x86/microcode: Fix return value for microcode late loading
[linux-2.6-microblaze.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_block(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 /* XXX Deliver Program interrupt to guest. */
311                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312                 r = RESUME_HOST;
313                 break;
314         }
315         default:
316                 WARN_ON(1);
317                 r = RESUME_GUEST;
318         }
319
320         return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325               bool data)
326 {
327         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328         struct kvmppc_pte pte;
329         int r = -EINVAL;
330
331         vcpu->stat.st++;
332
333         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335                                                             size);
336
337         if ((!r) || (r == -EAGAIN))
338                 return r;
339
340         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341                          XLATE_WRITE, &pte);
342         if (r < 0)
343                 return r;
344
345         *eaddr = pte.raddr;
346
347         if (!pte.may_write)
348                 return -EPERM;
349
350         /* Magic page override */
351         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354                 void *magic = vcpu->arch.shared;
355                 magic += pte.eaddr & 0xfff;
356                 memcpy(magic, ptr, size);
357                 return EMULATE_DONE;
358         }
359
360         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361                 return EMULATE_DO_MMIO;
362
363         return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368                       bool data)
369 {
370         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371         struct kvmppc_pte pte;
372         int rc = -EINVAL;
373
374         vcpu->stat.ld++;
375
376         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378                                                               size);
379
380         if ((!rc) || (rc == -EAGAIN))
381                 return rc;
382
383         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384                           XLATE_READ, &pte);
385         if (rc)
386                 return rc;
387
388         *eaddr = pte.raddr;
389
390         if (!pte.may_read)
391                 return -EPERM;
392
393         if (!data && !pte.may_execute)
394                 return -ENOEXEC;
395
396         /* Magic page override */
397         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400                 void *magic = vcpu->arch.shared;
401                 magic += pte.eaddr & 0xfff;
402                 memcpy(ptr, magic, size);
403                 return EMULATE_DONE;
404         }
405
406         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
407                 return EMULATE_DO_MMIO;
408
409         return EMULATE_DONE;
410 }
411 EXPORT_SYMBOL_GPL(kvmppc_ld);
412
413 int kvm_arch_hardware_enable(void)
414 {
415         return 0;
416 }
417
418 int kvm_arch_hardware_setup(void *opaque)
419 {
420         return 0;
421 }
422
423 int kvm_arch_check_processor_compat(void *opaque)
424 {
425         return kvmppc_core_check_processor_compat();
426 }
427
428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
429 {
430         struct kvmppc_ops *kvm_ops = NULL;
431         /*
432          * if we have both HV and PR enabled, default is HV
433          */
434         if (type == 0) {
435                 if (kvmppc_hv_ops)
436                         kvm_ops = kvmppc_hv_ops;
437                 else
438                         kvm_ops = kvmppc_pr_ops;
439                 if (!kvm_ops)
440                         goto err_out;
441         } else  if (type == KVM_VM_PPC_HV) {
442                 if (!kvmppc_hv_ops)
443                         goto err_out;
444                 kvm_ops = kvmppc_hv_ops;
445         } else if (type == KVM_VM_PPC_PR) {
446                 if (!kvmppc_pr_ops)
447                         goto err_out;
448                 kvm_ops = kvmppc_pr_ops;
449         } else
450                 goto err_out;
451
452         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
453                 return -ENOENT;
454
455         kvm->arch.kvm_ops = kvm_ops;
456         return kvmppc_core_init_vm(kvm);
457 err_out:
458         return -EINVAL;
459 }
460
461 void kvm_arch_destroy_vm(struct kvm *kvm)
462 {
463         unsigned int i;
464         struct kvm_vcpu *vcpu;
465
466 #ifdef CONFIG_KVM_XICS
467         /*
468          * We call kick_all_cpus_sync() to ensure that all
469          * CPUs have executed any pending IPIs before we
470          * continue and free VCPUs structures below.
471          */
472         if (is_kvmppc_hv_enabled(kvm))
473                 kick_all_cpus_sync();
474 #endif
475
476         kvm_for_each_vcpu(i, vcpu, kvm)
477                 kvm_vcpu_destroy(vcpu);
478
479         mutex_lock(&kvm->lock);
480         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
481                 kvm->vcpus[i] = NULL;
482
483         atomic_set(&kvm->online_vcpus, 0);
484
485         kvmppc_core_destroy_vm(kvm);
486
487         mutex_unlock(&kvm->lock);
488
489         /* drop the module reference */
490         module_put(kvm->arch.kvm_ops->owner);
491 }
492
493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
494 {
495         int r;
496         /* Assume we're using HV mode when the HV module is loaded */
497         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
498
499         if (kvm) {
500                 /*
501                  * Hooray - we know which VM type we're running on. Depend on
502                  * that rather than the guess above.
503                  */
504                 hv_enabled = is_kvmppc_hv_enabled(kvm);
505         }
506
507         switch (ext) {
508 #ifdef CONFIG_BOOKE
509         case KVM_CAP_PPC_BOOKE_SREGS:
510         case KVM_CAP_PPC_BOOKE_WATCHDOG:
511         case KVM_CAP_PPC_EPR:
512 #else
513         case KVM_CAP_PPC_SEGSTATE:
514         case KVM_CAP_PPC_HIOR:
515         case KVM_CAP_PPC_PAPR:
516 #endif
517         case KVM_CAP_PPC_UNSET_IRQ:
518         case KVM_CAP_PPC_IRQ_LEVEL:
519         case KVM_CAP_ENABLE_CAP:
520         case KVM_CAP_ONE_REG:
521         case KVM_CAP_IOEVENTFD:
522         case KVM_CAP_DEVICE_CTRL:
523         case KVM_CAP_IMMEDIATE_EXIT:
524                 r = 1;
525                 break;
526         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
527         case KVM_CAP_PPC_PAIRED_SINGLES:
528         case KVM_CAP_PPC_OSI:
529         case KVM_CAP_PPC_GET_PVINFO:
530 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
531         case KVM_CAP_SW_TLB:
532 #endif
533                 /* We support this only for PR */
534                 r = !hv_enabled;
535                 break;
536 #ifdef CONFIG_KVM_MPIC
537         case KVM_CAP_IRQ_MPIC:
538                 r = 1;
539                 break;
540 #endif
541
542 #ifdef CONFIG_PPC_BOOK3S_64
543         case KVM_CAP_SPAPR_TCE:
544         case KVM_CAP_SPAPR_TCE_64:
545                 r = 1;
546                 break;
547         case KVM_CAP_SPAPR_TCE_VFIO:
548                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
549                 break;
550         case KVM_CAP_PPC_RTAS:
551         case KVM_CAP_PPC_FIXUP_HCALL:
552         case KVM_CAP_PPC_ENABLE_HCALL:
553 #ifdef CONFIG_KVM_XICS
554         case KVM_CAP_IRQ_XICS:
555 #endif
556         case KVM_CAP_PPC_GET_CPU_CHAR:
557                 r = 1;
558                 break;
559 #ifdef CONFIG_KVM_XIVE
560         case KVM_CAP_PPC_IRQ_XIVE:
561                 /*
562                  * We need XIVE to be enabled on the platform (implies
563                  * a POWER9 processor) and the PowerNV platform, as
564                  * nested is not yet supported.
