Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108         .set = param_set_int,
109         .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
113                                                         S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
117                                                         S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
119 #endif
120
121 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
122 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
123 static void kvmppc_setup_partition_table(struct kvm *kvm);
124
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126                 int *ip)
127 {
128         int i = *ip;
129         struct kvm_vcpu *vcpu;
130
131         while (++i < MAX_SMT_THREADS) {
132                 vcpu = READ_ONCE(vc->runnable_threads[i]);
133                 if (vcpu) {
134                         *ip = i;
135                         return vcpu;
136                 }
137         }
138         return NULL;
139 }
140
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148
149         /* On POWER9 we can use msgsnd to IPI any cpu */
150         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151                 msg |= get_hard_smp_processor_id(cpu);
152                 smp_mb();
153                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154                 return true;
155         }
156
157         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
158         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159                 preempt_disable();
160                 if (cpu_first_thread_sibling(cpu) ==
161                     cpu_first_thread_sibling(smp_processor_id())) {
162                         msg |= cpu_thread_in_core(cpu);
163                         smp_mb();
164                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165                         preempt_enable();
166                         return true;
167                 }
168                 preempt_enable();
169         }
170
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172         if (cpu >= 0 && cpu < nr_cpu_ids) {
173                 if (paca[cpu].kvm_hstate.xics_phys) {
174                         xics_wake_cpu(cpu);
175                         return true;
176                 }
177                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178                 return true;
179         }
180 #endif
181
182         return false;
183 }
184
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187         int cpu;
188         struct swait_queue_head *wqp;
189
190         wqp = kvm_arch_vcpu_wq(vcpu);
191         if (swq_has_sleeper(wqp)) {
192                 swake_up(wqp);
193                 ++vcpu->stat.halt_wakeup;
194         }
195
196         cpu = READ_ONCE(vcpu->arch.thread_cpu);
197         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198                 return;
199
200         /* CPU points to the first thread of the core */
201         cpu = vcpu->cpu;
202         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203                 smp_send_reschedule(cpu);
204 }
205
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241         unsigned long flags;
242
243         spin_lock_irqsave(&vc->stoltb_lock, flags);
244         vc->preempt_tb = mftb();
245         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250         unsigned long flags;
251
252         spin_lock_irqsave(&vc->stoltb_lock, flags);
253         if (vc->preempt_tb != TB_NIL) {
254                 vc->stolen_tb += mftb() - vc->preempt_tb;
255                 vc->preempt_tb = TB_NIL;
256         }
257         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262         struct kvmppc_vcore *vc = vcpu->arch.vcore;
263         unsigned long flags;
264
265         /*
266          * We can test vc->runner without taking the vcore lock,
267          * because only this task ever sets vc->runner to this
268          * vcpu, and once it is set to this vcpu, only this task
269          * ever sets it to NULL.
270          */
271         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272                 kvmppc_core_end_stolen(vc);
273
274         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276             vcpu->arch.busy_preempt != TB_NIL) {
277                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278                 vcpu->arch.busy_preempt = TB_NIL;
279         }
280         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285         struct kvmppc_vcore *vc = vcpu->arch.vcore;
286         unsigned long flags;
287
288         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289                 kvmppc_core_start_stolen(vc);
290
291         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293                 vcpu->arch.busy_preempt = mftb();
294         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299         /*
300          * Check for illegal transactional state bit combination
301          * and if we find it, force the TS field to a safe state.
302          */
303         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304                 msr &= ~MSR_TS_MASK;
305         vcpu->arch.shregs.msr = msr;
306         kvmppc_end_cede(vcpu);
307 }
308
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311         vcpu->arch.pvr = pvr;
312 }
313
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
316
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321
322         /* We can (emulate) our own architecture version and anything older */
323         if (cpu_has_feature(CPU_FTR_ARCH_300))
324                 host_pcr_bit = PCR_ARCH_300;
325         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326                 host_pcr_bit = PCR_ARCH_207;
327         else if (cpu_has_feature(CPU_FTR_ARCH_206))
328                 host_pcr_bit = PCR_ARCH_206;
329         else
330                 host_pcr_bit = PCR_ARCH_205;
331
332         /* Determine lowest PCR bit needed to run guest in given PVR level */
333         guest_pcr_bit = host_pcr_bit;
334         if (arch_compat) {
335                 switch (arch_compat) {
336                 case PVR_ARCH_205:
337                         guest_pcr_bit = PCR_ARCH_205;
338                         break;
339                 case PVR_ARCH_206:
340                 case PVR_ARCH_206p:
341                         guest_pcr_bit = PCR_ARCH_206;
342                         break;
343                 case PVR_ARCH_207:
344                         guest_pcr_bit = PCR_ARCH_207;
345                         break;
346                 case PVR_ARCH_300:
347                         guest_pcr_bit = PCR_ARCH_300;
348                         break;
349                 default:
350                         return -EINVAL;
351                 }
352         }
353
354         /* Check requested PCR bits don't exceed our capabilities */
355         if (guest_pcr_bit > host_pcr_bit)
356                 return -EINVAL;
357
358         spin_lock(&vc->lock);
359         vc->arch_compat = arch_compat;
360         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361         vc->pcr = host_pcr_bit - guest_pcr_bit;
362         spin_unlock(&vc->lock);
363
364         return 0;
365 }
366
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369         int r;
370
371         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374         for (r = 0; r < 16; ++r)
375                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376                        r, kvmppc_get_gpr(vcpu, r),
377                        r+16, kvmppc_get_gpr(vcpu, r+16));
378         pr_err("ctr = %.16lx  lr  = %.16lx\n",
379                vcpu->arch.ctr, vcpu->arch.lr);
380         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389         pr_err("fault dar = %.16lx dsisr = %.8x\n",
390                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392         for (r = 0; r < vcpu->arch.slb_max; ++r)
393                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
394                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397                vcpu->arch.last_inst);
398 }
399
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402         struct kvm_vcpu *ret;
403
404         mutex_lock(&kvm->lock);
405         ret = kvm_get_vcpu_by_id(kvm, id);
406         mutex_unlock(&kvm->lock);
407         return ret;
408 }
409
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413         vpa->yield_count = cpu_to_be32(1);
414 }
415
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417                    unsigned long addr, unsigned long len)
418 {
419         /* check address is cacheline aligned */
420         if (addr & (L1_CACHE_BYTES - 1))
421                 return -EINVAL;
422         spin_lock(&vcpu->arch.vpa_update_lock);
423         if (v->next_gpa != addr || v->len != len) {
424                 v->next_gpa = addr;
425                 v->len = addr ? len : 0;
426                 v->update_pending = 1;
427         }
428         spin_unlock(&vcpu->arch.vpa_update_lock);
429         return 0;
430 }
431
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434         u32 dummy;
435         union {
436                 __be16 hword;
437                 __be32 word;
438         } length;
439 };
440
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443         if (vpap->update_pending)
444                 return vpap->next_gpa != 0;
445         return vpap->pinned_addr != NULL;
446 }
447
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449                                        unsigned long flags,
450                                        unsigned long vcpuid, unsigned long vpa)
451 {
452         struct kvm *kvm = vcpu->kvm;
453         unsigned long len, nb;
454         void *va;
455         struct kvm_vcpu *tvcpu;
456         int err;
457         int subfunc;
458         struct kvmppc_vpa *vpap;
459
460         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461         if (!tvcpu)
462                 return H_PARAMETER;
463
464         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466             subfunc == H_VPA_REG_SLB) {
467                 /* Registering new area - address must be cache-line aligned */
468                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469                         return H_PARAMETER;
470
471                 /* convert logical addr to kernel addr and read length */
472                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473                 if (va == NULL)
474                         return H_PARAMETER;
475                 if (subfunc == H_VPA_REG_VPA)
476                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477                 else
478                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
480
481                 /* Check length */
482                 if (len > nb || len < sizeof(struct reg_vpa))
483                         return H_PARAMETER;
484         } else {
485                 vpa = 0;
486                 len = 0;
487         }
488
489         err = H_PARAMETER;
490         vpap = NULL;
491         spin_lock(&tvcpu->arch.vpa_update_lock);
492
493         switch (subfunc) {
494         case H_VPA_REG_VPA:             /* register VPA */
495                 /*
496                  * The size of our lppaca is 1kB because of the way we align
497                  * it for the guest to avoid crossing a 4kB boundary. We only
498                  * use 640 bytes of the structure though, so we should accept
499                  * clients that set a size of 640.
500                  */
501                 if (len < 640)
502                         break;
503                 vpap = &tvcpu->arch.vpa;
504                 err = 0;
505                 break;
506
507         case H_VPA_REG_DTL:             /* register DTL */
508                 if (len < sizeof(struct dtl_entry))
509                         break;
510                 len -= len % sizeof(struct dtl_entry);
511
512                 /* Check that they have previously registered a VPA */
513                 err = H_RESOURCE;
514                 if (!vpa_is_registered(&tvcpu->arch.vpa))
515                         break;
516
517                 vpap = &tvcpu->arch.dtl;
518                 err = 0;
519                 break;
520
521         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
522                 /* Check that they have previously registered a VPA */
523                 err = H_RESOURCE;
524                 if (!vpa_is_registered(&tvcpu->arch.vpa))
525                         break;
526
527                 vpap = &tvcpu->arch.slb_shadow;
528                 err = 0;
529                 break;
530
531         case H_VPA_DEREG_VPA:           /* deregister VPA */
532                 /* Check they don't still have a DTL or SLB buf registered */
533                 err = H_RESOURCE;
534                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
535                     vpa_is_registered(&tvcpu->arch.slb_shadow))
536                         break;
537
538                 vpap = &tvcpu->arch.vpa;
539                 err = 0;
540                 break;
541
542         case H_VPA_DEREG_DTL:           /* deregister DTL */
543                 vpap = &tvcpu->arch.dtl;
544                 err = 0;
545                 break;
546
547         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
548                 vpap = &tvcpu->arch.slb_shadow;
549                 err = 0;
550                 break;
551         }
552
553         if (vpap) {
554                 vpap->next_gpa = vpa;
555                 vpap->len = len;
556                 vpap->update_pending = 1;
557         }
558
559         spin_unlock(&tvcpu->arch.vpa_update_lock);
560
561         return err;
562 }
563
564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
565 {
566         struct kvm *kvm = vcpu->kvm;
567         void *va;
568         unsigned long nb;
569         unsigned long gpa;
570
571         /*
572          * We need to pin the page pointed to by vpap->next_gpa,
573          * but we can't call kvmppc_pin_guest_page under the lock
574          * as it does get_user_pages() and down_read().  So we
575          * have to drop the lock, pin the page, then get the lock
576          * again and check that a new area didn't get registered
577          * in the meantime.
