KVM: PPC: Fix nested guest RC bits update
[linux-2.6-microblaze.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_block(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 /* XXX Deliver Program interrupt to guest. */
311                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312                 r = RESUME_HOST;
313                 break;
314         }
315         default:
316                 WARN_ON(1);
317                 r = RESUME_GUEST;
318         }
319
320         return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325               bool data)
326 {
327         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328         struct kvmppc_pte pte;
329         int r = -EINVAL;
330
331         vcpu->stat.st++;
332
333         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335                                                             size);
336
337         if ((!r) || (r == -EAGAIN))
338                 return r;
339
340         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341                          XLATE_WRITE, &pte);
342         if (r < 0)
343                 return r;
344
345         *eaddr = pte.raddr;
346
347         if (!pte.may_write)
348                 return -EPERM;
349
350         /* Magic page override */
351         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354                 void *magic = vcpu->arch.shared;
355                 magic += pte.eaddr & 0xfff;
356                 memcpy(magic, ptr, size);
357                 return EMULATE_DONE;
358         }
359
360         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361                 return EMULATE_DO_MMIO;
362
363         return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368                       bool data)
369 {
370         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371         struct kvmppc_pte pte;
372         int rc = -EINVAL;
373
374         vcpu->stat.ld++;
375
376         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378                                                               size);
379
380         if ((!rc) || (rc == -EAGAIN))
381                 return rc;
382
383         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384                           XLATE_READ, &pte);
385         if (rc)
386                 return rc;
387
388         *eaddr = pte.raddr;
389
390         if (!pte.may_read)
391                 return -EPERM;
392
393         if (!data && !pte.may_execute)
394                 return -ENOEXEC;
395
396         /* Magic page override */
397         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400                 void *magic = vcpu->arch.shared;
401                 magic += pte.eaddr & 0xfff;
402                 memcpy(ptr, magic, size);
403                 return EMULATE_DONE;
404         }
405
406         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
407                 return EMULATE_DO_MMIO;
408
409         return EMULATE_DONE;
410 }
411 EXPORT_SYMBOL_GPL(kvmppc_ld);
412
413 int kvm_arch_hardware_enable(void)
414 {
415         return 0;
416 }
417
418 int kvm_arch_hardware_setup(void *opaque)
419 {
420         return 0;
421 }
422
423 int kvm_arch_check_processor_compat(void *opaque)
424 {
425         return kvmppc_core_check_processor_compat();
426 }
427
428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
429 {
430         struct kvmppc_ops *kvm_ops = NULL;
431         /*
432          * if we have both HV and PR enabled, default is HV
433          */
434         if (type == 0) {
435                 if (kvmppc_hv_ops)
436                         kvm_ops = kvmppc_hv_ops;
437                 else
438                         kvm_ops = kvmppc_pr_ops;
439                 if (!kvm_ops)
440                         goto err_out;
441         } else  if (type == KVM_VM_PPC_HV) {
442                 if (!kvmppc_hv_ops)
443                         goto err_out;
444                 kvm_ops = kvmppc_hv_ops;
445         } else if (type == KVM_VM_PPC_PR) {
446                 if (!kvmppc_pr_ops)
447                         goto err_out;
448                 kvm_ops = kvmppc_pr_ops;
449         } else
450                 goto err_out;
451
452         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
453                 return -ENOENT;
454
455         kvm->arch.kvm_ops = kvm_ops;
456         return kvmppc_core_init_vm(kvm);
457 err_out:
458         return -EINVAL;
459 }
460
461 void kvm_arch_destroy_vm(struct kvm *kvm)
462 {
463         unsigned int i;
464         struct kvm_vcpu *vcpu;
465
466 #ifdef CONFIG_KVM_XICS
467         /*
468          * We call kick_all_cpus_sync() to ensure that all
469          * CPUs have executed any pending IPIs before we
470          * continue and free VCPUs structures below.
471          */
472         if (is_kvmppc_hv_enabled(kvm))
473                 kick_all_cpus_sync();
474 #endif
475
476         kvm_for_each_vcpu(i, vcpu, kvm)
477                 kvm_vcpu_destroy(vcpu);
478
479         mutex_lock(&kvm->lock);
480         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
481                 kvm->vcpus[i] = NULL;
482
483         atomic_set(&kvm->online_vcpus, 0);
484
485         kvmppc_core_destroy_vm(kvm);
486
487         mutex_unlock(&kvm->lock);
488
489         /* drop the module reference */
490         module_put(kvm->arch.kvm_ops->owner);
491 }
492
493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
494 {
495         int r;
496         /* Assume we're using HV mode when the HV module is loaded */
497         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
498
499         if (kvm) {
500                 /*
501                  * Hooray - we know which VM type we're running on. Depend on
502                  * that rather than the guess above.
503                  */
504                 hv_enabled = is_kvmppc_hv_enabled(kvm);
505         }
506
507         switch (ext) {
508 #ifdef CONFIG_BOOKE
509         case KVM_CAP_PPC_BOOKE_SREGS:
510         case KVM_CAP_PPC_BOOKE_WATCHDOG:
511         case KVM_CAP_PPC_EPR:
512 #else
513         case KVM_CAP_PPC_SEGSTATE:
514         case KVM_CAP_PPC_HIOR:
515         case KVM_CAP_PPC_PAPR:
516 #endif
517         case KVM_CAP_PPC_UNSET_IRQ:
518         case KVM_CAP_PPC_IRQ_LEVEL:
519         case KVM_CAP_ENABLE_CAP:
520         case KVM_CAP_ONE_REG:
521         case KVM_CAP_IOEVENTFD:
522         case KVM_CAP_DEVICE_CTRL:
523         case KVM_CAP_IMMEDIATE_EXIT:
524         case KVM_CAP_SET_GUEST_DEBUG:
525                 r = 1;
526                 break;
527         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
528         case KVM_CAP_PPC_PAIRED_SINGLES:
529         case KVM_CAP_PPC_OSI:
530         case KVM_CAP_PPC_GET_PVINFO:
531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
532         case KVM_CAP_SW_TLB:
533 #endif
534                 /* We support this only for PR */
535                 r = !hv_enabled;
536                 break;
537 #ifdef CONFIG_KVM_MPIC
538         case KVM_CAP_IRQ_MPIC:
539                 r = 1;
540                 break;
541 #endif
542
543 #ifdef CONFIG_PPC_BOOK3S_64
544         case KVM_CAP_SPAPR_TCE:
545         case KVM_CAP_SPAPR_TCE_64:
546                 r = 1;
547                 break;
548         case KVM_CAP_SPAPR_TCE_VFIO:
549                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
550                 break;
551         case KVM_CAP_PPC_RTAS:
552         case KVM_CAP_PPC_FIXUP_HCALL:
553         case KVM_CAP_PPC_ENABLE_HCALL:
554 #ifdef CONFIG_KVM_XICS
555         case KVM_CAP_IRQ_XICS:
556 #endif
557         case KVM_CAP_PPC_GET_CPU_CHAR:
558                 r = 1;
559                 break;
560 #ifdef CONFIG_KVM_XIVE
561         case KVM_CAP_PPC_IRQ_XIVE:
562                 /*
563                  * We need XIVE to be enabled on the platform (implies
564                  * a POWER9 processor) and the PowerNV platform, as
565                  * nested is not yet supported.
