KVM: stats: Separate generic stats from architecture specific ones
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv_uvmem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Secure pages management: Migration of pages between normal and secure
4  * memory of KVM guests.
5  *
6  * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7  */
8
9 /*
10  * A pseries guest can be run as secure guest on Ultravisor-enabled
11  * POWER platforms. On such platforms, this driver will be used to manage
12  * the movement of guest pages between the normal memory managed by
13  * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14  *
15  * The page-in or page-out requests from UV will come to HV as hcalls and
16  * HV will call back into UV via ultracalls to satisfy these page requests.
17  *
18  * Private ZONE_DEVICE memory equal to the amount of secure memory
19  * available in the platform for running secure guests is hotplugged.
20  * Whenever a page belonging to the guest becomes secure, a page from this
21  * private device memory is used to represent and track that secure page
22  * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23  * shared between UV and HV. However such pages aren't represented by
24  * device private memory and mappings to shared memory exist in both
25  * UV and HV page tables.
26  */
27
28 /*
29  * Notes on locking
30  *
31  * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32  * page-in and page-out requests for the same GPA. Concurrent accesses
33  * can either come via UV (guest vCPUs requesting for same page)
34  * or when HV and guest simultaneously access the same page.
35  * This mutex serializes the migration of page from HV(normal) to
36  * UV(secure) and vice versa. So the serialization points are around
37  * migrate_vma routines and page-in/out routines.
38  *
39  * Per-guest mutex comes with a cost though. Mainly it serializes the
40  * fault path as page-out can occur when HV faults on accessing secure
41  * guest pages. Currently UV issues page-in requests for all the guest
42  * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43  * not a cause for concern. Also currently the number of page-outs caused
44  * by HV touching secure pages is very very low. If an when UV supports
45  * overcommitting, then we might see concurrent guest driven page-outs.
46  *
47  * Locking order
48  *
49  * 1. kvm->srcu - Protects KVM memslots
50  * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51  * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52  *                           as sync-points for page-in/out
53  */
54
55 /*
56  * Notes on page size
57  *
58  * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59  * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60  * secure GPAs at 64K page size and maintains one device PFN for each
61  * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62  * for 64K page at a time.
63  *
64  * HV faulting on secure pages: When HV touches any secure page, it
65  * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66  * UV splits and remaps the 2MB page if necessary and copies out the
67  * required 64K page contents.
68  *
69  * Shared pages: Whenever guest shares a secure page, UV will split and
70  * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71  *
72  * HV invalidating a page: When a regular page belonging to secure
73  * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74  * page size. Using 64K page size is correct here because any non-secure
75  * page will essentially be of 64K page size. Splitting by UV during sharing
76  * and page-out ensures this.
77  *
78  * Page fault handling: When HV handles page fault of a page belonging
79  * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80  * Using 64K size is correct here too as UV would have split the 2MB page
81  * into 64k mappings and would have done page-outs earlier.
82  *
83  * In summary, the current secure pages handling code in HV assumes
84  * 64K page size and in fact fails any page-in/page-out requests of
85  * non-64K size upfront. If and when UV starts supporting multiple
86  * page-sizes, we need to break this assumption.
87  */
88
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
96 #include <asm/kvm_book3s_uvmem.h>
97
98 static struct dev_pagemap kvmppc_uvmem_pgmap;
99 static unsigned long *kvmppc_uvmem_bitmap;
100 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
101
102 /*
103  * States of a GFN
104  * ---------------
105  * The GFN can be in one of the following states.
106  *
107  * (a) Secure - The GFN is secure. The GFN is associated with
108  *      a Secure VM, the contents of the GFN is not accessible
109  *      to the Hypervisor.  This GFN can be backed by a secure-PFN,
110  *      or can be backed by a normal-PFN with contents encrypted.
111  *      The former is true when the GFN is paged-in into the
112  *      ultravisor. The latter is true when the GFN is paged-out
113  *      of the ultravisor.
114  *
115  * (b) Shared - The GFN is shared. The GFN is associated with a
116  *      a secure VM. The contents of the GFN is accessible to
117  *      Hypervisor. This GFN is backed by a normal-PFN and its
118  *      content is un-encrypted.
119  *
120  * (c) Normal - The GFN is a normal. The GFN is associated with
121  *      a normal VM. The contents of the GFN is accesible to
122  *      the Hypervisor. Its content is never encrypted.
123  *
124  * States of a VM.
125  * ---------------
126  *
127  * Normal VM:  A VM whose contents are always accessible to
128  *      the hypervisor.  All its GFNs are normal-GFNs.
129  *
130  * Secure VM: A VM whose contents are not accessible to the
131  *      hypervisor without the VM's consent.  Its GFNs are
132  *      either Shared-GFN or Secure-GFNs.
133  *
134  * Transient VM: A Normal VM that is transitioning to secure VM.
