Merge v5.14-rc3 into usb-next
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_pr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Alexander Graf <agraf@suse.de>
7  *    Kevin Wolf <mail@kevin-wolf.de>
8  *    Paul Mackerras <paulus@samba.org>
9  *
10  * Description:
11  * Functions relating to running KVM on Book 3S processors where
12  * we don't have access to hypervisor mode, and we run the guest
13  * in problem state (user mode).
14  *
15  * This file is derived from arch/powerpc/kvm/44x.c,
16  * by Hollis Blanchard <hollisb@us.ibm.com>.
17  */
18
19 #include <linux/kvm_host.h>
20 #include <linux/export.h>
21 #include <linux/err.h>
22 #include <linux/slab.h>
23
24 #include <asm/reg.h>
25 #include <asm/cputable.h>
26 #include <asm/cacheflush.h>
27 #include <linux/uaccess.h>
28 #include <asm/interrupt.h>
29 #include <asm/io.h>
30 #include <asm/kvm_ppc.h>
31 #include <asm/kvm_book3s.h>
32 #include <asm/mmu_context.h>
33 #include <asm/switch_to.h>
34 #include <asm/firmware.h>
35 #include <asm/setup.h>
36 #include <linux/gfp.h>
37 #include <linux/sched.h>
38 #include <linux/vmalloc.h>
39 #include <linux/highmem.h>
40 #include <linux/module.h>
41 #include <linux/miscdevice.h>
42 #include <asm/asm-prototypes.h>
43 #include <asm/tm.h>
44
45 #include "book3s.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace_pr.h"
49
50 /* #define EXIT_DEBUG */
51 /* #define DEBUG_EXT */
52
53 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
54                              ulong msr);
55 #ifdef CONFIG_PPC_BOOK3S_64
56 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
57 #endif
58
59 /* Some compatibility defines */
60 #ifdef CONFIG_PPC_BOOK3S_32
61 #define MSR_USER32 MSR_USER
62 #define MSR_USER64 MSR_USER
63 #define HW_PAGE_SIZE PAGE_SIZE
64 #define HPTE_R_M   _PAGE_COHERENT
65 #endif
66
67 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
68 {
69         ulong msr = kvmppc_get_msr(vcpu);
70         return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
71 }
72
73 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
74 {
75         ulong msr = kvmppc_get_msr(vcpu);
76         ulong pc = kvmppc_get_pc(vcpu);
77
78         /* We are in DR only split real mode */
79         if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
80                 return;
81
82         /* We have not fixed up the guest already */
83         if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
84                 return;
85
86         /* The code is in fixupable address space */
87         if (pc & SPLIT_HACK_MASK)
88                 return;
89
90         vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
91         kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
92 }
93
94 static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
95 {
96         if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
97                 ulong pc = kvmppc_get_pc(vcpu);
98                 ulong lr = kvmppc_get_lr(vcpu);
99                 if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
100                         kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
101                 if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
102                         kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
103                 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
104         }
105 }
106
107 static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
108 {
109         unsigned long msr, pc, new_msr, new_pc;
110
111         kvmppc_unfixup_split_real(vcpu);
112
113         msr = kvmppc_get_msr(vcpu);
114         pc = kvmppc_get_pc(vcpu);
115         new_msr = vcpu->arch.intr_msr;
116         new_pc = to_book3s(vcpu)->hior + vec;
117
118 #ifdef CONFIG_PPC_BOOK3S_64
119         /* If transactional, change to suspend mode on IRQ delivery */
120         if (MSR_TM_TRANSACTIONAL(msr))
121                 new_msr |= MSR_TS_S;
122         else
123                 new_msr |= msr & MSR_TS_MASK;
124 #endif
125
126         kvmppc_set_srr0(vcpu, pc);
127         kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
128         kvmppc_set_pc(vcpu, new_pc);
129         kvmppc_set_msr(vcpu, new_msr);
130 }
131
132 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
133 {
134 #ifdef CONFIG_PPC_BOOK3S_64
135         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
136         memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
137         svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
138         svcpu->in_use = 0;
139         svcpu_put(svcpu);
140 #endif
141
142         /* Disable AIL if supported */
143         if (cpu_has_feature(CPU_FTR_HVMODE) &&
144             cpu_has_feature(CPU_FTR_ARCH_207S))
145                 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
146
147         vcpu->cpu = smp_processor_id();
148 #ifdef CONFIG_PPC_BOOK3S_32
149         current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
150 #endif
151
152         if (kvmppc_is_split_real(vcpu))
153                 kvmppc_fixup_split_real(vcpu);
154
155         kvmppc_restore_tm_pr(vcpu);
156 }
157
158 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
159 {
160 #ifdef CONFIG_PPC_BOOK3S_64
161         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
162         if (svcpu->in_use) {
163                 kvmppc_copy_from_svcpu(vcpu);
164         }
165         memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
166         to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
167         svcpu_put(svcpu);
168 #endif
169
170         if (kvmppc_is_split_real(vcpu))
171                 kvmppc_unfixup_split_real(vcpu);
172
173         kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
174         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
175         kvmppc_save_tm_pr(vcpu);
176
177         /* Enable AIL if supported */
178         if (cpu_has_feature(CPU_FTR_HVMODE) &&
179             cpu_has_feature(CPU_FTR_ARCH_207S))
180                 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
181
182         vcpu->cpu = -1;
183 }
184
185 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
186 void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
187 {
188         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
189
190         svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
191         svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
192         svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
193         svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
194         svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
195         svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
196         svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
197         svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
198         svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
199         svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
200         svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
201         svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
202         svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
203         svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
204         svcpu->cr  = vcpu->arch.regs.ccr;
205         svcpu->xer = vcpu->arch.regs.xer;
206         svcpu->ctr = vcpu->arch.regs.ctr;
207         svcpu->lr  = vcpu->arch.regs.link;
208         svcpu->pc  = vcpu->arch.regs.nip;
209 #ifdef CONFIG_PPC_BOOK3S_64
210         svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
211 #endif
212         /*
213          * Now also save the current time base value. We use this
214          * to find the guest purr and spurr value.
215          */
216         vcpu->arch.entry_tb = get_tb();
217         vcpu->arch.entry_vtb = get_vtb();
218         if (cpu_has_feature(CPU_FTR_ARCH_207S))
219                 vcpu->arch.entry_ic = mfspr(SPRN_IC);
220         svcpu->in_use = true;
221
222         svcpu_put(svcpu);
223 }
224
225 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
226 {
227         ulong guest_msr = kvmppc_get_msr(vcpu);
228         ulong smsr = guest_msr;
229
230         /* Guest MSR values */
231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
232         smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
233                 MSR_TM | MSR_TS_MASK;
234 #else
235         smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
236 #endif
237         /* Process MSR values */
238         smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
239         /* External providers the guest reserved */
240         smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
241         /* 64-bit Process MSR values */
242 #ifdef CONFIG_PPC_BOOK3S_64
243         smsr |= MSR_HV;
244 #endif
245 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
246         /*
247          * in guest privileged state, we want to fail all TM transactions.
248          * So disable MSR TM bit so that all tbegin. will be able to be
249          * trapped into host.
250          */
251         if (!(guest_msr & MSR_PR))
252                 smsr &= ~MSR_TM;
253 #endif
254         vcpu->arch.shadow_msr = smsr;
255 }
256
257 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
258 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
259 {
260         struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
261 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
262         ulong old_msr;
263 #endif
264
265         /*
266          * Maybe we were already preempted and synced the svcpu from
267          * our preempt notifiers. Don't bother touching this svcpu then.