566                  */
567                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
568                         kvmppc_xive_native_supported();
569                 break;
570 #endif
571
572         case KVM_CAP_PPC_ALLOC_HTAB:
573                 r = hv_enabled;
574                 break;
575 #endif /* CONFIG_PPC_BOOK3S_64 */
576 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
577         case KVM_CAP_PPC_SMT:
578                 r = 0;
579                 if (kvm) {
580                         if (kvm->arch.emul_smt_mode > 1)
581                                 r = kvm->arch.emul_smt_mode;
582                         else
583                                 r = kvm->arch.smt_mode;
584                 } else if (hv_enabled) {
585                         if (cpu_has_feature(CPU_FTR_ARCH_300))
586                                 r = 1;
587                         else
588                                 r = threads_per_subcore;
589                 }
590                 break;
591         case KVM_CAP_PPC_SMT_POSSIBLE:
592                 r = 1;
593                 if (hv_enabled) {
594                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
595                                 r = ((threads_per_subcore << 1) - 1);
596                         else
597                                 /* P9 can emulate dbells, so allow any mode */
598                                 r = 8 | 4 | 2 | 1;
599                 }
600                 break;
601         case KVM_CAP_PPC_RMA:
602                 r = 0;
603                 break;
604         case KVM_CAP_PPC_HWRNG:
605                 r = kvmppc_hwrng_present();
606                 break;
607         case KVM_CAP_PPC_MMU_RADIX:
608                 r = !!(hv_enabled && radix_enabled());
609                 break;
610         case KVM_CAP_PPC_MMU_HASH_V3:
611                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
612                        cpu_has_feature(CPU_FTR_HVMODE));
613                 break;
614         case KVM_CAP_PPC_NESTED_HV:
615                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
616                        !kvmppc_hv_ops->enable_nested(NULL));
617                 break;
618 #endif
619         case KVM_CAP_SYNC_MMU:
620 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
621                 r = hv_enabled;
622 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
623                 r = 1;
624 #else
625                 r = 0;
626 #endif
627                 break;
628 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
629         case KVM_CAP_PPC_HTAB_FD:
630                 r = hv_enabled;
631                 break;
632 #endif
633         case KVM_CAP_NR_VCPUS:
634                 /*
635                  * Recommending a number of CPUs is somewhat arbitrary; we
636                  * return the number of present CPUs for -HV (since a host
637                  * will have secondary threads "offline"), and for other KVM
638                  * implementations just count online CPUs.
639                  */
640                 if (hv_enabled)
641                         r = num_present_cpus();
642                 else
643                         r = num_online_cpus();
644                 break;
645         case KVM_CAP_MAX_VCPUS:
646                 r = KVM_MAX_VCPUS;
647                 break;
648         case KVM_CAP_MAX_VCPU_ID:
649                 r = KVM_MAX_VCPU_ID;
650                 break;
651 #ifdef CONFIG_PPC_BOOK3S_64
652         case KVM_CAP_PPC_GET_SMMU_INFO:
653                 r = 1;
654                 break;
655         case KVM_CAP_SPAPR_MULTITCE:
656                 r = 1;
657                 break;
658         case KVM_CAP_SPAPR_RESIZE_HPT:
659                 r = !!hv_enabled;
660                 break;
661 #endif
662 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
663         case KVM_CAP_PPC_FWNMI:
664                 r = hv_enabled;
665                 break;
666 #endif
667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668         case KVM_CAP_PPC_HTM:
669                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
670                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
671                 break;
672 #endif
673 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
674         case KVM_CAP_PPC_SECURE_GUEST:
675                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
676                         !kvmppc_hv_ops->enable_svm(NULL);
677                 break;
678 #endif
679         default:
680                 r = 0;
681                 break;
682         }
683         return r;
684
685 }
686
687 long kvm_arch_dev_ioctl(struct file *filp,
688                         unsigned int ioctl, unsigned long arg)
689 {
690         return -EINVAL;
691 }
692
693 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
694 {
695         kvmppc_core_free_memslot(kvm, slot);
696 }
697
698 int kvm_arch_prepare_memory_region(struct kvm *kvm,
699                                    struct kvm_memory_slot *memslot,
700                                    const struct kvm_userspace_memory_region *mem,
701                                    enum kvm_mr_change change)
702 {
703         return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
704 }
705
706 void kvm_arch_commit_memory_region(struct kvm *kvm,
707                                    const struct kvm_userspace_memory_region *mem,
708                                    struct kvm_memory_slot *old,
709                                    const struct kvm_memory_slot *new,
710                                    enum kvm_mr_change change)
711 {
712         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
713 }
714
715 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
716                                    struct kvm_memory_slot *slot)
717 {
718         kvmppc_core_flush_memslot(kvm, slot);
719 }
720
721 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
722 {
723         return 0;
724 }
725
726 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
727 {
728         struct kvm_vcpu *vcpu;
729
730         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
731         kvmppc_decrementer_func(vcpu);
732
733         return HRTIMER_NORESTART;
734 }
735
736 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
737 {
738         int err;
739
740         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
741         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
742         vcpu->arch.dec_expires = get_tb();
743
744 #ifdef CONFIG_KVM_EXIT_TIMING
745         mutex_init(&vcpu->arch.exit_timing_lock);
746 #endif
747         err = kvmppc_subarch_vcpu_init(vcpu);
748         if (err)
749                 return err;
750
751         err = kvmppc_core_vcpu_create(vcpu);
752         if (err)
753                 goto out_vcpu_uninit;
754
755         vcpu->arch.waitp = &vcpu->wait;
756         kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
757         return 0;
758
759 out_vcpu_uninit:
760         kvmppc_subarch_vcpu_uninit(vcpu);
761         return err;
762 }
763
764 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
765 {
766 }
767
768 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
769 {
770         /* Make sure we're not using the vcpu anymore */
771         hrtimer_cancel(&vcpu->arch.dec_timer);
772
773         kvmppc_remove_vcpu_debugfs(vcpu);
774
775         switch (vcpu->arch.irq_type) {
776         case KVMPPC_IRQ_MPIC:
777                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
778                 break;
779         case KVMPPC_IRQ_XICS:
780                 if (xics_on_xive())
781                         kvmppc_xive_cleanup_vcpu(vcpu);
782                 else
783                         kvmppc_xics_free_icp(vcpu);
784                 break;
785         case KVMPPC_IRQ_XIVE:
786                 kvmppc_xive_native_cleanup_vcpu(vcpu);
787                 break;
788         }
789
790         kvmppc_core_vcpu_free(vcpu);
791
792         kvmppc_subarch_vcpu_uninit(vcpu);
793 }
794
795 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
796 {
797         return kvmppc_core_pending_dec(vcpu);
798 }
799
800 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
801 {
802 #ifdef CONFIG_BOOKE
803         /*
804          * vrsave (formerly usprg0) isn't used by Linux, but may
805          * be used by the guest.
806          *
807          * On non-booke this is associated with Altivec and
808          * is handled by code in book3s.c.
809          */
810         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
811 #endif
812         kvmppc_core_vcpu_load(vcpu, cpu);
813 }
814
815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
816 {
817         kvmppc_core_vcpu_put(vcpu);
818 #ifdef CONFIG_BOOKE
819         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
820 #endif
821 }
822
823 /*
824  * irq_bypass_add_producer and irq_bypass_del_producer are only
825  * useful if the architecture supports PCI passthrough.
826  * irq_bypass_stop and irq_bypass_start are not needed and so
827  * kvm_ops are not defined for them.