135  *      The transition starts on successful return of
136  *      H_SVM_INIT_START, and ends on successful return
137  *      of H_SVM_INIT_DONE. This transient VM, can have GFNs
138  *      in any of the three states; i.e Secure-GFN, Shared-GFN,
139  *      and Normal-GFN. The VM never executes in this state
140  *      in supervisor-mode.
141  *
142  * Memory slot State.
143  * -----------------------------
144  *      The state of a memory slot mirrors the state of the
145  *      VM the memory slot is associated with.
146  *
147  * VM State transition.
148  * --------------------
149  *
150  *  A VM always starts in Normal Mode.
151  *
152  *  H_SVM_INIT_START moves the VM into transient state. During this
153  *  time the Ultravisor may request some of its GFNs to be shared or
154  *  secured. So its GFNs can be in one of the three GFN states.
155  *
156  *  H_SVM_INIT_DONE moves the VM entirely from transient state to
157  *  secure-state. At this point any left-over normal-GFNs are
158  *  transitioned to Secure-GFN.
159  *
160  *  H_SVM_INIT_ABORT moves the transient VM back to normal VM.
161  *  All its GFNs are moved to Normal-GFNs.
162  *
163  *  UV_TERMINATE transitions the secure-VM back to normal-VM. All
164  *  the secure-GFN and shared-GFNs are tranistioned to normal-GFN
165  *  Note: The contents of the normal-GFN is undefined at this point.
166  *
167  * GFN state implementation:
168  * -------------------------
169  *
170  * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
171  * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
172  * set, and contains the value of the secure-PFN.
173  * It is associated with a normal-PFN; also called mem_pfn, when
174  * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
175  * The value of the normal-PFN is not tracked.
176  *
177  * Shared GFN is associated with a normal-PFN. Its pfn[] has
178  * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
179  * is not tracked.
180  *
181  * Normal GFN is associated with normal-PFN. Its pfn[] has
182  * no flag set. The value of the normal-PFN is not tracked.
183  *
184  * Life cycle of a GFN
185  * --------------------
186  *
187  * --------------------------------------------------------------
188  * |        |     Share  |  Unshare | SVM       |H_SVM_INIT_DONE|
189  * |        |operation   |operation | abort/    |               |
190  * |        |            |          | terminate |               |
191  * -------------------------------------------------------------
192  * |        |            |          |           |               |
193  * | Secure |     Shared | Secure   |Normal     |Secure         |
194  * |        |            |          |           |               |
195  * | Shared |     Shared | Secure   |Normal     |Shared         |
196  * |        |            |          |           |               |
197  * | Normal |     Shared | Secure   |Normal     |Secure         |
198  * --------------------------------------------------------------
199  *
200  * Life cycle of a VM
201  * --------------------
202  *
203  * --------------------------------------------------------------------
204  * |         |  start    |  H_SVM_  |H_SVM_   |H_SVM_     |UV_SVM_    |
205  * |         |  VM       |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE  |
206  * |         |           |          |         |           |           |
207  * --------- ----------------------------------------------------------
208  * |         |           |          |         |           |           |
209  * | Normal  | Normal    | Transient|Error    |Error      |Normal     |
210  * |         |           |          |         |           |           |
211  * | Secure  |   Error   | Error    |Error    |Error      |Normal     |
212  * |         |           |          |         |           |           |
213  * |Transient|   N/A     | Error    |Secure   |Normal     |Normal     |
214  * --------------------------------------------------------------------
215  */
216
217 #define KVMPPC_GFN_UVMEM_PFN    (1UL << 63)
218 #define KVMPPC_GFN_MEM_PFN      (1UL << 62)
219 #define KVMPPC_GFN_SHARED       (1UL << 61)
220 #define KVMPPC_GFN_SECURE       (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
221 #define KVMPPC_GFN_FLAG_MASK    (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
222 #define KVMPPC_GFN_PFN_MASK     (~KVMPPC_GFN_FLAG_MASK)
223
224 struct kvmppc_uvmem_slot {
225         struct list_head list;
226         unsigned long nr_pfns;
227         unsigned long base_pfn;
228         unsigned long *pfns;
229 };
230 struct kvmppc_uvmem_page_pvt {
231         struct kvm *kvm;
232         unsigned long gpa;
233         bool skip_page_out;
234         bool remove_gfn;
235 };
236
237 bool kvmppc_uvmem_available(void)
238 {
239         /*
240          * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
241          * and our data structures have been initialized successfully.