268          */
269         if (!svcpu->in_use)
270                 goto out;
271
272         vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
273         vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
274         vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
275         vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
276         vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
277         vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
278         vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
279         vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
280         vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
281         vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
282         vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
283         vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
284         vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
285         vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
286         vcpu->arch.regs.ccr  = svcpu->cr;
287         vcpu->arch.regs.xer = svcpu->xer;
288         vcpu->arch.regs.ctr = svcpu->ctr;
289         vcpu->arch.regs.link  = svcpu->lr;
290         vcpu->arch.regs.nip  = svcpu->pc;
291         vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
292         vcpu->arch.fault_dar   = svcpu->fault_dar;
293         vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
294         vcpu->arch.last_inst   = svcpu->last_inst;
295 #ifdef CONFIG_PPC_BOOK3S_64
296         vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
297 #endif
298         /*
299          * Update purr and spurr using time base on exit.
300          */
301         vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
302         vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
303         to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
304         if (cpu_has_feature(CPU_FTR_ARCH_207S))
305                 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
306
307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
308         /*
309          * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
310          * notifying host:
311          *  modified by unprivileged instructions like "tbegin"/"tend"/
312          * "tresume"/"tsuspend" in PR KVM guest.
313          *
314          * It is necessary to sync here to calculate a correct shadow_msr.
315          *
316          * privileged guest's tbegin will be failed at present. So we
317          * only take care of problem state guest.
318          */
319         old_msr = kvmppc_get_msr(vcpu);
320         if (unlikely((old_msr & MSR_PR) &&
321                 (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
322                                 (old_msr & (MSR_TS_MASK)))) {
323                 old_msr &= ~(MSR_TS_MASK);
324                 old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
325                 kvmppc_set_msr_fast(vcpu, old_msr);
326                 kvmppc_recalc_shadow_msr(vcpu);
327         }
328 #endif
329
330         svcpu->in_use = false;
331
332 out:
333         svcpu_put(svcpu);
334 }
335
336 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
337 void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
338 {
339         tm_enable();
340         vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
341         vcpu->arch.texasr = mfspr(SPRN_TEXASR);
342         vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
343         tm_disable();
344 }
345
346 void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
347 {
348         tm_enable();
349         mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
350         mtspr(SPRN_TEXASR, vcpu->arch.texasr);
351         mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
352         tm_disable();
353 }
354
355 /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
356  * hardware.
357  */
358 static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
359 {
360         ulong exit_nr;
361         ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
362                 (MSR_FP | MSR_VEC | MSR_VSX);
363
364         if (!ext_diff)
365                 return;
366
367         if (ext_diff == MSR_FP)
368                 exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
369         else if (ext_diff == MSR_VEC)
370                 exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
371         else
372                 exit_nr = BOOK3S_INTERRUPT_VSX;
373
374         kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
375 }
376
377 void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
378 {
379         if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
380                 kvmppc_save_tm_sprs(vcpu);
381                 return;
382         }
383
384         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
385         kvmppc_giveup_ext(vcpu, MSR_VSX);
386
387         preempt_disable();
388         _kvmppc_save_tm_pr(vcpu, mfmsr());
389         preempt_enable();
390 }
391
392 void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
393 {
394         if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
395                 kvmppc_restore_tm_sprs(vcpu);
396                 if (kvmppc_get_msr(vcpu) & MSR_TM) {
397                         kvmppc_handle_lost_math_exts(vcpu);
398                         if (vcpu->arch.fscr & FSCR_TAR)
399                                 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
400                 }
401                 return;
402         }
403
404         preempt_disable();
405         _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
406         preempt_enable();
407
408         if (kvmppc_get_msr(vcpu) & MSR_TM) {
409                 kvmppc_handle_lost_math_exts(vcpu);
410                 if (vcpu->arch.fscr & FSCR_TAR)
411                         kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
412         }
413 }
414 #endif
415
416 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
417 {
418         int r = 1; /* Indicate we want to get back into the guest */
419
420         /* We misuse TLB_FLUSH to indicate that we want to clear
421            all shadow cache entries */
422         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
423                 kvmppc_mmu_pte_flush(vcpu, 0, 0);
424
425         return r;
426 }
427
428 /************* MMU Notifiers *************/
429 static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
430 {
431         long i;
432         struct kvm_vcpu *vcpu;
433
434         kvm_for_each_vcpu(i, vcpu, kvm)
435                 kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
436                                       range->end << PAGE_SHIFT);
437
438         return false;
439 }
440
441 static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
442 {
443         return do_kvm_unmap_gfn(kvm, range);
444 }
445
446 static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
447 {
448         /* XXX could be more clever ;) */
449         return false;
450 }
451
452 static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454         /* XXX could be more clever ;) */
455         return false;
456 }
457
458 static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
459 {
460         /* The page will get remapped properly on its next fault */
461         return do_kvm_unmap_gfn(kvm, range);
462 }
463
464 /*****************************************/
465
466 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
467 {
468         ulong old_msr;
469
470         /* For PAPR guest, make sure MSR reflects guest mode */
471         if (vcpu->arch.papr_enabled)
472                 msr = (msr & ~MSR_HV) | MSR_ME;
473
474 #ifdef EXIT_DEBUG
475         printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
476 #endif
477
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479         /* We should never target guest MSR to TS=10 && PR=0,
480          * since we always fail transaction for guest privilege
481          * state.
482          */
483         if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
484                 kvmppc_emulate_tabort(vcpu,
485                         TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
486 #endif
487
488         old_msr = kvmppc_get_msr(vcpu);
489         msr &= to_book3s(vcpu)->msr_mask;
490         kvmppc_set_msr_fast(vcpu, msr);
491         kvmppc_recalc_shadow_msr(vcpu);
492
493         if (msr & MSR_POW) {
494                 if (!vcpu->arch.pending_exceptions) {
495                         kvm_vcpu_block(vcpu);
496                         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
497                         vcpu->stat.generic.halt_wakeup++;
498
499                         /* Unset POW bit after we woke up */
500                         msr &= ~MSR_POW;
501                         kvmppc_set_msr_fast(vcpu, msr);
502                 }
503         }
504
505         if (kvmppc_is_split_real(vcpu))
506                 kvmppc_fixup_split_real(vcpu);
507         else
508                 kvmppc_unfixup_split_real(vcpu);
509
510         if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
511                    (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
512                 kvmppc_mmu_flush_segments(vcpu);
513                 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
514
515                 /* Preload magic page segment when in kernel mode */
516                 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
517                         struct kvm_vcpu_arch *a = &vcpu->arch;
518
519                         if (msr & MSR_DR)
520                                 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
521                         else
522                                 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
523                 }
524         }
525
526         /*
527          * When switching from 32 to 64-bit, we may have a stale 32-bit
528          * magic page around, we need to flush it. Typically 32-bit magic
529          * page will be instantiated when calling into RTAS. Note: We
530          * assume that such transition only happens while in kernel mode,
531          * ie, we never transition from user 32-bit to kernel 64-bit with
532          * a 32-bit magic page around.
533          */
534         if (vcpu->arch.magic_page_pa &&
535             !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
536                 /* going from RTAS to normal kernel code */
537                 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
538                                      ~0xFFFUL);
539         }
540
541         /* Preload FPU if it's enabled */
542         if (kvmppc_get_msr(vcpu) & MSR_FP)
543                 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
544
545 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
546         if (kvmppc_get_msr(vcpu) & MSR_TM)
547                 kvmppc_handle_lost_math_exts(vcpu);
548 #endif
549 }
550
551 static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
552 {
553         u32 host_pvr;
554
555         vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
556         vcpu->arch.pvr = pvr;
557 #ifdef CONFIG_PPC_BOOK3S_64
558         if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
559                 kvmppc_mmu_book3s_64_init(vcpu);
560                 if (!to_book3s(vcpu)->hior_explicit)
561                         to_book3s(vcpu)->hior = 0xfff00000;
562                 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
563                 vcpu->arch.cpu_type = KVM_CPU_3S_64;
564         } else
565 #endif
566         {
567                 kvmppc_mmu_book3s_32_init(vcpu);
568                 if (!to_book3s(vcpu)->hior_explicit)
569                         to_book3s(vcpu)->hior = 0;
570                 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
571                 vcpu->arch.cpu_type = KVM_CPU_3S_32;
572         }
573
574         kvmppc_sanity_check(vcpu);
575
576         /* If we are in hypervisor level on 970, we can tell the CPU to
577          * treat DCBZ as 32 bytes store */
578         vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
579         if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
580             !strcmp(cur_cpu_spec->platform, "ppc970"))
581                 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
582
583         /* Cell performs badly if MSR_FEx are set. So let's hope nobody
584            really needs them in a VM on Cell and force disable them. */
585         if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
586                 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
587
588         /*
589          * If they're asking for POWER6 or later, set the flag
590          * indicating that we can do multiple large page sizes
591          * and 1TB segments.