578          */
579         for (;;) {
580                 gpa = vpap->next_gpa;
581                 spin_unlock(&vcpu->arch.vpa_update_lock);
582                 va = NULL;
583                 nb = 0;
584                 if (gpa)
585                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
586                 spin_lock(&vcpu->arch.vpa_update_lock);
587                 if (gpa == vpap->next_gpa)
588                         break;
589                 /* sigh... unpin that one and try again */
590                 if (va)
591                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
592         }
593
594         vpap->update_pending = 0;
595         if (va && nb < vpap->len) {
596                 /*
597                  * If it's now too short, it must be that userspace
598                  * has changed the mappings underlying guest memory,
599                  * so unregister the region.
600                  */
601                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
602                 va = NULL;
603         }
604         if (vpap->pinned_addr)
605                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
606                                         vpap->dirty);
607         vpap->gpa = gpa;
608         vpap->pinned_addr = va;
609         vpap->dirty = false;
610         if (va)
611                 vpap->pinned_end = va + vpap->len;
612 }
613
614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
615 {
616         if (!(vcpu->arch.vpa.update_pending ||
617               vcpu->arch.slb_shadow.update_pending ||
618               vcpu->arch.dtl.update_pending))
619                 return;
620
621         spin_lock(&vcpu->arch.vpa_update_lock);
622         if (vcpu->arch.vpa.update_pending) {
623                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
624                 if (vcpu->arch.vpa.pinned_addr)
625                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
626         }
627         if (vcpu->arch.dtl.update_pending) {
628                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
629                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
630                 vcpu->arch.dtl_index = 0;
631         }
632         if (vcpu->arch.slb_shadow.update_pending)
633                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
634         spin_unlock(&vcpu->arch.vpa_update_lock);
635 }
636
637 /*
638  * Return the accumulated stolen time for the vcore up until `now'.
639  * The caller should hold the vcore lock.
640  */
641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
642 {
643         u64 p;
644         unsigned long flags;
645
646         spin_lock_irqsave(&vc->stoltb_lock, flags);
647         p = vc->stolen_tb;
648         if (vc->vcore_state != VCORE_INACTIVE &&
649             vc->preempt_tb != TB_NIL)
650                 p += now - vc->preempt_tb;
651         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
652         return p;
653 }
654
655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
656                                     struct kvmppc_vcore *vc)
657 {
658         struct dtl_entry *dt;
659         struct lppaca *vpa;
660         unsigned long stolen;
661         unsigned long core_stolen;
662         u64 now;
663         unsigned long flags;
664
665         dt = vcpu->arch.dtl_ptr;
666         vpa = vcpu->arch.vpa.pinned_addr;
667         now = mftb();
668         core_stolen = vcore_stolen_time(vc, now);
669         stolen = core_stolen - vcpu->arch.stolen_logged;
670         vcpu->arch.stolen_logged = core_stolen;
671         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
672         stolen += vcpu->arch.busy_stolen;
673         vcpu->arch.busy_stolen = 0;
674         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
675         if (!dt || !vpa)
676                 return;
677         memset(dt, 0, sizeof(struct dtl_entry));
678         dt->dispatch_reason = 7;
679         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
680         dt->timebase = cpu_to_be64(now + vc->tb_offset);
681         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
682         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
683         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
684         ++dt;
685         if (dt == vcpu->arch.dtl.pinned_end)
686                 dt = vcpu->arch.dtl.pinned_addr;
687         vcpu->arch.dtl_ptr = dt;
688         /* order writing *dt vs. writing vpa->dtl_idx */
689         smp_wmb();
690         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
691         vcpu->arch.dtl.dirty = true;
692 }
693
694 /* See if there is a doorbell interrupt pending for a vcpu */
695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
696 {
697         int thr;
698         struct kvmppc_vcore *vc;
699
700         if (vcpu->arch.doorbell_request)
701                 return true;
702         /*
703          * Ensure that the read of vcore->dpdes comes after the read
704          * of vcpu->doorbell_request.  This barrier matches the
705          * lwsync in book3s_hv_rmhandlers.S just before the
706          * fast_guest_return label.
707          */
708         smp_rmb();
709         vc = vcpu->arch.vcore;
710         thr = vcpu->vcpu_id - vc->first_vcpuid;
711         return !!(vc->dpdes & (1 << thr));
712 }
713
714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
715 {
716         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
717                 return true;
718         if ((!vcpu->arch.vcore->arch_compat) &&
719             cpu_has_feature(CPU_FTR_ARCH_207S))
720                 return true;
721         return false;
722 }
723
724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
725                              unsigned long resource, unsigned long value1,
726                              unsigned long value2)
727 {
728         switch (resource) {
729         case H_SET_MODE_RESOURCE_SET_CIABR:
730                 if (!kvmppc_power8_compatible(vcpu))
731                         return H_P2;
732                 if (value2)
733                         return H_P4;
734                 if (mflags)
735                         return H_UNSUPPORTED_FLAG_START;
736                 /* Guests can't breakpoint the hypervisor */
737                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
738                         return H_P3;
739                 vcpu->arch.ciabr  = value1;
740                 return H_SUCCESS;
741         case H_SET_MODE_RESOURCE_SET_DAWR:
742                 if (!kvmppc_power8_compatible(vcpu))
743                         return H_P2;
744                 if (mflags)
745                         return H_UNSUPPORTED_FLAG_START;
746                 if (value2 & DABRX_HYP)
747                         return H_P4;
748                 vcpu->arch.dawr  = value1;
749                 vcpu->arch.dawrx = value2;
750                 return H_SUCCESS;
751         default:
752                 return H_TOO_HARD;
753         }
754 }
755
756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
757 {
758         struct kvmppc_vcore *vcore = target->arch.vcore;
759
760         /*
761          * We expect to have been called by the real mode handler
762          * (kvmppc_rm_h_confer()) which would have directly returned
763          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
764          * have useful work to do and should not confer) so we don't
765          * recheck that here.
766          */
767
768         spin_lock(&vcore->lock);
769         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
770             vcore->vcore_state != VCORE_INACTIVE &&
771             vcore->runner)
772                 target = vcore->runner;
773         spin_unlock(&vcore->lock);
774
775         return kvm_vcpu_yield_to(target);
776 }
777
778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
779 {
780         int yield_count = 0;
781         struct lppaca *lppaca;
782
783         spin_lock(&vcpu->arch.vpa_update_lock);
784         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
785         if (lppaca)
786                 yield_count = be32_to_cpu(lppaca->yield_count);
787         spin_unlock(&vcpu->arch.vpa_update_lock);
788         return yield_count;
789 }
790
791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
792 {
793         unsigned long req = kvmppc_get_gpr(vcpu, 3);
794         unsigned long target, ret = H_SUCCESS;
795         int yield_count;
796         struct kvm_vcpu *tvcpu;
797         int idx, rc;
798
799         if (req <= MAX_HCALL_OPCODE &&
800             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
801                 return RESUME_HOST;
802
803         switch (req) {
804         case H_CEDE:
805                 break;
806         case H_PROD:
807                 target = kvmppc_get_gpr(vcpu, 4);
808                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
809                 if (!tvcpu) {
810                         ret = H_PARAMETER;
811                         break;
812                 }
813                 tvcpu->arch.prodded = 1;
814                 smp_mb();
815                 if (tvcpu->arch.ceded)
816                         kvmppc_fast_vcpu_kick_hv(tvcpu);
817                 break;
818         case H_CONFER:
819                 target = kvmppc_get_gpr(vcpu, 4);
820                 if (target == -1)
821                         break;
822                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
823                 if (!tvcpu) {
824                         ret = H_PARAMETER;
825                         break;
826                 }
827                 yield_count = kvmppc_get_gpr(vcpu, 5);
828                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
829                         break;
830                 kvm_arch_vcpu_yield_to(tvcpu);
831                 break;
832         case H_REGISTER_VPA:
833                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
834                                         kvmppc_get_gpr(vcpu, 5),
835                                         kvmppc_get_gpr(vcpu, 6));
836                 break;
837         case H_RTAS:
838                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
839                         return RESUME_HOST;
840
841                 idx = srcu_read_lock(&vcpu->kvm->srcu);
842                 rc = kvmppc_rtas_hcall(vcpu);
843                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
844
845                 if (rc == -ENOENT)
846                         return RESUME_HOST;
847                 else if (rc == 0)
848                         break;
849
850                 /* Send the error out to userspace via KVM_RUN */
851                 return rc;
852         case H_LOGICAL_CI_LOAD:
853                 ret = kvmppc_h_logical_ci_load(vcpu);
854                 if (ret == H_TOO_HARD)
855                         return RESUME_HOST;
856                 break;
857         case H_LOGICAL_CI_STORE:
858                 ret = kvmppc_h_logical_ci_store(vcpu);
859                 if (ret == H_TOO_HARD)
860                         return RESUME_HOST;
861                 break;
862         case H_SET_MODE:
863                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
864                                         kvmppc_get_gpr(vcpu, 5),
865                                         kvmppc_get_gpr(vcpu, 6),
866                                         kvmppc_get_gpr(vcpu, 7));
867                 if (ret == H_TOO_HARD)
868                         return RESUME_HOST;
869                 break;
870         case H_XIRR:
871         case H_CPPR:
872         case H_EOI:
873         case H_IPI:
874         case H_IPOLL:
875         case H_XIRR_X:
876                 if (kvmppc_xics_enabled(vcpu)) {
877                         if (xive_enabled()) {
878                                 ret = H_NOT_AVAILABLE;
879                                 return RESUME_GUEST;
880                         }
881                         ret = kvmppc_xics_hcall(vcpu, req);
882                         break;
883                 }
884                 return RESUME_HOST;
885         case H_PUT_TCE:
886                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
887                                                 kvmppc_get_gpr(vcpu, 5),
888                                                 kvmppc_get_gpr(vcpu, 6));
889                 if (ret == H_TOO_HARD)
890                         return RESUME_HOST;
891                 break;
892         case H_PUT_TCE_INDIRECT:
893                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
894                                                 kvmppc_get_gpr(vcpu, 5),
895                                                 kvmppc_get_gpr(vcpu, 6),
896                                                 kvmppc_get_gpr(vcpu, 7));
897                 if (ret == H_TOO_HARD)
898                         return RESUME_HOST;
899                 break;
900         case H_STUFF_TCE:
901                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
902                                                 kvmppc_get_gpr(vcpu, 5),
903                                                 kvmppc_get_gpr(vcpu, 6),
904                                                 kvmppc_get_gpr(vcpu, 7));
905                 if (ret == H_TOO_HARD)
906                         return RESUME_HOST;
907                 break;
908         default:
909                 return RESUME_HOST;
910         }
911         kvmppc_set_gpr(vcpu, 3, ret);
912         vcpu->arch.hcall_needed = 0;
913         return RESUME_GUEST;
914 }
915
916 static int kvmppc_hcall_impl_hv(unsigned long cmd)
917 {
918         switch (cmd) {
919         case H_CEDE:
920         case H_PROD:
921         case H_CONFER:
922         case H_REGISTER_VPA:
923         case H_SET_MODE:
924         case H_LOGICAL_CI_LOAD:
925         case H_LOGICAL_CI_STORE:
926 #ifdef CONFIG_KVM_XICS
927         case H_XIRR:
928         case H_CPPR:
929         case H_EOI:
930         case H_IPI:
931         case H_IPOLL:
932         case H_XIRR_X:
933 #endif
934                 return 1;
935         }
936
937         /* See if it's in the real-mode table */
938         return kvmppc_hcall_impl_hv_realmode(cmd);
939 }
940
941 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
942                                         struct kvm_vcpu *vcpu)
943 {
944         u32 last_inst;
945
946         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
947                                         EMULATE_DONE) {
948                 /*
949                  * Fetch failed, so return to guest and
950                  * try executing it again.