242          */
243         return !!kvmppc_uvmem_bitmap;
244 }
245
246 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
247 {
248         struct kvmppc_uvmem_slot *p;
249
250         p = kzalloc(sizeof(*p), GFP_KERNEL);
251         if (!p)
252                 return -ENOMEM;
253         p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
254         if (!p->pfns) {
255                 kfree(p);
256                 return -ENOMEM;
257         }
258         p->nr_pfns = slot->npages;
259         p->base_pfn = slot->base_gfn;
260
261         mutex_lock(&kvm->arch.uvmem_lock);
262         list_add(&p->list, &kvm->arch.uvmem_pfns);
263         mutex_unlock(&kvm->arch.uvmem_lock);
264
265         return 0;
266 }
267
268 /*
269  * All device PFNs are already released by the time we come here.
270  */
271 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
272 {
273         struct kvmppc_uvmem_slot *p, *next;
274
275         mutex_lock(&kvm->arch.uvmem_lock);
276         list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
277                 if (p->base_pfn == slot->base_gfn) {
278                         vfree(p->pfns);
279                         list_del(&p->list);
280                         kfree(p);
281                         break;
282                 }
283         }
284         mutex_unlock(&kvm->arch.uvmem_lock);
285 }
286
287 static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
288                         unsigned long flag, unsigned long uvmem_pfn)
289 {
290         struct kvmppc_uvmem_slot *p;
291
292         list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
293                 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
294                         unsigned long index = gfn - p->base_pfn;
295
296                         if (flag == KVMPPC_GFN_UVMEM_PFN)
297                                 p->pfns[index] = uvmem_pfn | flag;
298                         else
299                                 p->pfns[index] = flag;
300                         return;
301                 }
302         }
303 }
304
305 /* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
306 static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
307                         unsigned long uvmem_pfn, struct kvm *kvm)
308 {
309         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
310 }
311
312 /* mark the GFN as secure-GFN associated with a memory-PFN. */
313 static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
314 {
315         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
316 }
317
318 /* mark the GFN as a shared GFN. */
319 static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
320 {
321         kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
322 }
323
324 /* mark the GFN as a non-existent GFN. */
325 static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
326 {
327         kvmppc_mark_gfn(gfn, kvm, 0, 0);
328 }
329
330 /* return true, if the GFN is a secure-GFN backed by a secure-PFN */
331 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
332                                     unsigned long *uvmem_pfn)
333 {
334         struct kvmppc_uvmem_slot *p;
335
336         list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
337                 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
338                         unsigned long index = gfn - p->base_pfn;
339
340                         if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
341                                 if (uvmem_pfn)
342                                         *uvmem_pfn = p->pfns[index] &
343                                                      KVMPPC_GFN_PFN_MASK;
344                                 return true;
345                         } else
346                                 return false;
347                 }
348         }
349         return false;
350 }
351
352 /*
353  * starting from *gfn search for the next available GFN that is not yet
354  * transitioned to a secure GFN.  return the value of that GFN in *gfn.  If a
355  * GFN is found, return true, else return false
356  *
357  * Must be called with kvm->arch.uvmem_lock  held.
358  */
359 static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
360                 struct kvm *kvm, unsigned long *gfn)
361 {
362         struct kvmppc_uvmem_slot *p;
363         bool ret = false;
364         unsigned long i;
365
366         list_for_each_entry(p, &kvm->arch.uvmem_pfns, list)
367                 if (*gfn >= p->base_pfn && *gfn < p->base_pfn + p->nr_pfns)
368                         break;
369         if (!p)
370                 return ret;
371         /*
372          * The code below assumes, one to one correspondence between
373          * kvmppc_uvmem_slot and memslot.
374          */
375         for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
376                 unsigned long index = i - p->base_pfn;
377
378                 if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
379                         *gfn = i;
380                         ret = true;
381                         break;
382                 }
383         }
384         return ret;
385 }
386
387 static int kvmppc_memslot_page_merge(struct kvm *kvm,
388                 const struct kvm_memory_slot *memslot, bool merge)
389 {
390         unsigned long gfn = memslot->base_gfn;
391         unsigned long end, start = gfn_to_hva(kvm, gfn);
392         int ret = 0;
393         struct vm_area_struct *vma;
394         int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
395
396         if (kvm_is_error_hva(start))
397                 return H_STATE;
398
399         end = start + (memslot->npages << PAGE_SHIFT);
400
401         mmap_write_lock(kvm->mm);
402         do {
403                 vma = find_vma_intersection(kvm->mm, start, end);
404                 if (!vma) {
405                         ret = H_STATE;
406                         break;
407                 }
408                 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
409                           merge_flag, &vma->vm_flags);
410                 if (ret) {
411                         ret = H_STATE;
412                         break;
413                 }
414                 start = vma->vm_end;
415         } while (end > vma->vm_end);