565                  */
566                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
567                         kvmppc_xive_native_supported();
568                 break;
569 #endif
570
571         case KVM_CAP_PPC_ALLOC_HTAB:
572                 r = hv_enabled;
573                 break;
574 #endif /* CONFIG_PPC_BOOK3S_64 */
575 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
576         case KVM_CAP_PPC_SMT:
577                 r = 0;
578                 if (kvm) {
579                         if (kvm->arch.emul_smt_mode > 1)
580                                 r = kvm->arch.emul_smt_mode;
581                         else
582                                 r = kvm->arch.smt_mode;
583                 } else if (hv_enabled) {
584                         if (cpu_has_feature(CPU_FTR_ARCH_300))
585                                 r = 1;
586                         else
587                                 r = threads_per_subcore;
588                 }
589                 break;
590         case KVM_CAP_PPC_SMT_POSSIBLE:
591                 r = 1;
592                 if (hv_enabled) {
593                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
594                                 r = ((threads_per_subcore << 1) - 1);
595                         else
596                                 /* P9 can emulate dbells, so allow any mode */
597                                 r = 8 | 4 | 2 | 1;
598                 }
599                 break;
600         case KVM_CAP_PPC_RMA:
601                 r = 0;
602                 break;
603         case KVM_CAP_PPC_HWRNG:
604                 r = kvmppc_hwrng_present();
605                 break;
606         case KVM_CAP_PPC_MMU_RADIX:
607                 r = !!(hv_enabled && radix_enabled());
608                 break;
609         case KVM_CAP_PPC_MMU_HASH_V3:
610                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
611                        cpu_has_feature(CPU_FTR_HVMODE));
612                 break;
613         case KVM_CAP_PPC_NESTED_HV:
614                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
615                        !kvmppc_hv_ops->enable_nested(NULL));
616                 break;
617 #endif
618         case KVM_CAP_SYNC_MMU:
619 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
620                 r = hv_enabled;
621 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
622                 r = 1;
623 #else
624                 r = 0;
625 #endif
626                 break;
627 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
628         case KVM_CAP_PPC_HTAB_FD:
629                 r = hv_enabled;
630                 break;
631 #endif
632         case KVM_CAP_NR_VCPUS:
633                 /*
634                  * Recommending a number of CPUs is somewhat arbitrary; we
635                  * return the number of present CPUs for -HV (since a host
636                  * will have secondary threads "offline"), and for other KVM
637                  * implementations just count online CPUs.
638                  */
639                 if (hv_enabled)
640                         r = num_present_cpus();
641                 else
642                         r = num_online_cpus();
643                 break;
644         case KVM_CAP_MAX_VCPUS:
645                 r = KVM_MAX_VCPUS;
646                 break;
647         case KVM_CAP_MAX_VCPU_ID:
648                 r = KVM_MAX_VCPU_ID;
649                 break;
650 #ifdef CONFIG_PPC_BOOK3S_64
651         case KVM_CAP_PPC_GET_SMMU_INFO:
652                 r = 1;
653                 break;
654         case KVM_CAP_SPAPR_MULTITCE:
655                 r = 1;
656                 break;
657         case KVM_CAP_SPAPR_RESIZE_HPT:
658                 r = !!hv_enabled;
659                 break;
660 #endif
661 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
662         case KVM_CAP_PPC_FWNMI:
663                 r = hv_enabled;
664                 break;
665 #endif
666 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
667         case KVM_CAP_PPC_HTM:
668                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
669                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
670                 break;
671 #endif
672 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
673         case KVM_CAP_PPC_SECURE_GUEST:
674                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
675                         !kvmppc_hv_ops->enable_svm(NULL);
676                 break;
677 #endif
678         default:
679                 r = 0;
680                 break;
681         }
682         return r;
683
684 }
685
686 long kvm_arch_dev_ioctl(struct file *filp,
687                         unsigned int ioctl, unsigned long arg)
688 {
689         return -EINVAL;
690 }
691
692 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
693 {
694         kvmppc_core_free_memslot(kvm, slot);
695 }
696
697 int kvm_arch_prepare_memory_region(struct kvm *kvm,
698                                    struct kvm_memory_slot *memslot,
699                                    const struct kvm_userspace_memory_region *mem,
700                                    enum kvm_mr_change change)
701 {
702         return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
703 }
704
705 void kvm_arch_commit_memory_region(struct kvm *kvm,
706                                    const struct kvm_userspace_memory_region *mem,
707                                    struct kvm_memory_slot *old,
708                                    const struct kvm_memory_slot *new,
709                                    enum kvm_mr_change change)
710 {
711         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
712 }
713
714 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
715                                    struct kvm_memory_slot *slot)
716 {
717         kvmppc_core_flush_memslot(kvm, slot);
718 }
719
720 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
721 {
722         return 0;
723 }
724
725 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
726 {
727         struct kvm_vcpu *vcpu;
728
729         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
730         kvmppc_decrementer_func(vcpu);
731
732         return HRTIMER_NORESTART;
733 }
734
735 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
736 {
737         int err;
738
739         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
740         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
741         vcpu->arch.dec_expires = get_tb();
742
743 #ifdef CONFIG_KVM_EXIT_TIMING
744         mutex_init(&vcpu->arch.exit_timing_lock);
745 #endif
746         err = kvmppc_subarch_vcpu_init(vcpu);
747         if (err)
748                 return err;
749
750         err = kvmppc_core_vcpu_create(vcpu);
751         if (err)
752                 goto out_vcpu_uninit;
753
754         vcpu->arch.wqp = &vcpu->wq;
755         kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
756         return 0;
757
758 out_vcpu_uninit:
759         kvmppc_subarch_vcpu_uninit(vcpu);
760         return err;
761 }
762
763 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
764 {
765 }
766
767 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
768 {
769         /* Make sure we're not using the vcpu anymore */
770         hrtimer_cancel(&vcpu->arch.dec_timer);
771
772         kvmppc_remove_vcpu_debugfs(vcpu);
773
774         switch (vcpu->arch.irq_type) {
775         case KVMPPC_IRQ_MPIC:
776                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
777                 break;
778         case KVMPPC_IRQ_XICS:
779                 if (xics_on_xive())
780                         kvmppc_xive_cleanup_vcpu(vcpu);
781                 else
782                         kvmppc_xics_free_icp(vcpu);
783                 break;
784         case KVMPPC_IRQ_XIVE:
785                 kvmppc_xive_native_cleanup_vcpu(vcpu);
786                 break;
787         }
788
789         kvmppc_core_vcpu_free(vcpu);
790
791         kvmppc_subarch_vcpu_uninit(vcpu);
792 }
793
794 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
795 {
796         return kvmppc_core_pending_dec(vcpu);
797 }
798
799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
800 {
801 #ifdef CONFIG_BOOKE
802         /*
803          * vrsave (formerly usprg0) isn't used by Linux, but may
804          * be used by the guest.
805          *
806          * On non-booke this is associated with Altivec and
807          * is handled by code in book3s.c.
808          */
809         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
810 #endif
811         kvmppc_core_vcpu_load(vcpu, cpu);
812 }
813
814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
815 {
816         kvmppc_core_vcpu_put(vcpu);
817 #ifdef CONFIG_BOOKE
818         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
819 #endif
820 }
821
822 /*
823  * irq_bypass_add_producer and irq_bypass_del_producer are only
824  * useful if the architecture supports PCI passthrough.
825  * irq_bypass_stop and irq_bypass_start are not needed and so
826  * kvm_ops are not defined for them.