951                  */
952                 return RESUME_GUEST;
953         }
954
955         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
956                 run->exit_reason = KVM_EXIT_DEBUG;
957                 run->debug.arch.address = kvmppc_get_pc(vcpu);
958                 return RESUME_HOST;
959         } else {
960                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
961                 return RESUME_GUEST;
962         }
963 }
964
965 static void do_nothing(void *x)
966 {
967 }
968
969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
970 {
971         int thr, cpu, pcpu, nthreads;
972         struct kvm_vcpu *v;
973         unsigned long dpdes;
974
975         nthreads = vcpu->kvm->arch.emul_smt_mode;
976         dpdes = 0;
977         cpu = vcpu->vcpu_id & ~(nthreads - 1);
978         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
979                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
980                 if (!v)
981                         continue;
982                 /*
983                  * If the vcpu is currently running on a physical cpu thread,
984                  * interrupt it in order to pull it out of the guest briefly,
985                  * which will update its vcore->dpdes value.
986                  */
987                 pcpu = READ_ONCE(v->cpu);
988                 if (pcpu >= 0)
989                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
990                 if (kvmppc_doorbell_pending(v))
991                         dpdes |= 1 << thr;
992         }
993         return dpdes;
994 }
995
996 /*
997  * On POWER9, emulate doorbell-related instructions in order to
998  * give the guest the illusion of running on a multi-threaded core.
999  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000  * and mfspr DPDES.
1001  */
1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003 {
1004         u32 inst, rb, thr;
1005         unsigned long arg;
1006         struct kvm *kvm = vcpu->kvm;
1007         struct kvm_vcpu *tvcpu;
1008
1009         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1010                 return EMULATE_FAIL;
1011         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1012                 return RESUME_GUEST;
1013         if (get_op(inst) != 31)
1014                 return EMULATE_FAIL;
1015         rb = get_rb(inst);
1016         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1017         switch (get_xop(inst)) {
1018         case OP_31_XOP_MSGSNDP:
1019                 arg = kvmppc_get_gpr(vcpu, rb);
1020                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1021                         break;
1022                 arg &= 0x3f;
1023                 if (arg >= kvm->arch.emul_smt_mode)
1024                         break;
1025                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1026                 if (!tvcpu)
1027                         break;
1028                 if (!tvcpu->arch.doorbell_request) {
1029                         tvcpu->arch.doorbell_request = 1;
1030                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1031                 }
1032                 break;
1033         case OP_31_XOP_MSGCLRP:
1034                 arg = kvmppc_get_gpr(vcpu, rb);
1035                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1036                         break;
1037                 vcpu->arch.vcore->dpdes = 0;
1038                 vcpu->arch.doorbell_request = 0;
1039                 break;
1040         case OP_31_XOP_MFSPR:
1041                 switch (get_sprn(inst)) {
1042                 case SPRN_TIR:
1043                         arg = thr;
1044                         break;
1045                 case SPRN_DPDES:
1046                         arg = kvmppc_read_dpdes(vcpu);
1047                         break;
1048                 default:
1049                         return EMULATE_FAIL;
1050                 }
1051                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1052                 break;
1053         default:
1054                 return EMULATE_FAIL;
1055         }
1056         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1057         return RESUME_GUEST;
1058 }
1059
1060 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1061                                  struct task_struct *tsk)
1062 {
1063         int r = RESUME_HOST;
1064
1065         vcpu->stat.sum_exits++;
1066
1067         /*
1068          * This can happen if an interrupt occurs in the last stages
1069          * of guest entry or the first stages of guest exit (i.e. after
1070          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1071          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1072          * That can happen due to a bug, or due to a machine check
1073          * occurring at just the wrong time.
1074          */
1075         if (vcpu->arch.shregs.msr & MSR_HV) {
1076                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1077                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1078                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1079                         vcpu->arch.shregs.msr);
1080                 kvmppc_dump_regs(vcpu);
1081                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1082                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1083                 return RESUME_HOST;
1084         }
1085         run->exit_reason = KVM_EXIT_UNKNOWN;
1086         run->ready_for_interrupt_injection = 1;
1087         switch (vcpu->arch.trap) {
1088         /* We're good on these - the host merely wanted to get our attention */
1089         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1090                 vcpu->stat.dec_exits++;
1091                 r = RESUME_GUEST;
1092                 break;
1093         case BOOK3S_INTERRUPT_EXTERNAL:
1094         case BOOK3S_INTERRUPT_H_DOORBELL:
1095         case BOOK3S_INTERRUPT_H_VIRT:
1096                 vcpu->stat.ext_intr_exits++;
1097                 r = RESUME_GUEST;
1098                 break;
1099         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1100         case BOOK3S_INTERRUPT_HMI:
1101         case BOOK3S_INTERRUPT_PERFMON:
1102         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1103                 r = RESUME_GUEST;
1104                 break;
1105         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1106                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1107                 run->exit_reason = KVM_EXIT_NMI;
1108                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1109                 /* Clear out the old NMI status from run->flags */
1110                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1111                 /* Now set the NMI status */
1112                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1113                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1114                 else
1115                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1116
1117                 r = RESUME_HOST;
1118                 /* Print the MCE event to host console. */
1119                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1120                 break;
1121         case BOOK3S_INTERRUPT_PROGRAM:
1122         {
1123                 ulong flags;
1124                 /*
1125                  * Normally program interrupts are delivered directly
1126                  * to the guest by the hardware, but we can get here
1127                  * as a result of a hypervisor emulation interrupt
1128                  * (e40) getting turned into a 700 by BML RTAS.
1129                  */
1130                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1131                 kvmppc_core_queue_program(vcpu, flags);
1132                 r = RESUME_GUEST;
1133                 break;
1134         }
1135         case BOOK3S_INTERRUPT_SYSCALL:
1136         {
1137                 /* hcall - punt to userspace */
1138                 int i;
1139
1140                 /* hypercall with MSR_PR has already been handled in rmode,
1141                  * and never reaches here.
1142                  */
1143
1144                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1145                 for (i = 0; i < 9; ++i)
1146                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1147                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1148                 vcpu->arch.hcall_needed = 1;
1149                 r = RESUME_HOST;
1150                 break;
1151         }
1152         /*
1153          * We get these next two if the guest accesses a page which it thinks
1154          * it has mapped but which is not actually present, either because
1155          * it is for an emulated I/O device or because the corresonding
1156          * host page has been paged out.  Any other HDSI/HISI interrupts
1157          * have been handled already.
1158          */
1159         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1160                 r = RESUME_PAGE_FAULT;
1161                 break;
1162         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1163                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1164                 vcpu->arch.fault_dsisr = 0;
1165                 r = RESUME_PAGE_FAULT;
1166                 break;
1167         /*
1168          * This occurs if the guest executes an illegal instruction.
1169          * If the guest debug is disabled, generate a program interrupt
1170          * to the guest. If guest debug is enabled, we need to check
1171          * whether the instruction is a software breakpoint instruction.
1172          * Accordingly return to Guest or Host.
1173          */
1174         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1175                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1176                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1177                                 swab32(vcpu->arch.emul_inst) :
1178                                 vcpu->arch.emul_inst;
1179                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1180                         r = kvmppc_emulate_debug_inst(run, vcpu);
1181                 } else {
1182                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1183                         r = RESUME_GUEST;
1184                 }
1185                 break;
1186         /*
1187          * This occurs if the guest (kernel or userspace), does something that
1188          * is prohibited by HFSCR.
1189          * On POWER9, this could be a doorbell instruction that we need
1190          * to emulate.
1191          * Otherwise, we just generate a program interrupt to the guest.