416
417         mmap_write_unlock(kvm->mm);
418         return ret;
419 }
420
421 static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
422                 const struct kvm_memory_slot *memslot)
423 {
424         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
425         kvmppc_uvmem_slot_free(kvm, memslot);
426         kvmppc_memslot_page_merge(kvm, memslot, true);
427 }
428
429 static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
430                 const struct kvm_memory_slot *memslot)
431 {
432         int ret = H_PARAMETER;
433
434         if (kvmppc_memslot_page_merge(kvm, memslot, false))
435                 return ret;
436
437         if (kvmppc_uvmem_slot_init(kvm, memslot))
438                 goto out1;
439
440         ret = uv_register_mem_slot(kvm->arch.lpid,
441                                    memslot->base_gfn << PAGE_SHIFT,
442                                    memslot->npages * PAGE_SIZE,
443                                    0, memslot->id);
444         if (ret < 0) {
445                 ret = H_PARAMETER;
446                 goto out;
447         }
448         return 0;
449 out:
450         kvmppc_uvmem_slot_free(kvm, memslot);
451 out1:
452         kvmppc_memslot_page_merge(kvm, memslot, true);
453         return ret;
454 }
455
456 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
457 {
458         struct kvm_memslots *slots;
459         struct kvm_memory_slot *memslot, *m;
460         int ret = H_SUCCESS;
461         int srcu_idx;
462
463         kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
464
465         if (!kvmppc_uvmem_bitmap)
466                 return H_UNSUPPORTED;
467
468         /* Only radix guests can be secure guests */
469         if (!kvm_is_radix(kvm))
470                 return H_UNSUPPORTED;
471
472         /* NAK the transition to secure if not enabled */
473         if (!kvm->arch.svm_enabled)
474                 return H_AUTHORITY;
475
476         srcu_idx = srcu_read_lock(&kvm->srcu);
477
478         /* register the memslot */
479         slots = kvm_memslots(kvm);
480         kvm_for_each_memslot(memslot, slots) {
481                 ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
482                 if (ret)
483                         break;
484         }
485
486         if (ret) {
487                 slots = kvm_memslots(kvm);
488                 kvm_for_each_memslot(m, slots) {
489                         if (m == memslot)
490                                 break;
491                         __kvmppc_uvmem_memslot_delete(kvm, memslot);
492                 }
493         }
494
495         srcu_read_unlock(&kvm->srcu, srcu_idx);
496         return ret;
497 }
498
499 /*
500  * Provision a new page on HV side and copy over the contents
501  * from secure memory using UV_PAGE_OUT uvcall.
502  * Caller must held kvm->arch.uvmem_lock.
503  */
504 static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
505                 unsigned long start,
506                 unsigned long end, unsigned long page_shift,
507                 struct kvm *kvm, unsigned long gpa)
508 {
509         unsigned long src_pfn, dst_pfn = 0;
510         struct migrate_vma mig;
511         struct page *dpage, *spage;
512         struct kvmppc_uvmem_page_pvt *pvt;
513         unsigned long pfn;
514         int ret = U_SUCCESS;
515
516         memset(&mig, 0, sizeof(mig));
517         mig.vma = vma;
518         mig.start = start;
519         mig.end = end;
520         mig.src = &src_pfn;
521         mig.dst = &dst_pfn;
522         mig.pgmap_owner = &kvmppc_uvmem_pgmap;
523         mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
524
525         /* The requested page is already paged-out, nothing to do */
526         if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
527                 return ret;
528
529         ret = migrate_vma_setup(&mig);
530         if (ret)
531                 return -1;
532
533         spage = migrate_pfn_to_page(*mig.src);
534         if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
535                 goto out_finalize;
536
537         if (!is_zone_device_page(spage))
538                 goto out_finalize;
539
540         dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
541         if (!dpage) {
542                 ret = -1;
543                 goto out_finalize;
544         }
545
546         lock_page(dpage);
547         pvt = spage->zone_device_data;
548         pfn = page_to_pfn(dpage);
549
550         /*
551          * This function is used in two cases:
552          * - When HV touches a secure page, for which we do UV_PAGE_OUT
553          * - When a secure page is converted to shared page, we *get*
554          *   the page to essentially unmap the device page. In this
555          *   case we skip page-out.
556          */
557         if (!pvt->skip_page_out)
558                 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
559                                   gpa, 0, page_shift);
560
561         if (ret == U_SUCCESS)
562                 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
563         else {
564                 unlock_page(dpage);
565                 __free_page(dpage);
566                 goto out_finalize;
567         }
568
569         migrate_vma_pages(&mig);
570
571 out_finalize:
572         migrate_vma_finalize(&mig);
573         return ret;
574 }
575
576 static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
577                                       unsigned long start, unsigned long end,
578                                       unsigned long page_shift,
579                                       struct kvm *kvm, unsigned long gpa)
580 {
581         int ret;
582
583         mutex_lock(&kvm->arch.uvmem_lock);
584         ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa);
585         mutex_unlock(&kvm->arch.uvmem_lock);
586
587         return ret;
588 }
589
590 /*
591  * Drop device pages that we maintain for the secure guest
592  *
593  * We first mark the pages to be skipped from UV_PAGE_OUT when there
594  * is HV side fault on these pages. Next we *get* these pages, forcing
595  * fault on them, do fault time migration to replace the device PTEs in
596  * QEMU page table with normal PTEs from newly allocated pages.