827  */
828 bool kvm_arch_has_irq_bypass(void)
829 {
830         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
831                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
832 }
833
834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
835                                      struct irq_bypass_producer *prod)
836 {
837         struct kvm_kernel_irqfd *irqfd =
838                 container_of(cons, struct kvm_kernel_irqfd, consumer);
839         struct kvm *kvm = irqfd->kvm;
840
841         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
842                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
843
844         return 0;
845 }
846
847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
848                                       struct irq_bypass_producer *prod)
849 {
850         struct kvm_kernel_irqfd *irqfd =
851                 container_of(cons, struct kvm_kernel_irqfd, consumer);
852         struct kvm *kvm = irqfd->kvm;
853
854         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
855                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
856 }
857
858 #ifdef CONFIG_VSX
859 static inline int kvmppc_get_vsr_dword_offset(int index)
860 {
861         int offset;
862
863         if ((index != 0) && (index != 1))
864                 return -1;
865
866 #ifdef __BIG_ENDIAN
867         offset =  index;
868 #else
869         offset = 1 - index;
870 #endif
871
872         return offset;
873 }
874
875 static inline int kvmppc_get_vsr_word_offset(int index)
876 {
877         int offset;
878
879         if ((index > 3) || (index < 0))
880                 return -1;
881
882 #ifdef __BIG_ENDIAN
883         offset = index;
884 #else
885         offset = 3 - index;
886 #endif
887         return offset;
888 }
889
890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
891         u64 gpr)
892 {
893         union kvmppc_one_reg val;
894         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
895         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897         if (offset == -1)
898                 return;
899
900         if (index >= 32) {
901                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
902                 val.vsxval[offset] = gpr;
903                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
904         } else {
905                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
906         }
907 }
908
909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
910         u64 gpr)
911 {
912         union kvmppc_one_reg val;
913         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914
915         if (index >= 32) {
916                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
917                 val.vsxval[0] = gpr;
918                 val.vsxval[1] = gpr;
919                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920         } else {
921                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
922                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
923         }
924 }
925
926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
927         u32 gpr)
928 {
929         union kvmppc_one_reg val;
930         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
931
932         if (index >= 32) {
933                 val.vsx32val[0] = gpr;
934                 val.vsx32val[1] = gpr;
935                 val.vsx32val[2] = gpr;
936                 val.vsx32val[3] = gpr;
937                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
938         } else {
939                 val.vsx32val[0] = gpr;
940                 val.vsx32val[1] = gpr;
941                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
942                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
943         }
944 }
945
946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
947         u32 gpr32)
948 {
949         union kvmppc_one_reg val;
950         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
951         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
952         int dword_offset, word_offset;
953
954         if (offset == -1)
955                 return;
956
957         if (index >= 32) {
958                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
959                 val.vsx32val[offset] = gpr32;
960                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
961         } else {
962                 dword_offset = offset / 2;
963                 word_offset = offset % 2;
964                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
965                 val.vsx32val[word_offset] = gpr32;
966                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
967         }
968 }
969 #endif /* CONFIG_VSX */
970
971 #ifdef CONFIG_ALTIVEC
972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
973                 int index, int element_size)
974 {
975         int offset;
976         int elts = sizeof(vector128)/element_size;
977
978         if ((index < 0) || (index >= elts))
979                 return -1;
980
981         if (kvmppc_need_byteswap(vcpu))
982                 offset = elts - index - 1;
983         else
984                 offset = index;
985
986         return offset;
987 }
988
989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
990                 int index)
991 {
992         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
993 }
994
995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
996                 int index)
997 {
998         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
999 }
1000
1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1002                 int index)
1003 {
1004         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1005 }
1006
1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1008                 int index)
1009 {
1010         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1011 }
1012
1013
1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1015         u64 gpr)
1016 {
1017         union kvmppc_one_reg val;
1018         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1019                         vcpu->arch.mmio_vmx_offset);
1020         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1021
1022         if (offset == -1)
1023                 return;
1024
1025         val.vval = VCPU_VSX_VR(vcpu, index);
1026         val.vsxval[offset] = gpr;
1027         VCPU_VSX_VR(vcpu, index) = val.vval;
1028 }
1029
1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1031         u32 gpr32)
1032 {
1033         union kvmppc_one_reg val;
1034         int offset = kvmppc_get_vmx_word_offset(vcpu,
1035                         vcpu->arch.mmio_vmx_offset);
1036         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1037
1038         if (offset == -1)
1039                 return;
1040
1041         val.vval = VCPU_VSX_VR(vcpu, index);
1042         val.vsx32val[offset] = gpr32;
1043         VCPU_VSX_VR(vcpu, index) = val.vval;
1044 }
1045
1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1047         u16 gpr16)
1048 {
1049         union kvmppc_one_reg val;
1050         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1051                         vcpu->arch.mmio_vmx_offset);
1052         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053
1054         if (offset == -1)
1055                 return;
1056
1057         val.vval = VCPU_VSX_VR(vcpu, index);
1058         val.vsx16val[offset] = gpr16;
1059         VCPU_VSX_VR(vcpu, index) = val.vval;
1060 }
1061
1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1063         u8 gpr8)
1064 {
1065         union kvmppc_one_reg val;
1066         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1067                         vcpu->arch.mmio_vmx_offset);
1068         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1069
1070         if (offset == -1)
1071                 return;
1072
1073         val.vval = VCPU_VSX_VR(vcpu, index);
1074         val.vsx8val[offset] = gpr8;
1075         VCPU_VSX_VR(vcpu, index) = val.vval;
1076 }
1077 #endif /* CONFIG_ALTIVEC */
1078
1079 #ifdef CONFIG_PPC_FPU
1080 static inline u64 sp_to_dp(u32 fprs)
1081 {
1082         u64 fprd;
1083
1084         preempt_disable();
1085         enable_kernel_fp();
1086         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1087              : "fr0");
1088         preempt_enable();
1089         return fprd;
1090 }
1091
1092 static inline u32 dp_to_sp(u64 fprd)
1093 {
1094         u32 fprs;
1095
1096         preempt_disable();
1097         enable_kernel_fp();
1098         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1099              : "fr0");
1100         preempt_enable();
1101         return fprs;
1102 }
1103
1104 #else
1105 #define sp_to_dp(x)     (x)
1106 #define dp_to_sp(x)     (x)
1107 #endif /* CONFIG_PPC_FPU */
1108
1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1110                                       struct kvm_run *run)
1111 {
1112         u64 uninitialized_var(gpr);
1113
1114         if (run->mmio.len > sizeof(gpr)) {
1115                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1116                 return;
1117         }
1118
1119         if (!vcpu->arch.mmio_host_swabbed) {
1120                 switch (run->mmio.len) {
1121                 case 8: gpr = *(u64 *)run->mmio.data; break;
1122                 case 4: gpr = *(u32 *)run->mmio.data; break;
1123                 case 2: gpr = *(u16 *)run->mmio.data; break;
1124                 case 1: gpr = *(u8 *)run->mmio.data; break;
1125                 }
1126         } else {
