CONFIG_KVM_XIVE */
1971 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1972         case KVM_CAP_PPC_FWNMI:
1973                 r = -EINVAL;
1974                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1975                         break;
1976                 r = 0;
1977                 vcpu->kvm->arch.fwnmi_enabled = true;
1978                 break;
1979 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1980         default:
1981                 r = -EINVAL;
1982                 break;
1983         }
1984
1985         if (!r)
1986                 r = kvmppc_sanity_check(vcpu);
1987
1988         return r;
1989 }
1990
1991 bool kvm_arch_intc_initialized(struct kvm *kvm)
1992 {
1993 #ifdef CONFIG_KVM_MPIC
1994         if (kvm->arch.mpic)
1995                 return true;
1996 #endif
1997 #ifdef CONFIG_KVM_XICS
1998         if (kvm->arch.xics || kvm->arch.xive)
1999                 return true;
2000 #endif
2001         return false;
2002 }
2003
2004 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2005                                     struct kvm_mp_state *mp_state)
2006 {
2007         return -EINVAL;
2008 }
2009
2010 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2011                                     struct kvm_mp_state *mp_state)
2012 {
2013         return -EINVAL;
2014 }
2015
2016 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2017                                unsigned int ioctl, unsigned long arg)
2018 {
2019         struct kvm_vcpu *vcpu = filp->private_data;
2020         void __user *argp = (void __user *)arg;
2021
2022         if (ioctl == KVM_INTERRUPT) {
2023                 struct kvm_interrupt irq;
2024                 if (copy_from_user(&irq, argp, sizeof(irq)))
2025                         return -EFAULT;
2026                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2027         }
2028         return -ENOIOCTLCMD;
2029 }
2030
2031 long kvm_arch_vcpu_ioctl(struct file *filp,
2032                          unsigned int ioctl, unsigned long arg)
2033 {
2034         struct kvm_vcpu *vcpu = filp->private_data;
2035         void __user *argp = (void __user *)arg;
2036         long r;
2037
2038         switch (ioctl) {
2039         case KVM_ENABLE_CAP:
2040         {
2041                 struct kvm_enable_cap cap;
2042                 r = -EFAULT;
2043                 if (copy_from_user(&cap, argp, sizeof(cap)))
2044                         goto out;
2045                 vcpu_load(vcpu);
2046                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2047                 vcpu_put(vcpu);
2048                 break;
2049         }
2050
2051         case KVM_SET_ONE_REG:
2052         case KVM_GET_ONE_REG:
2053         {
2054                 struct kvm_one_reg reg;
2055                 r = -EFAULT;
2056                 if (copy_from_user(&reg, argp, sizeof(reg)))
2057                         goto out;
2058                 if (ioctl == KVM_SET_ONE_REG)
2059                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2060                 else
2061                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2062                 break;
2063         }
2064
2065 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2066         case KVM_DIRTY_TLB: {
2067                 struct kvm_dirty_tlb dirty;
2068                 r = -EFAULT;
2069                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2070                         goto out;
2071                 vcpu_load(vcpu);
2072                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2073                 vcpu_put(vcpu);
2074                 break;
2075         }
2076 #endif
2077         default:
2078                 r = -EINVAL;
2079         }
2080
2081 out:
2082         return r;
2083 }
2084
2085 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2086 {
2087         return VM_FAULT_SIGBUS;
2088 }
2089
2090 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2091 {
2092         u32 inst_nop = 0x60000000;
2093 #ifdef CONFIG_KVM_BOOKE_HV
2094         u32 inst_sc1 = 0x44000022;
2095         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2096         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2097         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2098         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2099 #else
2100         u32 inst_lis = 0x3c000000;
2101         u32 inst_ori = 0x60000000;
2102         u32 inst_sc = 0x44000002;
2103         u32 inst_imm_mask = 0xffff;
2104
2105         /*
2106          * The hypercall to get into KVM from within guest context is as
2107          * follows:
2108          *
2109          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2110          *    ori r0, KVM_SC_MAGIC_R0@l
2111          *    sc
2112          *    nop
2113          */
2114         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2115         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2116         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2117         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2118 #endif
2119
2120         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2121
2122         return 0;
2123 }
2124
2125 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2126                           bool line_status)
2127 {
2128         if (!irqchip_in_kernel(kvm))
2129                 return -ENXIO;
2130
2131         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2132                                         irq_event->irq, irq_event->level,
2133                                         line_status);
2134         return 0;
2135 }
2136
2137
2138 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2139                             struct kvm_enable_cap *cap)
2140 {
2141         int r;
2142
2143         if (cap->flags)
2144                 return -EINVAL;
2145
2146         switch (cap->cap) {
2147 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2148         case KVM_CAP_PPC_ENABLE_HCALL: {
2149                 unsigned long hcall = cap->args[0];
2150
2151                 r = -EINVAL;
2152                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2153                     cap->args[1] > 1)
2154                         break;
2155                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2156                         break;
2157                 if (cap->args[1])
2158                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2159                 else
2160                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2161                 r = 0;
2162                 break;
2163         }
2164         case KVM_CAP_PPC_SMT: {
2165                 unsigned long mode = cap->args[0];
2166                 unsigned long flags = cap->args[1];
2167
2168                 r = -EINVAL;