828  */
829 bool kvm_arch_has_irq_bypass(void)
830 {
831         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
832                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
833 }
834
835 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
836                                      struct irq_bypass_producer *prod)
837 {
838         struct kvm_kernel_irqfd *irqfd =
839                 container_of(cons, struct kvm_kernel_irqfd, consumer);
840         struct kvm *kvm = irqfd->kvm;
841
842         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
843                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
844
845         return 0;
846 }
847
848 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
849                                       struct irq_bypass_producer *prod)
850 {
851         struct kvm_kernel_irqfd *irqfd =
852                 container_of(cons, struct kvm_kernel_irqfd, consumer);
853         struct kvm *kvm = irqfd->kvm;
854
855         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
856                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
857 }
858
859 #ifdef CONFIG_VSX
860 static inline int kvmppc_get_vsr_dword_offset(int index)
861 {
862         int offset;
863
864         if ((index != 0) && (index != 1))
865                 return -1;
866
867 #ifdef __BIG_ENDIAN
868         offset =  index;
869 #else
870         offset = 1 - index;
871 #endif
872
873         return offset;
874 }
875
876 static inline int kvmppc_get_vsr_word_offset(int index)
877 {
878         int offset;
879
880         if ((index > 3) || (index < 0))
881                 return -1;
882
883 #ifdef __BIG_ENDIAN
884         offset = index;
885 #else
886         offset = 3 - index;
887 #endif
888         return offset;
889 }
890
891 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
892         u64 gpr)
893 {
894         union kvmppc_one_reg val;
895         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
896         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
897
898         if (offset == -1)
899                 return;
900
901         if (index >= 32) {
902                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
903                 val.vsxval[offset] = gpr;
904                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
905         } else {
906                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
907         }
908 }
909
910 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
911         u64 gpr)
912 {
913         union kvmppc_one_reg val;
914         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
915
916         if (index >= 32) {
917                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
918                 val.vsxval[0] = gpr;
919                 val.vsxval[1] = gpr;
920                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
921         } else {
922                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
923                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
924         }
925 }
926
927 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
928         u32 gpr)
929 {
930         union kvmppc_one_reg val;
931         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932
933         if (index >= 32) {
934                 val.vsx32val[0] = gpr;
935                 val.vsx32val[1] = gpr;
936                 val.vsx32val[2] = gpr;
937                 val.vsx32val[3] = gpr;
938                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
939         } else {
940                 val.vsx32val[0] = gpr;
941                 val.vsx32val[1] = gpr;
942                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
943                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
944         }
945 }
946
947 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
948         u32 gpr32)
949 {
950         union kvmppc_one_reg val;
951         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
952         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
953         int dword_offset, word_offset;
954
955         if (offset == -1)
956                 return;
957
958         if (index >= 32) {
959                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
960                 val.vsx32val[offset] = gpr32;
961                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
962         } else {
963                 dword_offset = offset / 2;
964                 word_offset = offset % 2;
965                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
966                 val.vsx32val[word_offset] = gpr32;
967                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
968         }
969 }
970 #endif /* CONFIG_VSX */
971
972 #ifdef CONFIG_ALTIVEC
973 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
974                 int index, int element_size)
975 {
976         int offset;
977         int elts = sizeof(vector128)/element_size;
978
979         if ((index < 0) || (index >= elts))
980                 return -1;
981
982         if (kvmppc_need_byteswap(vcpu))
983                 offset = elts - index - 1;
984         else
985                 offset = index;
986
987         return offset;
988 }
989
990 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
991                 int index)
992 {
993         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
994 }
995
996 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
997                 int index)
998 {
999         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1000 }
1001
1002 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1003                 int index)
1004 {
1005         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1006 }
1007
1008 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1009                 int index)
1010 {
1011         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1012 }
1013
1014
1015 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1016         u64 gpr)
1017 {
1018         union kvmppc_one_reg val;
1019         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1020                         vcpu->arch.mmio_vmx_offset);
1021         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1022
1023         if (offset == -1)
1024                 return;
1025
1026         val.vval = VCPU_VSX_VR(vcpu, index);
1027         val.vsxval[offset] = gpr;
1028         VCPU_VSX_VR(vcpu, index) = val.vval;
1029 }
1030
1031 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1032         u32 gpr32)
1033 {
1034         union kvmppc_one_reg val;
1035         int offset = kvmppc_get_vmx_word_offset(vcpu,
1036                         vcpu->arch.mmio_vmx_offset);
1037         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1038
1039         if (offset == -1)
1040                 return;
1041
1042         val.vval = VCPU_VSX_VR(vcpu, index);
1043         val.vsx32val[offset] = gpr32;
1044         VCPU_VSX_VR(vcpu, index) = val.vval;
1045 }
1046
1047 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1048         u16 gpr16)
1049 {
1050         union kvmppc_one_reg val;
1051         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1052                         vcpu->arch.mmio_vmx_offset);
1053         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1054
1055         if (offset == -1)
1056                 return;
1057
1058         val.vval = VCPU_VSX_VR(vcpu, index);
1059         val.vsx16val[offset] = gpr16;
1060         VCPU_VSX_VR(vcpu, index) = val.vval;
1061 }
1062
1063 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1064         u8 gpr8)
1065 {
1066         union kvmppc_one_reg val;
1067         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1068                         vcpu->arch.mmio_vmx_offset);
1069         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1070
1071         if (offset == -1)
1072                 return;
1073
1074         val.vval = VCPU_VSX_VR(vcpu, index);
1075         val.vsx8val[offset] = gpr8;
1076         VCPU_VSX_VR(vcpu, index) = val.vval;
1077 }
1078 #endif /* CONFIG_ALTIVEC */
1079
1080 #ifdef CONFIG_PPC_FPU
1081 static inline u64 sp_to_dp(u32 fprs)
1082 {
1083         u64 fprd;
1084
1085         preempt_disable();
1086         enable_kernel_fp();
1087         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1088              : "fr0");
1089         preempt_enable();
1090         return fprd;
1091 }
1092
1093 static inline u32 dp_to_sp(u64 fprd)
1094 {
1095         u32 fprs;
1096
1097         preempt_disable();
1098         enable_kernel_fp();
1099         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1100              : "fr0");
1101         preempt_enable();
1102         return fprs;
1103 }
1104
1105 #else
1106 #define sp_to_dp(x)     (x)
1107 #define dp_to_sp(x)     (x)
1108 #endif /* CONFIG_PPC_FPU */
1109
1110 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1111                                       struct kvm_run *run)
1112 {
1113         u64 uninitialized_var(gpr);
1114
1115         if (run->mmio.len > sizeof(gpr)) {
1116                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1117                 return;
1118         }
1119
1120         if (!vcpu->arch.mmio_host_swabbed) {
1121                 switch (run->mmio.len) {
1122                 case 8: gpr = *(u64 *)run->mmio.data; break;
1123                 case 4: gpr = *(u32 *)run->mmio.data; break;
1124                 case 2: gpr = *(u16 *)run->mmio.data; break;
1125                 case 1: gpr = *(u8 *)run->mmio.data; break;
1126                 }
1127         } else {
1128                 switch (run->mmio.len) {