1127                 switch (run->mmio.len) {
1128                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1129                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1130                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1131                 case 1: gpr = *(u8 *)run->mmio.data; break;
1132                 }
1133         }
1134
1135         /* conversion between single and double precision */
1136         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1137                 gpr = sp_to_dp(gpr);
1138
1139         if (vcpu->arch.mmio_sign_extend) {
1140                 switch (run->mmio.len) {
1141 #ifdef CONFIG_PPC64
1142                 case 4:
1143                         gpr = (s64)(s32)gpr;
1144                         break;
1145 #endif
1146                 case 2:
1147                         gpr = (s64)(s16)gpr;
1148                         break;
1149                 case 1:
1150                         gpr = (s64)(s8)gpr;
1151                         break;
1152                 }
1153         }
1154
1155         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1156         case KVM_MMIO_REG_GPR:
1157                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1158                 break;
1159         case KVM_MMIO_REG_FPR:
1160                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1161                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1162
1163                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164                 break;
1165 #ifdef CONFIG_PPC_BOOK3S
1166         case KVM_MMIO_REG_QPR:
1167                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1168                 break;
1169         case KVM_MMIO_REG_FQPR:
1170                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1171                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172                 break;
1173 #endif
1174 #ifdef CONFIG_VSX
1175         case KVM_MMIO_REG_VSX:
1176                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1178
1179                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1180                         kvmppc_set_vsr_dword(vcpu, gpr);
1181                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1182                         kvmppc_set_vsr_word(vcpu, gpr);
1183                 else if (vcpu->arch.mmio_copy_type ==
1184                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1185                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1186                 else if (vcpu->arch.mmio_copy_type ==
1187                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1188                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1189                 break;
1190 #endif
1191 #ifdef CONFIG_ALTIVEC
1192         case KVM_MMIO_REG_VMX:
1193                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1194                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1195
1196                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1197                         kvmppc_set_vmx_dword(vcpu, gpr);
1198                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1199                         kvmppc_set_vmx_word(vcpu, gpr);
1200                 else if (vcpu->arch.mmio_copy_type ==
1201                                 KVMPPC_VMX_COPY_HWORD)
1202                         kvmppc_set_vmx_hword(vcpu, gpr);
1203                 else if (vcpu->arch.mmio_copy_type ==
1204                                 KVMPPC_VMX_COPY_BYTE)
1205                         kvmppc_set_vmx_byte(vcpu, gpr);
1206                 break;
1207 #endif
1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1209         case KVM_MMIO_REG_NESTED_GPR:
1210                 if (kvmppc_need_byteswap(vcpu))
1211                         gpr = swab64(gpr);
1212                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1213                                      sizeof(gpr));
1214                 break;
1215 #endif
1216         default:
1217                 BUG();
1218         }
1219 }
1220
1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1222                                 unsigned int rt, unsigned int bytes,
1223                                 int is_default_endian, int sign_extend)
1224 {
1225         int idx, ret;
1226         bool host_swabbed;
1227
1228         /* Pity C doesn't have a logical XOR operator */
1229         if (kvmppc_need_byteswap(vcpu)) {
1230                 host_swabbed = is_default_endian;
1231         } else {
1232                 host_swabbed = !is_default_endian;
1233         }
1234
1235         if (bytes > sizeof(run->mmio.data)) {
1236                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1237                        run->mmio.len);
1238         }
1239
1240         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1241         run->mmio.len = bytes;
1242         run->mmio.is_write = 0;
1243
1244         vcpu->arch.io_gpr = rt;
1245         vcpu->arch.mmio_host_swabbed = host_swabbed;
1246         vcpu->mmio_needed = 1;
1247         vcpu->mmio_is_write = 0;
1248         vcpu->arch.mmio_sign_extend = sign_extend;
1249
1250         idx = srcu_read_lock(&vcpu->kvm->srcu);
1251
1252         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1253                               bytes, &run->mmio.data);
1254
1255         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1256
1257         if (!ret) {
1258                 kvmppc_complete_mmio_load(vcpu, run);
1259                 vcpu->mmio_needed = 0;
1260                 return EMULATE_DONE;
1261         }
1262
1263         return EMULATE_DO_MMIO;
1264 }
1265
1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1267                        unsigned int rt, unsigned int bytes,
1268                        int is_default_endian)
1269 {
1270         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1273
1274 /* Same as above, but sign extends */
1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1276                         unsigned int rt, unsigned int bytes,
1277                         int is_default_endian)
1278 {
1279         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1280 }
1281
1282 #ifdef CONFIG_VSX
1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284                         unsigned int rt, unsigned int bytes,
1285                         int is_default_endian, int mmio_sign_extend)
1286 {
1287         enum emulation_result emulated = EMULATE_DONE;
1288
1289         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1290         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1291                 return EMULATE_FAIL;
1292
1293         while (vcpu->arch.mmio_vsx_copy_nums) {
1294                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1295                         is_default_endian, mmio_sign_extend);
1296
1297                 if (emulated != EMULATE_DONE)
1298                         break;
1299
1300                 vcpu->arch.paddr_accessed += run->mmio.len;
1301
1302                 vcpu->arch.mmio_vsx_copy_nums--;
1303                 vcpu->arch.mmio_vsx_offset++;
1304         }
1305         return emulated;
1306 }
1307 #endif /* CONFIG_VSX */
1308
1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1310                         u64 val, unsigned int bytes, int is_default_endian)
1311 {
1312         void *data = run->mmio.data;
1313         int idx, ret;
1314         bool host_swabbed;
1315
1316         /* Pity C doesn't have a logical XOR operator */
1317         if (kvmppc_need_byteswap(vcpu)) {
1318                 host_swabbed = is_default_endian;
1319         } else {
1320                 host_swabbed = !is_default_endian;
1321         }
1322
1323         if (bytes > sizeof(run->mmio.data)) {
1324                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1325                        run->mmio.len);
1326         }
1327
1328         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1329         run->mmio.len = bytes;
1330         run->mmio.is_write = 1;
1331         vcpu->mmio_needed = 1;
1332         vcpu->mmio_is_write = 1;
1333
1334         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1335                 val = dp_to_sp(val);
1336
1337         /* Store the value at the lowest bytes in 'data'. */
1338         if (!host_swabbed) {
1339                 switch (bytes) {
1340                 case 8: *(u64 *)data = val; break;
1341                 case 4: *(u32 *)data = val; break;
1342                 case 2: *(u16 *)data = val; break;
1343                 case 1: *(u8  *)data = val; break;
1344                 }
1345         } else {
1346                 switch (bytes) {
1347                 case 8: *(u64 *)data = swab64(val); break;
1348                 case 4: *(u32 *)data = swab32(val); break;
1349                 case 2: *(u16 *)data = swab16(val); break;
1350                 case 1: *(u8  *)data = val; break;
1351                 }
1352         }
1353
1354         idx = srcu_read_lock(&vcpu->kvm->srcu);
1355
1356         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1357                                bytes, &run->mmio.data);
1358
1359         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1360
1361         if (!ret) {
1362                 vcpu->mmio_needed = 0;
1363                 return EMULATE_DONE;
1364         }
1365
1366         return EMULATE_DO_MMIO;
1367 }
1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1369
1370 #ifdef CONFIG_VSX
1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1372 {