597  */
598 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
599                              struct kvm *kvm, bool skip_page_out)
600 {
601         int i;
602         struct kvmppc_uvmem_page_pvt *pvt;
603         struct page *uvmem_page;
604         struct vm_area_struct *vma = NULL;
605         unsigned long uvmem_pfn, gfn;
606         unsigned long addr;
607
608         mmap_read_lock(kvm->mm);
609
610         addr = slot->userspace_addr;
611
612         gfn = slot->base_gfn;
613         for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
614
615                 /* Fetch the VMA if addr is not in the latest fetched one */
616                 if (!vma || addr >= vma->vm_end) {
617                         vma = find_vma_intersection(kvm->mm, addr, addr+1);
618                         if (!vma) {
619                                 pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
620                                 break;
621                         }
622                 }
623
624                 mutex_lock(&kvm->arch.uvmem_lock);
625
626                 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
627                         uvmem_page = pfn_to_page(uvmem_pfn);
628                         pvt = uvmem_page->zone_device_data;
629                         pvt->skip_page_out = skip_page_out;
630                         pvt->remove_gfn = true;
631
632                         if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
633                                                   PAGE_SHIFT, kvm, pvt->gpa))
634                                 pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
635                                        pvt->gpa, addr);
636                 } else {
637                         /* Remove the shared flag if any */
638                         kvmppc_gfn_remove(gfn, kvm);
639                 }
640
641                 mutex_unlock(&kvm->arch.uvmem_lock);
642         }
643
644         mmap_read_unlock(kvm->mm);
645 }
646
647 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
648 {
649         int srcu_idx;
650         struct kvm_memory_slot *memslot;
651
652         /*
653          * Expect to be called only after INIT_START and before INIT_DONE.
654          * If INIT_DONE was completed, use normal VM termination sequence.
655          */
656         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
657                 return H_UNSUPPORTED;
658
659         if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
660                 return H_STATE;
661
662         srcu_idx = srcu_read_lock(&kvm->srcu);
663
664         kvm_for_each_memslot(memslot, kvm_memslots(kvm))
665                 kvmppc_uvmem_drop_pages(memslot, kvm, false);
666
667         srcu_read_unlock(&kvm->srcu, srcu_idx);
668
669         kvm->arch.secure_guest = 0;
670         uv_svm_terminate(kvm->arch.lpid);
671
672         return H_PARAMETER;
673 }
674
675 /*
676  * Get a free device PFN from the pool
677  *
678  * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
679  * PFN will be used to keep track of the secure page on HV side.
680  *
681  * Called with kvm->arch.uvmem_lock held
682  */
683 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
684 {
685         struct page *dpage = NULL;
686         unsigned long bit, uvmem_pfn;
687         struct kvmppc_uvmem_page_pvt *pvt;
688         unsigned long pfn_last, pfn_first;
689
690         pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
691         pfn_last = pfn_first +
692                    (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
693
694         spin_lock(&kvmppc_uvmem_bitmap_lock);
695         bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
696                                   pfn_last - pfn_first);
697         if (bit >= (pfn_last - pfn_first))
698                 goto out;
699         bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
700         spin_unlock(&kvmppc_uvmem_bitmap_lock);
701
702         pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
703         if (!pvt)
704                 goto out_clear;
705
706         uvmem_pfn = bit + pfn_first;
707         kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
708
709         pvt->gpa = gpa;
710         pvt->kvm = kvm;
711
712         dpage = pfn_to_page(uvmem_pfn);
713         dpage->zone_device_data = pvt;
714         get_page(dpage);
715         lock_page(dpage);
716         return dpage;
717 out_clear:
718         spin_lock(&kvmppc_uvmem_bitmap_lock);
719         bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
720 out:
721         spin_unlock(&kvmppc_uvmem_bitmap_lock);
722         return NULL;
723 }
724
725 /*
726  * Alloc a PFN from private device memory pool. If @pagein is true,
727  * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
728  */
729 static int kvmppc_svm_page_in(struct vm_area_struct *vma,
730                 unsigned long start,
731                 unsigned long end, unsigned long gpa, struct kvm *kvm,
732                 unsigned long page_shift,
733                 bool pagein)
734 {
735         unsigned long src_pfn, dst_pfn = 0;
736         struct migrate_vma mig;
737         struct page *spage;
738         unsigned long pfn;
739         struct page *dpage;
740         int ret = 0;
741
742         memset(&mig, 0, sizeof(mig));
743         mig.vma = vma;
744         mig.start = start;
745         mig.end = end;
746         mig.src = &src_pfn;
747         mig.dst = &dst_pfn;
748         mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
749
750         ret = migrate_vma_setup(&mig);
751         if (ret)
752                 return ret;
753
754         if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
755                 ret = -1;
756                 goto out_finalize;
757         }
758
759         dpage = kvmppc_uvmem_get_page(gpa, kvm);
760         if (!dpage) {
761                 ret = -1;
762                 goto out_finalize;
763         }
764
765         if (pagein) {