2169                 if (kvm->arch.kvm_ops->set_smt_mode)
2170                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2171                 break;
2172         }
2173
2174         case KVM_CAP_PPC_NESTED_HV:
2175                 r = -EINVAL;
2176                 if (!is_kvmppc_hv_enabled(kvm) ||
2177                     !kvm->arch.kvm_ops->enable_nested)
2178                         break;
2179                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2180                 break;
2181 #endif
2182 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2183         case KVM_CAP_PPC_SECURE_GUEST:
2184                 r = -EINVAL;
2185                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2186                         break;
2187                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2188                 break;
2189         case KVM_CAP_PPC_DAWR1:
2190                 r = -EINVAL;
2191                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2192                         break;
2193                 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2194                 break;
2195 #endif
2196         default:
2197                 r = -EINVAL;
2198                 break;
2199         }
2200
2201         return r;
2202 }
2203
2204 #ifdef CONFIG_PPC_BOOK3S_64
2205 /*
2206  * These functions check whether the underlying hardware is safe
2207  * against attacks based on observing the effects of speculatively
2208  * executed instructions, and whether it supplies instructions for
2209  * use in workarounds.  The information comes from firmware, either
2210  * via the device tree on powernv platforms or from an hcall on
2211  * pseries platforms.
2212  */
2213 #ifdef CONFIG_PPC_PSERIES
2214 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2215 {
2216         struct h_cpu_char_result c;
2217         unsigned long rc;
2218
2219         if (!machine_is(pseries))
2220                 return -ENOTTY;
2221
2222         rc = plpar_get_cpu_characteristics(&c);
2223         if (rc == H_SUCCESS) {
2224                 cp->character = c.character;
2225                 cp->behaviour = c.behaviour;
2226                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2227                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2228                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2229                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2230                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2231                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2232                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2233                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2234                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2235                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2236                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2237                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2238                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2239         }
2240         return 0;
2241 }
2242 #else
2243 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2244 {
2245         return -ENOTTY;
2246 }
2247 #endif
2248
2249 static inline bool have_fw_feat(struct device_node *fw_features,
2250                                 const char *state, const char *name)
2251 {
2252         struct device_node *np;
2253         bool r = false;
2254
2255         np = of_get_child_by_name(fw_features, name);
2256         if (np) {
2257                 r = of_property_read_bool(np, state);
2258                 of_node_put(np);
2259         }
2260         return r;
2261 }
2262
2263 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2264 {
2265         struct device_node *np, *fw_features;
2266         int r;
2267
2268         memset(cp, 0, sizeof(*cp));
2269         r = pseries_get_cpu_char(cp);
2270         if (r != -ENOTTY)
2271                 return r;
2272
2273         np = of_find_node_by_name(NULL, "ibm,opal");
2274         if (np) {
2275                 fw_features = of_get_child_by_name(np, "fw-features");
2276                 of_node_put(np);
2277                 if (!fw_features)
2278                         return 0;
2279                 if (have_fw_feat(fw_features, "enabled",
2280                                  "inst-spec-barrier-ori31,31,0"))
2281                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2282                 if (have_fw_feat(fw_features, "enabled",
2283                                  "fw-bcctrl-serialized"))
2284                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2285                 if (have_fw_feat(fw_features, "enabled",
2286                                  "inst-l1d-flush-ori30,30,0"))
2287                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2288                 if (have_fw_feat(fw_features, "enabled",
2289                                  "inst-l1d-flush-trig2"))
2290                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2291                 if (have_fw_feat(fw_features, "enabled",
2292                                  "fw-l1d-thread-split"))
2293                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2294                 if (have_fw_feat(fw_features, "enabled",
2295                                  "fw-count-cache-disabled"))
2296                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2297                 if (have_fw_feat(fw_features, "enabled",
2298                                  "fw-count-cache-flush-bcctr2,0,0"))
2299                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2300                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2301                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2302                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2303                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2304                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2305                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2306                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2307
2308                 if (have_fw_feat(fw_features, "enabled",
2309                                  "speculation-policy-favor-security"))
2310                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2311                 if (!have_fw_feat(fw_features, "disabled",
2312                                   "needs-l1d-flush-msr-pr-0-to-1"))
2313                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2314                 if (!have_fw_feat(fw_features, "disabled",
2315                                   "needs-spec-barrier-for-bound-checks"))
2316                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2317                 if (have_fw_feat(fw_features, "enabled",