1373         u32 dword_offset, word_offset;
1374         union kvmppc_one_reg reg;
1375         int vsx_offset = 0;
1376         int copy_type = vcpu->arch.mmio_copy_type;
1377         int result = 0;
1378
1379         switch (copy_type) {
1380         case KVMPPC_VSX_COPY_DWORD:
1381                 vsx_offset =
1382                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1383
1384                 if (vsx_offset == -1) {
1385                         result = -1;
1386                         break;
1387                 }
1388
1389                 if (rs < 32) {
1390                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1391                 } else {
1392                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1393                         *val = reg.vsxval[vsx_offset];
1394                 }
1395                 break;
1396
1397         case KVMPPC_VSX_COPY_WORD:
1398                 vsx_offset =
1399                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1400
1401                 if (vsx_offset == -1) {
1402                         result = -1;
1403                         break;
1404                 }
1405
1406                 if (rs < 32) {
1407                         dword_offset = vsx_offset / 2;
1408                         word_offset = vsx_offset % 2;
1409                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1410                         *val = reg.vsx32val[word_offset];
1411                 } else {
1412                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1413                         *val = reg.vsx32val[vsx_offset];
1414                 }
1415                 break;
1416
1417         default:
1418                 result = -1;
1419                 break;
1420         }
1421
1422         return result;
1423 }
1424
1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1426                         int rs, unsigned int bytes, int is_default_endian)
1427 {
1428         u64 val;
1429         enum emulation_result emulated = EMULATE_DONE;
1430
1431         vcpu->arch.io_gpr = rs;
1432
1433         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1434         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1435                 return EMULATE_FAIL;
1436
1437         while (vcpu->arch.mmio_vsx_copy_nums) {
1438                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1439                         return EMULATE_FAIL;
1440
1441                 emulated = kvmppc_handle_store(run, vcpu,
1442                          val, bytes, is_default_endian);
1443
1444                 if (emulated != EMULATE_DONE)
1445                         break;
1446
1447                 vcpu->arch.paddr_accessed += run->mmio.len;
1448
1449                 vcpu->arch.mmio_vsx_copy_nums--;
1450                 vcpu->arch.mmio_vsx_offset++;
1451         }
1452
1453         return emulated;
1454 }
1455
1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1457                         struct kvm_run *run)
1458 {
1459         enum emulation_result emulated = EMULATE_FAIL;
1460         int r;
1461
1462         vcpu->arch.paddr_accessed += run->mmio.len;
1463
1464         if (!vcpu->mmio_is_write) {
1465                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1466                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1467         } else {
1468                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1469                          vcpu->arch.io_gpr, run->mmio.len, 1);
1470         }
1471
1472         switch (emulated) {
1473         case EMULATE_DO_MMIO:
1474                 run->exit_reason = KVM_EXIT_MMIO;
1475                 r = RESUME_HOST;
1476                 break;
1477         case EMULATE_FAIL:
1478                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1479                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1480                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1481                 r = RESUME_HOST;
1482                 break;
1483         default:
1484                 r = RESUME_GUEST;
1485                 break;
1486         }
1487         return r;
1488 }
1489 #endif /* CONFIG_VSX */
1490
1491 #ifdef CONFIG_ALTIVEC
1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1493                 unsigned int rt, unsigned int bytes, int is_default_endian)
1494 {
1495         enum emulation_result emulated = EMULATE_DONE;
1496
1497         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1498                 return EMULATE_FAIL;
1499
1500         while (vcpu->arch.mmio_vmx_copy_nums) {
1501                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1502                                 is_default_endian, 0);
1503
1504                 if (emulated != EMULATE_DONE)
1505                         break;
1506
1507                 vcpu->arch.paddr_accessed += run->mmio.len;
1508                 vcpu->arch.mmio_vmx_copy_nums--;
1509                 vcpu->arch.mmio_vmx_offset++;
1510         }
1511
1512         return emulated;
1513 }
1514
1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1516 {
1517         union kvmppc_one_reg reg;
1518         int vmx_offset = 0;
1519         int result = 0;
1520
1521         vmx_offset =
1522                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1523
1524         if (vmx_offset == -1)
1525                 return -1;
1526
1527         reg.vval = VCPU_VSX_VR(vcpu, index);
1528         *val = reg.vsxval[vmx_offset];
1529
1530         return result;
1531 }
1532
1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1534 {
1535         union kvmppc_one_reg reg;
1536         int vmx_offset = 0;
1537         int result = 0;
1538
1539         vmx_offset =
1540                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1541
1542         if (vmx_offset == -1)
1543                 return -1;
1544
1545         reg.vval = VCPU_VSX_VR(vcpu, index);
1546         *val = reg.vsx32val[vmx_offset];
1547
1548         return result;
1549 }
1550
1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1552 {
1553         union kvmppc_one_reg reg;
1554         int vmx_offset = 0;
1555         int result = 0;
1556
1557         vmx_offset =
1558                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1559
1560         if (vmx_offset == -1)
1561                 return -1;
1562
1563         reg.vval = VCPU_VSX_VR(vcpu, index);
1564         *val = reg.vsx16val[vmx_offset];
1565
1566         return result;
1567 }
1568
1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1570 {
1571         union kvmppc_one_reg reg;
1572         int vmx_offset = 0;
1573         int result = 0;
1574
1575         vmx_offset =
1576                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1577
1578         if (vmx_offset == -1)
1579                 return -1;
1580
1581         reg.vval = VCPU_VSX_VR(vcpu, index);
1582         *val = reg.vsx8val[vmx_offset];
1583
1584         return result;
1585 }
1586
1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1588                 unsigned int rs, unsigned int bytes, int is_default_endian)
1589 {
1590         u64 val = 0;
1591         unsigned int index = rs & KVM_MMIO_REG_MASK;
1592         enum emulation_result emulated = EMULATE_DONE;
1593
1594         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1595                 return EMULATE_FAIL;
1596
1597         vcpu->arch.io_gpr = rs;
1598
1599         while (vcpu->arch.mmio_vmx_copy_nums) {
1600                 switch (vcpu->arch.mmio_copy_type) {
1601                 case KVMPPC_VMX_COPY_DWORD:
1602                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1603                                 return EMULATE_FAIL;
1604
1605                         break;
1606                 case KVMPPC_VMX_COPY_WORD:
1607                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1608                                 return EMULATE_FAIL;
1609                         break;
1610                 case KVMPPC_VMX_COPY_HWORD:
1611                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1612                                 return EMULATE_FAIL;
1613                         break;
1614                 case KVMPPC_VMX_COPY_BYTE:
1615                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1616                                 return EMULATE_FAIL;
1617                         break;
1618                 default:
1619                         return EMULATE_FAIL;
1620                 }
1621
1622                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1623                                 is_default_endian);
1624                 if (emulated != EMULATE_DONE)
1625                         break;
1626
1627                 vcpu->arch.paddr_accessed += run->mmio.len;
1628                 vcpu->arch.mmio_vmx_copy_nums--;
1629                 vcpu->arch.mmio_vmx_offset++;
1630         }
1631
1632         return emulated;
1633 }
1634
1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1636                 struct kvm_run *run)
1637 {
1638         enum emulation_result emulated = EMULATE_FAIL;
1639         int r;
1640
1641         vcpu->arch.paddr_accessed += run->mmio.len;
1642
1643         if (!vcpu->mmio_is_write) {
1644                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1645                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1646         } else {
1647                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1648                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1649         }
1650