1129                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1130                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1131                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1132                 case 1: gpr = *(u8 *)run->mmio.data; break;
1133                 }
1134         }
1135
1136         /* conversion between single and double precision */
1137         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1138                 gpr = sp_to_dp(gpr);
1139
1140         if (vcpu->arch.mmio_sign_extend) {
1141                 switch (run->mmio.len) {
1142 #ifdef CONFIG_PPC64
1143                 case 4:
1144                         gpr = (s64)(s32)gpr;
1145                         break;
1146 #endif
1147                 case 2:
1148                         gpr = (s64)(s16)gpr;
1149                         break;
1150                 case 1:
1151                         gpr = (s64)(s8)gpr;
1152                         break;
1153                 }
1154         }
1155
1156         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1157         case KVM_MMIO_REG_GPR:
1158                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1159                 break;
1160         case KVM_MMIO_REG_FPR:
1161                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1162                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1163
1164                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1165                 break;
1166 #ifdef CONFIG_PPC_BOOK3S
1167         case KVM_MMIO_REG_QPR:
1168                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1169                 break;
1170         case KVM_MMIO_REG_FQPR:
1171                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1172                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173                 break;
1174 #endif
1175 #ifdef CONFIG_VSX
1176         case KVM_MMIO_REG_VSX:
1177                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1178                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1179
1180                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1181                         kvmppc_set_vsr_dword(vcpu, gpr);
1182                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1183                         kvmppc_set_vsr_word(vcpu, gpr);
1184                 else if (vcpu->arch.mmio_copy_type ==
1185                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1186                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1187                 else if (vcpu->arch.mmio_copy_type ==
1188                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1189                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1190                 break;
1191 #endif
1192 #ifdef CONFIG_ALTIVEC
1193         case KVM_MMIO_REG_VMX:
1194                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1195                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1196
1197                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1198                         kvmppc_set_vmx_dword(vcpu, gpr);
1199                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1200                         kvmppc_set_vmx_word(vcpu, gpr);
1201                 else if (vcpu->arch.mmio_copy_type ==
1202                                 KVMPPC_VMX_COPY_HWORD)
1203                         kvmppc_set_vmx_hword(vcpu, gpr);
1204                 else if (vcpu->arch.mmio_copy_type ==
1205                                 KVMPPC_VMX_COPY_BYTE)
1206                         kvmppc_set_vmx_byte(vcpu, gpr);
1207                 break;
1208 #endif
1209 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1210         case KVM_MMIO_REG_NESTED_GPR:
1211                 if (kvmppc_need_byteswap(vcpu))
1212                         gpr = swab64(gpr);
1213                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1214                                      sizeof(gpr));
1215                 break;
1216 #endif
1217         default:
1218                 BUG();
1219         }
1220 }
1221
1222 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1223                                 unsigned int rt, unsigned int bytes,
1224                                 int is_default_endian, int sign_extend)
1225 {
1226         int idx, ret;
1227         bool host_swabbed;
1228
1229         /* Pity C doesn't have a logical XOR operator */
1230         if (kvmppc_need_byteswap(vcpu)) {
1231                 host_swabbed = is_default_endian;
1232         } else {
1233                 host_swabbed = !is_default_endian;
1234         }
1235
1236         if (bytes > sizeof(run->mmio.data)) {
1237                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1238                        run->mmio.len);
1239         }
1240
1241         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1242         run->mmio.len = bytes;
1243         run->mmio.is_write = 0;
1244
1245         vcpu->arch.io_gpr = rt;
1246         vcpu->arch.mmio_host_swabbed = host_swabbed;
1247         vcpu->mmio_needed = 1;
1248         vcpu->mmio_is_write = 0;
1249         vcpu->arch.mmio_sign_extend = sign_extend;
1250
1251         idx = srcu_read_lock(&vcpu->kvm->srcu);
1252
1253         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1254                               bytes, &run->mmio.data);
1255
1256         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1257
1258         if (!ret) {
1259                 kvmppc_complete_mmio_load(vcpu, run);
1260                 vcpu->mmio_needed = 0;
1261                 return EMULATE_DONE;
1262         }
1263
1264         return EMULATE_DO_MMIO;
1265 }
1266
1267 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1268                        unsigned int rt, unsigned int bytes,
1269                        int is_default_endian)
1270 {
1271         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1272 }
1273 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1274
1275 /* Same as above, but sign extends */
1276 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1277                         unsigned int rt, unsigned int bytes,
1278                         int is_default_endian)
1279 {
1280         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1281 }
1282
1283 #ifdef CONFIG_VSX
1284 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285                         unsigned int rt, unsigned int bytes,
1286                         int is_default_endian, int mmio_sign_extend)
1287 {
1288         enum emulation_result emulated = EMULATE_DONE;
1289
1290         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1291         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1292                 return EMULATE_FAIL;
1293
1294         while (vcpu->arch.mmio_vsx_copy_nums) {
1295                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1296                         is_default_endian, mmio_sign_extend);
1297
1298                 if (emulated != EMULATE_DONE)
1299                         break;
1300
1301                 vcpu->arch.paddr_accessed += run->mmio.len;
1302
1303                 vcpu->arch.mmio_vsx_copy_nums--;
1304                 vcpu->arch.mmio_vsx_offset++;
1305         }
1306         return emulated;
1307 }
1308 #endif /* CONFIG_VSX */
1309
1310 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1311                         u64 val, unsigned int bytes, int is_default_endian)
1312 {
1313         void *data = run->mmio.data;
1314         int idx, ret;
1315         bool host_swabbed;
1316
1317         /* Pity C doesn't have a logical XOR operator */
1318         if (kvmppc_need_byteswap(vcpu)) {
1319                 host_swabbed = is_default_endian;
1320         } else {
1321                 host_swabbed = !is_default_endian;
1322         }
1323
1324         if (bytes > sizeof(run->mmio.data)) {
1325                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1326                        run->mmio.len);
1327         }
1328
1329         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1330         run->mmio.len = bytes;
1331         run->mmio.is_write = 1;
1332         vcpu->mmio_needed = 1;
1333         vcpu->mmio_is_write = 1;
1334
1335         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1336                 val = dp_to_sp(val);
1337
1338         /* Store the value at the lowest bytes in 'data'. */
1339         if (!host_swabbed) {
1340                 switch (bytes) {
1341                 case 8: *(u64 *)data = val; break;
1342                 case 4: *(u32 *)data = val; break;
1343                 case 2: *(u16 *)data = val; break;
1344                 case 1: *(u8  *)data = val; break;
1345                 }
1346         } else {
1347                 switch (bytes) {
1348                 case 8: *(u64 *)data = swab64(val); break;
1349                 case 4: *(u32 *)data = swab32(val); break;
1350                 case 2: *(u16 *)data = swab16(val); break;
1351                 case 1: *(u8  *)data = val; break;
1352                 }
1353         }
1354
1355         idx = srcu_read_lock(&vcpu->kvm->srcu);
1356
1357         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1358                                bytes, &run->mmio.data);
1359
1360         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1361
1362         if (!ret) {
1363                 vcpu->mmio_needed = 0;
1364                 return EMULATE_DONE;
1365         }
1366
1367         return EMULATE_DO_MMIO;
1368 }
1369 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1370
1371 #ifdef CONFIG_VSX