1192          */
1193         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1194                 r = EMULATE_FAIL;
1195                 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1196                         r = kvmppc_emulate_doorbell_instr(vcpu);
1197                 if (r == EMULATE_FAIL) {
1198                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1199                         r = RESUME_GUEST;
1200                 }
1201                 break;
1202         case BOOK3S_INTERRUPT_HV_RM_HARD:
1203                 r = RESUME_PASSTHROUGH;
1204                 break;
1205         default:
1206                 kvmppc_dump_regs(vcpu);
1207                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1208                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1209                         vcpu->arch.shregs.msr);
1210                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1211                 r = RESUME_HOST;
1212                 break;
1213         }
1214
1215         return r;
1216 }
1217
1218 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1219                                             struct kvm_sregs *sregs)
1220 {
1221         int i;
1222
1223         memset(sregs, 0, sizeof(struct kvm_sregs));
1224         sregs->pvr = vcpu->arch.pvr;
1225         for (i = 0; i < vcpu->arch.slb_max; i++) {
1226                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1227                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1228         }
1229
1230         return 0;
1231 }
1232
1233 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1234                                             struct kvm_sregs *sregs)
1235 {
1236         int i, j;
1237
1238         /* Only accept the same PVR as the host's, since we can't spoof it */
1239         if (sregs->pvr != vcpu->arch.pvr)
1240                 return -EINVAL;
1241
1242         j = 0;
1243         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1244                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1245                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1246                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1247                         ++j;
1248                 }
1249         }
1250         vcpu->arch.slb_max = j;
1251
1252         return 0;
1253 }
1254
1255 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1256                 bool preserve_top32)
1257 {
1258         struct kvm *kvm = vcpu->kvm;
1259         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1260         u64 mask;
1261
1262         mutex_lock(&kvm->lock);
1263         spin_lock(&vc->lock);
1264         /*
1265          * If ILE (interrupt little-endian) has changed, update the
1266          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1267          */
1268         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1269                 struct kvm_vcpu *vcpu;
1270                 int i;
1271
1272                 kvm_for_each_vcpu(i, vcpu, kvm) {
1273                         if (vcpu->arch.vcore != vc)
1274                                 continue;
1275                         if (new_lpcr & LPCR_ILE)
1276                                 vcpu->arch.intr_msr |= MSR_LE;
1277                         else
1278                                 vcpu->arch.intr_msr &= ~MSR_LE;
1279                 }
1280         }
1281
1282         /*
1283          * Userspace can only modify DPFD (default prefetch depth),
1284          * ILE (interrupt little-endian) and TC (translation control).
1285          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1286          */
1287         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1288         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1289                 mask |= LPCR_AIL;
1290         /*
1291          * On POWER9, allow userspace to enable large decrementer for the
1292          * guest, whether or not the host has it enabled.
1293          */
1294         if (cpu_has_feature(CPU_FTR_ARCH_300))
1295                 mask |= LPCR_LD;
1296
1297         /* Broken 32-bit version of LPCR must not clear top bits */
1298         if (preserve_top32)
1299                 mask &= 0xFFFFFFFF;
1300         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1301         spin_unlock(&vc->lock);
1302         mutex_unlock(&kvm->lock);
1303 }
1304
1305 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1306                                  union kvmppc_one_reg *val)
1307 {
1308         int r = 0;
1309         long int i;
1310
1311         switch (id) {
1312         case KVM_REG_PPC_DEBUG_INST:
1313                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1314                 break;
1315         case KVM_REG_PPC_HIOR:
1316                 *val = get_reg_val(id, 0);
1317                 break;
1318         case KVM_REG_PPC_DABR:
1319                 *val = get_reg_val(id, vcpu->arch.dabr);
1320                 break;
1321         case KVM_REG_PPC_DABRX:
1322                 *val = get_reg_val(id, vcpu->arch.dabrx);
1323                 break;
1324         case KVM_REG_PPC_DSCR:
1325                 *val = get_reg_val(id, vcpu->arch.dscr);
1326                 break;
1327         case KVM_REG_PPC_PURR:
1328                 *val = get_reg_val(id, vcpu->arch.purr);
1329                 break;
1330         case KVM_REG_PPC_SPURR:
1331                 *val = get_reg_val(id, vcpu->arch.spurr);
1332                 break;
1333         case KVM_REG_PPC_AMR:
1334                 *val = get_reg_val(id, vcpu->arch.amr);
1335                 break;
1336         case KVM_REG_PPC_UAMOR:
1337                 *val = get_reg_val(id, vcpu->arch.uamor);
1338                 break;
1339         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1340                 i = id - KVM_REG_PPC_MMCR0;
1341                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1342                 break;
1343         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1344                 i = id - KVM_REG_PPC_PMC1;
1345                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1346                 break;
1347         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1348                 i = id - KVM_REG_PPC_SPMC1;
1349                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1350                 break;
1351         case KVM_REG_PPC_SIAR:
1352                 *val = get_reg_val(id, vcpu->arch.siar);
1353                 break;
1354         case KVM_REG_PPC_SDAR:
1355                 *val = get_reg_val(id, vcpu->arch.sdar);
1356                 break;
1357         case KVM_REG_PPC_SIER:
1358                 *val = get_reg_val(id, vcpu->arch.sier);
1359                 break;
1360         case KVM_REG_PPC_IAMR:
1361                 *val = get_reg_val(id, vcpu->arch.iamr);
1362                 break;
1363         case KVM_REG_PPC_PSPB:
1364                 *val = get_reg_val(id, vcpu->arch.pspb);
1365                 break;
1366         case KVM_REG_PPC_DPDES:
1367                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1368                 break;
1369         case KVM_REG_PPC_VTB:
1370                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1371                 break;
1372         case KVM_REG_PPC_DAWR:
1373                 *val = get_reg_val(id, vcpu->arch.dawr);
1374                 break;
1375         case KVM_REG_PPC_DAWRX:
1376                 *val = get_reg_val(id, vcpu->arch.dawrx);
1377                 break;
1378         case KVM_REG_PPC_CIABR:
1379                 *val = get_reg_val(id, vcpu->arch.ciabr);
1380                 break;
1381         case KVM_REG_PPC_CSIGR:
1382                 *val = get_reg_val(id, vcpu->arch.csigr);
1383                 break;
1384         case KVM_REG_PPC_TACR:
1385                 *val = get_reg_val(id, vcpu->arch.tacr);
1386                 break;
1387         case KVM_REG_PPC_TCSCR:
1388                 *val = get_reg_val(id, vcpu->arch.tcscr);
1389                 break;
1390         case KVM_REG_PPC_PID:
1391                 *val = get_reg_val(id, vcpu->arch.pid);
1392                 break;
1393         case KVM_REG_PPC_ACOP:
1394                 *val = get_reg_val(id, vcpu->arch.acop);
1395                 break;
1396         case KVM_REG_PPC_WORT:
1397                 *val = get_reg_val(id, vcpu->arch.wort);
1398                 break;
1399         case KVM_REG_PPC_TIDR:
1400                 *val = get_reg_val(id, vcpu->arch.tid);
1401                 break;
1402         case KVM_REG_PPC_PSSCR:
1403                 *val = get_reg_val(id, vcpu->arch.psscr);
1404                 break;
1405         case KVM_REG_PPC_VPA_ADDR:
1406                 spin_lock(&vcpu->arch.vpa_update_lock);
1407                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1408                 spin_unlock(&vcpu->arch.vpa_update_lock);
1409                 break;
1410         case KVM_REG_PPC_VPA_SLB:
1411                 spin_lock(&vcpu->arch.vpa_update_lock);
1412                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1413                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1414                 spin_unlock(&vcpu->arch.vpa_update_lock);
1415                 break;
1416         case KVM_REG_PPC_VPA_DTL:
1417                 spin_lock(&vcpu->arch.vpa_update_lock);
1418                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1419                 val->vpaval.length = vcpu->arch.dtl.len;
1420                 spin_unlock(&vcpu->arch.vpa_update_lock);
1421                 break;
1422         case KVM_REG_PPC_TB_OFFSET:
1423                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1424                 break;
1425         case KVM_REG_PPC_LPCR:
1426         case KVM_REG_PPC_LPCR_64:
1427                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1428                 break;
1429         case KVM_REG_PPC_PPR:
1430                 *val = get_reg_val(id, vcpu->arch.ppr);
1431                 break;
1432 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1433         case KVM_REG_PPC_TFHAR:
1434                 *val = get_reg_val(id, vcpu->arch.tfhar);
1435                 break;
1436         case KVM_REG_PPC_TFIAR:
1437                 *val = get_reg_val(id, vcpu->arch.tfiar);
1438                 break;
1439         case KVM_REG_PPC_TEXASR:
1440                 *val = get_reg_val(id, vcpu->arch.texasr);
1441                 break;
1442         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1443                 i = id - KVM_REG_PPC_TM_GPR0;
1444                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1445                 break;
1446         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1447         {
1448                 int j;
1449                 i = id - KVM_REG_PPC_TM_VSR0;
1450                 if (i < 32)
1451                         for (j = 0; j < TS_FPRWIDTH; j++)
1452                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1453                 else {
1454                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1455                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1456                         else
1457                                 r = -ENXIO;
1458                 }
1459                 break;
1460         }
1461         case KVM_REG_PPC_TM_CR:
1462                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1463                 break;
1464         case KVM_REG_PPC_TM_XER:
1465                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1466                 break;
1467         case KVM_REG_PPC_TM_LR:
1468                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1469                 break;
1470         case KVM_REG_PPC_TM_CTR:
1471                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1472                 break;