1651         switch (emulated) {
1652         case EMULATE_DO_MMIO:
1653                 run->exit_reason = KVM_EXIT_MMIO;
1654                 r = RESUME_HOST;
1655                 break;
1656         case EMULATE_FAIL:
1657                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1658                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1659                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1660                 r = RESUME_HOST;
1661                 break;
1662         default:
1663                 r = RESUME_GUEST;
1664                 break;
1665         }
1666         return r;
1667 }
1668 #endif /* CONFIG_ALTIVEC */
1669
1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1671 {
1672         int r = 0;
1673         union kvmppc_one_reg val;
1674         int size;
1675
1676         size = one_reg_size(reg->id);
1677         if (size > sizeof(val))
1678                 return -EINVAL;
1679
1680         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1681         if (r == -EINVAL) {
1682                 r = 0;
1683                 switch (reg->id) {
1684 #ifdef CONFIG_ALTIVEC
1685                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1686                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1687                                 r = -ENXIO;
1688                                 break;
1689                         }
1690                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1691                         break;
1692                 case KVM_REG_PPC_VSCR:
1693                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1694                                 r = -ENXIO;
1695                                 break;
1696                         }
1697                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1698                         break;
1699                 case KVM_REG_PPC_VRSAVE:
1700                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1701                         break;
1702 #endif /* CONFIG_ALTIVEC */
1703                 default:
1704                         r = -EINVAL;
1705                         break;
1706                 }
1707         }
1708
1709         if (r)
1710                 return r;
1711
1712         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1713                 r = -EFAULT;
1714
1715         return r;
1716 }
1717
1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1719 {
1720         int r;
1721         union kvmppc_one_reg val;
1722         int size;
1723
1724         size = one_reg_size(reg->id);
1725         if (size > sizeof(val))
1726                 return -EINVAL;
1727
1728         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1729                 return -EFAULT;
1730
1731         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1732         if (r == -EINVAL) {
1733                 r = 0;
1734                 switch (reg->id) {
1735 #ifdef CONFIG_ALTIVEC
1736                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1737                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1738                                 r = -ENXIO;
1739                                 break;
1740                         }
1741                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1742                         break;
1743                 case KVM_REG_PPC_VSCR:
1744                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1745                                 r = -ENXIO;
1746                                 break;
1747                         }
1748                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1749                         break;
1750                 case KVM_REG_PPC_VRSAVE:
1751                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1752                                 r = -ENXIO;
1753                                 break;
1754                         }
1755                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1756                         break;
1757 #endif /* CONFIG_ALTIVEC */
1758                 default:
1759                         r = -EINVAL;
1760                         break;
1761                 }
1762         }
1763
1764         return r;
1765 }
1766
1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1768 {
1769         int r;
1770
1771         vcpu_load(vcpu);
1772
1773         if (vcpu->mmio_needed) {
1774                 vcpu->mmio_needed = 0;
1775                 if (!vcpu->mmio_is_write)
1776                         kvmppc_complete_mmio_load(vcpu, run);
1777 #ifdef CONFIG_VSX
1778                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1779                         vcpu->arch.mmio_vsx_copy_nums--;
1780                         vcpu->arch.mmio_vsx_offset++;
1781                 }
1782
1783                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1784                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1785                         if (r == RESUME_HOST) {
1786                                 vcpu->mmio_needed = 1;
1787                                 goto out;
1788                         }
1789                 }
1790 #endif
1791 #ifdef CONFIG_ALTIVEC
1792                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1793                         vcpu->arch.mmio_vmx_copy_nums--;
1794                         vcpu->arch.mmio_vmx_offset++;
1795                 }
1796
1797                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1799                         if (r == RESUME_HOST) {
1800                                 vcpu->mmio_needed = 1;
1801                                 goto out;
1802                         }
1803                 }
1804 #endif
1805         } else if (vcpu->arch.osi_needed) {
1806                 u64 *gprs = run->osi.gprs;
1807                 int i;
1808
1809                 for (i = 0; i < 32; i++)
1810                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1811                 vcpu->arch.osi_needed = 0;
1812         } else if (vcpu->arch.hcall_needed) {
1813                 int i;
1814
1815                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1816                 for (i = 0; i < 9; ++i)
1817                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1818                 vcpu->arch.hcall_needed = 0;
1819 #ifdef CONFIG_BOOKE
1820         } else if (vcpu->arch.epr_needed) {
1821                 kvmppc_set_epr(vcpu, run->epr.epr);
1822                 vcpu->arch.epr_needed = 0;
1823 #endif
1824         }
1825
1826         kvm_sigset_activate(vcpu);
1827
1828         if (run->immediate_exit)
1829                 r = -EINTR;
1830         else
1831                 r = kvmppc_vcpu_run(run, vcpu);
1832
1833         kvm_sigset_deactivate(vcpu);
1834
1835 #ifdef CONFIG_ALTIVEC
1836 out:
1837 #endif
1838         vcpu_put(vcpu);
1839         return r;
1840 }
1841
1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1843 {
1844         if (irq->irq == KVM_INTERRUPT_UNSET) {
1845                 kvmppc_core_dequeue_external(vcpu);
1846                 return 0;
1847         }
1848
1849         kvmppc_core_queue_external(vcpu, irq);
1850
1851         kvm_vcpu_kick(vcpu);
1852
1853         return 0;
1854 }
1855
1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1857                                      struct kvm_enable_cap *cap)
1858 {
1859         int r;
1860
1861         if (cap->flags)
1862                 return -EINVAL;
1863
1864         switch (cap->cap) {
1865         case KVM_CAP_PPC_OSI:
1866                 r = 0;
1867                 vcpu->arch.osi_enabled = true;
1868                 break;
1869         case KVM_CAP_PPC_PAPR:
1870                 r = 0;
1871                 vcpu->arch.papr_enabled = true;
1872                 break;
1873         case KVM_CAP_PPC_EPR:
1874                 r = 0;
1875                 if (cap->args[0])
1876                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1877                 else
1878                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1879                 break;
1880 #ifdef CONFIG_BOOKE
1881         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1882                 r = 0;
1883                 vcpu->arch.watchdog_enabled = true;
1884                 break;
1885 #endif
1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1887         case KVM_CAP_SW_TLB: {
1888                 struct kvm_config_tlb cfg;
1889                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1890
1891                 r = -EFAULT;
1892                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1893                         break;
1894
1895                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1896                 break;
1897         }
1898 #endif
1899 #ifdef CONFIG_KVM_MPIC
1900         case KVM_CAP_IRQ_MPIC: {
1901                 struct fd f;
1902                 struct kvm_device *dev;
1903
1904                 r = -EBADF;
1905                 f = fdget(cap->args[0]);
1906                 if (!f.file)
1907                         break;
1908
1909                 r = -EPERM;
1910                 dev = kvm_device_from_filp(f.file);
1911                 if (dev)
1912                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1913
1914                 fdput(f);
1915                 break;
1916         }
1917 #endif
1918 #ifdef CONFIG_KVM_XICS
1919         case KVM_CAP_IRQ_XICS: {
1920                 struct fd f;
1921                 struct kvm_device *dev;
1922
1923                 r = -EBADF;