1372 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1373 {
1374         u32 dword_offset, word_offset;
1375         union kvmppc_one_reg reg;
1376         int vsx_offset = 0;
1377         int copy_type = vcpu->arch.mmio_copy_type;
1378         int result = 0;
1379
1380         switch (copy_type) {
1381         case KVMPPC_VSX_COPY_DWORD:
1382                 vsx_offset =
1383                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1384
1385                 if (vsx_offset == -1) {
1386                         result = -1;
1387                         break;
1388                 }
1389
1390                 if (rs < 32) {
1391                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1392                 } else {
1393                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1394                         *val = reg.vsxval[vsx_offset];
1395                 }
1396                 break;
1397
1398         case KVMPPC_VSX_COPY_WORD:
1399                 vsx_offset =
1400                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1401
1402                 if (vsx_offset == -1) {
1403                         result = -1;
1404                         break;
1405                 }
1406
1407                 if (rs < 32) {
1408                         dword_offset = vsx_offset / 2;
1409                         word_offset = vsx_offset % 2;
1410                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1411                         *val = reg.vsx32val[word_offset];
1412                 } else {
1413                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1414                         *val = reg.vsx32val[vsx_offset];
1415                 }
1416                 break;
1417
1418         default:
1419                 result = -1;
1420                 break;
1421         }
1422
1423         return result;
1424 }
1425
1426 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1427                         int rs, unsigned int bytes, int is_default_endian)
1428 {
1429         u64 val;
1430         enum emulation_result emulated = EMULATE_DONE;
1431
1432         vcpu->arch.io_gpr = rs;
1433
1434         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1435         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1436                 return EMULATE_FAIL;
1437
1438         while (vcpu->arch.mmio_vsx_copy_nums) {
1439                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1440                         return EMULATE_FAIL;
1441
1442                 emulated = kvmppc_handle_store(run, vcpu,
1443                          val, bytes, is_default_endian);
1444
1445                 if (emulated != EMULATE_DONE)
1446                         break;
1447
1448                 vcpu->arch.paddr_accessed += run->mmio.len;
1449
1450                 vcpu->arch.mmio_vsx_copy_nums--;
1451                 vcpu->arch.mmio_vsx_offset++;
1452         }
1453
1454         return emulated;
1455 }
1456
1457 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1458                         struct kvm_run *run)
1459 {
1460         enum emulation_result emulated = EMULATE_FAIL;
1461         int r;
1462
1463         vcpu->arch.paddr_accessed += run->mmio.len;
1464
1465         if (!vcpu->mmio_is_write) {
1466                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1467                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1468         } else {
1469                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1470                          vcpu->arch.io_gpr, run->mmio.len, 1);
1471         }
1472
1473         switch (emulated) {
1474         case EMULATE_DO_MMIO:
1475                 run->exit_reason = KVM_EXIT_MMIO;
1476                 r = RESUME_HOST;
1477                 break;
1478         case EMULATE_FAIL:
1479                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1480                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1481                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1482                 r = RESUME_HOST;
1483                 break;
1484         default:
1485                 r = RESUME_GUEST;
1486                 break;
1487         }
1488         return r;
1489 }
1490 #endif /* CONFIG_VSX */
1491
1492 #ifdef CONFIG_ALTIVEC
1493 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1494                 unsigned int rt, unsigned int bytes, int is_default_endian)
1495 {
1496         enum emulation_result emulated = EMULATE_DONE;
1497
1498         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1499                 return EMULATE_FAIL;
1500
1501         while (vcpu->arch.mmio_vmx_copy_nums) {
1502                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1503                                 is_default_endian, 0);
1504
1505                 if (emulated != EMULATE_DONE)
1506                         break;
1507
1508                 vcpu->arch.paddr_accessed += run->mmio.len;
1509                 vcpu->arch.mmio_vmx_copy_nums--;
1510                 vcpu->arch.mmio_vmx_offset++;
1511         }
1512
1513         return emulated;
1514 }
1515
1516 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1517 {
1518         union kvmppc_one_reg reg;
1519         int vmx_offset = 0;
1520         int result = 0;
1521
1522         vmx_offset =
1523                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1524
1525         if (vmx_offset == -1)
1526                 return -1;
1527
1528         reg.vval = VCPU_VSX_VR(vcpu, index);
1529         *val = reg.vsxval[vmx_offset];
1530
1531         return result;
1532 }
1533
1534 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1535 {
1536         union kvmppc_one_reg reg;
1537         int vmx_offset = 0;
1538         int result = 0;
1539
1540         vmx_offset =
1541                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1542
1543         if (vmx_offset == -1)
1544                 return -1;
1545
1546         reg.vval = VCPU_VSX_VR(vcpu, index);
1547         *val = reg.vsx32val[vmx_offset];
1548
1549         return result;
1550 }
1551
1552 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1553 {
1554         union kvmppc_one_reg reg;
1555         int vmx_offset = 0;
1556         int result = 0;
1557
1558         vmx_offset =
1559                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1560
1561         if (vmx_offset == -1)
1562                 return -1;
1563
1564         reg.vval = VCPU_VSX_VR(vcpu, index);
1565         *val = reg.vsx16val[vmx_offset];
1566
1567         return result;
1568 }
1569
1570 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1571 {
1572         union kvmppc_one_reg reg;
1573         int vmx_offset = 0;
1574         int result = 0;
1575
1576         vmx_offset =
1577                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1578
1579         if (vmx_offset == -1)
1580                 return -1;
1581
1582         reg.vval = VCPU_VSX_VR(vcpu, index);
1583         *val = reg.vsx8val[vmx_offset];
1584
1585         return result;
1586 }
1587
1588 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1589                 unsigned int rs, unsigned int bytes, int is_default_endian)
1590 {
1591         u64 val = 0;
1592         unsigned int index = rs & KVM_MMIO_REG_MASK;
1593         enum emulation_result emulated = EMULATE_DONE;
1594
1595         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1596                 return EMULATE_FAIL;
1597
1598         vcpu->arch.io_gpr = rs;
1599
1600         while (vcpu->arch.mmio_vmx_copy_nums) {
1601                 switch (vcpu->arch.mmio_copy_type) {
1602                 case KVMPPC_VMX_COPY_DWORD:
1603                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1604                                 return EMULATE_FAIL;
1605
1606                         break;
1607                 case KVMPPC_VMX_COPY_WORD:
1608                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1609                                 return EMULATE_FAIL;
1610                         break;
1611                 case KVMPPC_VMX_COPY_HWORD:
1612                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1613                                 return EMULATE_FAIL;
1614                         break;
1615                 case KVMPPC_VMX_COPY_BYTE:
1616                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1617                                 return EMULATE_FAIL;
1618                         break;
1619                 default:
1620                         return EMULATE_FAIL;
1621                 }
1622
1623                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1624                                 is_default_endian);
1625                 if (emulated != EMULATE_DONE)
1626                         break;
1627
1628                 vcpu->arch.paddr_accessed += run->mmio.len;
1629                 vcpu->arch.mmio_vmx_copy_nums--;
1630                 vcpu->arch.mmio_vmx_offset++;
1631         }
1632
1633         return emulated;
1634 }
1635
1636 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1637                 struct kvm_run *run)
1638 {
1639         enum emulation_result emulated = EMULATE_FAIL;
1640         int r;
1641
1642         vcpu->arch.paddr_accessed += run->mmio.len;
1643
1644         if (!vcpu->mmio_is_write) {
1645                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1646                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1647         } else {
1648                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1649                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1650         }
1651