766                 pfn = *mig.src >> MIGRATE_PFN_SHIFT;
767                 spage = migrate_pfn_to_page(*mig.src);
768                 if (spage) {
769                         ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
770                                         gpa, 0, page_shift);
771                         if (ret)
772                                 goto out_finalize;
773                 }
774         }
775
776         *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
777         migrate_vma_pages(&mig);
778 out_finalize:
779         migrate_vma_finalize(&mig);
780         return ret;
781 }
782
783 static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
784                 const struct kvm_memory_slot *memslot)
785 {
786         unsigned long gfn = memslot->base_gfn;
787         struct vm_area_struct *vma;
788         unsigned long start, end;
789         int ret = 0;
790
791         mmap_read_lock(kvm->mm);
792         mutex_lock(&kvm->arch.uvmem_lock);
793         while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
794                 ret = H_STATE;
795                 start = gfn_to_hva(kvm, gfn);
796                 if (kvm_is_error_hva(start))
797                         break;
798
799                 end = start + (1UL << PAGE_SHIFT);
800                 vma = find_vma_intersection(kvm->mm, start, end);
801                 if (!vma || vma->vm_start > start || vma->vm_end < end)
802                         break;
803
804                 ret = kvmppc_svm_page_in(vma, start, end,
805                                 (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
806                 if (ret) {
807                         ret = H_STATE;
808                         break;
809                 }
810
811                 /* relinquish the cpu if needed */
812                 cond_resched();
813         }
814         mutex_unlock(&kvm->arch.uvmem_lock);
815         mmap_read_unlock(kvm->mm);
816         return ret;
817 }
818
819 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
820 {
821         struct kvm_memslots *slots;
822         struct kvm_memory_slot *memslot;
823         int srcu_idx;
824         long ret = H_SUCCESS;
825
826         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
827                 return H_UNSUPPORTED;
828
829         /* migrate any unmoved normal pfn to device pfns*/
830         srcu_idx = srcu_read_lock(&kvm->srcu);
831         slots = kvm_memslots(kvm);
832         kvm_for_each_memslot(memslot, slots) {
833                 ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
834                 if (ret) {
835                         /*
836                          * The pages will remain transitioned.
837                          * Its the callers responsibility to
838                          * terminate the VM, which will undo
839                          * all state of the VM. Till then
840                          * this VM is in a erroneous state.
841                          * Its KVMPPC_SECURE_INIT_DONE will
842                          * remain unset.
843                          */
844                         ret = H_STATE;
845                         goto out;
846                 }
847         }
848
849         kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
850         pr_info("LPID %d went secure\n", kvm->arch.lpid);
851
852 out:
853         srcu_read_unlock(&kvm->srcu, srcu_idx);
854         return ret;
855 }
856
857 /*
858  * Shares the page with HV, thus making it a normal page.
859  *
860  * - If the page is already secure, then provision a new page and share
861  * - If the page is a normal page, share the existing page
862  *
863  * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
864  * to unmap the device page from QEMU's page tables.
865  */
866 static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
867                 unsigned long page_shift)
868 {
869
870         int ret = H_PARAMETER;
871         struct page *uvmem_page;
872         struct kvmppc_uvmem_page_pvt *pvt;
873         unsigned long pfn;
874         unsigned long gfn = gpa >> page_shift;
875         int srcu_idx;
876         unsigned long uvmem_pfn;
877
878         srcu_idx = srcu_read_lock(&kvm->srcu);
879         mutex_lock(&kvm->arch.uvmem_lock);
880         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
881                 uvmem_page = pfn_to_page(uvmem_pfn);
882                 pvt = uvmem_page->zone_device_data;
883                 pvt->skip_page_out = true;
884                 /*
885                  * do not drop the GFN. It is a valid GFN
886                  * that is transitioned to a shared GFN.
887                  */
888                 pvt->remove_gfn = false;
889         }
890
891 retry:
892         mutex_unlock(&kvm->arch.uvmem_lock);
893         pfn = gfn_to_pfn(kvm, gfn);
894         if (is_error_noslot_pfn(pfn))
895                 goto out;
896
897         mutex_lock(&kvm->arch.uvmem_lock);
898         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
899                 uvmem_page = pfn_to_page(uvmem_pfn);
900                 pvt = uvmem_page->zone_device_data;
901                 pvt->skip_page_out = true;
902                 pvt->remove_gfn = false; /* it continues to be a valid GFN */
903                 kvm_release_pfn_clean(pfn);
904                 goto retry;
905         }
906
907         if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
908                                 page_shift)) {
909                 kvmppc_gfn_shared(gfn, kvm);
910                 ret = H_SUCCESS;
911         }
912         kvm_release_pfn_clean(pfn);
913         mutex_unlock(&kvm->arch.uvmem_lock);
914 out:
915         srcu_read_unlock(&kvm->srcu, srcu_idx);
916         return ret;
917 }
918
919 /*
920  * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
921  *
922  * H_PAGE_IN_SHARED flag makes the page shared which means that the same
923  * memory in is visible from both UV and HV.