1924                 f = fdget(cap->args[0]);
1925                 if (!f.file)
1926                         break;
1927
1928                 r = -EPERM;
1929                 dev = kvm_device_from_filp(f.file);
1930                 if (dev) {
1931                         if (xics_on_xive())
1932                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1933                         else
1934                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1935                 }
1936
1937                 fdput(f);
1938                 break;
1939         }
1940 #endif /* CONFIG_KVM_XICS */
1941 #ifdef CONFIG_KVM_XIVE
1942         case KVM_CAP_PPC_IRQ_XIVE: {
1943                 struct fd f;
1944                 struct kvm_device *dev;
1945
1946                 r = -EBADF;
1947                 f = fdget(cap->args[0]);
1948                 if (!f.file)
1949                         break;
1950
1951                 r = -ENXIO;
1952                 if (!xive_enabled())
1953                         break;
1954
1955                 r = -EPERM;
1956                 dev = kvm_device_from_filp(f.file);
1957                 if (dev)
1958                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1959                                                             cap->args[1]);
1960
1961                 fdput(f);
1962                 break;
1963         }
1964 #endif /* CONFIG_KVM_XIVE */
1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1966         case KVM_CAP_PPC_FWNMI:
1967                 r = -EINVAL;
1968                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1969                         break;
1970                 r = 0;
1971                 vcpu->kvm->arch.fwnmi_enabled = true;
1972                 break;
1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1974         default:
1975                 r = -EINVAL;
1976                 break;
1977         }
1978
1979         if (!r)
1980                 r = kvmppc_sanity_check(vcpu);
1981
1982         return r;
1983 }
1984
1985 bool kvm_arch_intc_initialized(struct kvm *kvm)
1986 {
1987 #ifdef CONFIG_KVM_MPIC
1988         if (kvm->arch.mpic)
1989                 return true;
1990 #endif
1991 #ifdef CONFIG_KVM_XICS
1992         if (kvm->arch.xics || kvm->arch.xive)
1993                 return true;
1994 #endif
1995         return false;
1996 }
1997
1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1999                                     struct kvm_mp_state *mp_state)
2000 {
2001         return -EINVAL;
2002 }
2003
2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2005                                     struct kvm_mp_state *mp_state)
2006 {
2007         return -EINVAL;
2008 }
2009
2010 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2011                                unsigned int ioctl, unsigned long arg)
2012 {
2013         struct kvm_vcpu *vcpu = filp->private_data;
2014         void __user *argp = (void __user *)arg;
2015
2016         if (ioctl == KVM_INTERRUPT) {
2017                 struct kvm_interrupt irq;
2018                 if (copy_from_user(&irq, argp, sizeof(irq)))
2019                         return -EFAULT;
2020                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2021         }
2022         return -ENOIOCTLCMD;
2023 }
2024
2025 long kvm_arch_vcpu_ioctl(struct file *filp,
2026                          unsigned int ioctl, unsigned long arg)
2027 {
2028         struct kvm_vcpu *vcpu = filp->private_data;
2029         void __user *argp = (void __user *)arg;
2030         long r;
2031
2032         switch (ioctl) {
2033         case KVM_ENABLE_CAP:
2034         {
2035                 struct kvm_enable_cap cap;
2036                 r = -EFAULT;
2037                 vcpu_load(vcpu);
2038                 if (copy_from_user(&cap, argp, sizeof(cap)))
2039                         goto out;
2040                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2041                 vcpu_put(vcpu);
2042                 break;
2043         }
2044
2045         case KVM_SET_ONE_REG:
2046         case KVM_GET_ONE_REG:
2047         {
2048                 struct kvm_one_reg reg;
2049                 r = -EFAULT;
2050                 if (copy_from_user(&reg, argp, sizeof(reg)))
2051                         goto out;
2052                 if (ioctl == KVM_SET_ONE_REG)
2053                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2054                 else
2055                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2056                 break;
2057         }
2058
2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2060         case KVM_DIRTY_TLB: {
2061                 struct kvm_dirty_tlb dirty;
2062                 r = -EFAULT;
2063                 vcpu_load(vcpu);
2064                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2065                         goto out;
2066                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2067                 vcpu_put(vcpu);
2068                 break;
2069         }
2070 #endif
2071         default:
2072                 r = -EINVAL;
2073         }
2074
2075 out:
2076         return r;
2077 }
2078
2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2080 {
2081         return VM_FAULT_SIGBUS;
2082 }
2083
2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2085 {
2086         u32 inst_nop = 0x60000000;
2087 #ifdef CONFIG_KVM_BOOKE_HV
2088         u32 inst_sc1 = 0x44000022;
2089         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2090         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2091         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2092         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2093 #else
2094         u32 inst_lis = 0x3c000000;
2095         u32 inst_ori = 0x60000000;
2096         u32 inst_sc = 0x44000002;
2097         u32 inst_imm_mask = 0xffff;
2098
2099         /*
2100          * The hypercall to get into KVM from within guest context is as
2101          * follows:
2102          *
2103          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2104          *    ori r0, KVM_SC_MAGIC_R0@l
2105          *    sc
2106          *    nop
2107          */
2108         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2109         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2110         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2111         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2112 #endif
2113
2114         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2115
2116         return 0;
2117 }
2118
2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2120                           bool line_status)
2121 {
2122         if (!irqchip_in_kernel(kvm))
2123                 return -ENXIO;
2124
2125         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2126                                         irq_event->irq, irq_event->level,
2127                                         line_status);
2128         return 0;
2129 }
2130
2131
2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2133                             struct kvm_enable_cap *cap)
2134 {
2135         int r;
2136
2137         if (cap->flags)
2138                 return -EINVAL;
2139
2140         switch (cap->cap) {
2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2142         case KVM_CAP_PPC_ENABLE_HCALL: {
2143                 unsigned long hcall = cap->args[0];
2144
2145                 r = -EINVAL;
2146                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2147                     cap->args[1] > 1)
2148                         break;
2149                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2150                         break;
2151                 if (cap->args[1])
2152                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2153                 else
2154                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2155                 r = 0;
2156                 break;
2157         }
2158         case KVM_CAP_PPC_SMT: {
2159                 unsigned long mode = cap->args[0];
2160                 unsigned long flags = cap->args[1];
2161
2162                 r = -EINVAL;
2163                 if (kvm->arch.kvm_ops->set_smt_mode)
2164                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2165                 break;
2166         }
2167
2168         case KVM_CAP_PPC_NESTED_HV:
2169                 r = -EINVAL;
2170                 if (!is_kvmppc_hv_enabled(kvm) ||
2171                     !kvm->arch.kvm_ops->enable_nested)
2172                         break;
2173                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2174                 break;
2175 #endif
2176 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2177         case KVM_CAP_PPC_SECURE_GUEST:
2178                 r = -EINVAL;
2179                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2180                         break;
2181                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2182                 break;
2183 #endif
2184         default:
2185                 r = -EINVAL;
2186                 break;
2187         }
2188
2189         return r;
2190 }
2191
2192 #ifdef CONFIG_PPC_BOOK3S_64
2193 /*
2194  * These functions check whether the underlying hardware is safe
2195  * against attacks based on observing the effects of speculatively
2196  * executed instructions, and whether it supplies instructions for
2197  * use in workarounds.  The information comes from firmware, either
2198  * via the device tree on powernv platforms or from an hcall on
2199  * pseries platforms.