1473         case KVM_REG_PPC_TM_FPSCR:
1474                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1475                 break;
1476         case KVM_REG_PPC_TM_AMR:
1477                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1478                 break;
1479         case KVM_REG_PPC_TM_PPR:
1480                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1481                 break;
1482         case KVM_REG_PPC_TM_VRSAVE:
1483                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1484                 break;
1485         case KVM_REG_PPC_TM_VSCR:
1486                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1487                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1488                 else
1489                         r = -ENXIO;
1490                 break;
1491         case KVM_REG_PPC_TM_DSCR:
1492                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1493                 break;
1494         case KVM_REG_PPC_TM_TAR:
1495                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1496                 break;
1497 #endif
1498         case KVM_REG_PPC_ARCH_COMPAT:
1499                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1500                 break;
1501         default:
1502                 r = -EINVAL;
1503                 break;
1504         }
1505
1506         return r;
1507 }
1508
1509 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1510                                  union kvmppc_one_reg *val)
1511 {
1512         int r = 0;
1513         long int i;
1514         unsigned long addr, len;
1515
1516         switch (id) {
1517         case KVM_REG_PPC_HIOR:
1518                 /* Only allow this to be set to zero */
1519                 if (set_reg_val(id, *val))
1520                         r = -EINVAL;
1521                 break;
1522         case KVM_REG_PPC_DABR:
1523                 vcpu->arch.dabr = set_reg_val(id, *val);
1524                 break;
1525         case KVM_REG_PPC_DABRX:
1526                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1527                 break;
1528         case KVM_REG_PPC_DSCR:
1529                 vcpu->arch.dscr = set_reg_val(id, *val);
1530                 break;
1531         case KVM_REG_PPC_PURR:
1532                 vcpu->arch.purr = set_reg_val(id, *val);
1533                 break;
1534         case KVM_REG_PPC_SPURR:
1535                 vcpu->arch.spurr = set_reg_val(id, *val);
1536                 break;
1537         case KVM_REG_PPC_AMR:
1538                 vcpu->arch.amr = set_reg_val(id, *val);
1539                 break;
1540         case KVM_REG_PPC_UAMOR:
1541                 vcpu->arch.uamor = set_reg_val(id, *val);
1542                 break;
1543         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1544                 i = id - KVM_REG_PPC_MMCR0;
1545                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1546                 break;
1547         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1548                 i = id - KVM_REG_PPC_PMC1;
1549                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1550                 break;
1551         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1552                 i = id - KVM_REG_PPC_SPMC1;
1553                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1554                 break;
1555         case KVM_REG_PPC_SIAR:
1556                 vcpu->arch.siar = set_reg_val(id, *val);
1557                 break;
1558         case KVM_REG_PPC_SDAR:
1559                 vcpu->arch.sdar = set_reg_val(id, *val);
1560                 break;
1561         case KVM_REG_PPC_SIER:
1562                 vcpu->arch.sier = set_reg_val(id, *val);
1563                 break;
1564         case KVM_REG_PPC_IAMR:
1565                 vcpu->arch.iamr = set_reg_val(id, *val);
1566                 break;
1567         case KVM_REG_PPC_PSPB:
1568                 vcpu->arch.pspb = set_reg_val(id, *val);
1569                 break;
1570         case KVM_REG_PPC_DPDES:
1571                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1572                 break;
1573         case KVM_REG_PPC_VTB:
1574                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1575                 break;
1576         case KVM_REG_PPC_DAWR:
1577                 vcpu->arch.dawr = set_reg_val(id, *val);
1578                 break;
1579         case KVM_REG_PPC_DAWRX:
1580                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1581                 break;
1582         case KVM_REG_PPC_CIABR:
1583                 vcpu->arch.ciabr = set_reg_val(id, *val);
1584                 /* Don't allow setting breakpoints in hypervisor code */
1585                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1586                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1587                 break;
1588         case KVM_REG_PPC_CSIGR:
1589                 vcpu->arch.csigr = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_TACR:
1592                 vcpu->arch.tacr = set_reg_val(id, *val);
1593                 break;
1594         case KVM_REG_PPC_TCSCR:
1595                 vcpu->arch.tcscr = set_reg_val(id, *val);
1596                 break;
1597         case KVM_REG_PPC_PID:
1598                 vcpu->arch.pid = set_reg_val(id, *val);
1599                 break;
1600         case KVM_REG_PPC_ACOP:
1601                 vcpu->arch.acop = set_reg_val(id, *val);
1602                 break;
1603         case KVM_REG_PPC_WORT:
1604                 vcpu->arch.wort = set_reg_val(id, *val);
1605                 break;
1606         case KVM_REG_PPC_TIDR:
1607                 vcpu->arch.tid = set_reg_val(id, *val);
1608                 break;
1609         case KVM_REG_PPC_PSSCR:
1610                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1611                 break;
1612         case KVM_REG_PPC_VPA_ADDR:
1613                 addr = set_reg_val(id, *val);
1614                 r = -EINVAL;
1615                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1616                               vcpu->arch.dtl.next_gpa))
1617                         break;
1618                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1619                 break;
1620         case KVM_REG_PPC_VPA_SLB:
1621                 addr = val->vpaval.addr;
1622                 len = val->vpaval.length;
1623                 r = -EINVAL;
1624                 if (addr && !vcpu->arch.vpa.next_gpa)
1625                         break;
1626                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1627                 break;
1628         case KVM_REG_PPC_VPA_DTL:
1629                 addr = val->vpaval.addr;
1630                 len = val->vpaval.length;
1631                 r = -EINVAL;
1632                 if (addr && (len < sizeof(struct dtl_entry) ||
1633                              !vcpu->arch.vpa.next_gpa))
1634                         break;
1635                 len -= len % sizeof(struct dtl_entry);
1636                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1637                 break;
1638         case KVM_REG_PPC_TB_OFFSET:
1639                 /*
1640                  * POWER9 DD1 has an erratum where writing TBU40 causes
1641                  * the timebase to lose ticks.  So we don't let the
1642                  * timebase offset be changed on P9 DD1.  (It is
1643                  * initialized to zero.)
1644                  */
1645                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1646                         break;
1647                 /* round up to multiple of 2^24 */
1648                 vcpu->arch.vcore->tb_offset =
1649                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1650                 break;
1651         case KVM_REG_PPC_LPCR:
1652                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1653                 break;
1654         case KVM_REG_PPC_LPCR_64:
1655                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1656                 break;
1657         case KVM_REG_PPC_PPR:
1658                 vcpu->arch.ppr = set_reg_val(id, *val);
1659                 break;
1660 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1661         case KVM_REG_PPC_TFHAR:
1662                 vcpu->arch.tfhar = set_reg_val(id, *val);
1663                 break;
1664         case KVM_REG_PPC_TFIAR:
1665                 vcpu->arch.tfiar = set_reg_val(id, *val);
1666                 break;
1667         case KVM_REG_PPC_TEXASR:
1668                 vcpu->arch.texasr = set_reg_val(id, *val);
1669                 break;
1670         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1671                 i = id - KVM_REG_PPC_TM_GPR0;
1672                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1673                 break;
1674         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1675         {
1676                 int j;
1677                 i = id - KVM_REG_PPC_TM_VSR0;
1678                 if (i < 32)
1679                         for (j = 0; j < TS_FPRWIDTH; j++)
1680                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1681                 else
1682                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1683                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1684                         else
1685                                 r = -ENXIO;
1686                 break;
1687         }
1688         case KVM_REG_PPC_TM_CR:
1689                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1690                 break;
1691         case KVM_REG_PPC_TM_XER:
1692                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1693                 break;
1694         case KVM_REG_PPC_TM_LR:
1695                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1696                 break;
1697         case KVM_REG_PPC_TM_CTR:
1698                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1699                 break;
1700         case KVM_REG_PPC_TM_FPSCR:
1701                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1702                 break;
1703         case KVM_REG_PPC_TM_AMR:
1704                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1705                 break;
1706         case KVM_REG_PPC_TM_PPR:
1707                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1708                 break;
1709         case KVM_REG_PPC_TM_VRSAVE:
1710                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1711                 break;
1712         case KVM_REG_PPC_TM_VSCR:
1713                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1714                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1715                 else
1716                         r = - ENXIO;
1717                 break;
1718         case KVM_REG_PPC_TM_DSCR:
1719                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1720                 break;
1721         case KVM_REG_PPC_TM_TAR:
1722                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1723                 break;
1724 #endif
1725         case KVM_REG_PPC_ARCH_COMPAT:
1726                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1727                 break;
1728         default:
1729                 r = -EINVAL;
1730                 break;
1731         }
1732
1733         return r;
1734 }
1735
1736 /*
1737  * On POWER9, threads are independent and can be in different partitions.
1738  * Therefore we consider each thread to be a subcore.
1739  * There is a restriction that all threads have to be in the same
1740  * MMU mode (radix or HPT), unfortunately, but since we only support
1741  * HPT guests on a HPT host so far, that isn't an impediment yet.