592          * Also set the flag that indicates that tlbie has the large
593          * page bit in the RB operand instead of the instruction.
594          */
595         switch (PVR_VER(pvr)) {
596         case PVR_POWER6:
597         case PVR_POWER7:
598         case PVR_POWER7p:
599         case PVR_POWER8:
600         case PVR_POWER8E:
601         case PVR_POWER8NVL:
602         case PVR_POWER9:
603                 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
604                         BOOK3S_HFLAG_NEW_TLBIE;
605                 break;
606         }
607
608 #ifdef CONFIG_PPC_BOOK3S_32
609         /* 32 bit Book3S always has 32 byte dcbz */
610         vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
611 #endif
612
613         /* On some CPUs we can execute paired single operations natively */
614         asm ( "mfpvr %0" : "=r"(host_pvr));
615         switch (host_pvr) {
616         case 0x00080200:        /* lonestar 2.0 */
617         case 0x00088202:        /* lonestar 2.2 */
618         case 0x70000100:        /* gekko 1.0 */
619         case 0x00080100:        /* gekko 2.0 */
620         case 0x00083203:        /* gekko 2.3a */
621         case 0x00083213:        /* gekko 2.3b */
622         case 0x00083204:        /* gekko 2.4 */
623         case 0x00083214:        /* gekko 2.4e (8SE) - retail HW2 */
624         case 0x00087200:        /* broadway */
625                 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
626                 /* Enable HID2.PSE - in case we need it later */
627                 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
628         }
629 }
630
631 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
632  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
633  * emulate 32 bytes dcbz length.
634  *
635  * The Book3s_64 inventors also realized this case and implemented a special bit
636  * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
637  *
638  * My approach here is to patch the dcbz instruction on executing pages.
639  */
640 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
641 {
642         struct page *hpage;
643         u64 hpage_offset;
644         u32 *page;
645         int i;
646
647         hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
648         if (is_error_page(hpage))
649                 return;
650
651         hpage_offset = pte->raddr & ~PAGE_MASK;
652         hpage_offset &= ~0xFFFULL;
653         hpage_offset /= 4;
654
655         get_page(hpage);
656         page = kmap_atomic(hpage);
657
658         /* patch dcbz into reserved instruction, so we trap */
659         for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
660                 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
661                         page[i] &= cpu_to_be32(0xfffffff7);
662
663         kunmap_atomic(page);
664         put_page(hpage);
665 }
666
667 static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
668 {
669         ulong mp_pa = vcpu->arch.magic_page_pa;
670
671         if (!(kvmppc_get_msr(vcpu) & MSR_SF))
672                 mp_pa = (uint32_t)mp_pa;
673
674         gpa &= ~0xFFFULL;
675         if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
676                 return true;
677         }
678
679         return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
680 }
681
682 static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
683                             ulong eaddr, int vec)
684 {
685         bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
686         bool iswrite = false;
687         int r = RESUME_GUEST;
688         int relocated;
689         int page_found = 0;
690         struct kvmppc_pte pte = { 0 };
691         bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
692         bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
693         u64 vsid;
694
695         relocated = data ? dr : ir;
696         if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
697                 iswrite = true;
698
699         /* Resolve real address if translation turned on */
700         if (relocated) {
701                 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
702         } else {
703                 pte.may_execute = true;
704                 pte.may_read = true;
705                 pte.may_write = true;
706                 pte.raddr = eaddr & KVM_PAM;
707                 pte.eaddr = eaddr;
708                 pte.vpage = eaddr >> 12;
709                 pte.page_size = MMU_PAGE_64K;
710                 pte.wimg = HPTE_R_M;
711         }
712
713         switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
714         case 0:
715                 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
716                 break;
717         case MSR_DR:
718                 if (!data &&
719                     (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
720                     ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
721                         pte.raddr &= ~SPLIT_HACK_MASK;
722                 fallthrough;
723         case MSR_IR:
724                 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
725
726                 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
727                         pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
728                 else
729                         pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
730                 pte.vpage |= vsid;
731
732                 if (vsid == -1)
733                         page_found = -EINVAL;
734                 break;
735         }
736
737         if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
738            (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
739                 /*
740                  * If we do the dcbz hack, we have to NX on every execution,
741                  * so we can patch the executing code. This renders our guest
742                  * NX-less.
743                  */
744                 pte.may_execute = !data;
745         }
746
747         if (page_found == -ENOENT || page_found == -EPERM) {
748                 /* Page not found in guest PTE entries, or protection fault */
749                 u64 flags;
750
751                 if (page_found == -EPERM)
752                         flags = DSISR_PROTFAULT;
753                 else
754                         flags = DSISR_NOHPTE;
755                 if (data) {
756                         flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
757                         kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
758                 } else {
759                         kvmppc_core_queue_inst_storage(vcpu, flags);
760                 }
761         } else if (page_found == -EINVAL) {
762                 /* Page not found in guest SLB */
763                 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
764                 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
765         } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
766                 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
767                         /*
768                          * There is already a host HPTE there, presumably
769                          * a read-only one for a page the guest thinks
770                          * is writable, so get rid of it first.
771                          */
772                         kvmppc_mmu_unmap_page(vcpu, &pte);
773                 }
774                 /* The guest's PTE is not mapped yet. Map on the host */
775                 if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
776                         /* Exit KVM if mapping failed */
777                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
778                         return RESUME_HOST;
779                 }
780                 if (data)
781                         vcpu->stat.sp_storage++;
782                 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
783                          (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
784                         kvmppc_patch_dcbz(vcpu, &pte);
785         } else {
786                 /* MMIO */
787                 vcpu->stat.mmio_exits++;
788                 vcpu->arch.paddr_accessed = pte.raddr;
789                 vcpu->arch.vaddr_accessed = pte.eaddr;
790                 r = kvmppc_emulate_mmio(vcpu);
791                 if ( r == RESUME_HOST_NV )
792                         r = RESUME_HOST;
793         }
794
795         return r;
796 }
797
798 /* Give up external provider (FPU, Altivec, VSX) */
799 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
800 {
801         struct thread_struct *t = &current->thread;
802
803         /*
804          * VSX instructions can access FP and vector registers, so if
805          * we are giving up VSX, make sure we give up FP and VMX as well.
806          */
807         if (msr & MSR_VSX)
808                 msr |= MSR_FP | MSR_VEC;
809
810         msr &= vcpu->arch.guest_owned_ext;
811         if (!msr)
812                 return;
813
814 #ifdef DEBUG_EXT
815         printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
816 #endif
817
818         if (msr & MSR_FP) {
819                 /*
820                  * Note that on CPUs with VSX, giveup_fpu stores
821                  * both the traditional FP registers and the added VSX
822                  * registers into thread.fp_state.fpr[].