2200  */
2201 #ifdef CONFIG_PPC_PSERIES
2202 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2203 {
2204         struct h_cpu_char_result c;
2205         unsigned long rc;
2206
2207         if (!machine_is(pseries))
2208                 return -ENOTTY;
2209
2210         rc = plpar_get_cpu_characteristics(&c);
2211         if (rc == H_SUCCESS) {
2212                 cp->character = c.character;
2213                 cp->behaviour = c.behaviour;
2214                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2215                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2216                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2217                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2218                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2219                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2220                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2221                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2222                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2223                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2224                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2225                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2226                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2227         }
2228         return 0;
2229 }
2230 #else
2231 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2232 {
2233         return -ENOTTY;
2234 }
2235 #endif
2236
2237 static inline bool have_fw_feat(struct device_node *fw_features,
2238                                 const char *state, const char *name)
2239 {
2240         struct device_node *np;
2241         bool r = false;
2242
2243         np = of_get_child_by_name(fw_features, name);
2244         if (np) {
2245                 r = of_property_read_bool(np, state);
2246                 of_node_put(np);
2247         }
2248         return r;
2249 }
2250
2251 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2252 {
2253         struct device_node *np, *fw_features;
2254         int r;
2255
2256         memset(cp, 0, sizeof(*cp));
2257         r = pseries_get_cpu_char(cp);
2258         if (r != -ENOTTY)
2259                 return r;
2260
2261         np = of_find_node_by_name(NULL, "ibm,opal");
2262         if (np) {
2263                 fw_features = of_get_child_by_name(np, "fw-features");
2264                 of_node_put(np);
2265                 if (!fw_features)
2266                         return 0;
2267                 if (have_fw_feat(fw_features, "enabled",
2268                                  "inst-spec-barrier-ori31,31,0"))
2269                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2270                 if (have_fw_feat(fw_features, "enabled",
2271                                  "fw-bcctrl-serialized"))
2272                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2273                 if (have_fw_feat(fw_features, "enabled",
2274                                  "inst-l1d-flush-ori30,30,0"))
2275                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2276                 if (have_fw_feat(fw_features, "enabled",
2277                                  "inst-l1d-flush-trig2"))
2278                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2279                 if (have_fw_feat(fw_features, "enabled",
2280                                  "fw-l1d-thread-split"))
2281                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2282                 if (have_fw_feat(fw_features, "enabled",
2283                                  "fw-count-cache-disabled"))
2284                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2285                 if (have_fw_feat(fw_features, "enabled",
2286                                  "fw-count-cache-flush-bcctr2,0,0"))
2287                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2288                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2289                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2290                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2291                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2292                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2293                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2294                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2295
2296                 if (have_fw_feat(fw_features, "enabled",
2297                                  "speculation-policy-favor-security"))
2298                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2299                 if (!have_fw_feat(fw_features, "disabled",
2300                                   "needs-l1d-flush-msr-pr-0-to-1"))
2301                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2302                 if (!have_fw_feat(fw_features, "disabled",
2303                                   "needs-spec-barrier-for-bound-checks"))
2304                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2305                 if (have_fw_feat(fw_features, "enabled",
2306                                  "needs-count-cache-flush-on-context-switch"))
2307                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2308                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2309                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2310                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2311                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2312
2313                 of_node_put(fw_features);
2314         }
2315
2316         return 0;
2317 }
2318 #endif
2319
2320 long kvm_arch_vm_ioctl(struct file *filp,
2321                        unsigned int ioctl, unsigned long arg)
2322 {
2323         struct kvm *kvm __maybe_unused = filp->private_data;
2324         void __user *argp = (void __user *)arg;
2325         long r;
2326
2327         switch (ioctl) {
2328         case KVM_PPC_GET_PVINFO: {
2329                 struct kvm_ppc_pvinfo pvinfo;
2330                 memset(&pvinfo, 0, sizeof(pvinfo));
2331                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2332                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2333                         r = -EFAULT;
2334                         goto out;
2335                 }
2336
2337                 break;
2338         }
2339 #ifdef CONFIG_SPAPR_TCE_IOMMU
2340         case KVM_CREATE_SPAPR_TCE_64: {
2341                 struct kvm_create_spapr_tce_64 create_tce_64;
2342
2343                 r = -EFAULT;
2344                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2345                         goto out;
2346                 if (create_tce_64.flags) {
2347                         r = -EINVAL;
2348                         goto out;
2349                 }
2350                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2351                 goto out;
2352         }
2353         case KVM_CREATE_SPAPR_TCE: {
2354                 struct kvm_create_spapr_tce create_tce;
2355                 struct kvm_create_spapr_tce_64 create_tce_64;
2356
2357                 r = -EFAULT;
2358                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2359                         goto out;
2360
2361                 create_tce_64.liobn = create_tce.liobn;
2362                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2363                 create_tce_64.offset = 0;
2364                 create_tce_64.size = create_tce.window_size >>
2365                                 IOMMU_PAGE_SHIFT_4K;
2366                 create_tce_64.flags = 0;
2367                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2368                 goto out;
2369         }
2370 #endif
2371 #ifdef CONFIG_PPC_BOOK3S_64
2372         case KVM_PPC_GET_SMMU_INFO: {
2373                 struct kvm_ppc_smmu_info info;
2374                 struct kvm *kvm = filp->private_data;
2375
2376                 memset(&info, 0, sizeof(info));
2377                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2378                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2379                         r = -EFAULT;
2380                 break;
2381         }
2382         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2383                 struct kvm *kvm = filp->private_data;
2384
2385                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2386                 break;
2387         }
2388         case KVM_PPC_CONFIGURE_V3_MMU: {
2389                 struct kvm *kvm = filp->private_data;
2390                 struct kvm_ppc_mmuv3_cfg cfg;
2391
2392                 r = -EINVAL;
2393                 if (!kvm->arch.kvm_ops->configure_mmu)
2394                         goto out;
2395                 r = -EFAULT;
2396                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2397                         goto out;
2398                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2399                 break;
2400         }
2401         case KVM_PPC_GET_RMMU_INFO: {
2402                 struct kvm *kvm = filp->private_data;
2403                 struct kvm_ppc_rmmu_info info;
2404
2405                 r = -EINVAL;
2406                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2407                         goto out;
2408                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2409                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2410                         r = -EFAULT;
2411                 break;
2412         }
2413         case KVM_PPC_GET_CPU_CHAR: {
2414                 struct kvm_ppc_cpu_char cpuchar;
2415
2416                 r = kvmppc_get_cpu_char(&cpuchar);
2417                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2418                         r = -EFAULT;
2419                 break;
2420         }
2421         case KVM_PPC_SVM_OFF: {
2422                 struct kvm *kvm = filp->private_data;
2423
2424                 r = 0;
2425                 if (!kvm->arch.kvm_ops->svm_off)
2426                         goto out;
2427
2428                 r = kvm->arch.kvm_ops->svm_off(kvm);
2429                 break;
2430         }
2431         default: {
2432                 struct kvm *kvm = filp->private_data;
2433                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2434         }
2435 #else /* CONFIG_PPC_BOOK3S_64 */
2436         default:
2437                 r = -ENOTTY;
2438 #endif
2439         }
2440 out:
2441         return r;
2442 }
2443
2444 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2445 static unsigned long nr_lpids;
2446
2447 long kvmppc_alloc_lpid(void)
2448 {
2449         long lpid;
2450
2451         do {
2452                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2453                 if (lpid >= nr_lpids) {
2454                         pr_err("%s: No LPIDs free\n", __func__);
2455                         return -ENOMEM;
2456                 }
2457         } while (test_and_set_bit(lpid, lpid_inuse));
2458
2459         return lpid;
2460 }
2461 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2462
2463 void kvmppc_claim_lpid(long lpid)
2464 {
2465         set_bit(lpid, lpid_inuse);
2466 }
2467 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2468
2469 void kvmppc_free_lpid(long lpid)
2470 {
2471         clear_bit(lpid, lpid_inuse);
2472 }
2473 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2474
2475 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2476 {
2477         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2478         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2479 }
2480 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2481
2482 int kvm_arch_init(void *opaque)
2483 {
2484         return 0;
2485 }
2486
2487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);