924  */
925 unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
926                 unsigned long flags,
927                 unsigned long page_shift)
928 {
929         unsigned long start, end;
930         struct vm_area_struct *vma;
931         int srcu_idx;
932         unsigned long gfn = gpa >> page_shift;
933         int ret;
934
935         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
936                 return H_UNSUPPORTED;
937
938         if (page_shift != PAGE_SHIFT)
939                 return H_P3;
940
941         if (flags & ~H_PAGE_IN_SHARED)
942                 return H_P2;
943
944         if (flags & H_PAGE_IN_SHARED)
945                 return kvmppc_share_page(kvm, gpa, page_shift);
946
947         ret = H_PARAMETER;
948         srcu_idx = srcu_read_lock(&kvm->srcu);
949         mmap_read_lock(kvm->mm);
950
951         start = gfn_to_hva(kvm, gfn);
952         if (kvm_is_error_hva(start))
953                 goto out;
954
955         mutex_lock(&kvm->arch.uvmem_lock);
956         /* Fail the page-in request of an already paged-in page */
957         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
958                 goto out_unlock;
959
960         end = start + (1UL << page_shift);
961         vma = find_vma_intersection(kvm->mm, start, end);
962         if (!vma || vma->vm_start > start || vma->vm_end < end)
963                 goto out_unlock;
964
965         if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
966                                 true))
967                 goto out_unlock;
968
969         ret = H_SUCCESS;
970
971 out_unlock:
972         mutex_unlock(&kvm->arch.uvmem_lock);
973 out:
974         mmap_read_unlock(kvm->mm);
975         srcu_read_unlock(&kvm->srcu, srcu_idx);
976         return ret;
977 }
978
979
980 /*
981  * Fault handler callback that gets called when HV touches any page that
982  * has been moved to secure memory, we ask UV to give back the page by
983  * issuing UV_PAGE_OUT uvcall.
984  *
985  * This eventually results in dropping of device PFN and the newly
986  * provisioned page/PFN gets populated in QEMU page tables.
987  */
988 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
989 {
990         struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
991
992         if (kvmppc_svm_page_out(vmf->vma, vmf->address,
993                                 vmf->address + PAGE_SIZE, PAGE_SHIFT,
994                                 pvt->kvm, pvt->gpa))
995                 return VM_FAULT_SIGBUS;
996         else
997                 return 0;
998 }
999
1000 /*
1001  * Release the device PFN back to the pool
1002  *
1003  * Gets called when secure GFN tranistions from a secure-PFN
1004  * to a normal PFN during H_SVM_PAGE_OUT.
1005  * Gets called with kvm->arch.uvmem_lock held.
1006  */
1007 static void kvmppc_uvmem_page_free(struct page *page)
1008 {
1009         unsigned long pfn = page_to_pfn(page) -
1010                         (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
1011         struct kvmppc_uvmem_page_pvt *pvt;
1012
1013         spin_lock(&kvmppc_uvmem_bitmap_lock);
1014         bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
1015         spin_unlock(&kvmppc_uvmem_bitmap_lock);
1016
1017         pvt = page->zone_device_data;
1018         page->zone_device_data = NULL;
1019         if (pvt->remove_gfn)
1020                 kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1021         else
1022                 kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
1023         kfree(pvt);
1024 }
1025
1026 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
1027         .page_free = kvmppc_uvmem_page_free,
1028         .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
1029 };
1030
1031 /*
1032  * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
1033  */
1034 unsigned long
1035 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
1036                       unsigned long flags, unsigned long page_shift)
1037 {
1038         unsigned long gfn = gpa >> page_shift;
1039         unsigned long start, end;
1040         struct vm_area_struct *vma;
1041         int srcu_idx;
1042         int ret;
1043
1044         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
1045                 return H_UNSUPPORTED;
1046
1047         if (page_shift != PAGE_SHIFT)
1048                 return H_P3;
1049
1050         if (flags)
1051                 return H_P2;
1052
1053         ret = H_PARAMETER;
1054         srcu_idx = srcu_read_lock(&kvm->srcu);
1055         mmap_read_lock(kvm->mm);
1056         start = gfn_to_hva(kvm, gfn);
1057         if (kvm_is_error_hva(start))
1058                 goto out;
1059
1060         end = start + (1UL << page_shift);
1061         vma = find_vma_intersection(kvm->mm, start, end);
1062         if (!vma || vma->vm_start > start || vma->vm_end < end)
1063                 goto out;
1064
1065         if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
1066                 ret = H_SUCCESS;