823                  */
824                 if (t->regs->msr & MSR_FP)
825                         giveup_fpu(current);
826                 t->fp_save_area = NULL;
827         }
828
829 #ifdef CONFIG_ALTIVEC
830         if (msr & MSR_VEC) {
831                 if (current->thread.regs->msr & MSR_VEC)
832                         giveup_altivec(current);
833                 t->vr_save_area = NULL;
834         }
835 #endif
836
837         vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
838         kvmppc_recalc_shadow_msr(vcpu);
839 }
840
841 /* Give up facility (TAR / EBB / DSCR) */
842 void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
843 {
844 #ifdef CONFIG_PPC_BOOK3S_64
845         if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
846                 /* Facility not available to the guest, ignore giveup request*/
847                 return;
848         }
849
850         switch (fac) {
851         case FSCR_TAR_LG:
852                 vcpu->arch.tar = mfspr(SPRN_TAR);
853                 mtspr(SPRN_TAR, current->thread.tar);
854                 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
855                 break;
856         }
857 #endif
858 }
859
860 /* Handle external providers (FPU, Altivec, VSX) */
861 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
862                              ulong msr)
863 {
864         struct thread_struct *t = &current->thread;
865
866         /* When we have paired singles, we emulate in software */
867         if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
868                 return RESUME_GUEST;
869
870         if (!(kvmppc_get_msr(vcpu) & msr)) {
871                 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
872                 return RESUME_GUEST;
873         }
874
875         if (msr == MSR_VSX) {
876                 /* No VSX?  Give an illegal instruction interrupt */
877 #ifdef CONFIG_VSX
878                 if (!cpu_has_feature(CPU_FTR_VSX))
879 #endif
880                 {
881                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
882                         return RESUME_GUEST;
883                 }
884
885                 /*
886                  * We have to load up all the FP and VMX registers before
887                  * we can let the guest use VSX instructions.
888                  */
889                 msr = MSR_FP | MSR_VEC | MSR_VSX;
890         }
891
892         /* See if we already own all the ext(s) needed */
893         msr &= ~vcpu->arch.guest_owned_ext;
894         if (!msr)
895                 return RESUME_GUEST;
896
897 #ifdef DEBUG_EXT
898         printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
899 #endif
900
901         if (msr & MSR_FP) {
902                 preempt_disable();
903                 enable_kernel_fp();
904                 load_fp_state(&vcpu->arch.fp);
905                 disable_kernel_fp();
906                 t->fp_save_area = &vcpu->arch.fp;
907                 preempt_enable();
908         }
909
910         if (msr & MSR_VEC) {
911 #ifdef CONFIG_ALTIVEC
912                 preempt_disable();
913                 enable_kernel_altivec();
914                 load_vr_state(&vcpu->arch.vr);
915                 disable_kernel_altivec();
916                 t->vr_save_area = &vcpu->arch.vr;
917                 preempt_enable();
918 #endif
919         }
920
921         t->regs->msr |= msr;
922         vcpu->arch.guest_owned_ext |= msr;
923         kvmppc_recalc_shadow_msr(vcpu);
924
925         return RESUME_GUEST;
926 }
927
928 /*
929  * Kernel code using FP or VMX could have flushed guest state to
930  * the thread_struct; if so, get it back now.
931  */
932 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
933 {
934         unsigned long lost_ext;
935
936         lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
937         if (!lost_ext)
938                 return;
939
940         if (lost_ext & MSR_FP) {
941                 preempt_disable();
942                 enable_kernel_fp();
943                 load_fp_state(&vcpu->arch.fp);
944                 disable_kernel_fp();
945                 preempt_enable();
946         }
947 #ifdef CONFIG_ALTIVEC
948         if (lost_ext & MSR_VEC) {
949                 preempt_disable();
950                 enable_kernel_altivec();
951                 load_vr_state(&vcpu->arch.vr);
952                 disable_kernel_altivec();
953                 preempt_enable();
954         }
955 #endif
956         current->thread.regs->msr |= lost_ext;
957 }
958
959 #ifdef CONFIG_PPC_BOOK3S_64
960
961 void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
962 {
963         /* Inject the Interrupt Cause field and trigger a guest interrupt */
964         vcpu->arch.fscr &= ~(0xffULL << 56);
965         vcpu->arch.fscr |= (fac << 56);
966         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
967 }
968
969 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
970 {
971         enum emulation_result er = EMULATE_FAIL;
972
973         if (!(kvmppc_get_msr(vcpu) & MSR_PR))
974                 er = kvmppc_emulate_instruction(vcpu);
975
976         if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
977                 /* Couldn't emulate, trigger interrupt in guest */
978                 kvmppc_trigger_fac_interrupt(vcpu, fac);
979         }
980 }
981
982 /* Enable facilities (TAR, EBB, DSCR) for the guest */
983 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
984 {
985         bool guest_fac_enabled;
986         BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
987
988         /*
989          * Not every facility is enabled by FSCR bits, check whether the
990          * guest has this facility enabled at all.
991          */
992         switch (fac) {
993         case FSCR_TAR_LG:
994         case FSCR_EBB_LG:
995                 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
996                 break;
997         case FSCR_TM_LG:
998                 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
999                 break;
1000         default:
1001                 guest_fac_enabled = false;
1002                 break;
1003         }
1004
1005         if (!guest_fac_enabled) {
1006                 /* Facility not enabled by the guest */
1007                 kvmppc_trigger_fac_interrupt(vcpu, fac);
1008                 return RESUME_GUEST;
1009         }
1010
1011         switch (fac) {
1012         case FSCR_TAR_LG:
1013                 /* TAR switching isn't lazy in Linux yet */
1014                 current->thread.tar = mfspr(SPRN_TAR);
1015                 mtspr(SPRN_TAR, vcpu->arch.tar);
1016                 vcpu->arch.shadow_fscr |= FSCR_TAR;
1017                 break;
1018         default:
1019                 kvmppc_emulate_fac(vcpu, fac);
1020                 break;
1021         }
1022
1023 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1024         /* Since we disabled MSR_TM at privilege state, the mfspr instruction
1025          * for TM spr can trigger TM fac unavailable. In this case, the
1026          * emulation is handled by kvmppc_emulate_fac(), which invokes
1027          * kvmppc_emulate_mfspr() finally. But note the mfspr can include
1028          * RT for NV registers. So it need to restore those NV reg to reflect
1029          * the update.
1030          */
1031         if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
1032                 return RESUME_GUEST_NV;
1033 #endif
1034
1035         return RESUME_GUEST;
1036 }
1037
1038 void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
1039 {
1040         if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
1041                 /* TAR got dropped, drop it in shadow too */
1042                 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1043         } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
1044                 vcpu->arch.fscr = fscr;
1045                 kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
1046                 return;
1047         }
1048
1049         vcpu->arch.fscr = fscr;
1050 }
1051 #endif
1052
1053 static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
1054 {
1055         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1056                 u64 msr = kvmppc_get_msr(vcpu);
1057
1058                 kvmppc_set_msr(vcpu, msr | MSR_SE);
1059         }
1060 }
1061
1062 static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
1063 {
1064         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1065                 u64 msr = kvmppc_get_msr(vcpu);
1066
1067                 kvmppc_set_msr(vcpu, msr & ~MSR_SE);
1068         }
1069 }
1070
1071 static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1072 {
1073         enum emulation_result er;
1074         ulong flags;
1075         u32 last_inst;
1076         int emul, r;
1077
1078         /*
1079          * shadow_srr1 only contains valid flags if we came here via a program
1080          * exception. The other exceptions (emulation assist, FP unavailable,
1081          * etc.) do not provide flags in SRR1, so use an illegal-instruction
1082          * exception when injecting a program interrupt into the guest.
