Merge tag 'perf-tools-for-v5.18-2022-03-26' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_halt(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
311                                       last_inst);
312
313                 /*
314                  * Injecting a Data Storage here is a bit more
315                  * accurate since the instruction that caused the
316                  * access could still be a valid one.
317                  */
318                 if (!IS_ENABLED(CONFIG_BOOKE)) {
319                         ulong dsisr = DSISR_BADACCESS;
320
321                         if (vcpu->mmio_is_write)
322                                 dsisr |= DSISR_ISSTORE;
323
324                         kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr);
325                 } else {
326                         /*
327                          * BookE does not send a SIGBUS on a bad
328                          * fault, so use a Program interrupt instead
329                          * to avoid a fault loop.
330                          */
331                         kvmppc_core_queue_program(vcpu, 0);
332                 }
333
334                 r = RESUME_GUEST;
335                 break;
336         }
337         default:
338                 WARN_ON(1);
339                 r = RESUME_GUEST;
340         }
341
342         return r;
343 }
344 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
345
346 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
347               bool data)
348 {
349         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
350         struct kvmppc_pte pte;
351         int r = -EINVAL;
352
353         vcpu->stat.st++;
354
355         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
356                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
357                                                             size);
358
359         if ((!r) || (r == -EAGAIN))
360                 return r;
361
362         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
363                          XLATE_WRITE, &pte);
364         if (r < 0)
365                 return r;
366
367         *eaddr = pte.raddr;
368
369         if (!pte.may_write)
370                 return -EPERM;
371
372         /* Magic page override */
373         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
374             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
375             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
376                 void *magic = vcpu->arch.shared;
377                 magic += pte.eaddr & 0xfff;
378                 memcpy(magic, ptr, size);
379                 return EMULATE_DONE;
380         }
381
382         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
383                 return EMULATE_DO_MMIO;
384
385         return EMULATE_DONE;
386 }
387 EXPORT_SYMBOL_GPL(kvmppc_st);
388
389 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
390                       bool data)
391 {
392         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
393         struct kvmppc_pte pte;
394         int rc = -EINVAL;
395
396         vcpu->stat.ld++;
397
398         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
399                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
400                                                               size);
401
402         if ((!rc) || (rc == -EAGAIN))
403                 return rc;
404
405         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
406                           XLATE_READ, &pte);
407         if (rc)
408                 return rc;
409
410         *eaddr = pte.raddr;
411
412         if (!pte.may_read)
413                 return -EPERM;
414
415         if (!data && !pte.may_execute)
416                 return -ENOEXEC;
417
418         /* Magic page override */
419         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
420             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
421             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
422                 void *magic = vcpu->arch.shared;
423                 magic += pte.eaddr & 0xfff;
424                 memcpy(ptr, magic, size);
425                 return EMULATE_DONE;
426         }
427
428         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
429         rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
430         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
431         if (rc)
432                 return EMULATE_DO_MMIO;
433
434         return EMULATE_DONE;
435 }
436 EXPORT_SYMBOL_GPL(kvmppc_ld);
437
438 int kvm_arch_hardware_enable(void)
439 {
440         return 0;
441 }
442
443 int kvm_arch_hardware_setup(void *opaque)
444 {
445         return 0;
446 }
447
448 int kvm_arch_check_processor_compat(void *opaque)
449 {
450         return kvmppc_core_check_processor_compat();
451 }
452
453 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
454 {
455         struct kvmppc_ops *kvm_ops = NULL;
456         int r;
457
458         /*
459          * if we have both HV and PR enabled, default is HV
460          */
461         if (type == 0) {
462                 if (kvmppc_hv_ops)
463                         kvm_ops = kvmppc_hv_ops;
464                 else
465                         kvm_ops = kvmppc_pr_ops;
466                 if (!kvm_ops)
467                         goto err_out;
468         } else  if (type == KVM_VM_PPC_HV) {
469                 if (!kvmppc_hv_ops)
470                         goto err_out;
471                 kvm_ops = kvmppc_hv_ops;
472         } else if (type == KVM_VM_PPC_PR) {
473                 if (!kvmppc_pr_ops)
474                         goto err_out;
475                 kvm_ops = kvmppc_pr_ops;
476         } else
477                 goto err_out;
478
479         if (!try_module_get(kvm_ops->owner))
480                 return -ENOENT;
481
482         kvm->arch.kvm_ops = kvm_ops;
483         r = kvmppc_core_init_vm(kvm);
484         if (r)
485                 module_put(kvm_ops->owner);
486         return r;
487 err_out:
488         return -EINVAL;
489 }
490
491 void kvm_arch_destroy_vm(struct kvm *kvm)
492 {
493 #ifdef CONFIG_KVM_XICS
494         /*
495          * We call kick_all_cpus_sync() to ensure that all
496          * CPUs have executed any pending IPIs before we
497          * continue and free VCPUs structures below.
498          */
499         if (is_kvmppc_hv_enabled(kvm))
500                 kick_all_cpus_sync();
501 #endif
502
503         kvm_destroy_vcpus(kvm);
504
505         mutex_lock(&kvm->lock);
506
507         kvmppc_core_destroy_vm(kvm);
508
509         mutex_unlock(&kvm->lock);
510
511         /* drop the module reference */
512         module_put(kvm->arch.kvm_ops->owner);
513 }
514
515 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
516 {
517         int r;
518         /* Assume we're using HV mode when the HV module is loaded */
519         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
520
521         if (kvm) {
522                 /*
523                  * Hooray - we know which VM type we're running on. Depend on
524                  * that rather than the guess above.
525                  */
526                 hv_enabled = is_kvmppc_hv_enabled(kvm);
527         }
528
529         switch (ext) {
530 #ifdef CONFIG_BOOKE
531         case KVM_CAP_PPC_BOOKE_SREGS:
532         case KVM_CAP_PPC_BOOKE_WATCHDOG:
533         case KVM_CAP_PPC_EPR:
534 #else
535         case KVM_CAP_PPC_SEGSTATE:
536         case KVM_CAP_PPC_HIOR:
537         case KVM_CAP_PPC_PAPR:
538 #endif
539         case KVM_CAP_PPC_UNSET_IRQ:
540         case KVM_CAP_PPC_IRQ_LEVEL:
541         case KVM_CAP_ENABLE_CAP:
542         case KVM_CAP_ONE_REG:
543         case KVM_CAP_IOEVENTFD:
544         case KVM_CAP_DEVICE_CTRL:
545         case KVM_CAP_IMMEDIATE_EXIT:
546         case KVM_CAP_SET_GUEST_DEBUG:
547                 r = 1;
548                 break;
549         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
550         case KVM_CAP_PPC_PAIRED_SINGLES:
551         case KVM_CAP_PPC_OSI:
552         case KVM_CAP_PPC_GET_PVINFO:
553 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
554         case KVM_CAP_SW_TLB:
555 #endif
556                 /* We support this only for PR */
557                 r = !hv_enabled;
558                 break;
559 #ifdef CONFIG_KVM_MPIC
560         case KVM_CAP_IRQ_MPIC:
561                 r = 1;
562                 break;
563 #endif
564
565 #ifdef CONFIG_PPC_BOOK3S_64
566         case KVM_CAP_SPAPR_TCE:
567         case KVM_CAP_SPAPR_TCE_64:
568                 r = 1;
569                 break;
570         case KVM_CAP_SPAPR_TCE_VFIO:
571                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
572                 break;
573         case KVM_CAP_PPC_RTAS:
574         case KVM_CAP_PPC_FIXUP_HCALL:
575         case KVM_CAP_PPC_ENABLE_HCALL:
576 #ifdef CONFIG_KVM_XICS
577         case KVM_CAP_IRQ_XICS:
578 #endif
579         case KVM_CAP_PPC_GET_CPU_CHAR:
580                 r = 1;
581                 break;
582 #ifdef CONFIG_KVM_XIVE
583         case KVM_CAP_PPC_IRQ_XIVE:
584                 /*
585                  * We need XIVE to be enabled on the platform (implies
586                  * a POWER9 processor) and the PowerNV platform, as
587                  * nested is not yet supported.