1742  */
1743 static int threads_per_vcore(struct kvm *kvm)
1744 {
1745         if (kvm->arch.threads_indep)
1746                 return 1;
1747         return threads_per_subcore;
1748 }
1749
1750 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1751 {
1752         struct kvmppc_vcore *vcore;
1753
1754         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1755
1756         if (vcore == NULL)
1757                 return NULL;
1758
1759         spin_lock_init(&vcore->lock);
1760         spin_lock_init(&vcore->stoltb_lock);
1761         init_swait_queue_head(&vcore->wq);
1762         vcore->preempt_tb = TB_NIL;
1763         vcore->lpcr = kvm->arch.lpcr;
1764         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1765         vcore->kvm = kvm;
1766         INIT_LIST_HEAD(&vcore->preempt_list);
1767
1768         return vcore;
1769 }
1770
1771 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1772 static struct debugfs_timings_element {
1773         const char *name;
1774         size_t offset;
1775 } timings[] = {
1776         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1777         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1778         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1779         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1780         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1781 };
1782
1783 #define N_TIMINGS       (ARRAY_SIZE(timings))
1784
1785 struct debugfs_timings_state {
1786         struct kvm_vcpu *vcpu;
1787         unsigned int    buflen;
1788         char            buf[N_TIMINGS * 100];
1789 };
1790
1791 static int debugfs_timings_open(struct inode *inode, struct file *file)
1792 {
1793         struct kvm_vcpu *vcpu = inode->i_private;
1794         struct debugfs_timings_state *p;
1795
1796         p = kzalloc(sizeof(*p), GFP_KERNEL);
1797         if (!p)
1798                 return -ENOMEM;
1799
1800         kvm_get_kvm(vcpu->kvm);
1801         p->vcpu = vcpu;
1802         file->private_data = p;
1803
1804         return nonseekable_open(inode, file);
1805 }
1806
1807 static int debugfs_timings_release(struct inode *inode, struct file *file)
1808 {
1809         struct debugfs_timings_state *p = file->private_data;
1810
1811         kvm_put_kvm(p->vcpu->kvm);
1812         kfree(p);
1813         return 0;
1814 }
1815
1816 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1817                                     size_t len, loff_t *ppos)
1818 {
1819         struct debugfs_timings_state *p = file->private_data;
1820         struct kvm_vcpu *vcpu = p->vcpu;
1821         char *s, *buf_end;
1822         struct kvmhv_tb_accumulator tb;
1823         u64 count;
1824         loff_t pos;
1825         ssize_t n;
1826         int i, loops;
1827         bool ok;
1828
1829         if (!p->buflen) {
1830                 s = p->buf;
1831                 buf_end = s + sizeof(p->buf);
1832                 for (i = 0; i < N_TIMINGS; ++i) {
1833                         struct kvmhv_tb_accumulator *acc;
1834
1835                         acc = (struct kvmhv_tb_accumulator *)
1836                                 ((unsigned long)vcpu + timings[i].offset);
1837                         ok = false;
1838                         for (loops = 0; loops < 1000; ++loops) {
1839                                 count = acc->seqcount;
1840                                 if (!(count & 1)) {
1841                                         smp_rmb();
1842                                         tb = *acc;
1843                                         smp_rmb();
1844                                         if (count == acc->seqcount) {
1845                                                 ok = true;
1846                                                 break;
1847                                         }
1848                                 }
1849                                 udelay(1);
1850                         }
1851                         if (!ok)
1852                                 snprintf(s, buf_end - s, "%s: stuck\n",
1853                                         timings[i].name);
1854                         else
1855                                 snprintf(s, buf_end - s,
1856                                         "%s: %llu %llu %llu %llu\n",
1857                                         timings[i].name, count / 2,
1858                                         tb_to_ns(tb.tb_total),
1859                                         tb_to_ns(tb.tb_min),
1860                                         tb_to_ns(tb.tb_max));
1861                         s += strlen(s);
1862                 }
1863                 p->buflen = s - p->buf;
1864         }
1865
1866         pos = *ppos;
1867         if (pos >= p->buflen)
1868                 return 0;
1869         if (len > p->buflen - pos)
1870                 len = p->buflen - pos;
1871         n = copy_to_user(buf, p->buf + pos, len);
1872         if (n) {
1873                 if (n == len)
1874                         return -EFAULT;
1875                 len -= n;
1876         }
1877         *ppos = pos + len;
1878         return len;
1879 }
1880
1881 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1882                                      size_t len, loff_t *ppos)
1883 {
1884         return -EACCES;
1885 }
1886
1887 static const struct file_operations debugfs_timings_ops = {
1888         .owner   = THIS_MODULE,
1889         .open    = debugfs_timings_open,
1890         .release = debugfs_timings_release,
1891         .read    = debugfs_timings_read,
1892         .write   = debugfs_timings_write,
1893         .llseek  = generic_file_llseek,
1894 };
1895
1896 /* Create a debugfs directory for the vcpu */
1897 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1898 {
1899         char buf[16];
1900         struct kvm *kvm = vcpu->kvm;
1901
1902         snprintf(buf, sizeof(buf), "vcpu%u", id);
1903         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1904                 return;
1905         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1906         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1907                 return;
1908         vcpu->arch.debugfs_timings =
1909                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1910                                     vcpu, &debugfs_timings_ops);
1911 }
1912
1913 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1914 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1915 {
1916 }
1917 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1918
1919 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1920                                                    unsigned int id)
1921 {
1922         struct kvm_vcpu *vcpu;
1923         int err;
1924         int core;
1925         struct kvmppc_vcore *vcore;
1926
1927         err = -ENOMEM;
1928         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1929         if (!vcpu)
1930                 goto out;
1931
1932         err = kvm_vcpu_init(vcpu, kvm, id);
1933         if (err)
1934                 goto free_vcpu;
1935
1936         vcpu->arch.shared = &vcpu->arch.shregs;
1937 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1938         /*
1939          * The shared struct is never shared on HV,
1940          * so we can always use host endianness
1941          */
1942 #ifdef __BIG_ENDIAN__
1943         vcpu->arch.shared_big_endian = true;
1944 #else
1945         vcpu->arch.shared_big_endian = false;
1946 #endif
1947 #endif
1948         vcpu->arch.mmcr[0] = MMCR0_FC;
1949         vcpu->arch.ctrl = CTRL_RUNLATCH;
1950         /* default to host PVR, since we can't spoof it */
1951         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1952         spin_lock_init(&vcpu->arch.vpa_update_lock);
1953         spin_lock_init(&vcpu->arch.tbacct_lock);
1954         vcpu->arch.busy_preempt = TB_NIL;
1955         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1956
1957         /*
1958          * Set the default HFSCR for the guest from the host value.
1959          * This value is only used on POWER9.
1960          * On POWER9 DD1, TM doesn't work, so we make sure to
1961          * prevent the guest from using it.
1962          * On POWER9, we want to virtualize the doorbell facility, so we
1963          * turn off the HFSCR bit, which causes those instructions to trap.
1964          */
1965         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1966         if (!cpu_has_feature(CPU_FTR_TM))
1967                 vcpu->arch.hfscr &= ~HFSCR_TM;
1968         if (cpu_has_feature(CPU_FTR_ARCH_300))
1969                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1970
1971         kvmppc_mmu_book3s_hv_init(vcpu);
1972
1973         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1974
1975         init_waitqueue_head(&vcpu->arch.cpu_run);
1976
1977         mutex_lock(&kvm->lock);
1978         vcore = NULL;
1979         err = -EINVAL;
1980         core = id / kvm->arch.smt_mode;
1981         if (core < KVM_MAX_VCORES) {
1982                 vcore = kvm->arch.vcores[core];
1983                 if (!vcore) {
1984                         err = -ENOMEM;
1985                         vcore = kvmppc_vcore_create(kvm, core);
1986                         kvm->arch.vcores[core] = vcore;
1987                         kvm->arch.online_vcores++;
1988                 }
1989         }
1990         mutex_unlock(&kvm->lock);
1991
1992         if (!vcore)
1993                 goto free_vcpu;
1994
1995         spin_lock(&vcore->lock);
1996         ++vcore->num_threads;
1997         spin_unlock(&vcore->lock);
1998         vcpu->arch.vcore = vcore;
1999         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2000         vcpu->arch.thread_cpu = -1;
2001         vcpu->arch.prev_cpu = -1;
2002
2003         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2004         kvmppc_sanity_check(vcpu);
2005
2006         debugfs_vcpu_init(vcpu, id);
2007
2008         return vcpu;
2009
2010 free_vcpu:
2011         kmem_cache_free(kvm_vcpu_cache, vcpu);
2012 out:
2013         return ERR_PTR(err);
2014 }
2015
2016 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2017                               unsigned long flags)
2018 {
2019         int err;
2020         int esmt = 0;
2021
2022         if (flags)
2023                 return -EINVAL;
2024         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2025                 return -EINVAL;
2026         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2027                 /*
2028                  * On POWER8 (or POWER7), the threading mode is "strict",
2029                  * so we pack smt_mode vcpus per vcore.
2030                  */
2031                 if (smt_mode > threads_per_subcore)
2032                         return -EINVAL;
2033         } else {
2034                 /*
2035                  * On POWER9, the threading mode is "loose",
2036                  * so each vcpu gets its own vcore.
2037                  */
2038                 esmt = smt_mode;
2039                 smt_mode = 1;
2040         }
2041         mutex_lock(&kvm->lock);
2042         err = -EBUSY;
2043         if (!kvm->arch.online_vcores) {
2044                 kvm->arch.smt_mode = smt_mode;
2045                 kvm->arch.emul_smt_mode = esmt;
2046                 err = 0;
2047         }
2048         mutex_unlock(&kvm->lock);
2049
2050         return err;
2051 }
2052
2053 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2054 {
2055         if (vpa->pinned_addr)
2056                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2057                                         vpa->dirty);
2058 }
2059
2060 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2061 {
2062         spin_lock(&vcpu->arch.vpa_update_lock);
2063         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2064         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2065         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2066         spin_unlock(&vcpu->arch.vpa_update_lock);
2067         kvm_vcpu_uninit(vcpu);
2068         kmem_cache_free(kvm_vcpu_cache, vcpu);
2069 }
2070
2071 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2072 {
2073         /* Indicate we want to get back into the guest */
2074         return 1;
2075 }
2076
2077 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2078 {
2079         unsigned long dec_nsec, now;
2080
2081         now = get_tb();
2082         if (now > vcpu->arch.dec_expires) {
2083                 /* decrementer has already gone negative */
2084                 kvmppc_core_queue_dec(vcpu);
2085                 kvmppc_core_prepare_to_enter(vcpu);
2086                 return;
2087         }
2088         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2089                    / tb_ticks_per_sec;
2090         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2091         vcpu->arch.timer_running = 1;
2092 }
2093
2094 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2095 {
2096         vcpu->arch.ceded = 0;
2097         if (vcpu->arch.timer_running) {
2098                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2099                 vcpu->arch.timer_running = 0;
2100         }
2101 }
2102
2103 extern int __kvmppc_vcore_entry(void);
2104
2105 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2106                                    struct kvm_vcpu *vcpu)
2107 {
2108         u64 now;
2109
2110         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2111                 return;
2112         spin_lock_irq(&vcpu->arch.tbacct_lock);
2113         now = mftb();
2114         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2115                 vcpu->arch.stolen_logged;
2116         vcpu->arch.busy_preempt = now;
2117         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2118         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2119         --vc->n_runnable;
2120         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2121 }
2122
2123 static int kvmppc_grab_hwthread(int cpu)
2124 {
2125         struct paca_struct *tpaca;
2126         long timeout = 10000;
2127
2128         tpaca = &paca[cpu];
2129
2130         /* Ensure the thread won't go into the kernel if it wakes */
2131         tpaca->kvm_hstate.kvm_vcpu = NULL;
2132         tpaca->kvm_hstate.kvm_vcore = NULL;
2133         tpaca->kvm_hstate.napping = 0;
2134         smp_wmb();
2135         tpaca->kvm_hstate.hwthread_req = 1;
2136
2137         /*
2138          * If the thread is already executing in the kernel (e.g. handling
2139          * a stray interrupt), wait for it to get back to nap mode.