1083          */
1084         if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
1085                 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1086         else
1087                 flags = SRR1_PROGILL;
1088
1089         emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1090         if (emul != EMULATE_DONE)
1091                 return RESUME_GUEST;
1092
1093         if (kvmppc_get_msr(vcpu) & MSR_PR) {
1094 #ifdef EXIT_DEBUG
1095                 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1096                         kvmppc_get_pc(vcpu), last_inst);
1097 #endif
1098                 if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
1099                         kvmppc_core_queue_program(vcpu, flags);
1100                         return RESUME_GUEST;
1101                 }
1102         }
1103
1104         vcpu->stat.emulated_inst_exits++;
1105         er = kvmppc_emulate_instruction(vcpu);
1106         switch (er) {
1107         case EMULATE_DONE:
1108                 r = RESUME_GUEST_NV;
1109                 break;
1110         case EMULATE_AGAIN:
1111                 r = RESUME_GUEST;
1112                 break;
1113         case EMULATE_FAIL:
1114                 pr_crit("%s: emulation at %lx failed (%08x)\n",
1115                         __func__, kvmppc_get_pc(vcpu), last_inst);
1116                 kvmppc_core_queue_program(vcpu, flags);
1117                 r = RESUME_GUEST;
1118                 break;
1119         case EMULATE_DO_MMIO:
1120                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
1121                 r = RESUME_HOST_NV;
1122                 break;
1123         case EMULATE_EXIT_USER:
1124                 r = RESUME_HOST_NV;
1125                 break;
1126         default:
1127                 BUG();
1128         }
1129
1130         return r;
1131 }
1132
1133 int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
1134 {
1135         struct kvm_run *run = vcpu->run;
1136         int r = RESUME_HOST;
1137         int s;
1138
1139         vcpu->stat.sum_exits++;
1140
1141         run->exit_reason = KVM_EXIT_UNKNOWN;
1142         run->ready_for_interrupt_injection = 1;
1143
1144         /* We get here with MSR.EE=1 */
1145
1146         trace_kvm_exit(exit_nr, vcpu);
1147         guest_exit();
1148
1149         switch (exit_nr) {
1150         case BOOK3S_INTERRUPT_INST_STORAGE:
1151         {
1152                 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1153                 vcpu->stat.pf_instruc++;
1154
1155                 if (kvmppc_is_split_real(vcpu))
1156                         kvmppc_fixup_split_real(vcpu);
1157
1158 #ifdef CONFIG_PPC_BOOK3S_32
1159                 /* We set segments as unused segments when invalidating them. So
1160                  * treat the respective fault as segment fault. */
1161                 {
1162                         struct kvmppc_book3s_shadow_vcpu *svcpu;
1163                         u32 sr;
1164
1165                         svcpu = svcpu_get(vcpu);
1166                         sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1167                         svcpu_put(svcpu);
1168                         if (sr == SR_INVALID) {
1169                                 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
1170                                 r = RESUME_GUEST;
1171                                 break;
1172                         }
1173                 }
1174 #endif
1175
1176                 /* only care about PTEG not found errors, but leave NX alone */
1177                 if (shadow_srr1 & 0x40000000) {
1178                         int idx = srcu_read_lock(&vcpu->kvm->srcu);
1179                         r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
1180                         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1181                         vcpu->stat.sp_instruc++;
1182                 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
1183                           (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
1184                         /*
1185                          * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
1186                          *     so we can't use the NX bit inside the guest. Let's cross our fingers,
1187                          *     that no guest that needs the dcbz hack does NX.
1188                          */
1189                         kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
1190                         r = RESUME_GUEST;
1191                 } else {
1192                         kvmppc_core_queue_inst_storage(vcpu,
1193                                                 shadow_srr1 & 0x58000000);
1194                         r = RESUME_GUEST;
1195                 }
1196                 break;
1197         }
1198         case BOOK3S_INTERRUPT_DATA_STORAGE:
1199         {
1200                 ulong dar = kvmppc_get_fault_dar(vcpu);
1201                 u32 fault_dsisr = vcpu->arch.fault_dsisr;
1202                 vcpu->stat.pf_storage++;
1203
1204 #ifdef CONFIG_PPC_BOOK3S_32
1205                 /* We set segments as unused segments when invalidating them. So
1206                  * treat the respective fault as segment fault. */
1207                 {
1208                         struct kvmppc_book3s_shadow_vcpu *svcpu;
1209                         u32 sr;
1210
1211                         svcpu = svcpu_get(vcpu);
1212                         sr = svcpu->sr[dar >> SID_SHIFT];
1213                         svcpu_put(svcpu);
1214                         if (sr == SR_INVALID) {
1215                                 kvmppc_mmu_map_segment(vcpu, dar);
1216                                 r = RESUME_GUEST;
1217                                 break;
1218                         }
1219                 }
1220 #endif
1221
1222                 /*
1223                  * We need to handle missing shadow PTEs, and
1224                  * protection faults due to us mapping a page read-only
1225                  * when the guest thinks it is writable.
1226                  */
1227                 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
1228                         int idx = srcu_read_lock(&vcpu->kvm->srcu);
1229                         r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
1230                         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1231                 } else {
1232                         kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
1233                         r = RESUME_GUEST;
1234                 }
1235                 break;
1236         }
1237         case BOOK3S_INTERRUPT_DATA_SEGMENT:
1238                 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1239                         kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1240                         kvmppc_book3s_queue_irqprio(vcpu,
1241                                 BOOK3S_INTERRUPT_DATA_SEGMENT);
1242                 }
1243                 r = RESUME_GUEST;
1244                 break;
1245         case BOOK3S_INTERRUPT_INST_SEGMENT:
1246                 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
1247                         kvmppc_book3s_queue_irqprio(vcpu,
1248                                 BOOK3S_INTERRUPT_INST_SEGMENT);
1249                 }
1250                 r = RESUME_GUEST;
1251                 break;
1252         /* We're good on these - the host merely wanted to get our attention */
1253         case BOOK3S_INTERRUPT_DECREMENTER:
1254         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1255         case BOOK3S_INTERRUPT_DOORBELL:
1256         case BOOK3S_INTERRUPT_H_DOORBELL:
1257                 vcpu->stat.dec_exits++;
1258                 r = RESUME_GUEST;
1259                 break;
1260         case BOOK3S_INTERRUPT_EXTERNAL:
1261         case BOOK3S_INTERRUPT_EXTERNAL_HV:
1262         case BOOK3S_INTERRUPT_H_VIRT:
1263                 vcpu->stat.ext_intr_exits++;
1264                 r = RESUME_GUEST;
1265                 break;
1266         case BOOK3S_INTERRUPT_HMI:
1267         case BOOK3S_INTERRUPT_PERFMON:
1268         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1269                 r = RESUME_GUEST;
1270                 break;
1271         case BOOK3S_INTERRUPT_PROGRAM:
1272         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1273                 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1274                 break;
1275         case BOOK3S_INTERRUPT_SYSCALL:
1276         {
1277                 u32 last_sc;
1278                 int emul;
1279
1280                 /* Get last sc for papr */
1281                 if (vcpu->arch.papr_enabled) {
1282                         /* The sc instuction points SRR0 to the next inst */
1283                         emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1284                         if (emul != EMULATE_DONE) {
1285                                 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1286                                 r = RESUME_GUEST;
1287                                 break;
1288                         }
1289                 }
1290
1291                 if (vcpu->arch.papr_enabled &&
1292                     (last_sc == 0x44000022) &&
1293                     !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1294                         /* SC 1 papr hypercalls */
1295                         ulong cmd = kvmppc_get_gpr(vcpu, 3);
1296                         int i;
1297
1298 #ifdef CONFIG_PPC_BOOK3S_64
1299                         if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1300                                 r = RESUME_GUEST;
1301                                 break;
1302                         }
1303 #endif
1304
1305                         run->papr_hcall.nr = cmd;
1306                         for (i = 0; i < 9; ++i) {
1307                                 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1308                                 run->papr_hcall.args[i] = gpr;
1309                         }
1310                         run->exit_reason = KVM_EXIT_PAPR_HCALL;
1311                         vcpu->arch.hcall_needed = 1;
1312                         r = RESUME_HOST;
1313                 } else if (vcpu->arch.osi_enabled &&
1314                     (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1315                     (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1316                         /* MOL hypercalls */
1317                         u64 *gprs = run->osi.gprs;
1318                         int i;
1319
1320                         run->exit_reason = KVM_EXIT_OSI;
1321                         for (i = 0; i < 32; i++)