1652         switch (emulated) {
1653         case EMULATE_DO_MMIO:
1654                 run->exit_reason = KVM_EXIT_MMIO;
1655                 r = RESUME_HOST;
1656                 break;
1657         case EMULATE_FAIL:
1658                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1659                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1660                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1661                 r = RESUME_HOST;
1662                 break;
1663         default:
1664                 r = RESUME_GUEST;
1665                 break;
1666         }
1667         return r;
1668 }
1669 #endif /* CONFIG_ALTIVEC */
1670
1671 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1672 {
1673         int r = 0;
1674         union kvmppc_one_reg val;
1675         int size;
1676
1677         size = one_reg_size(reg->id);
1678         if (size > sizeof(val))
1679                 return -EINVAL;
1680
1681         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1682         if (r == -EINVAL) {
1683                 r = 0;
1684                 switch (reg->id) {
1685 #ifdef CONFIG_ALTIVEC
1686                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1687                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1688                                 r = -ENXIO;
1689                                 break;
1690                         }
1691                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1692                         break;
1693                 case KVM_REG_PPC_VSCR:
1694                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1695                                 r = -ENXIO;
1696                                 break;
1697                         }
1698                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1699                         break;
1700                 case KVM_REG_PPC_VRSAVE:
1701                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1702                         break;
1703 #endif /* CONFIG_ALTIVEC */
1704                 default:
1705                         r = -EINVAL;
1706                         break;
1707                 }
1708         }
1709
1710         if (r)
1711                 return r;
1712
1713         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1714                 r = -EFAULT;
1715
1716         return r;
1717 }
1718
1719 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1720 {
1721         int r;
1722         union kvmppc_one_reg val;
1723         int size;
1724
1725         size = one_reg_size(reg->id);
1726         if (size > sizeof(val))
1727                 return -EINVAL;
1728
1729         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1730                 return -EFAULT;
1731
1732         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1733         if (r == -EINVAL) {
1734                 r = 0;
1735                 switch (reg->id) {
1736 #ifdef CONFIG_ALTIVEC
1737                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1738                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1739                                 r = -ENXIO;
1740                                 break;
1741                         }
1742                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1743                         break;
1744                 case KVM_REG_PPC_VSCR:
1745                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1746                                 r = -ENXIO;
1747                                 break;
1748                         }
1749                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1750                         break;
1751                 case KVM_REG_PPC_VRSAVE:
1752                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1753                                 r = -ENXIO;
1754                                 break;
1755                         }
1756                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1757                         break;
1758 #endif /* CONFIG_ALTIVEC */
1759                 default:
1760                         r = -EINVAL;
1761                         break;
1762                 }
1763         }
1764
1765         return r;
1766 }
1767
1768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1769 {
1770         struct kvm_run *run = vcpu->run;
1771         int r;
1772
1773         vcpu_load(vcpu);
1774
1775         if (vcpu->mmio_needed) {
1776                 vcpu->mmio_needed = 0;
1777                 if (!vcpu->mmio_is_write)
1778                         kvmppc_complete_mmio_load(vcpu, run);
1779 #ifdef CONFIG_VSX
1780                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1781                         vcpu->arch.mmio_vsx_copy_nums--;
1782                         vcpu->arch.mmio_vsx_offset++;
1783                 }
1784
1785                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1786                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1787                         if (r == RESUME_HOST) {
1788                                 vcpu->mmio_needed = 1;
1789                                 goto out;
1790                         }
1791                 }
1792 #endif
1793 #ifdef CONFIG_ALTIVEC
1794                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1795                         vcpu->arch.mmio_vmx_copy_nums--;
1796                         vcpu->arch.mmio_vmx_offset++;
1797                 }
1798
1799                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1800                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1801                         if (r == RESUME_HOST) {
1802                                 vcpu->mmio_needed = 1;
1803                                 goto out;
1804                         }
1805                 }
1806 #endif
1807         } else if (vcpu->arch.osi_needed) {
1808                 u64 *gprs = run->osi.gprs;
1809                 int i;
1810
1811                 for (i = 0; i < 32; i++)
1812                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1813                 vcpu->arch.osi_needed = 0;
1814         } else if (vcpu->arch.hcall_needed) {
1815                 int i;
1816
1817                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1818                 for (i = 0; i < 9; ++i)
1819                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1820                 vcpu->arch.hcall_needed = 0;
1821 #ifdef CONFIG_BOOKE
1822         } else if (vcpu->arch.epr_needed) {
1823                 kvmppc_set_epr(vcpu, run->epr.epr);
1824                 vcpu->arch.epr_needed = 0;
1825 #endif
1826         }
1827
1828         kvm_sigset_activate(vcpu);
1829
1830         if (run->immediate_exit)
1831                 r = -EINTR;
1832         else
1833                 r = kvmppc_vcpu_run(run, vcpu);
1834
1835         kvm_sigset_deactivate(vcpu);
1836
1837 #ifdef CONFIG_ALTIVEC
1838 out:
1839 #endif
1840         vcpu_put(vcpu);
1841         return r;
1842 }
1843
1844 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1845 {
1846         if (irq->irq == KVM_INTERRUPT_UNSET) {
1847                 kvmppc_core_dequeue_external(vcpu);
1848                 return 0;
1849         }
1850
1851         kvmppc_core_queue_external(vcpu, irq);
1852
1853         kvm_vcpu_kick(vcpu);
1854
1855         return 0;
1856 }
1857
1858 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1859                                      struct kvm_enable_cap *cap)
1860 {
1861         int r;
1862
1863         if (cap->flags)
1864                 return -EINVAL;
1865
1866         switch (cap->cap) {
1867         case KVM_CAP_PPC_OSI:
1868                 r = 0;
1869                 vcpu->arch.osi_enabled = true;
1870                 break;
1871         case KVM_CAP_PPC_PAPR:
1872                 r = 0;
1873                 vcpu->arch.papr_enabled = true;
1874                 break;
1875         case KVM_CAP_PPC_EPR:
1876                 r = 0;
1877                 if (cap->args[0])
1878                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1879                 else
1880                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1881                 break;
1882 #ifdef CONFIG_BOOKE
1883         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1884                 r = 0;
1885                 vcpu->arch.watchdog_enabled = true;
1886                 break;
1887 #endif
1888 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1889         case KVM_CAP_SW_TLB: {
1890                 struct kvm_config_tlb cfg;
1891                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1892
1893                 r = -EFAULT;
1894                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1895                         break;
1896
1897                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1898                 break;
1899         }
1900 #endif
1901 #ifdef CONFIG_KVM_MPIC
1902         case KVM_CAP_IRQ_MPIC: {
1903                 struct fd f;
1904                 struct kvm_device *dev;
1905
1906                 r = -EBADF;
1907                 f = fdget(cap->args[0]);
1908                 if (!f.file)
1909                         break;
1910
1911                 r = -EPERM;
1912                 dev = kvm_device_from_filp(f.file);
1913                 if (dev)
1914                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1915
1916                 fdput(f);
1917                 break;
1918         }
1919 #endif
1920 #ifdef CONFIG_KVM_XICS
1921         case KVM_CAP_IRQ_XICS: {
1922                 struct fd f;
1923                 struct kvm_device *dev;
1924