2140          * The smp_mb() is to ensure that our setting of hwthread_req
2141          * is visible before we look at hwthread_state, so if this
2142          * races with the code at system_reset_pSeries and the thread
2143          * misses our setting of hwthread_req, we are sure to see its
2144          * setting of hwthread_state, and vice versa.
2145          */
2146         smp_mb();
2147         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2148                 if (--timeout <= 0) {
2149                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2150                         return -EBUSY;
2151                 }
2152                 udelay(1);
2153         }
2154         return 0;
2155 }
2156
2157 static void kvmppc_release_hwthread(int cpu)
2158 {
2159         struct paca_struct *tpaca;
2160
2161         tpaca = &paca[cpu];
2162         tpaca->kvm_hstate.hwthread_req = 0;
2163         tpaca->kvm_hstate.kvm_vcpu = NULL;
2164         tpaca->kvm_hstate.kvm_vcore = NULL;
2165         tpaca->kvm_hstate.kvm_split_mode = NULL;
2166 }
2167
2168 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2169 {
2170         int i;
2171
2172         cpu = cpu_first_thread_sibling(cpu);
2173         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2174         /*
2175          * Make sure setting of bit in need_tlb_flush precedes
2176          * testing of cpu_in_guest bits.  The matching barrier on
2177          * the other side is the first smp_mb() in kvmppc_run_core().
2178          */
2179         smp_mb();
2180         for (i = 0; i < threads_per_core; ++i)
2181                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2182                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2183 }
2184
2185 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2186 {
2187         struct kvm *kvm = vcpu->kvm;
2188
2189         /*
2190          * With radix, the guest can do TLB invalidations itself,
2191          * and it could choose to use the local form (tlbiel) if
2192          * it is invalidating a translation that has only ever been
2193          * used on one vcpu.  However, that doesn't mean it has
2194          * only ever been used on one physical cpu, since vcpus
2195          * can move around between pcpus.  To cope with this, when
2196          * a vcpu moves from one pcpu to another, we need to tell
2197          * any vcpus running on the same core as this vcpu previously
2198          * ran to flush the TLB.  The TLB is shared between threads,
2199          * so we use a single bit in .need_tlb_flush for all 4 threads.
2200          */
2201         if (vcpu->arch.prev_cpu != pcpu) {
2202                 if (vcpu->arch.prev_cpu >= 0 &&
2203                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2204                     cpu_first_thread_sibling(pcpu))
2205                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2206                 vcpu->arch.prev_cpu = pcpu;
2207         }
2208 }
2209
2210 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2211 {
2212         int cpu;
2213         struct paca_struct *tpaca;
2214         struct kvm *kvm = vc->kvm;
2215
2216         cpu = vc->pcpu;
2217         if (vcpu) {
2218                 if (vcpu->arch.timer_running) {
2219                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2220                         vcpu->arch.timer_running = 0;
2221                 }
2222                 cpu += vcpu->arch.ptid;
2223                 vcpu->cpu = vc->pcpu;
2224                 vcpu->arch.thread_cpu = cpu;
2225                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2226         }
2227         tpaca = &paca[cpu];
2228         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2229         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2230         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2231         smp_wmb();
2232         tpaca->kvm_hstate.kvm_vcore = vc;
2233         if (cpu != smp_processor_id())
2234                 kvmppc_ipi_thread(cpu);
2235 }
2236
2237 static void kvmppc_wait_for_nap(int n_threads)
2238 {
2239         int cpu = smp_processor_id();
2240         int i, loops;
2241
2242         if (n_threads <= 1)
2243                 return;
2244         for (loops = 0; loops < 1000000; ++loops) {
2245                 /*
2246                  * Check if all threads are finished.
2247                  * We set the vcore pointer when starting a thread
2248                  * and the thread clears it when finished, so we look
2249                  * for any threads that still have a non-NULL vcore ptr.
2250                  */
2251                 for (i = 1; i < n_threads; ++i)
2252                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2253                                 break;
2254                 if (i == n_threads) {
2255                         HMT_medium();
2256                         return;
2257                 }
2258                 HMT_low();
2259         }
2260         HMT_medium();
2261         for (i = 1; i < n_threads; ++i)
2262                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2263                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2264 }
2265
2266 /*
2267  * Check that we are on thread 0 and that any other threads in
2268  * this core are off-line.  Then grab the threads so they can't
2269  * enter the kernel.
2270  */
2271 static int on_primary_thread(void)
2272 {
2273         int cpu = smp_processor_id();
2274         int thr;
2275
2276         /* Are we on a primary subcore? */
2277         if (cpu_thread_in_subcore(cpu))
2278                 return 0;
2279
2280         thr = 0;
2281         while (++thr < threads_per_subcore)
2282                 if (cpu_online(cpu + thr))
2283                         return 0;
2284
2285         /* Grab all hw threads so they can't go into the kernel */
2286         for (thr = 1; thr < threads_per_subcore; ++thr) {
2287                 if (kvmppc_grab_hwthread(cpu + thr)) {
2288                         /* Couldn't grab one; let the others go */
2289                         do {
2290                                 kvmppc_release_hwthread(cpu + thr);
2291                         } while (--thr > 0);
2292                         return 0;
2293                 }
2294         }
2295         return 1;
2296 }
2297
2298 /*
2299  * A list of virtual cores for each physical CPU.
2300  * These are vcores that could run but their runner VCPU tasks are
2301  * (or may be) preempted.
2302  */
2303 struct preempted_vcore_list {
2304         struct list_head        list;
2305         spinlock_t              lock;
2306 };
2307
2308 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2309
2310 static void init_vcore_lists(void)
2311 {
2312         int cpu;
2313
2314         for_each_possible_cpu(cpu) {
2315                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2316                 spin_lock_init(&lp->lock);
2317                 INIT_LIST_HEAD(&lp->list);
2318         }
2319 }
2320
2321 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2322 {
2323         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2324
2325         vc->vcore_state = VCORE_PREEMPT;
2326         vc->pcpu = smp_processor_id();
2327         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2328                 spin_lock(&lp->lock);
2329                 list_add_tail(&vc->preempt_list, &lp->list);
2330                 spin_unlock(&lp->lock);
2331         }
2332
2333         /* Start accumulating stolen time */
2334         kvmppc_core_start_stolen(vc);
2335 }
2336
2337 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2338 {
2339         struct preempted_vcore_list *lp;
2340
2341         kvmppc_core_end_stolen(vc);
2342         if (!list_empty(&vc->preempt_list)) {
2343                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2344                 spin_lock(&lp->lock);
2345                 list_del_init(&vc->preempt_list);
2346                 spin_unlock(&lp->lock);
2347         }
2348         vc->vcore_state = VCORE_INACTIVE;
2349 }
2350
2351 /*
2352  * This stores information about the virtual cores currently
2353  * assigned to a physical core.
2354  */
2355 struct core_info {
2356         int             n_subcores;
2357         int             max_subcore_threads;
2358         int             total_threads;
2359         int             subcore_threads[MAX_SUBCORES];
2360         struct kvmppc_vcore *vc[MAX_SUBCORES];
2361 };
2362
2363 /*
2364  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2365  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2366  */
2367 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2368
2369 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2370 {
2371         memset(cip, 0, sizeof(*cip));
2372         cip->n_subcores = 1;
2373         cip->max_subcore_threads = vc->num_threads;
2374         cip->total_threads = vc->num_threads;
2375         cip->subcore_threads[0] = vc->num_threads;
2376         cip->vc[0] = vc;
2377 }
2378
2379 static bool subcore_config_ok(int n_subcores, int n_threads)
2380 {
2381         /*
2382          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
2383          * mode, with one thread per subcore.
2384          */
2385         if (cpu_has_feature(CPU_FTR_ARCH_300))
2386                 return n_subcores <= 4 && n_threads == 1;
2387
2388         /* On POWER8, can only dynamically split if unsplit to begin with */
2389         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2390                 return false;
2391         if (n_subcores > MAX_SUBCORES)
2392                 return false;
2393         if (n_subcores > 1) {
2394                 if (!(dynamic_mt_modes & 2))
2395                         n_subcores = 4;
2396                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2397                         return false;
2398         }
2399
2400         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2401 }
2402
2403 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2404 {
2405         vc->entry_exit_map = 0;
2406         vc->in_guest = 0;
2407         vc->napping_threads = 0;
2408         vc->conferring_threads = 0;
2409 }
2410
2411 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2412 {
2413         int n_threads = vc->num_threads;
2414         int sub;
2415
2416         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2417                 return false;
2418
2419         /* POWER9 currently requires all threads to be in the same MMU mode */
2420         if (cpu_has_feature(CPU_FTR_ARCH_300) &&
2421             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2422                 return false;
2423
2424         if (n_threads < cip->max_subcore_threads)
2425                 n_threads = cip->max_subcore_threads;
2426         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2427                 return false;
2428         cip->max_subcore_threads = n_threads;
2429
2430         sub = cip->n_subcores;
2431         ++cip->n_subcores;
2432         cip->total_threads += vc->num_threads;
2433         cip->subcore_threads[sub] = vc->num_threads;
2434         cip->vc[sub] = vc;
2435         init_vcore_to_run(vc);
2436         list_del_init(&vc->preempt_list);
2437
2438         return true;
2439 }
2440
2441 /*
2442  * Work out whether it is possible to piggyback the execution of
2443  * vcore *pvc onto the execution of the other vcores described in *cip.