1322                                 gprs[i] = kvmppc_get_gpr(vcpu, i);
1323                         vcpu->arch.osi_needed = 1;
1324                         r = RESUME_HOST_NV;
1325                 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1326                     (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1327                         /* KVM PV hypercalls */
1328                         kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1329                         r = RESUME_GUEST;
1330                 } else {
1331                         /* Guest syscalls */
1332                         vcpu->stat.syscall_exits++;
1333                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1334                         r = RESUME_GUEST;
1335                 }
1336                 break;
1337         }
1338         case BOOK3S_INTERRUPT_FP_UNAVAIL:
1339         case BOOK3S_INTERRUPT_ALTIVEC:
1340         case BOOK3S_INTERRUPT_VSX:
1341         {
1342                 int ext_msr = 0;
1343                 int emul;
1344                 u32 last_inst;
1345
1346                 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1347                         /* Do paired single instruction emulation */
1348                         emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1349                                                     &last_inst);
1350                         if (emul == EMULATE_DONE)
1351                                 r = kvmppc_exit_pr_progint(vcpu, exit_nr);
1352                         else
1353                                 r = RESUME_GUEST;
1354
1355                         break;
1356                 }
1357
1358                 /* Enable external provider */
1359                 switch (exit_nr) {
1360                 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1361                         ext_msr = MSR_FP;
1362                         break;
1363
1364                 case BOOK3S_INTERRUPT_ALTIVEC:
1365                         ext_msr = MSR_VEC;
1366                         break;
1367
1368                 case BOOK3S_INTERRUPT_VSX:
1369                         ext_msr = MSR_VSX;
1370                         break;
1371                 }
1372
1373                 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1374                 break;
1375         }
1376         case BOOK3S_INTERRUPT_ALIGNMENT:
1377         {
1378                 u32 last_inst;
1379                 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1380
1381                 if (emul == EMULATE_DONE) {
1382                         u32 dsisr;
1383                         u64 dar;
1384
1385                         dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1386                         dar = kvmppc_alignment_dar(vcpu, last_inst);
1387
1388                         kvmppc_set_dsisr(vcpu, dsisr);
1389                         kvmppc_set_dar(vcpu, dar);
1390
1391                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1392                 }
1393                 r = RESUME_GUEST;
1394                 break;
1395         }
1396 #ifdef CONFIG_PPC_BOOK3S_64
1397         case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1398                 r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1399                 break;
1400 #endif
1401         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1402                 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1403                 r = RESUME_GUEST;
1404                 break;
1405         case BOOK3S_INTERRUPT_TRACE:
1406                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
1407                         run->exit_reason = KVM_EXIT_DEBUG;
1408                         r = RESUME_HOST;
1409                 } else {
1410                         kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1411                         r = RESUME_GUEST;
1412                 }
1413                 break;
1414         default:
1415         {
1416                 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1417                 /* Ugh - bork here! What did we get? */
1418                 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1419                         exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1420                 r = RESUME_HOST;
1421                 BUG();
1422                 break;
1423         }
1424         }
1425
1426         if (!(r & RESUME_HOST)) {
1427                 /* To avoid clobbering exit_reason, only check for signals if
1428                  * we aren't already exiting to userspace for some other
1429                  * reason. */
1430
1431                 /*
1432                  * Interrupts could be timers for the guest which we have to
1433                  * inject again, so let's postpone them until we're in the guest
1434                  * and if we really did time things so badly, then we just exit
1435                  * again due to a host external interrupt.
1436                  */
1437                 s = kvmppc_prepare_to_enter(vcpu);
1438                 if (s <= 0)
1439                         r = s;
1440                 else {
1441                         /* interrupts now hard-disabled */
1442                         kvmppc_fix_ee_before_entry();
1443                 }
1444
1445                 kvmppc_handle_lost_ext(vcpu);
1446         }
1447
1448         trace_kvm_book3s_reenter(r, vcpu);
1449
1450         return r;
1451 }
1452
1453 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1454                                             struct kvm_sregs *sregs)
1455 {
1456         struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1457         int i;
1458
1459         sregs->pvr = vcpu->arch.pvr;
1460
1461         sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1462         if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1463                 for (i = 0; i < 64; i++) {
1464                         sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1465                         sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1466                 }
1467         } else {
1468                 for (i = 0; i < 16; i++)
1469                         sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1470
1471                 for (i = 0; i < 8; i++) {
1472                         sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1473                         sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1474                 }
1475         }
1476
1477         return 0;
1478 }
1479
1480 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1481                                             struct kvm_sregs *sregs)
1482 {
1483         struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1484         int i;
1485
1486         kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1487
1488         vcpu3s->sdr1 = sregs->u.s.sdr1;
1489 #ifdef CONFIG_PPC_BOOK3S_64
1490         if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1491                 /* Flush all SLB entries */
1492                 vcpu->arch.mmu.slbmte(vcpu, 0, 0);
1493                 vcpu->arch.mmu.slbia(vcpu);
1494
1495                 for (i = 0; i < 64; i++) {
1496                         u64 rb = sregs->u.s.ppc64.slb[i].slbe;
1497                         u64 rs = sregs->u.s.ppc64.slb[i].slbv;
1498
1499                         if (rb & SLB_ESID_V)
1500                                 vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1501                 }
1502         } else
1503 #endif
1504         {
1505                 for (i = 0; i < 16; i++) {
1506                         vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1507                 }
1508                 for (i = 0; i < 8; i++) {
1509                         kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1510                                        (u32)sregs->u.s.ppc32.ibat[i]);
1511                         kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1512                                        (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1513                         kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1514                                        (u32)sregs->u.s.ppc32.dbat[i]);
1515                         kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1516                                        (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1517                 }
1518         }
1519
1520         /* Flush the MMU after messing with the segments */
1521         kvmppc_mmu_pte_flush(vcpu, 0, 0);
1522
1523         return 0;
1524 }
1525
1526 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1527                                  union kvmppc_one_reg *val)
1528 {
1529         int r = 0;
1530
1531         switch (id) {
1532         case KVM_REG_PPC_DEBUG_INST:
1533                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1534                 break;
1535         case KVM_REG_PPC_HIOR:
1536                 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1537                 break;
1538         case KVM_REG_PPC_VTB:
1539                 *val = get_reg_val(id, to_book3s(vcpu)->vtb);
1540                 break;
1541         case KVM_REG_PPC_LPCR:
1542         case KVM_REG_PPC_LPCR_64:
1543                 /*
1544                  * We are only interested in the LPCR_ILE bit
1545                  */
1546                 if (vcpu->arch.intr_msr & MSR_LE)
1547                         *val = get_reg_val(id, LPCR_ILE);
1548                 else
1549                         *val = get_reg_val(id, 0);
1550                 break;
1551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1552         case KVM_REG_PPC_TFHAR:
1553                 *val = get_reg_val(id, vcpu->arch.tfhar);
1554                 break;
1555         case KVM_REG_PPC_TFIAR:
1556                 *val = get_reg_val(id, vcpu->arch.tfiar);
1557                 break;
1558         case KVM_REG_PPC_TEXASR:
1559                 *val = get_reg_val(id, vcpu->arch.texasr);
1560                 break;
1561         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1562                 *val = get_reg_val(id,
1563                                 vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
1564                 break;
1565         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1566         {
1567                 int i, j;
1568
1569                 i = id - KVM_REG_PPC_TM_VSR0;
1570                 if (i < 32)
1571                         for (j = 0; j < TS_FPRWIDTH; j++)
1572                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1573                 else {