588                  */
589                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
590                         kvmppc_xive_native_supported();
591                 break;
592 #endif
593
594         case KVM_CAP_PPC_ALLOC_HTAB:
595                 r = hv_enabled;
596                 break;
597 #endif /* CONFIG_PPC_BOOK3S_64 */
598 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
599         case KVM_CAP_PPC_SMT:
600                 r = 0;
601                 if (kvm) {
602                         if (kvm->arch.emul_smt_mode > 1)
603                                 r = kvm->arch.emul_smt_mode;
604                         else
605                                 r = kvm->arch.smt_mode;
606                 } else if (hv_enabled) {
607                         if (cpu_has_feature(CPU_FTR_ARCH_300))
608                                 r = 1;
609                         else
610                                 r = threads_per_subcore;
611                 }
612                 break;
613         case KVM_CAP_PPC_SMT_POSSIBLE:
614                 r = 1;
615                 if (hv_enabled) {
616                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
617                                 r = ((threads_per_subcore << 1) - 1);
618                         else
619                                 /* P9 can emulate dbells, so allow any mode */
620                                 r = 8 | 4 | 2 | 1;
621                 }
622                 break;
623         case KVM_CAP_PPC_RMA:
624                 r = 0;
625                 break;
626         case KVM_CAP_PPC_HWRNG:
627                 r = kvmppc_hwrng_present();
628                 break;
629         case KVM_CAP_PPC_MMU_RADIX:
630                 r = !!(hv_enabled && radix_enabled());
631                 break;
632         case KVM_CAP_PPC_MMU_HASH_V3:
633                 r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
634                        kvmppc_hv_ops->hash_v3_possible());
635                 break;
636         case KVM_CAP_PPC_NESTED_HV:
637                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
638                        !kvmppc_hv_ops->enable_nested(NULL));
639                 break;
640 #endif
641         case KVM_CAP_SYNC_MMU:
642 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
643                 r = hv_enabled;
644 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
645                 r = 1;
646 #else
647                 r = 0;
648 #endif
649                 break;
650 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
651         case KVM_CAP_PPC_HTAB_FD:
652                 r = hv_enabled;
653                 break;
654 #endif
655         case KVM_CAP_NR_VCPUS:
656                 /*
657                  * Recommending a number of CPUs is somewhat arbitrary; we
658                  * return the number of present CPUs for -HV (since a host
659                  * will have secondary threads "offline"), and for other KVM
660                  * implementations just count online CPUs.
661                  */
662                 if (hv_enabled)
663                         r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
664                 else
665                         r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
666                 break;
667         case KVM_CAP_MAX_VCPUS:
668                 r = KVM_MAX_VCPUS;
669                 break;
670         case KVM_CAP_MAX_VCPU_ID:
671                 r = KVM_MAX_VCPU_IDS;
672                 break;
673 #ifdef CONFIG_PPC_BOOK3S_64
674         case KVM_CAP_PPC_GET_SMMU_INFO:
675                 r = 1;
676                 break;
677         case KVM_CAP_SPAPR_MULTITCE:
678                 r = 1;
679                 break;
680         case KVM_CAP_SPAPR_RESIZE_HPT:
681                 r = !!hv_enabled;
682                 break;
683 #endif
684 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
685         case KVM_CAP_PPC_FWNMI:
686                 r = hv_enabled;
687                 break;
688 #endif
689 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
690         case KVM_CAP_PPC_HTM:
691                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
692                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
693                 break;
694 #endif
695 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
696         case KVM_CAP_PPC_SECURE_GUEST:
697                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
698                         !kvmppc_hv_ops->enable_svm(NULL);
699                 break;
700         case KVM_CAP_PPC_DAWR1:
701                 r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
702                        !kvmppc_hv_ops->enable_dawr1(NULL));
703                 break;
704         case KVM_CAP_PPC_RPT_INVALIDATE:
705                 r = 1;
706                 break;
707 #endif
708         default:
709                 r = 0;
710                 break;
711         }
712         return r;
713
714 }
715
716 long kvm_arch_dev_ioctl(struct file *filp,
717                         unsigned int ioctl, unsigned long arg)
718 {
719         return -EINVAL;
720 }
721
722 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
723 {
724         kvmppc_core_free_memslot(kvm, slot);
725 }
726
727 int kvm_arch_prepare_memory_region(struct kvm *kvm,
728                                    const struct kvm_memory_slot *old,
729                                    struct kvm_memory_slot *new,
730                                    enum kvm_mr_change change)
731 {
732         return kvmppc_core_prepare_memory_region(kvm, old, new, change);
733 }
734
735 void kvm_arch_commit_memory_region(struct kvm *kvm,
736                                    struct kvm_memory_slot *old,
737                                    const struct kvm_memory_slot *new,
738                                    enum kvm_mr_change change)
739 {
740         kvmppc_core_commit_memory_region(kvm, old, new, change);
741 }
742
743 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
744                                    struct kvm_memory_slot *slot)
745 {
746         kvmppc_core_flush_memslot(kvm, slot);
747 }
748
749 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
750 {
751         return 0;
752 }
753
754 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
755 {
756         struct kvm_vcpu *vcpu;
757
758         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
759         kvmppc_decrementer_func(vcpu);
760
761         return HRTIMER_NORESTART;
762 }
763
764 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
765 {
766         int err;
767
768         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
769         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
770         vcpu->arch.dec_expires = get_tb();
771
772 #ifdef CONFIG_KVM_EXIT_TIMING
773         mutex_init(&vcpu->arch.exit_timing_lock);
774 #endif
775         err = kvmppc_subarch_vcpu_init(vcpu);
776         if (err)
777                 return err;
778
779         err = kvmppc_core_vcpu_create(vcpu);
780         if (err)
781                 goto out_vcpu_uninit;
782
783         rcuwait_init(&vcpu->arch.wait);
784         vcpu->arch.waitp = &vcpu->arch.wait;
785         return 0;
786
787 out_vcpu_uninit:
788         kvmppc_subarch_vcpu_uninit(vcpu);
789         return err;
790 }
791
792 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
793 {
794 }
795
796 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
797 {
798         /* Make sure we're not using the vcpu anymore */
799         hrtimer_cancel(&vcpu->arch.dec_timer);
800
801         switch (vcpu->arch.irq_type) {
802         case KVMPPC_IRQ_MPIC:
803                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
804                 break;
805         case KVMPPC_IRQ_XICS:
806                 if (xics_on_xive())
807                         kvmppc_xive_cleanup_vcpu(vcpu);
808                 else
809                         kvmppc_xics_free_icp(vcpu);
810                 break;
811         case KVMPPC_IRQ_XIVE:
812                 kvmppc_xive_native_cleanup_vcpu(vcpu);
813                 break;
814         }
815
816         kvmppc_core_vcpu_free(vcpu);
817
818         kvmppc_subarch_vcpu_uninit(vcpu);
819 }
820
821 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
822 {
823         return kvmppc_core_pending_dec(vcpu);
824 }
825
826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
827 {
828 #ifdef CONFIG_BOOKE
829         /*
830          * vrsave (formerly usprg0) isn't used by Linux, but may
831          * be used by the guest.
832          *
833          * On non-booke this is associated with Altivec and
834          * is handled by code in book3s.c.