1925                 r = -EBADF;
1926                 f = fdget(cap->args[0]);
1927                 if (!f.file)
1928                         break;
1929
1930                 r = -EPERM;
1931                 dev = kvm_device_from_filp(f.file);
1932                 if (dev) {
1933                         if (xics_on_xive())
1934                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1935                         else
1936                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1937                 }
1938
1939                 fdput(f);
1940                 break;
1941         }
1942 #endif /* CONFIG_KVM_XICS */
1943 #ifdef CONFIG_KVM_XIVE
1944         case KVM_CAP_PPC_IRQ_XIVE: {
1945                 struct fd f;
1946                 struct kvm_device *dev;
1947
1948                 r = -EBADF;
1949                 f = fdget(cap->args[0]);
1950                 if (!f.file)
1951                         break;
1952
1953                 r = -ENXIO;
1954                 if (!xive_enabled())
1955                         break;
1956
1957                 r = -EPERM;
1958                 dev = kvm_device_from_filp(f.file);
1959                 if (dev)
1960                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1961                                                             cap->args[1]);
1962
1963                 fdput(f);
1964                 break;
1965         }
1966 #endif /* CONFIG_KVM_XIVE */
1967 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1968         case KVM_CAP_PPC_FWNMI:
1969                 r = -EINVAL;
1970                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1971                         break;
1972                 r = 0;
1973                 vcpu->kvm->arch.fwnmi_enabled = true;
1974                 break;
1975 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1976         default:
1977                 r = -EINVAL;
1978                 break;
1979         }
1980
1981         if (!r)
1982                 r = kvmppc_sanity_check(vcpu);
1983
1984         return r;
1985 }
1986
1987 bool kvm_arch_intc_initialized(struct kvm *kvm)
1988 {
1989 #ifdef CONFIG_KVM_MPIC
1990         if (kvm->arch.mpic)
1991                 return true;
1992 #endif
1993 #ifdef CONFIG_KVM_XICS
1994         if (kvm->arch.xics || kvm->arch.xive)
1995                 return true;
1996 #endif
1997         return false;
1998 }
1999
2000 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2001                                     struct kvm_mp_state *mp_state)
2002 {
2003         return -EINVAL;
2004 }
2005
2006 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2007                                     struct kvm_mp_state *mp_state)
2008 {
2009         return -EINVAL;
2010 }
2011
2012 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2013                                unsigned int ioctl, unsigned long arg)
2014 {
2015         struct kvm_vcpu *vcpu = filp->private_data;
2016         void __user *argp = (void __user *)arg;
2017
2018         if (ioctl == KVM_INTERRUPT) {
2019                 struct kvm_interrupt irq;
2020                 if (copy_from_user(&irq, argp, sizeof(irq)))
2021                         return -EFAULT;
2022                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2023         }
2024         return -ENOIOCTLCMD;
2025 }
2026
2027 long kvm_arch_vcpu_ioctl(struct file *filp,
2028                          unsigned int ioctl, unsigned long arg)
2029 {
2030         struct kvm_vcpu *vcpu = filp->private_data;
2031         void __user *argp = (void __user *)arg;
2032         long r;
2033
2034         switch (ioctl) {
2035         case KVM_ENABLE_CAP:
2036         {
2037                 struct kvm_enable_cap cap;
2038                 r = -EFAULT;
2039                 vcpu_load(vcpu);
2040                 if (copy_from_user(&cap, argp, sizeof(cap)))
2041                         goto out;
2042                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2043                 vcpu_put(vcpu);
2044                 break;
2045         }
2046
2047         case KVM_SET_ONE_REG:
2048         case KVM_GET_ONE_REG:
2049         {
2050                 struct kvm_one_reg reg;
2051                 r = -EFAULT;
2052                 if (copy_from_user(&reg, argp, sizeof(reg)))
2053                         goto out;
2054                 if (ioctl == KVM_SET_ONE_REG)
2055                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2056                 else
2057                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2058                 break;
2059         }
2060
2061 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2062         case KVM_DIRTY_TLB: {
2063                 struct kvm_dirty_tlb dirty;
2064                 r = -EFAULT;
2065                 vcpu_load(vcpu);
2066                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2067                         goto out;
2068                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2069                 vcpu_put(vcpu);
2070                 break;
2071         }
2072 #endif
2073         default:
2074                 r = -EINVAL;
2075         }
2076
2077 out:
2078         return r;
2079 }
2080
2081 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2082 {
2083         return VM_FAULT_SIGBUS;
2084 }
2085
2086 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2087 {
2088         u32 inst_nop = 0x60000000;
2089 #ifdef CONFIG_KVM_BOOKE_HV
2090         u32 inst_sc1 = 0x44000022;
2091         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2092         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2093         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2094         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2095 #else
2096         u32 inst_lis = 0x3c000000;
2097         u32 inst_ori = 0x60000000;
2098         u32 inst_sc = 0x44000002;
2099         u32 inst_imm_mask = 0xffff;
2100
2101         /*
2102          * The hypercall to get into KVM from within guest context is as
2103          * follows:
2104          *
2105          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2106          *    ori r0, KVM_SC_MAGIC_R0@l
2107          *    sc
2108          *    nop
2109          */
2110         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2111         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2112         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2113         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2114 #endif
2115
2116         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2117
2118         return 0;
2119 }
2120
2121 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2122                           bool line_status)
2123 {
2124         if (!irqchip_in_kernel(kvm))
2125                 return -ENXIO;
2126
2127         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2128                                         irq_event->irq, irq_event->level,
2129                                         line_status);
2130         return 0;
2131 }
2132
2133
2134 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2135                             struct kvm_enable_cap *cap)
2136 {
2137         int r;
2138
2139         if (cap->flags)
2140                 return -EINVAL;
2141
2142         switch (cap->cap) {
2143 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2144         case KVM_CAP_PPC_ENABLE_HCALL: {
2145                 unsigned long hcall = cap->args[0];
2146
2147                 r = -EINVAL;
2148                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2149                     cap->args[1] > 1)
2150                         break;
2151                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2152                         break;
2153                 if (cap->args[1])
2154                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2155                 else
2156                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2157                 r = 0;
2158                 break;
2159         }
2160         case KVM_CAP_PPC_SMT: {
2161                 unsigned long mode = cap->args[0];
2162                 unsigned long flags = cap->args[1];
2163
2164                 r = -EINVAL;
2165                 if (kvm->arch.kvm_ops->set_smt_mode)
2166                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2167                 break;
2168         }
2169
2170         case KVM_CAP_PPC_NESTED_HV:
2171                 r = -EINVAL;
2172                 if (!is_kvmppc_hv_enabled(kvm) ||
2173                     !kvm->arch.kvm_ops->enable_nested)
2174                         break;
2175                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2176                 break;
2177 #endif
2178 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2179         case KVM_CAP_PPC_SECURE_GUEST:
2180                 r = -EINVAL;
2181                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2182                         break;
2183                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2184                 break;
2185 #endif
2186         default:
2187                 r = -EINVAL;
2188                 break;
2189         }
2190
2191         return r;
2192 }
2193
2194 #ifdef CONFIG_PPC_BOOK3S_64
2195 /*
2196  * These functions check whether the underlying hardware is safe
2197  * against attacks based on observing the effects of speculatively
2198  * executed instructions, and whether it supplies instructions for
2199  * use in workarounds.  The information comes from firmware, either
2200  * via the device tree on powernv platforms or from an hcall on
2201  * pseries platforms.