1574                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1575                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1576                         else
1577                                 r = -ENXIO;
1578                 }
1579                 break;
1580         }
1581         case KVM_REG_PPC_TM_CR:
1582                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1583                 break;
1584         case KVM_REG_PPC_TM_XER:
1585                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1586                 break;
1587         case KVM_REG_PPC_TM_LR:
1588                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1589                 break;
1590         case KVM_REG_PPC_TM_CTR:
1591                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1592                 break;
1593         case KVM_REG_PPC_TM_FPSCR:
1594                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1595                 break;
1596         case KVM_REG_PPC_TM_AMR:
1597                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1598                 break;
1599         case KVM_REG_PPC_TM_PPR:
1600                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1601                 break;
1602         case KVM_REG_PPC_TM_VRSAVE:
1603                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1604                 break;
1605         case KVM_REG_PPC_TM_VSCR:
1606                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1607                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1608                 else
1609                         r = -ENXIO;
1610                 break;
1611         case KVM_REG_PPC_TM_DSCR:
1612                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1613                 break;
1614         case KVM_REG_PPC_TM_TAR:
1615                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1616                 break;
1617 #endif
1618         default:
1619                 r = -EINVAL;
1620                 break;
1621         }
1622
1623         return r;
1624 }
1625
1626 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1627 {
1628         if (new_lpcr & LPCR_ILE)
1629                 vcpu->arch.intr_msr |= MSR_LE;
1630         else
1631                 vcpu->arch.intr_msr &= ~MSR_LE;
1632 }
1633
1634 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1635                                  union kvmppc_one_reg *val)
1636 {
1637         int r = 0;
1638
1639         switch (id) {
1640         case KVM_REG_PPC_HIOR:
1641                 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1642                 to_book3s(vcpu)->hior_explicit = true;
1643                 break;
1644         case KVM_REG_PPC_VTB:
1645                 to_book3s(vcpu)->vtb = set_reg_val(id, *val);
1646                 break;
1647         case KVM_REG_PPC_LPCR:
1648         case KVM_REG_PPC_LPCR_64:
1649                 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1650                 break;
1651 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1652         case KVM_REG_PPC_TFHAR:
1653                 vcpu->arch.tfhar = set_reg_val(id, *val);
1654                 break;
1655         case KVM_REG_PPC_TFIAR:
1656                 vcpu->arch.tfiar = set_reg_val(id, *val);
1657                 break;
1658         case KVM_REG_PPC_TEXASR:
1659                 vcpu->arch.texasr = set_reg_val(id, *val);
1660                 break;
1661         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1662                 vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
1663                         set_reg_val(id, *val);
1664                 break;
1665         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1666         {
1667                 int i, j;
1668
1669                 i = id - KVM_REG_PPC_TM_VSR0;
1670                 if (i < 32)
1671                         for (j = 0; j < TS_FPRWIDTH; j++)
1672                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1673                 else
1674                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1675                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1676                         else
1677                                 r = -ENXIO;
1678                 break;
1679         }
1680         case KVM_REG_PPC_TM_CR:
1681                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1682                 break;
1683         case KVM_REG_PPC_TM_XER:
1684                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1685                 break;
1686         case KVM_REG_PPC_TM_LR:
1687                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1688                 break;
1689         case KVM_REG_PPC_TM_CTR:
1690                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1691                 break;
1692         case KVM_REG_PPC_TM_FPSCR:
1693                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1694                 break;
1695         case KVM_REG_PPC_TM_AMR:
1696                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1697                 break;
1698         case KVM_REG_PPC_TM_PPR:
1699                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1700                 break;
1701         case KVM_REG_PPC_TM_VRSAVE:
1702                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1703                 break;
1704         case KVM_REG_PPC_TM_VSCR:
1705                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1706                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1707                 else
1708                         r = -ENXIO;
1709                 break;
1710         case KVM_REG_PPC_TM_DSCR:
1711                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1712                 break;
1713         case KVM_REG_PPC_TM_TAR:
1714                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1715                 break;
1716 #endif
1717         default:
1718                 r = -EINVAL;
1719                 break;
1720         }
1721
1722         return r;
1723 }
1724
1725 static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
1726 {
1727         struct kvmppc_vcpu_book3s *vcpu_book3s;
1728         unsigned long p;
1729         int err;
1730
1731         err = -ENOMEM;
1732
1733         vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1734         if (!vcpu_book3s)
1735                 goto out;
1736         vcpu->arch.book3s = vcpu_book3s;
1737
1738 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1739         vcpu->arch.shadow_vcpu =
1740                 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1741         if (!vcpu->arch.shadow_vcpu)
1742                 goto free_vcpu3s;
1743 #endif
1744
1745         p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1746         if (!p)
1747                 goto free_shadow_vcpu;
1748         vcpu->arch.shared = (void *)p;
1749 #ifdef CONFIG_PPC_BOOK3S_64
1750         /* Always start the shared struct in native endian mode */
1751 #ifdef __BIG_ENDIAN__
1752         vcpu->arch.shared_big_endian = true;
1753 #else
1754         vcpu->arch.shared_big_endian = false;
1755 #endif
1756
1757         /*
1758          * Default to the same as the host if we're on sufficiently
1759          * recent machine that we have 1TB segments;
1760          * otherwise default to PPC970FX.
1761          */
1762         vcpu->arch.pvr = 0x3C0301;
1763         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1764                 vcpu->arch.pvr = mfspr(SPRN_PVR);
1765         vcpu->arch.intr_msr = MSR_SF;
1766 #else
1767         /* default to book3s_32 (750) */
1768         vcpu->arch.pvr = 0x84202;
1769         vcpu->arch.intr_msr = 0;
1770 #endif
1771         kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1772         vcpu->arch.slb_nr = 64;
1773
1774         vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1775
1776         err = kvmppc_mmu_init_pr(vcpu);
1777         if (err < 0)
1778                 goto free_shared_page;
1779
1780         return 0;
1781
1782 free_shared_page:
1783         free_page((unsigned long)vcpu->arch.shared);
1784 free_shadow_vcpu:
1785 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1786         kfree(vcpu->arch.shadow_vcpu);
1787 free_vcpu3s:
1788 #endif
1789         vfree(vcpu_book3s);
1790 out:
1791         return err;
1792 }
1793
1794 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1795 {
1796         struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1797
1798         kvmppc_mmu_destroy_pr(vcpu);
1799         free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1800 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1801         kfree(vcpu->arch.shadow_vcpu);
1802 #endif
1803         vfree(vcpu_book3s);
1804 }
1805
1806 static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
1807 {
1808         int ret;
1809
1810         /* Check if we can run the vcpu at all */
1811         if (!vcpu->arch.sane) {
1812                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1813                 ret = -EINVAL;
1814                 goto out;
1815         }
1816
1817         kvmppc_setup_debug(vcpu);
1818
1819         /*
1820          * Interrupts could be timers for the guest which we have to inject
1821          * again, so let's postpone them until we're in the guest and if we
1822          * really did time things so badly, then we just exit again due to
1823          * a host external interrupt.
1824          */
1825         ret = kvmppc_prepare_to_enter(vcpu);
1826         if (ret <= 0)
1827                 goto out;
1828         /* interrupts now hard-disabled */
1829
1830         /* Save FPU, Altivec and VSX state */
1831         giveup_all(current);
1832
1833         /* Preload FPU if it's enabled */
1834         if (kvmppc_get_msr(vcpu) & MSR_FP)
1835                 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1836
1837         kvmppc_fix_ee_before_entry();
1838
1839         ret = __kvmppc_vcpu_run(vcpu);
1840
1841         kvmppc_clear_debug(vcpu);
1842
1843         /* No need for guest_exit. It's done in handle_exit.
1844            We also get here with interrupts enabled. */
1845
1846         /* Make sure we save the guest FPU/Altivec/VSX state */
1847         kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1848
1849         /* Make sure we save the guest TAR/EBB/DSCR state */
1850         kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1851
1852         srr_regs_clobbered();
1853 out:
1854         vcpu->mode = OUTSIDE_GUEST_MODE;
1855         return ret;
1856 }
1857
1858 /*
1859  * Get (and clear) the dirty memory log for a memory slot.