835          */
836         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
837 #endif
838         kvmppc_core_vcpu_load(vcpu, cpu);
839 }
840
841 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
842 {
843         kvmppc_core_vcpu_put(vcpu);
844 #ifdef CONFIG_BOOKE
845         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
846 #endif
847 }
848
849 /*
850  * irq_bypass_add_producer and irq_bypass_del_producer are only
851  * useful if the architecture supports PCI passthrough.
852  * irq_bypass_stop and irq_bypass_start are not needed and so
853  * kvm_ops are not defined for them.
854  */
855 bool kvm_arch_has_irq_bypass(void)
856 {
857         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
858                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
859 }
860
861 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
862                                      struct irq_bypass_producer *prod)
863 {
864         struct kvm_kernel_irqfd *irqfd =
865                 container_of(cons, struct kvm_kernel_irqfd, consumer);
866         struct kvm *kvm = irqfd->kvm;
867
868         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
869                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
870
871         return 0;
872 }
873
874 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
875                                       struct irq_bypass_producer *prod)
876 {
877         struct kvm_kernel_irqfd *irqfd =
878                 container_of(cons, struct kvm_kernel_irqfd, consumer);
879         struct kvm *kvm = irqfd->kvm;
880
881         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
882                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
883 }
884
885 #ifdef CONFIG_VSX
886 static inline int kvmppc_get_vsr_dword_offset(int index)
887 {
888         int offset;
889
890         if ((index != 0) && (index != 1))
891                 return -1;
892
893 #ifdef __BIG_ENDIAN
894         offset =  index;
895 #else
896         offset = 1 - index;
897 #endif
898
899         return offset;
900 }
901
902 static inline int kvmppc_get_vsr_word_offset(int index)
903 {
904         int offset;
905
906         if ((index > 3) || (index < 0))
907                 return -1;
908
909 #ifdef __BIG_ENDIAN
910         offset = index;
911 #else
912         offset = 3 - index;
913 #endif
914         return offset;
915 }
916
917 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
918         u64 gpr)
919 {
920         union kvmppc_one_reg val;
921         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
922         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
923
924         if (offset == -1)
925                 return;
926
927         if (index >= 32) {
928                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
929                 val.vsxval[offset] = gpr;
930                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
931         } else {
932                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
933         }
934 }
935
936 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
937         u64 gpr)
938 {
939         union kvmppc_one_reg val;
940         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
941
942         if (index >= 32) {
943                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
944                 val.vsxval[0] = gpr;
945                 val.vsxval[1] = gpr;
946                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
947         } else {
948                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
949                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
950         }
951 }
952
953 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
954         u32 gpr)
955 {
956         union kvmppc_one_reg val;
957         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
958
959         if (index >= 32) {
960                 val.vsx32val[0] = gpr;
961                 val.vsx32val[1] = gpr;
962                 val.vsx32val[2] = gpr;
963                 val.vsx32val[3] = gpr;
964                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
965         } else {
966                 val.vsx32val[0] = gpr;
967                 val.vsx32val[1] = gpr;
968                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
969                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
970         }
971 }
972
973 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
974         u32 gpr32)
975 {
976         union kvmppc_one_reg val;
977         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
978         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
979         int dword_offset, word_offset;
980
981         if (offset == -1)
982                 return;
983
984         if (index >= 32) {
985                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
986                 val.vsx32val[offset] = gpr32;
987                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
988         } else {
989                 dword_offset = offset / 2;
990                 word_offset = offset % 2;
991                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
992                 val.vsx32val[word_offset] = gpr32;
993                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
994         }
995 }
996 #endif /* CONFIG_VSX */
997
998 #ifdef CONFIG_ALTIVEC
999 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
1000                 int index, int element_size)
1001 {
1002         int offset;
1003         int elts = sizeof(vector128)/element_size;
1004
1005         if ((index < 0) || (index >= elts))
1006                 return -1;
1007
1008         if (kvmppc_need_byteswap(vcpu))
1009                 offset = elts - index - 1;
1010         else
1011                 offset = index;
1012
1013         return offset;
1014 }
1015
1016 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
1017                 int index)
1018 {
1019         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
1020 }
1021
1022 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1023                 int index)
1024 {
1025         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1026 }
1027
1028 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1029                 int index)
1030 {
1031         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1032 }
1033
1034 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1035                 int index)
1036 {
1037         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1038 }
1039
1040
1041 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1042         u64 gpr)
1043 {
1044         union kvmppc_one_reg val;
1045         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1046                         vcpu->arch.mmio_vmx_offset);
1047         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1048
1049         if (offset == -1)
1050                 return;
1051
1052         val.vval = VCPU_VSX_VR(vcpu, index);
1053         val.vsxval[offset] = gpr;
1054         VCPU_VSX_VR(vcpu, index) = val.vval;
1055 }
1056
1057 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1058         u32 gpr32)
1059 {
1060         union kvmppc_one_reg val;
1061         int offset = kvmppc_get_vmx_word_offset(vcpu,
1062                         vcpu->arch.mmio_vmx_offset);
1063         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1064
1065         if (offset == -1)
1066                 return;
1067
1068         val.vval = VCPU_VSX_VR(vcpu, index);
1069         val.vsx32val[offset] = gpr32;
1070         VCPU_VSX_VR(vcpu, index) = val.vval;
1071 }
1072
1073 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1074         u16 gpr16)
1075 {
1076         union kvmppc_one_reg val;
1077         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1078                         vcpu->arch.mmio_vmx_offset);
1079         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1080
1081         if (offset == -1)
1082                 return;
1083
1084         val.vval = VCPU_VSX_VR(vcpu, index);
1085         val.vsx16val[offset] = gpr16;
1086         VCPU_VSX_VR(vcpu, index) = val.vval;
1087 }
1088
1089 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1090         u8 gpr8)
1091 {
1092         union kvmppc_one_reg val;
1093         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1094                         vcpu->arch.mmio_vmx_offset);
1095         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1096
1097         if (offset == -1)
1098                 return;
1099
1100         val.vval = VCPU_VSX_VR(vcpu, index);
1101         val.vsx8val[offset] = gpr8;
1102         VCPU_VSX_VR(vcpu, index) = val.vval;
1103 }
1104 #endif /* CONFIG_ALTIVEC */
1105
1106 #ifdef CONFIG_PPC_FPU
1107 static inline u64 sp_to_dp(u32 fprs)
1108 {
1109         u64 fprd;
1110
1111         preempt_disable();
1112         enable_kernel_fp();
1113         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
1114              : "fr0");
1115         preempt_enable();
1116         return fprd;
1117 }
1118
1119 static inline u32 dp_to_sp(u64 fprd)
1120 {
1121         u32 fprs;
1122
1123         preempt_disable();
1124         enable_kernel_fp();
1125         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
1126              : "fr0");
1127         preempt_enable();
1128         return fprs;
1129 }
1130
1131 #else
1132 #define sp_to_dp(x)     (x)
1133 #define dp_to_sp(x)     (x)
1134 #endif /* CONFIG_PPC_FPU */
1135
1136 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1137 {
1138         struct kvm_run *run = vcpu->run;
1139         u64 gpr;
1140
1141         if (run->mmio.len > sizeof(gpr))
1142                 return;
1143
1144         if (!vcpu->arch.mmio_host_swabbed) {
1145                 switch (run->mmio.len) {