2202  */
2203 #ifdef CONFIG_PPC_PSERIES
2204 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2205 {
2206         struct h_cpu_char_result c;
2207         unsigned long rc;
2208
2209         if (!machine_is(pseries))
2210                 return -ENOTTY;
2211
2212         rc = plpar_get_cpu_characteristics(&c);
2213         if (rc == H_SUCCESS) {
2214                 cp->character = c.character;
2215                 cp->behaviour = c.behaviour;
2216                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2217                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2218                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2219                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2220                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2221                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2222                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2223                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2224                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2225                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2226                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2227                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2228                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2229         }
2230         return 0;
2231 }
2232 #else
2233 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2234 {
2235         return -ENOTTY;
2236 }
2237 #endif
2238
2239 static inline bool have_fw_feat(struct device_node *fw_features,
2240                                 const char *state, const char *name)
2241 {
2242         struct device_node *np;
2243         bool r = false;
2244
2245         np = of_get_child_by_name(fw_features, name);
2246         if (np) {
2247                 r = of_property_read_bool(np, state);
2248                 of_node_put(np);
2249         }
2250         return r;
2251 }
2252
2253 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2254 {
2255         struct device_node *np, *fw_features;
2256         int r;
2257
2258         memset(cp, 0, sizeof(*cp));
2259         r = pseries_get_cpu_char(cp);
2260         if (r != -ENOTTY)
2261                 return r;
2262
2263         np = of_find_node_by_name(NULL, "ibm,opal");
2264         if (np) {
2265                 fw_features = of_get_child_by_name(np, "fw-features");
2266                 of_node_put(np);
2267                 if (!fw_features)
2268                         return 0;
2269                 if (have_fw_feat(fw_features, "enabled",
2270                                  "inst-spec-barrier-ori31,31,0"))
2271                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2272                 if (have_fw_feat(fw_features, "enabled",
2273                                  "fw-bcctrl-serialized"))
2274                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2275                 if (have_fw_feat(fw_features, "enabled",
2276                                  "inst-l1d-flush-ori30,30,0"))
2277                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2278                 if (have_fw_feat(fw_features, "enabled",
2279                                  "inst-l1d-flush-trig2"))
2280                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2281                 if (have_fw_feat(fw_features, "enabled",
2282                                  "fw-l1d-thread-split"))
2283                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2284                 if (have_fw_feat(fw_features, "enabled",
2285                                  "fw-count-cache-disabled"))
2286                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2287                 if (have_fw_feat(fw_features, "enabled",
2288                                  "fw-count-cache-flush-bcctr2,0,0"))
2289                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2290                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2291                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2292                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2293                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2294                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2295                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2296                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2297
2298                 if (have_fw_feat(fw_features, "enabled",
2299                                  "speculation-policy-favor-security"))
2300                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2301                 if (!have_fw_feat(fw_features, "disabled",
2302                                   "needs-l1d-flush-msr-pr-0-to-1"))
2303                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2304                 if (!have_fw_feat(fw_features, "disabled",
2305                                   "needs-spec-barrier-for-bound-checks"))
2306                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2307                 if (have_fw_feat(fw_features, "enabled",
2308                                  "needs-count-cache-flush-on-context-switch"))
2309                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2310                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2311                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2312                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2313                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2314
2315                 of_node_put(fw_features);
2316         }
2317
2318         return 0;
2319 }
2320 #endif
2321
2322 long kvm_arch_vm_ioctl(struct file *filp,
2323                        unsigned int ioctl, unsigned long arg)
2324 {
2325         struct kvm *kvm __maybe_unused = filp->private_data;
2326         void __user *argp = (void __user *)arg;
2327         long r;
2328
2329         switch (ioctl) {
2330         case KVM_PPC_GET_PVINFO: {
2331                 struct kvm_ppc_pvinfo pvinfo;
2332                 memset(&pvinfo, 0, sizeof(pvinfo));
2333                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2334                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2335                         r = -EFAULT;
2336                         goto out;
2337                 }
2338
2339                 break;
2340         }
2341 #ifdef CONFIG_SPAPR_TCE_IOMMU
2342         case KVM_CREATE_SPAPR_TCE_64: {
2343                 struct kvm_create_spapr_tce_64 create_tce_64;
2344
2345                 r = -EFAULT;
2346                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2347                         goto out;
2348                 if (create_tce_64.flags) {
2349                         r = -EINVAL;
2350                         goto out;
2351                 }
2352                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2353                 goto out;
2354         }
2355         case KVM_CREATE_SPAPR_TCE: {
2356                 struct kvm_create_spapr_tce create_tce;
2357                 struct kvm_create_spapr_tce_64 create_tce_64;
2358
2359                 r = -EFAULT;
2360                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2361                         goto out;
2362
2363                 create_tce_64.liobn = create_tce.liobn;
2364                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2365                 create_tce_64.offset = 0;
2366                 create_tce_64.size = create_tce.window_size >>
2367                                 IOMMU_PAGE_SHIFT_4K;
2368                 create_tce_64.flags = 0;
2369                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2370                 goto out;
2371         }
2372 #endif
2373 #ifdef CONFIG_PPC_BOOK3S_64
2374         case KVM_PPC_GET_SMMU_INFO: {
2375                 struct kvm_ppc_smmu_info info;
2376                 struct kvm *kvm = filp->private_data;
2377
2378                 memset(&info, 0, sizeof(info));
2379                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2380                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2381                         r = -EFAULT;
2382                 break;
2383         }
2384         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2385                 struct kvm *kvm = filp->private_data;
2386
2387                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2388                 break;
2389         }
2390         case KVM_PPC_CONFIGURE_V3_MMU: {
2391                 struct kvm *kvm = filp->private_data;
2392                 struct kvm_ppc_mmuv3_cfg cfg;
2393
2394                 r = -EINVAL;
2395                 if (!kvm->arch.kvm_ops->configure_mmu)
2396                         goto out;
2397                 r = -EFAULT;
2398                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2399                         goto out;
2400                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2401                 break;
2402         }
2403         case KVM_PPC_GET_RMMU_INFO: {
2404                 struct kvm *kvm = filp->private_data;
2405                 struct kvm_ppc_rmmu_info info;
2406
2407                 r = -EINVAL;
2408                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2409                         goto out;
2410                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2411                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2412                         r = -EFAULT;
2413                 break;
2414         }
2415         case KVM_PPC_GET_CPU_CHAR: {
2416                 struct kvm_ppc_cpu_char cpuchar;
2417
2418                 r = kvmppc_get_cpu_char(&cpuchar);
2419                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2420                         r = -EFAULT;
2421                 break;
2422         }
2423         case KVM_PPC_SVM_OFF: {
2424                 struct kvm *kvm = filp->private_data;
2425
2426                 r = 0;
2427                 if (!kvm->arch.kvm_ops->svm_off)
2428                         goto out;
2429
2430                 r = kvm->arch.kvm_ops->svm_off(kvm);
2431                 break;
2432         }
2433         default: {
2434                 struct kvm *kvm = filp->private_data;
2435                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2436         }
2437 #else /* CONFIG_PPC_BOOK3S_64 */
2438         default:
2439                 r = -ENOTTY;
2440 #endif
2441         }
2442 out:
2443         return r;
2444 }
2445
2446 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2447 static unsigned long nr_lpids;
2448
2449 long kvmppc_alloc_lpid(void)
2450 {
2451         long lpid;
2452
2453         do {
2454                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2455                 if (lpid >= nr_lpids) {
2456                         pr_err("%s: No LPIDs free\n", __func__);
2457                         return -ENOMEM;
2458                 }
2459         } while (test_and_set_bit(lpid, lpid_inuse));
2460
2461         return lpid;
2462 }
2463 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2464
2465 void kvmppc_claim_lpid(long lpid)
2466 {
2467         set_bit(lpid, lpid_inuse);
2468 }
2469 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2470
2471 void kvmppc_free_lpid(long lpid)
2472 {
2473         clear_bit(lpid, lpid_inuse);
2474 }
2475 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2476
2477 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2478 {
2479         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2480         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2481 }
2482 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2483
2484 int kvm_arch_init(void *opaque)
2485 {
2486         return 0;
2487 }
2488
2489 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);