1860  */
1861 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1862                                          struct kvm_dirty_log *log)
1863 {
1864         struct kvm_memory_slot *memslot;
1865         struct kvm_vcpu *vcpu;
1866         ulong ga, ga_end;
1867         int is_dirty = 0;
1868         int r;
1869         unsigned long n;
1870
1871         mutex_lock(&kvm->slots_lock);
1872
1873         r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
1874         if (r)
1875                 goto out;
1876
1877         /* If nothing is dirty, don't bother messing with page tables. */
1878         if (is_dirty) {
1879                 ga = memslot->base_gfn << PAGE_SHIFT;
1880                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1881
1882                 kvm_for_each_vcpu(n, vcpu, kvm)
1883                         kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1884
1885                 n = kvm_dirty_bitmap_bytes(memslot);
1886                 memset(memslot->dirty_bitmap, 0, n);
1887         }
1888
1889         r = 0;
1890 out:
1891         mutex_unlock(&kvm->slots_lock);
1892         return r;
1893 }
1894
1895 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1896                                          struct kvm_memory_slot *memslot)
1897 {
1898         return;
1899 }
1900
1901 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1902                                         struct kvm_memory_slot *memslot,
1903                                         const struct kvm_userspace_memory_region *mem,
1904                                         enum kvm_mr_change change)
1905 {
1906         return 0;
1907 }
1908
1909 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1910                                 const struct kvm_userspace_memory_region *mem,
1911                                 const struct kvm_memory_slot *old,
1912                                 const struct kvm_memory_slot *new,
1913                                 enum kvm_mr_change change)
1914 {
1915         return;
1916 }
1917
1918 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
1919 {
1920         return;
1921 }
1922
1923 #ifdef CONFIG_PPC64
1924 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1925                                          struct kvm_ppc_smmu_info *info)
1926 {
1927         long int i;
1928         struct kvm_vcpu *vcpu;
1929
1930         info->flags = 0;
1931
1932         /* SLB is always 64 entries */
1933         info->slb_size = 64;
1934
1935         /* Standard 4k base page size segment */
1936         info->sps[0].page_shift = 12;
1937         info->sps[0].slb_enc = 0;
1938         info->sps[0].enc[0].page_shift = 12;
1939         info->sps[0].enc[0].pte_enc = 0;
1940
1941         /*
1942          * 64k large page size.
1943          * We only want to put this in if the CPUs we're emulating
1944          * support it, but unfortunately we don't have a vcpu easily
1945          * to hand here to test.  Just pick the first vcpu, and if
1946          * that doesn't exist yet, report the minimum capability,
1947          * i.e., no 64k pages.
1948          * 1T segment support goes along with 64k pages.
1949          */
1950         i = 1;
1951         vcpu = kvm_get_vcpu(kvm, 0);
1952         if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1953                 info->flags = KVM_PPC_1T_SEGMENTS;
1954                 info->sps[i].page_shift = 16;
1955                 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1956                 info->sps[i].enc[0].page_shift = 16;
1957                 info->sps[i].enc[0].pte_enc = 1;
1958                 ++i;
1959         }
1960
1961         /* Standard 16M large page size segment */
1962         info->sps[i].page_shift = 24;
1963         info->sps[i].slb_enc = SLB_VSID_L;
1964         info->sps[i].enc[0].page_shift = 24;
1965         info->sps[i].enc[0].pte_enc = 0;
1966
1967         return 0;
1968 }
1969
1970 static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
1971 {
1972         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1973                 return -ENODEV;
1974         /* Require flags and process table base and size to all be zero. */
1975         if (cfg->flags || cfg->process_table)
1976                 return -EINVAL;
1977         return 0;
1978 }
1979
1980 #else
1981 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1982                                          struct kvm_ppc_smmu_info *info)
1983 {
1984         /* We should not get called */
1985         BUG();
1986         return 0;
1987 }
1988 #endif /* CONFIG_PPC64 */
1989
1990 static unsigned int kvm_global_user_count = 0;
1991 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1992
1993 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1994 {
1995         mutex_init(&kvm->arch.hpt_mutex);
1996
1997 #ifdef CONFIG_PPC_BOOK3S_64
1998         /* Start out with the default set of hcalls enabled */
1999         kvmppc_pr_init_default_hcalls(kvm);
2000 #endif
2001
2002         if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2003                 spin_lock(&kvm_global_user_count_lock);
2004                 if (++kvm_global_user_count == 1)
2005                         pseries_disable_reloc_on_exc();
2006                 spin_unlock(&kvm_global_user_count_lock);
2007         }
2008         return 0;
2009 }
2010
2011 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2012 {
2013 #ifdef CONFIG_PPC64
2014         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
2015 #endif
2016
2017         if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
2018                 spin_lock(&kvm_global_user_count_lock);
2019                 BUG_ON(kvm_global_user_count == 0);
2020                 if (--kvm_global_user_count == 0)
2021                         pseries_enable_reloc_on_exc();
2022                 spin_unlock(&kvm_global_user_count_lock);
2023         }
2024 }
2025
2026 static int kvmppc_core_check_processor_compat_pr(void)
2027 {
2028         /*
2029          * PR KVM can work on POWER9 inside a guest partition
2030          * running in HPT mode.  It can't work if we are using
2031          * radix translation (because radix provides no way for
2032          * a process to have unique translations in quadrant 3).
2033          */
2034         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
2035                 return -EIO;
2036         return 0;
2037 }
2038
2039 static long kvm_arch_vm_ioctl_pr(struct file *filp,
2040                                  unsigned int ioctl, unsigned long arg)
2041 {
2042         return -ENOTTY;
2043 }
2044
2045 static struct kvmppc_ops kvm_ops_pr = {
2046         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
2047         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
2048         .get_one_reg = kvmppc_get_one_reg_pr,
2049         .set_one_reg = kvmppc_set_one_reg_pr,
2050         .vcpu_load   = kvmppc_core_vcpu_load_pr,
2051         .vcpu_put    = kvmppc_core_vcpu_put_pr,
2052         .inject_interrupt = kvmppc_inject_interrupt_pr,
2053         .set_msr     = kvmppc_set_msr_pr,
2054         .vcpu_run    = kvmppc_vcpu_run_pr,
2055         .vcpu_create = kvmppc_core_vcpu_create_pr,
2056         .vcpu_free   = kvmppc_core_vcpu_free_pr,
2057         .check_requests = kvmppc_core_check_requests_pr,
2058         .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
2059         .flush_memslot = kvmppc_core_flush_memslot_pr,
2060         .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
2061         .commit_memory_region = kvmppc_core_commit_memory_region_pr,
2062         .unmap_gfn_range = kvm_unmap_gfn_range_pr,
2063         .age_gfn  = kvm_age_gfn_pr,
2064         .test_age_gfn = kvm_test_age_gfn_pr,
2065         .set_spte_gfn = kvm_set_spte_gfn_pr,
2066         .free_memslot = kvmppc_core_free_memslot_pr,
2067         .init_vm = kvmppc_core_init_vm_pr,
2068         .destroy_vm = kvmppc_core_destroy_vm_pr,
2069         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
2070         .emulate_op = kvmppc_core_emulate_op_pr,
2071         .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
2072         .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
2073         .fast_vcpu_kick = kvm_vcpu_kick,
2074         .arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2075 #ifdef CONFIG_PPC_BOOK3S_64
2076         .hcall_implemented = kvmppc_hcall_impl_pr,
2077         .configure_mmu = kvm_configure_mmu_pr,
2078 #endif
2079         .giveup_ext = kvmppc_giveup_ext,
2080 };
2081
2082
2083 int kvmppc_book3s_init_pr(void)
2084 {
2085         int r;
2086
2087         r = kvmppc_core_check_processor_compat_pr();
2088         if (r < 0)
2089                 return r;
2090
2091         kvm_ops_pr.owner = THIS_MODULE;
2092         kvmppc_pr_ops = &kvm_ops_pr;
2093
2094         r = kvmppc_mmu_hpte_sysinit();
2095         return r;
2096 }
2097
2098 void kvmppc_book3s_exit_pr(void)
2099 {
2100         kvmppc_pr_ops = NULL;
2101         kvmppc_mmu_hpte_sysexit();
2102 }
2103
2104 /*
2105  * We only support separate modules for book3s 64
2106  */
2107 #ifdef CONFIG_PPC_BOOK3S_64
2108
2109 module_init(kvmppc_book3s_init_pr);
2110 module_exit(kvmppc_book3s_exit_pr);
2111
2112 MODULE_LICENSE("GPL");
2113 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2114 MODULE_ALIAS("devname:kvm");
2115 #endif