1146                 case 8: gpr = *(u64 *)run->mmio.data; break;
1147                 case 4: gpr = *(u32 *)run->mmio.data; break;
1148                 case 2: gpr = *(u16 *)run->mmio.data; break;
1149                 case 1: gpr = *(u8 *)run->mmio.data; break;
1150                 }
1151         } else {
1152                 switch (run->mmio.len) {
1153                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1154                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1155                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1156                 case 1: gpr = *(u8 *)run->mmio.data; break;
1157                 }
1158         }
1159
1160         /* conversion between single and double precision */
1161         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1162                 gpr = sp_to_dp(gpr);
1163
1164         if (vcpu->arch.mmio_sign_extend) {
1165                 switch (run->mmio.len) {
1166 #ifdef CONFIG_PPC64
1167                 case 4:
1168                         gpr = (s64)(s32)gpr;
1169                         break;
1170 #endif
1171                 case 2:
1172                         gpr = (s64)(s16)gpr;
1173                         break;
1174                 case 1:
1175                         gpr = (s64)(s8)gpr;
1176                         break;
1177                 }
1178         }
1179
1180         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1181         case KVM_MMIO_REG_GPR:
1182                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1183                 break;
1184         case KVM_MMIO_REG_FPR:
1185                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1186                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1187
1188                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1189                 break;
1190 #ifdef CONFIG_PPC_BOOK3S
1191         case KVM_MMIO_REG_QPR:
1192                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1193                 break;
1194         case KVM_MMIO_REG_FQPR:
1195                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1196                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1197                 break;
1198 #endif
1199 #ifdef CONFIG_VSX
1200         case KVM_MMIO_REG_VSX:
1201                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1202                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1203
1204                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1205                         kvmppc_set_vsr_dword(vcpu, gpr);
1206                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1207                         kvmppc_set_vsr_word(vcpu, gpr);
1208                 else if (vcpu->arch.mmio_copy_type ==
1209                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1210                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1211                 else if (vcpu->arch.mmio_copy_type ==
1212                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1213                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1214                 break;
1215 #endif
1216 #ifdef CONFIG_ALTIVEC
1217         case KVM_MMIO_REG_VMX:
1218                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1219                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1220
1221                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1222                         kvmppc_set_vmx_dword(vcpu, gpr);
1223                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1224                         kvmppc_set_vmx_word(vcpu, gpr);
1225                 else if (vcpu->arch.mmio_copy_type ==
1226                                 KVMPPC_VMX_COPY_HWORD)
1227                         kvmppc_set_vmx_hword(vcpu, gpr);
1228                 else if (vcpu->arch.mmio_copy_type ==
1229                                 KVMPPC_VMX_COPY_BYTE)
1230                         kvmppc_set_vmx_byte(vcpu, gpr);
1231                 break;
1232 #endif
1233 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1234         case KVM_MMIO_REG_NESTED_GPR:
1235                 if (kvmppc_need_byteswap(vcpu))
1236                         gpr = swab64(gpr);
1237                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1238                                      sizeof(gpr));
1239                 break;
1240 #endif
1241         default:
1242                 BUG();
1243         }
1244 }
1245
1246 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1247                                 unsigned int rt, unsigned int bytes,
1248                                 int is_default_endian, int sign_extend)
1249 {
1250         struct kvm_run *run = vcpu->run;
1251         int idx, ret;
1252         bool host_swabbed;
1253
1254         /* Pity C doesn't have a logical XOR operator */
1255         if (kvmppc_need_byteswap(vcpu)) {
1256                 host_swabbed = is_default_endian;
1257         } else {
1258                 host_swabbed = !is_default_endian;
1259         }
1260
1261         if (bytes > sizeof(run->mmio.data))
1262                 return EMULATE_FAIL;
1263
1264         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1265         run->mmio.len = bytes;
1266         run->mmio.is_write = 0;
1267
1268         vcpu->arch.io_gpr = rt;
1269         vcpu->arch.mmio_host_swabbed = host_swabbed;
1270         vcpu->mmio_needed = 1;
1271         vcpu->mmio_is_write = 0;
1272         vcpu->arch.mmio_sign_extend = sign_extend;
1273
1274         idx = srcu_read_lock(&vcpu->kvm->srcu);
1275
1276         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1277                               bytes, &run->mmio.data);
1278
1279         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1280
1281         if (!ret) {
1282                 kvmppc_complete_mmio_load(vcpu);
1283                 vcpu->mmio_needed = 0;
1284                 return EMULATE_DONE;
1285         }
1286
1287         return EMULATE_DO_MMIO;
1288 }
1289
1290 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1291                        unsigned int rt, unsigned int bytes,
1292                        int is_default_endian)
1293 {
1294         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1295 }
1296 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1297
1298 /* Same as above, but sign extends */
1299 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1300                         unsigned int rt, unsigned int bytes,
1301                         int is_default_endian)
1302 {
1303         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1304 }
1305
1306 #ifdef CONFIG_VSX
1307 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1308                         unsigned int rt, unsigned int bytes,
1309                         int is_default_endian, int mmio_sign_extend)
1310 {
1311         enum emulation_result emulated = EMULATE_DONE;
1312
1313         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1314         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1315                 return EMULATE_FAIL;
1316
1317         while (vcpu->arch.mmio_vsx_copy_nums) {
1318                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1319                         is_default_endian, mmio_sign_extend);
1320
1321                 if (emulated != EMULATE_DONE)
1322                         break;
1323
1324                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1325
1326                 vcpu->arch.mmio_vsx_copy_nums--;
1327                 vcpu->arch.mmio_vsx_offset++;
1328         }
1329         return emulated;
1330 }
1331 #endif /* CONFIG_VSX */
1332
1333 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1334                         u64 val, unsigned int bytes, int is_default_endian)
1335 {
1336         struct kvm_run *run = vcpu->run;
1337         void *data = run->mmio.data;
1338         int idx, ret;
1339         bool host_swabbed;
1340
1341         /* Pity C doesn't have a logical XOR operator */
1342         if (kvmppc_need_byteswap(vcpu)) {
1343                 host_swabbed = is_default_endian;
1344         } else {
1345                 host_swabbed = !is_default_endian;
1346         }
1347
1348         if (bytes > sizeof(run->mmio.data))
1349                 return EMULATE_FAIL;
1350
1351         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1352         run->mmio.len = bytes;
1353         run->mmio.is_write = 1;
1354         vcpu->mmio_needed = 1;
1355         vcpu->mmio_is_write = 1;
1356
1357         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1358                 val = dp_to_sp(val);
1359
1360         /* Store the value at the lowest bytes in 'data'. */
1361         if (!host_swabbed) {
1362                 switch (bytes) {
1363                 case 8: *(u64 *)data = val; break;
1364                 case 4: *(u32 *)data = val; break;
1365                 case 2: *(u16 *)data = val; break;
1366                 case 1: *(u8  *)data = val; break;
1367                 }
1368         } else {
1369                 switch (bytes) {
1370                 case 8: *(u64 *)data = swab64(val); break;
1371                 case 4: *(u32 *)data = swab32(val); break;
1372                 case 2: *(u16 *)data = swab16(val); break;
1373                 case 1: *(u8  *)data = val; break;
1374                 }
1375         }
1376
1377         idx = srcu_read_lock(&vcpu->kvm->srcu);
1378
1379         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1380                                bytes, &run->mmio.data);
1381
1382         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1383
1384         if (!ret) {
1385                 vcpu->mmio_needed = 0;
1386                 return EMULATE_DONE;
1387         }
1388
1389         return EMULATE_DO_MMIO;
1390 }