1067 out:
1068         mmap_read_unlock(kvm->mm);
1069         srcu_read_unlock(&kvm->srcu, srcu_idx);
1070         return ret;
1071 }
1072
1073 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
1074 {
1075         unsigned long pfn;
1076         int ret = U_SUCCESS;
1077
1078         pfn = gfn_to_pfn(kvm, gfn);
1079         if (is_error_noslot_pfn(pfn))
1080                 return -EFAULT;
1081
1082         mutex_lock(&kvm->arch.uvmem_lock);
1083         if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
1084                 goto out;
1085
1086         ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
1087                          0, PAGE_SHIFT);
1088 out:
1089         kvm_release_pfn_clean(pfn);
1090         mutex_unlock(&kvm->arch.uvmem_lock);
1091         return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
1092 }
1093
1094 int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
1095 {
1096         int ret = __kvmppc_uvmem_memslot_create(kvm, new);
1097
1098         if (!ret)
1099                 ret = kvmppc_uv_migrate_mem_slot(kvm, new);
1100
1101         return ret;
1102 }
1103
1104 void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
1105 {
1106         __kvmppc_uvmem_memslot_delete(kvm, old);
1107 }
1108
1109 static u64 kvmppc_get_secmem_size(void)
1110 {
1111         struct device_node *np;
1112         int i, len;
1113         const __be32 *prop;
1114         u64 size = 0;
1115
1116         /*
1117          * First try the new ibm,secure-memory nodes which supersede the
1118          * secure-memory-ranges property.
1119          * If we found some, no need to read the deprecated ones.
1120          */
1121         for_each_compatible_node(np, NULL, "ibm,secure-memory") {
1122                 prop = of_get_property(np, "reg", &len);
1123                 if (!prop)
1124                         continue;
1125                 size += of_read_number(prop + 2, 2);
1126         }
1127         if (size)
1128                 return size;
1129
1130         np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
1131         if (!np)
1132                 goto out;
1133
1134         prop = of_get_property(np, "secure-memory-ranges", &len);
1135         if (!prop)
1136                 goto out_put;
1137
1138         for (i = 0; i < len / (sizeof(*prop) * 4); i++)
1139                 size += of_read_number(prop + (i * 4) + 2, 2);
1140
1141 out_put:
1142         of_node_put(np);
1143 out:
1144         return size;
1145 }
1146
1147 int kvmppc_uvmem_init(void)
1148 {
1149         int ret = 0;
1150         unsigned long size;
1151         struct resource *res;
1152         void *addr;
1153         unsigned long pfn_last, pfn_first;
1154
1155         size = kvmppc_get_secmem_size();
1156         if (!size) {
1157                 /*
1158                  * Don't fail the initialization of kvm-hv module if
1159                  * the platform doesn't export ibm,uv-firmware node.
1160                  * Let normal guests run on such PEF-disabled platform.
1161                  */
1162                 pr_info("KVMPPC-UVMEM: No support for secure guests\n");
1163                 goto out;
1164         }
1165
1166         res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
1167         if (IS_ERR(res)) {
1168                 ret = PTR_ERR(res);
1169                 goto out;
1170         }
1171
1172         kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
1173         kvmppc_uvmem_pgmap.range.start = res->start;
1174         kvmppc_uvmem_pgmap.range.end = res->end;
1175         kvmppc_uvmem_pgmap.nr_range = 1;
1176         kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
1177         /* just one global instance: */
1178         kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
1179         addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
1180         if (IS_ERR(addr)) {
1181                 ret = PTR_ERR(addr);
1182                 goto out_free_region;
1183         }
1184
1185         pfn_first = res->start >> PAGE_SHIFT;
1186         pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
1187         kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
1188                                       sizeof(unsigned long), GFP_KERNEL);
1189         if (!kvmppc_uvmem_bitmap) {
1190                 ret = -ENOMEM;
1191                 goto out_unmap;
1192         }
1193
1194         pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
1195         return ret;
1196 out_unmap:
1197         memunmap_pages(&kvmppc_uvmem_pgmap);
1198 out_free_region:
1199         release_mem_region(res->start, size);
1200 out:
1201         return ret;
1202 }
1203
1204 void kvmppc_uvmem_free(void)
1205 {
1206         if (!kvmppc_uvmem_bitmap)
1207                 return;
1208
1209         memunmap_pages(&kvmppc_uvmem_pgmap);
1210         release_mem_region(kvmppc_uvmem_pgmap.range.start,
1211                            range_len(&kvmppc_uvmem_pgmap.range));
1212         kfree(kvmppc_uvmem_bitmap);
1213 }