2318                                  "needs-count-cache-flush-on-context-switch"))
2319                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2320                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2321                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2322                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2323                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2324
2325                 of_node_put(fw_features);
2326         }
2327
2328         return 0;
2329 }
2330 #endif
2331
2332 long kvm_arch_vm_ioctl(struct file *filp,
2333                        unsigned int ioctl, unsigned long arg)
2334 {
2335         struct kvm *kvm __maybe_unused = filp->private_data;
2336         void __user *argp = (void __user *)arg;
2337         long r;
2338
2339         switch (ioctl) {
2340         case KVM_PPC_GET_PVINFO: {
2341                 struct kvm_ppc_pvinfo pvinfo;
2342                 memset(&pvinfo, 0, sizeof(pvinfo));
2343                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2344                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2345                         r = -EFAULT;
2346                         goto out;
2347                 }
2348
2349                 break;
2350         }
2351 #ifdef CONFIG_SPAPR_TCE_IOMMU
2352         case KVM_CREATE_SPAPR_TCE_64: {
2353                 struct kvm_create_spapr_tce_64 create_tce_64;
2354
2355                 r = -EFAULT;
2356                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2357                         goto out;
2358                 if (create_tce_64.flags) {
2359                         r = -EINVAL;
2360                         goto out;
2361                 }
2362                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2363                 goto out;
2364         }
2365         case KVM_CREATE_SPAPR_TCE: {
2366                 struct kvm_create_spapr_tce create_tce;
2367                 struct kvm_create_spapr_tce_64 create_tce_64;
2368
2369                 r = -EFAULT;
2370                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2371                         goto out;
2372
2373                 create_tce_64.liobn = create_tce.liobn;
2374                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2375                 create_tce_64.offset = 0;
2376                 create_tce_64.size = create_tce.window_size >>
2377                                 IOMMU_PAGE_SHIFT_4K;
2378                 create_tce_64.flags = 0;
2379                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2380                 goto out;
2381         }
2382 #endif
2383 #ifdef CONFIG_PPC_BOOK3S_64
2384         case KVM_PPC_GET_SMMU_INFO: {
2385                 struct kvm_ppc_smmu_info info;
2386                 struct kvm *kvm = filp->private_data;
2387
2388                 memset(&info, 0, sizeof(info));
2389                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2390                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2391                         r = -EFAULT;
2392                 break;
2393         }
2394         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2395                 struct kvm *kvm = filp->private_data;
2396
2397                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2398                 break;
2399         }
2400         case KVM_PPC_CONFIGURE_V3_MMU: {
2401                 struct kvm *kvm = filp->private_data;
2402                 struct kvm_ppc_mmuv3_cfg cfg;
2403
2404                 r = -EINVAL;
2405                 if (!kvm->arch.kvm_ops->configure_mmu)
2406                         goto out;
2407                 r = -EFAULT;
2408                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2409                         goto out;
2410                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2411                 break;
2412         }
2413         case KVM_PPC_GET_RMMU_INFO: {
2414                 struct kvm *kvm = filp->private_data;
2415                 struct kvm_ppc_rmmu_info info;
2416
2417                 r = -EINVAL;
2418                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2419                         goto out;
2420                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2421                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2422                         r = -EFAULT;
2423                 break;
2424         }
2425         case KVM_PPC_GET_CPU_CHAR: {
2426                 struct kvm_ppc_cpu_char cpuchar;
2427
2428                 r = kvmppc_get_cpu_char(&cpuchar);
2429                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2430                         r = -EFAULT;
2431                 break;
2432         }
2433         case KVM_PPC_SVM_OFF: {
2434                 struct kvm *kvm = filp->private_data;
2435
2436                 r = 0;
2437                 if (!kvm->arch.kvm_ops->svm_off)
2438                         goto out;
2439
2440                 r = kvm->arch.kvm_ops->svm_off(kvm);
2441                 break;
2442         }
2443         default: {
2444                 struct kvm *kvm = filp->private_data;
2445                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2446         }
2447 #else /* CONFIG_PPC_BOOK3S_64 */
2448         default:
2449                 r = -ENOTTY;
2450 #endif
2451         }
2452 out:
2453         return r;
2454 }
2455
2456 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2457 static unsigned long nr_lpids;
2458
2459 long kvmppc_alloc_lpid(void)
2460 {
2461         long lpid;
2462
2463         do {
2464                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2465                 if (lpid >= nr_lpids) {
2466                         pr_err("%s: No LPIDs free\n", __func__);
2467                         return -ENOMEM;
2468                 }
2469         } while (test_and_set_bit(lpid, lpid_inuse));
2470
2471         return lpid;
2472 }
2473 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2474
2475 void kvmppc_claim_lpid(long lpid)
2476 {
2477         set_bit(lpid, lpid_inuse);
2478 }
2479 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2480
2481 void kvmppc_free_lpid(long lpid)
2482 {
2483         clear_bit(lpid, lpid_inuse);
2484 }
2485 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2486
2487 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2488 {
2489         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2490         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2491 }
2492 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2493
2494 int kvm_arch_init(void *opaque)
2495 {
2496         return 0;
2497 }
2498
2499 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);