1391 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1392
1393 #ifdef CONFIG_VSX
1394 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1395 {
1396         u32 dword_offset, word_offset;
1397         union kvmppc_one_reg reg;
1398         int vsx_offset = 0;
1399         int copy_type = vcpu->arch.mmio_copy_type;
1400         int result = 0;
1401
1402         switch (copy_type) {
1403         case KVMPPC_VSX_COPY_DWORD:
1404                 vsx_offset =
1405                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1406
1407                 if (vsx_offset == -1) {
1408                         result = -1;
1409                         break;
1410                 }
1411
1412                 if (rs < 32) {
1413                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1414                 } else {
1415                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416                         *val = reg.vsxval[vsx_offset];
1417                 }
1418                 break;
1419
1420         case KVMPPC_VSX_COPY_WORD:
1421                 vsx_offset =
1422                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1423
1424                 if (vsx_offset == -1) {
1425                         result = -1;
1426                         break;
1427                 }
1428
1429                 if (rs < 32) {
1430                         dword_offset = vsx_offset / 2;
1431                         word_offset = vsx_offset % 2;
1432                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1433                         *val = reg.vsx32val[word_offset];
1434                 } else {
1435                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1436                         *val = reg.vsx32val[vsx_offset];
1437                 }
1438                 break;
1439
1440         default:
1441                 result = -1;
1442                 break;
1443         }
1444
1445         return result;
1446 }
1447
1448 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1449                         int rs, unsigned int bytes, int is_default_endian)
1450 {
1451         u64 val;
1452         enum emulation_result emulated = EMULATE_DONE;
1453
1454         vcpu->arch.io_gpr = rs;
1455
1456         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1457         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1458                 return EMULATE_FAIL;
1459
1460         while (vcpu->arch.mmio_vsx_copy_nums) {
1461                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1462                         return EMULATE_FAIL;
1463
1464                 emulated = kvmppc_handle_store(vcpu,
1465                          val, bytes, is_default_endian);
1466
1467                 if (emulated != EMULATE_DONE)
1468                         break;
1469
1470                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1471
1472                 vcpu->arch.mmio_vsx_copy_nums--;
1473                 vcpu->arch.mmio_vsx_offset++;
1474         }
1475
1476         return emulated;
1477 }
1478
1479 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1480 {
1481         struct kvm_run *run = vcpu->run;
1482         enum emulation_result emulated = EMULATE_FAIL;
1483         int r;
1484
1485         vcpu->arch.paddr_accessed += run->mmio.len;
1486
1487         if (!vcpu->mmio_is_write) {
1488                 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1489                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1490         } else {
1491                 emulated = kvmppc_handle_vsx_store(vcpu,
1492                          vcpu->arch.io_gpr, run->mmio.len, 1);
1493         }
1494
1495         switch (emulated) {
1496         case EMULATE_DO_MMIO:
1497                 run->exit_reason = KVM_EXIT_MMIO;
1498                 r = RESUME_HOST;
1499                 break;
1500         case EMULATE_FAIL:
1501                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1502                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1503                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1504                 r = RESUME_HOST;
1505                 break;
1506         default:
1507                 r = RESUME_GUEST;
1508                 break;
1509         }
1510         return r;
1511 }
1512 #endif /* CONFIG_VSX */
1513
1514 #ifdef CONFIG_ALTIVEC
1515 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1516                 unsigned int rt, unsigned int bytes, int is_default_endian)
1517 {
1518         enum emulation_result emulated = EMULATE_DONE;
1519
1520         if (vcpu->arch.mmio_vmx_copy_nums > 2)
1521                 return EMULATE_FAIL;
1522
1523         while (vcpu->arch.mmio_vmx_copy_nums) {
1524                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1525                                 is_default_endian, 0);
1526
1527                 if (emulated != EMULATE_DONE)
1528                         break;
1529
1530                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1531                 vcpu->arch.mmio_vmx_copy_nums--;
1532                 vcpu->arch.mmio_vmx_offset++;
1533         }
1534
1535         return emulated;
1536 }
1537
1538 static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1539 {
1540         union kvmppc_one_reg reg;
1541         int vmx_offset = 0;
1542         int result = 0;
1543
1544         vmx_offset =
1545                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1546
1547         if (vmx_offset == -1)
1548                 return -1;
1549
1550         reg.vval = VCPU_VSX_VR(vcpu, index);
1551         *val = reg.vsxval[vmx_offset];
1552
1553         return result;
1554 }
1555
1556 static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1557 {
1558         union kvmppc_one_reg reg;
1559         int vmx_offset = 0;
1560         int result = 0;
1561
1562         vmx_offset =
1563                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1564
1565         if (vmx_offset == -1)
1566                 return -1;
1567
1568         reg.vval = VCPU_VSX_VR(vcpu, index);
1569         *val = reg.vsx32val[vmx_offset];
1570
1571         return result;
1572 }
1573
1574 static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1575 {
1576         union kvmppc_one_reg reg;
1577         int vmx_offset = 0;
1578         int result = 0;
1579
1580         vmx_offset =
1581                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1582
1583         if (vmx_offset == -1)
1584                 return -1;
1585
1586         reg.vval = VCPU_VSX_VR(vcpu, index);
1587         *val = reg.vsx16val[vmx_offset];
1588
1589         return result;
1590 }
1591
1592 static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1593 {
1594         union kvmppc_one_reg reg;
1595         int vmx_offset = 0;
1596         int result = 0;
1597
1598         vmx_offset =
1599                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1600
1601         if (vmx_offset == -1)
1602                 return -1;
1603
1604         reg.vval = VCPU_VSX_VR(vcpu, index);
1605         *val = reg.vsx8val[vmx_offset];
1606
1607         return result;
1608 }
1609
1610 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1611                 unsigned int rs, unsigned int bytes, int is_default_endian)
1612 {
1613         u64 val = 0;
1614         unsigned int index = rs & KVM_MMIO_REG_MASK;
1615         enum emulation_result emulated = EMULATE_DONE;
1616
1617         if (vcpu->arch.mmio_vmx_copy_nums > 2)
1618                 return EMULATE_FAIL;
1619
1620         vcpu->arch.io_gpr = rs;
1621
1622         while (vcpu->arch.mmio_vmx_copy_nums) {
1623                 switch (vcpu->arch.mmio_copy_type) {
1624                 case KVMPPC_VMX_COPY_DWORD:
1625                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1626                                 return EMULATE_FAIL;
1627
1628                         break;
1629                 case KVMPPC_VMX_COPY_WORD:
1630                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1631                                 return EMULATE_FAIL;
1632                         break;
1633                 case KVMPPC_VMX_COPY_HWORD:
1634                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1635                                 return EMULATE_FAIL;
1636                         break;
1637                 case KVMPPC_VMX_COPY_BYTE:
1638                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1639                                 return EMULATE_FAIL;
1640                         break;
1641                 default:
1642                         return EMULATE_FAIL;
1643                 }
1644
1645                 emulated = kvmppc_handle_store(vcpu, val, bytes,
1646                                 is_default_endian);
1647                 if (emulated != EMULATE_DONE)
1648                         break;
1649
1650                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1651                 vcpu->arch.mmio_vmx_copy_nums--;
1652                 vcpu->arch.mmio_vmx_offset++;
1653         }
1654
1655         return emulated;
1656 }
1657
1658 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1659 {
1660         struct kvm_run *run = vcpu->run;
1661         enum emulation_result emulated = EMULATE_FAIL;
1662         int r;
1663
1664         vcpu->arch.paddr_accessed += run->mmio.len;
1665
1666         if (!vcpu->mmio_is_write) {
1667                 emulated = kvmppc_handle_vmx_load(vcpu,
1668                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1669         } else {
1670                 emulated = kvmppc_handle_vmx_store(vcpu,
1671                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1672         }
1673
1674         switch (emulated) {
1675         case EMULATE_DO_MMIO:
1676                 run->exit_reason = KVM_EXIT_MMIO;
1677                 r = RESUME_HOST;
1678                 break;
1679         case EMULATE_FAIL:
1680                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1681                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1682                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1683                 r = RESUME_HOST;
1684                 break;
1685         default:
1686                 r = RESUME_GUEST;
1687                 break;
1688         }
1689         return r;
1690 }
1691 #endif /* CONFIG_ALTIVEC */
1692
1693 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1694 {
1695         int r = 0;
1696         union kvmppc_one_reg val;
1697         int size;
1698
1699         size = one_reg_size(reg->id);
1700         if (size > sizeof(val))
1701                 return -EINVAL;
1702
1703         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1704         if (r == -EINVAL) {
1705                 r = 0;
1706                 switch (reg->id) {
1707 #ifdef CONFIG_ALTIVEC
1708                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1709                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1710                                 r = -ENXIO;
1711                                 break;
1712                         }
1713                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1714                         break;
1715                 case KVM_REG_PPC_VSCR:
1716                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1717                                 r = -ENXIO;
1718                                 break;
1719                         }
1720                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1721                         break;
1722                 case KVM_REG_PPC_VRSAVE:
1723                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1724                         break;
1725 #endif /* CONFIG_ALTIVEC */
1726                 default:
1727                         r = -EINVAL;
1728                         break;
1729                 }
1730         }
1731
1732         if (r)
1733                 return r;
1734
1735         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1736                 r = -EFAULT;
1737
1738         return r;
1739 }
1740
1741 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1742 {
1743         int r;
1744         union kvmppc_one_reg val;
1745         int size;
1746
1747         size = one_reg_size(reg->id);
1748         if (size > sizeof(val))
1749                 return -EINVAL;
1750
1751         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1752                 return -EFAULT;
1753
1754         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1755         if (r == -EINVAL) {
1756                 r = 0;
1757                 switch (reg->id) {
1758 #ifdef CONFIG_ALTIVEC
1759                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1760                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1761                                 r = -ENXIO;
1762                                 break;
1763                         }
1764                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1765                         break;
1766                 case KVM_REG_PPC_VSCR:
1767                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1768                                 r = -ENXIO;
1769                                 break;
1770                         }
1771                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1772                         break;
1773                 case KVM_REG_PPC_VRSAVE:
1774                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1775                                 r = -ENXIO;
1776                                 break;
1777                         }
1778                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1779                         break;
1780 #endif /* CONFIG_ALTIVEC */
1781                 default:
1782                         r = -EINVAL;
1783                         break;
1784                 }
1785         }
1786
1787         return r;
1788 }
1789
1790 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1791 {
1792         struct kvm_run *run = vcpu->run;
1793         int r;
1794
1795         vcpu_load(vcpu);
1796
1797         if (vcpu->mmio_needed) {
1798                 vcpu->mmio_needed = 0;
1799                 if (!vcpu->mmio_is_write)
1800                         kvmppc_complete_mmio_load(vcpu);
1801 #ifdef CONFIG_VSX
1802                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1803                         vcpu->arch.mmio_vsx_copy_nums--;
1804                         vcpu->arch.mmio_vsx_offset++;
1805                 }
1806
1807                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1808                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1809                         if (r == RESUME_HOST) {
1810                                 vcpu->mmio_needed = 1;
1811                                 goto out;
1812                         }
1813                 }
1814 #endif
1815 #ifdef CONFIG_ALTIVEC
1816                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1817                         vcpu->arch.mmio_vmx_copy_nums--;
1818                         vcpu->arch.mmio_vmx_offset++;
1819                 }
1820
1821                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1822                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1823                         if (r == RESUME_HOST) {
1824                                 vcpu->mmio_needed = 1;
1825                                 goto out;
1826                         }
1827                 }
1828 #endif
1829         } else if (vcpu->arch.osi_needed) {
1830                 u64 *gprs = run->osi.gprs;
1831                 int i;
1832
1833                 for (i = 0; i < 32; i++)
1834                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1835                 vcpu->arch.osi_needed = 0;
1836         } else if (vcpu->arch.hcall_needed) {
1837                 int i;
1838
1839                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1840                 for (i = 0; i < 9; ++i)
1841                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1842                 vcpu->arch.hcall_needed = 0;
1843 #ifdef CONFIG_BOOKE
1844         } else if (vcpu->arch.epr_needed) {
1845                 kvmppc_set_epr(vcpu, run->epr.epr);
1846                 vcpu->arch.epr_needed = 0;
1847 #endif
1848         }
1849
1850         kvm_sigset_activate(vcpu);
1851
1852         if (run->immediate_exit)
1853                 r = -EINTR;
1854         else
1855                 r = kvmppc_vcpu_run(vcpu);
1856
1857         kvm_sigset_deactivate(vcpu);
1858
1859 #ifdef CONFIG_ALTIVEC
1860 out:
1861 #endif
1862
1863         /*
1864          * We're already returning to userspace, don't pass the
1865          * RESUME_HOST flags along.
1866          */
1867         if (r > 0)
1868                 r = 0;
1869
1870         vcpu_put(vcpu);
1871         return r;
1872 }
1873
1874 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1875 {
1876         if (irq->irq == KVM_INTERRUPT_UNSET) {
1877                 kvmppc_core_dequeue_external(vcpu);
1878                 return 0;
1879         }
1880
1881         kvmppc_core_queue_external(vcpu, irq);
1882
1883         kvm_vcpu_kick(vcpu);
1884
1885         return 0;
1886 }
1887
1888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1889                                      struct kvm_enable_cap *cap)
1890 {
1891         int r;
1892
1893         if (cap->flags)
1894                 return -EINVAL;
1895
1896         switch (cap->cap) {
1897         case KVM_CAP_PPC_OSI:
1898                 r = 0;
1899                 vcpu->arch.osi_enabled = true;
1900                 break;
1901         case KVM_CAP_PPC_PAPR:
1902                 r = 0;
1903                 vcpu->arch.papr_enabled = true;
1904                 break;
1905         case KVM_CAP_PPC_EPR:
1906                 r = 0;
1907                 if (cap->args[0])
1908                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1909                 else
1910                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1911                 break;
1912 #ifdef CONFIG_BOOKE
1913         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1914                 r = 0;
1915                 vcpu->arch.watchdog_enabled = true;
1916                 break;
1917 #endif
1918 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1919         case KVM_CAP_SW_TLB: {
1920                 struct kvm_config_tlb cfg;
1921                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1922
1923                 r = -EFAULT;
1924                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1925                         break;
1926
1927                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1928                 break;
1929         }
1930 #endif
1931 #ifdef CONFIG_KVM_MPIC
1932         case KVM_CAP_IRQ_MPIC: {
1933                 struct fd f;
1934                 struct kvm_device *dev;
1935
1936                 r = -EBADF;
1937                 f = fdget(cap->args[0]);
1938                 if (!f.file)
1939                         break;
1940
1941                 r = -EPERM;
1942                 dev = kvm_device_from_filp(f.file);
1943                 if (dev)
1944                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1945
1946                 fdput(f);
1947                 break;
1948         }
1949 #endif
1950 #ifdef CONFIG_KVM_XICS
1951         case KVM_CAP_IRQ_XICS: {
1952                 struct fd f;
1953                 struct kvm_device *dev;
1954
1955                 r = -EBADF;
1956                 f = fdget(cap->args[0]);
1957                 if (!f.file)
1958                         break;
1959
1960                 r = -EPERM;
1961                 dev = kvm_device_from_filp(f.file);
1962                 if (dev) {
1963                         if (xics_on_xive())
1964                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1965                         else
1966                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1967                 }
1968
1969                 fdput(f);
1970                 break;
1971         }
1972 #endif /* CONFIG_KVM_XICS */
1973 #ifdef CONFIG_KVM_XIVE
1974         case KVM_CAP_PPC_IRQ_XIVE: {
1975                 struct fd f;
1976                 struct kvm_device *dev;
1977
1978                 r = -EBADF;
1979                 f = fdget(cap->args[0]);
1980                 if (!f.file)
1981                         break;
1982
1983                 r = -ENXIO;
1984                 if (!xive_enabled())
1985                         break;
1986
1987                 r = -EPERM;
1988                 dev = kvm_device_from_filp(f.file);
1989                 if (dev)
1990                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1991                                                             cap->args[1]);
1992
1993                 fdput(f);
1994                 break;
1995         }
1996 #endif /* CONFIG_KVM_XIVE */
1997 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1998         case KVM_CAP_PPC_FWNMI:
1999                 r = -EINVAL;
2000                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
2001                         break;
2002                 r = 0;
2003                 vcpu->kvm->arch.fwnmi_enabled = true;
2004                 break;
2005 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
2006         default:
2007                 r = -EINVAL;
2008                 break;
2009         }
2010
2011         if (!r)
2012                 r = kvmppc_sanity_check(vcpu);
2013
2014         return r;
2015 }
2016
2017 bool kvm_arch_intc_initialized(struct kvm *kvm)
2018 {
2019 #ifdef CONFIG_KVM_MPIC
2020         if (kvm->arch.mpic)
2021                 return true;
2022 #endif
2023 #ifdef CONFIG_KVM_XICS
2024         if (kvm->arch.xics || kvm->arch.xive)
2025                 return true;
2026 #endif
2027         return false;
2028 }
2029
2030 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2031                                     struct kvm_mp_state *mp_state)
2032 {
2033         return -EINVAL;
2034 }
2035
2036 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2037                                     struct kvm_mp_state *mp_state)
2038 {
2039         return -EINVAL;
2040 }
2041
2042 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2043                                unsigned int ioctl, unsigned long arg)
2044 {
2045         struct kvm_vcpu *vcpu = filp->private_data;
2046         void __user *argp = (void __user *)arg;
2047
2048         if (ioctl == KVM_INTERRUPT) {
2049                 struct kvm_interrupt irq;
2050                 if (copy_from_user(&irq, argp, sizeof(irq)))
2051                         return -EFAULT;
2052                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2053         }
2054         return -ENOIOCTLCMD;
2055 }
2056
2057 long kvm_arch_vcpu_ioctl(struct file *filp,
2058                          unsigned int ioctl, unsigned long arg)
2059 {
2060         struct kvm_vcpu *vcpu = filp->private_data;
2061         void __user *argp = (void __user *)arg;
2062         long r;
2063
2064         switch (ioctl) {
2065         case KVM_ENABLE_CAP:
2066         {
2067                 struct kvm_enable_cap cap;
2068                 r = -EFAULT;
2069                 if (copy_from_user(&cap, argp, sizeof(cap)))
2070                         goto out;
2071                 vcpu_load(vcpu);
2072                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2073                 vcpu_put(vcpu);
2074                 break;
2075         }
2076
2077         case KVM_SET_ONE_REG:
2078         case KVM_GET_ONE_REG:
2079         {
2080                 struct kvm_one_reg reg;
2081                 r = -EFAULT;
2082                 if (copy_from_user(&reg, argp, sizeof(reg)))
2083                         goto out;
2084                 if (ioctl == KVM_SET_ONE_REG)
2085                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2086                 else
2087                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2088                 break;
2089         }
2090
2091 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2092         case KVM_DIRTY_TLB: {
2093                 struct kvm_dirty_tlb dirty;
2094                 r = -EFAULT;
2095                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2096                         goto out;
2097                 vcpu_load(vcpu);
2098                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2099                 vcpu_put(vcpu);
2100                 break;
2101         }
2102 #endif
2103         default:
2104                 r = -EINVAL;
2105         }
2106
2107 out:
2108         return r;
2109 }
2110
2111 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2112 {
2113         return VM_FAULT_SIGBUS;
2114 }
2115
2116 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2117 {
2118         u32 inst_nop = 0x60000000;
2119 #ifdef CONFIG_KVM_BOOKE_HV
2120         u32 inst_sc1 = 0x44000022;
2121         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2122         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2123         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2124         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2125 #else
2126         u32 inst_lis = 0x3c000000;
2127         u32 inst_ori = 0x60000000;
2128         u32 inst_sc = 0x44000002;
2129         u32 inst_imm_mask = 0xffff;
2130
2131         /*
2132          * The hypercall to get into KVM from within guest context is as
2133          * follows:
2134          *
2135          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2136          *    ori r0, KVM_SC_MAGIC_R0@l
2137          *    sc
2138          *    nop
2139          */
2140         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2141         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2142         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2143         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2144 #endif
2145
2146         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2147
2148         return 0;
2149 }
2150
2151 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2152                           bool line_status)
2153 {
2154         if (!irqchip_in_kernel(kvm))
2155                 return -ENXIO;
2156
2157         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2158                                         irq_event->irq, irq_event->level,
2159                                         line_status);
2160         return 0;
2161 }
2162
2163
2164 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2165                             struct kvm_enable_cap *cap)
2166 {
2167         int r;
2168
2169         if (cap->flags)
2170                 return -EINVAL;
2171
2172         switch (cap->cap) {
2173 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2174         case KVM_CAP_PPC_ENABLE_HCALL: {
2175                 unsigned long hcall = cap->args[0];
2176
2177                 r = -EINVAL;
2178                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2179                     cap->args[1] > 1)
2180                         break;
2181                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2182                         break;
2183                 if (cap->args[1])
2184                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2185                 else
2186                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2187                 r = 0;
2188                 break;
2189         }
2190         case KVM_CAP_PPC_SMT: {
2191                 unsigned long mode = cap->args[0];
2192                 unsigned long flags = cap->args[1];
2193
2194                 r = -EINVAL;
2195                 if (kvm->arch.kvm_ops->set_smt_mode)
2196                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2197                 break;
2198         }
2199
2200         case KVM_CAP_PPC_NESTED_HV:
2201                 r = -EINVAL;
2202                 if (!is_kvmppc_hv_enabled(kvm) ||
2203                     !kvm->arch.kvm_ops->enable_nested)
2204                         break;
2205                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2206                 break;
2207 #endif
2208 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2209         case KVM_CAP_PPC_SECURE_GUEST:
2210                 r = -EINVAL;
2211                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2212                         break;
2213                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2214                 break;
2215         case KVM_CAP_PPC_DAWR1:
2216                 r = -EINVAL;
2217                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
2218                         break;
2219                 r = kvm->arch.kvm_ops->enable_dawr1(kvm);
2220                 break;
2221 #endif
2222         default:
2223                 r = -EINVAL;
2224                 break;
2225         }
2226
2227         return r;
2228 }
2229
2230 #ifdef CONFIG_PPC_BOOK3S_64
2231 /*
2232  * These functions check whether the underlying hardware is safe
2233  * against attacks based on observing the effects of speculatively
2234  * executed instructions, and whether it supplies instructions for
2235  * use in workarounds.  The information comes from firmware, either
2236  * via the device tree on powernv platforms or from an hcall on
2237  * pseries platforms.
2238  */
2239 #ifdef CONFIG_PPC_PSERIES
2240 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2241 {
2242         struct h_cpu_char_result c;
2243         unsigned long rc;
2244
2245         if (!machine_is(pseries))
2246                 return -ENOTTY;
2247
2248         rc = plpar_get_cpu_characteristics(&c);
2249         if (rc == H_SUCCESS) {
2250                 cp->character = c.character;
2251                 cp->behaviour = c.behaviour;
2252                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2253                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2254                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2255                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2256                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2257                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2258                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2259                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2260                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2261                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2262                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2263                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2264                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2265         }
2266         return 0;
2267 }
2268 #else
2269 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2270 {
2271         return -ENOTTY;
2272 }
2273 #endif
2274
2275 static inline bool have_fw_feat(struct device_node *fw_features,
2276                                 const char *state, const char *name)
2277 {
2278         struct device_node *np;
2279         bool r = false;
2280
2281         np = of_get_child_by_name(fw_features, name);
2282         if (np) {
2283                 r = of_property_read_bool(np, state);
2284                 of_node_put(np);
2285         }
2286         return r;
2287 }
2288
2289 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2290 {
2291         struct device_node *np, *fw_features;
2292         int r;
2293
2294         memset(cp, 0, sizeof(*cp));
2295         r = pseries_get_cpu_char(cp);
2296         if (r != -ENOTTY)
2297                 return r;
2298
2299         np = of_find_node_by_name(NULL, "ibm,opal");
2300         if (np) {
2301                 fw_features = of_get_child_by_name(np, "fw-features");
2302                 of_node_put(np);
2303                 if (!fw_features)
2304                         return 0;
2305                 if (have_fw_feat(fw_features, "enabled",
2306                                  "inst-spec-barrier-ori31,31,0"))
2307                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2308                 if (have_fw_feat(fw_features, "enabled",
2309                                  "fw-bcctrl-serialized"))
2310                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2311                 if (have_fw_feat(fw_features, "enabled",
2312                                  "inst-l1d-flush-ori30,30,0"))
2313                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2314                 if (have_fw_feat(fw_features, "enabled",
2315                                  "inst-l1d-flush-trig2"))
2316                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2317                 if (have_fw_feat(fw_features, "enabled",
2318                                  "fw-l1d-thread-split"))
2319                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2320                 if (have_fw_feat(fw_features, "enabled",
2321                                  "fw-count-cache-disabled"))
2322                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2323                 if (have_fw_feat(fw_features, "enabled",
2324                                  "fw-count-cache-flush-bcctr2,0,0"))
2325                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2326                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2327                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2328                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2329                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2330                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2331                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2332                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2333
2334                 if (have_fw_feat(fw_features, "enabled",
2335                                  "speculation-policy-favor-security"))
2336                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2337                 if (!have_fw_feat(fw_features, "disabled",
2338                                   "needs-l1d-flush-msr-pr-0-to-1"))
2339                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2340                 if (!have_fw_feat(fw_features, "disabled",
2341                                   "needs-spec-barrier-for-bound-checks"))
2342                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2343                 if (have_fw_feat(fw_features, "enabled",
2344                                  "needs-count-cache-flush-on-context-switch"))
2345                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2346                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2347                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2348                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2349                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2350
2351                 of_node_put(fw_features);
2352         }
2353
2354         return 0;
2355 }
2356 #endif
2357
2358 long kvm_arch_vm_ioctl(struct file *filp,
2359                        unsigned int ioctl, unsigned long arg)
2360 {
2361         struct kvm *kvm __maybe_unused = filp->private_data;
2362         void __user *argp = (void __user *)arg;
2363         long r;
2364
2365         switch (ioctl) {
2366         case KVM_PPC_GET_PVINFO: {
2367                 struct kvm_ppc_pvinfo pvinfo;
2368                 memset(&pvinfo, 0, sizeof(pvinfo));
2369                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2370                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2371                         r = -EFAULT;
2372                         goto out;
2373                 }
2374
2375                 break;
2376         }
2377 #ifdef CONFIG_SPAPR_TCE_IOMMU
2378         case KVM_CREATE_SPAPR_TCE_64: {
2379                 struct kvm_create_spapr_tce_64 create_tce_64;
2380
2381                 r = -EFAULT;
2382                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2383                         goto out;
2384                 if (create_tce_64.flags) {
2385                         r = -EINVAL;
2386                         goto out;
2387                 }
2388                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2389                 goto out;
2390         }
2391         case KVM_CREATE_SPAPR_TCE: {
2392                 struct kvm_create_spapr_tce create_tce;
2393                 struct kvm_create_spapr_tce_64 create_tce_64;
2394
2395                 r = -EFAULT;
2396                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2397                         goto out;
2398
2399                 create_tce_64.liobn = create_tce.liobn;
2400                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2401                 create_tce_64.offset = 0;
2402                 create_tce_64.size = create_tce.window_size >>
2403                                 IOMMU_PAGE_SHIFT_4K;
2404                 create_tce_64.flags = 0;
2405                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2406                 goto out;
2407         }
2408 #endif
2409 #ifdef CONFIG_PPC_BOOK3S_64
2410         case KVM_PPC_GET_SMMU_INFO: {
2411                 struct kvm_ppc_smmu_info info;
2412                 struct kvm *kvm = filp->private_data;
2413
2414                 memset(&info, 0, sizeof(info));
2415                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2416                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2417                         r = -EFAULT;
2418                 break;
2419         }
2420         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2421                 struct kvm *kvm = filp->private_data;
2422
2423                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2424                 break;
2425         }
2426         case KVM_PPC_CONFIGURE_V3_MMU: {
2427                 struct kvm *kvm = filp->private_data;
2428                 struct kvm_ppc_mmuv3_cfg cfg;
2429
2430                 r = -EINVAL;
2431                 if (!kvm->arch.kvm_ops->configure_mmu)
2432                         goto out;
2433                 r = -EFAULT;
2434                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2435                         goto out;
2436                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2437                 break;
2438         }
2439         case KVM_PPC_GET_RMMU_INFO: {
2440                 struct kvm *kvm = filp->private_data;
2441                 struct kvm_ppc_rmmu_info info;
2442
2443                 r = -EINVAL;
2444                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2445                         goto out;
2446                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2447                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2448                         r = -EFAULT;
2449                 break;
2450         }
2451         case KVM_PPC_GET_CPU_CHAR: {
2452                 struct kvm_ppc_cpu_char cpuchar;
2453
2454                 r = kvmppc_get_cpu_char(&cpuchar);
2455                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2456                         r = -EFAULT;
2457                 break;
2458         }
2459         case KVM_PPC_SVM_OFF: {
2460                 struct kvm *kvm = filp->private_data;
2461
2462                 r = 0;
2463                 if (!kvm->arch.kvm_ops->svm_off)
2464                         goto out;
2465
2466                 r = kvm->arch.kvm_ops->svm_off(kvm);
2467                 break;
2468         }
2469         default: {
2470                 struct kvm *kvm = filp->private_data;
2471                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2472         }
2473 #else /* CONFIG_PPC_BOOK3S_64 */
2474         default:
2475                 r = -ENOTTY;
2476 #endif
2477         }
2478 out:
2479         return r;
2480 }
2481
2482 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2483 static unsigned long nr_lpids;
2484
2485 long kvmppc_alloc_lpid(void)
2486 {
2487         long lpid;
2488
2489         do {
2490                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2491                 if (lpid >= nr_lpids) {
2492                         pr_err("%s: No LPIDs free\n", __func__);
2493                         return -ENOMEM;
2494                 }
2495         } while (test_and_set_bit(lpid, lpid_inuse));
2496
2497         return lpid;
2498 }
2499 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2500
2501 void kvmppc_claim_lpid(long lpid)
2502 {
2503         set_bit(lpid, lpid_inuse);
2504 }
2505 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2506
2507 void kvmppc_free_lpid(long lpid)
2508 {
2509         clear_bit(lpid, lpid_inuse);
2510 }
2511 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2512
2513 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2514 {
2515         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2516         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2517 }
2518 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2519
2520 int kvm_arch_init(void *opaque)
2521 {
2522         return 0;
2523 }
2524
2525 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2526
2527 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2528 {
2529         if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
2530                 vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
2531 }
2532
2533 int kvm_arch_create_vm_debugfs(struct kvm *kvm)
2534 {
2535         if (kvm->arch.kvm_ops->create_vm_debugfs)
2536                 kvm->arch.kvm_ops->create_vm_debugfs(kvm);
2537         return 0;
2538 }