2444  */
2445 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2446                           int target_threads)
2447 {
2448         if (cip->total_threads + pvc->num_threads > target_threads)
2449                 return false;
2450
2451         return can_dynamic_split(pvc, cip);
2452 }
2453
2454 static void prepare_threads(struct kvmppc_vcore *vc)
2455 {
2456         int i;
2457         struct kvm_vcpu *vcpu;
2458
2459         for_each_runnable_thread(i, vcpu, vc) {
2460                 if (signal_pending(vcpu->arch.run_task))
2461                         vcpu->arch.ret = -EINTR;
2462                 else if (vcpu->arch.vpa.update_pending ||
2463                          vcpu->arch.slb_shadow.update_pending ||
2464                          vcpu->arch.dtl.update_pending)
2465                         vcpu->arch.ret = RESUME_GUEST;
2466                 else
2467                         continue;
2468                 kvmppc_remove_runnable(vc, vcpu);
2469                 wake_up(&vcpu->arch.cpu_run);
2470         }
2471 }
2472
2473 static void collect_piggybacks(struct core_info *cip, int target_threads)
2474 {
2475         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2476         struct kvmppc_vcore *pvc, *vcnext;
2477
2478         spin_lock(&lp->lock);
2479         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2480                 if (!spin_trylock(&pvc->lock))
2481                         continue;
2482                 prepare_threads(pvc);
2483                 if (!pvc->n_runnable) {
2484                         list_del_init(&pvc->preempt_list);
2485                         if (pvc->runner == NULL) {
2486                                 pvc->vcore_state = VCORE_INACTIVE;
2487                                 kvmppc_core_end_stolen(pvc);
2488                         }
2489                         spin_unlock(&pvc->lock);
2490                         continue;
2491                 }
2492                 if (!can_piggyback(pvc, cip, target_threads)) {
2493                         spin_unlock(&pvc->lock);
2494                         continue;
2495                 }
2496                 kvmppc_core_end_stolen(pvc);
2497                 pvc->vcore_state = VCORE_PIGGYBACK;
2498                 if (cip->total_threads >= target_threads)
2499                         break;
2500         }
2501         spin_unlock(&lp->lock);
2502 }
2503
2504 static bool recheck_signals(struct core_info *cip)
2505 {
2506         int sub, i;
2507         struct kvm_vcpu *vcpu;
2508
2509         for (sub = 0; sub < cip->n_subcores; ++sub)
2510                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2511                         if (signal_pending(vcpu->arch.run_task))
2512                                 return true;
2513         return false;
2514 }
2515
2516 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2517 {
2518         int still_running = 0, i;
2519         u64 now;
2520         long ret;
2521         struct kvm_vcpu *vcpu;
2522
2523         spin_lock(&vc->lock);
2524         now = get_tb();
2525         for_each_runnable_thread(i, vcpu, vc) {
2526                 /* cancel pending dec exception if dec is positive */
2527                 if (now < vcpu->arch.dec_expires &&
2528                     kvmppc_core_pending_dec(vcpu))
2529                         kvmppc_core_dequeue_dec(vcpu);
2530
2531                 trace_kvm_guest_exit(vcpu);
2532
2533                 ret = RESUME_GUEST;
2534                 if (vcpu->arch.trap)
2535                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2536                                                     vcpu->arch.run_task);
2537
2538                 vcpu->arch.ret = ret;
2539                 vcpu->arch.trap = 0;
2540
2541                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2542                         if (vcpu->arch.pending_exceptions)
2543                                 kvmppc_core_prepare_to_enter(vcpu);
2544                         if (vcpu->arch.ceded)
2545                                 kvmppc_set_timer(vcpu);
2546                         else
2547                                 ++still_running;
2548                 } else {
2549                         kvmppc_remove_runnable(vc, vcpu);
2550                         wake_up(&vcpu->arch.cpu_run);
2551                 }
2552         }
2553         if (!is_master) {
2554                 if (still_running > 0) {
2555                         kvmppc_vcore_preempt(vc);
2556                 } else if (vc->runner) {
2557                         vc->vcore_state = VCORE_PREEMPT;
2558                         kvmppc_core_start_stolen(vc);
2559                 } else {
2560                         vc->vcore_state = VCORE_INACTIVE;
2561                 }
2562                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2563                         /* make sure there's a candidate runner awake */
2564                         i = -1;
2565                         vcpu = next_runnable_thread(vc, &i);
2566                         wake_up(&vcpu->arch.cpu_run);
2567                 }
2568         }
2569         spin_unlock(&vc->lock);
2570 }
2571
2572 /*
2573  * Clear core from the list of active host cores as we are about to
2574  * enter the guest. Only do this if it is the primary thread of the
2575  * core (not if a subcore) that is entering the guest.
2576  */
2577 static inline int kvmppc_clear_host_core(unsigned int cpu)
2578 {
2579         int core;
2580
2581         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2582                 return 0;
2583         /*
2584          * Memory barrier can be omitted here as we will do a smp_wmb()
2585          * later in kvmppc_start_thread and we need ensure that state is
2586          * visible to other CPUs only after we enter guest.
2587          */
2588         core = cpu >> threads_shift;
2589         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2590         return 0;
2591 }
2592
2593 /*
2594  * Advertise this core as an active host core since we exited the guest
2595  * Only need to do this if it is the primary thread of the core that is
2596  * exiting.
2597  */
2598 static inline int kvmppc_set_host_core(unsigned int cpu)
2599 {
2600         int core;
2601
2602         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2603                 return 0;
2604
2605         /*
2606          * Memory barrier can be omitted here because we do a spin_unlock
2607          * immediately after this which provides the memory barrier.
2608          */
2609         core = cpu >> threads_shift;
2610         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2611         return 0;
2612 }
2613
2614 static void set_irq_happened(int trap)
2615 {
2616         switch (trap) {
2617         case BOOK3S_INTERRUPT_EXTERNAL:
2618                 local_paca->irq_happened |= PACA_IRQ_EE;
2619                 break;
2620         case BOOK3S_INTERRUPT_H_DOORBELL:
2621                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2622                 break;
2623         case BOOK3S_INTERRUPT_HMI:
2624                 local_paca->irq_happened |= PACA_IRQ_HMI;
2625                 break;
2626         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2627                 replay_system_reset();
2628                 break;
2629         }
2630 }
2631
2632 /*
2633  * Run a set of guest threads on a physical core.
2634  * Called with vc->lock held.
2635  */
2636 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2637 {
2638         struct kvm_vcpu *vcpu;
2639         int i;
2640         int srcu_idx;
2641         struct core_info core_info;
2642         struct kvmppc_vcore *pvc;
2643         struct kvm_split_mode split_info, *sip;
2644         int split, subcore_size, active;
2645         int sub;
2646         bool thr0_done;
2647         unsigned long cmd_bit, stat_bit;
2648         int pcpu, thr;
2649         int target_threads;
2650         int controlled_threads;
2651         int trap;
2652         bool is_power8;
2653         bool hpt_on_radix;
2654
2655         /*
2656          * Remove from the list any threads that have a signal pending
2657          * or need a VPA update done
2658          */
2659         prepare_threads(vc);
2660
2661         /* if the runner is no longer runnable, let the caller pick a new one */
2662         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2663                 return;
2664
2665         /*
2666          * Initialize *vc.
2667          */
2668         init_vcore_to_run(vc);
2669         vc->preempt_tb = TB_NIL;
2670
2671         /*
2672          * Number of threads that we will be controlling: the same as
2673          * the number of threads per subcore, except on POWER9,
2674          * where it's 1 because the threads are (mostly) independent.
2675          */
2676         controlled_threads = threads_per_vcore(vc->kvm);
2677
2678         /*
2679          * Make sure we are running on primary threads, and that secondary
2680          * threads are offline.  Also check if the number of threads in this
2681          * guest are greater than the current system threads per guest.
2682          * On POWER9, we need to be not in independent-threads mode if
2683          * this is a HPT guest on a radix host.
2684          */
2685         hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
2686         if (((controlled_threads > 1) &&
2687              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2688             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2689                 for_each_runnable_thread(i, vcpu, vc) {
2690                         vcpu->arch.ret = -EBUSY;
2691                         kvmppc_remove_runnable(vc, vcpu);
2692                         wake_up(&vcpu->arch.cpu_run);
2693                 }
2694                 goto out;
2695         }
2696
2697         /*
2698          * See if we could run any other vcores on the physical core
2699          * along with this one.
2700          */
2701         init_core_info(&core_info, vc);
2702         pcpu = smp_processor_id();
2703         target_threads = controlled_threads;
2704         if (target_smt_mode && target_smt_mode < target_threads)
2705                 target_threads = target_smt_mode;
2706         if (vc->num_threads < target_threads)
2707                 collect_piggybacks(&core_info, target_threads);
2708
2709         /*
2710          * On radix, arrange for TLB flushing if necessary.
2711          * This has to be done before disabling interrupts since
2712          * it uses smp_call_function().
2713          */
2714         pcpu = smp_processor_id();
2715         if (kvm_is_radix(vc->kvm)) {
2716                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2717                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2718                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2719         }
2720
2721         /*
2722          * Hard-disable interrupts, and check resched flag and signals.
2723          * If we need to reschedule or deliver a signal, clean up
2724          * and return without going into the guest(s).
2725          * If the mmu_ready flag has been cleared, don't go into the
2726          * guest because that means a HPT resize operation is in progress.
2727          */
2728         local_irq_disable();
2729         hard_irq_disable();
2730         if (lazy_irq_pending() || need_resched() ||
2731             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2732                 local_irq_enable();
2733                 vc->vcore_state = VCORE_INACTIVE;
2734                 /* Unlock all except the primary vcore */
2735                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2736                         pvc = core_info.vc[sub];
2737                         /* Put back on to the preempted vcores list */
2738                         kvmppc_vcore_preempt(pvc);
2739                         spin_unlock(&pvc->lock);
2740                 }
2741                 for (i = 0; i < controlled_threads; ++i)
2742                         kvmppc_release_hwthread(pcpu + i);
2743                 return;
2744         }
2745
2746         kvmppc_clear_host_core(pcpu);
2747
2748         /* Decide on micro-threading (split-core) mode */
2749         subcore_size = threads_per_subcore;
2750         cmd_bit = stat_bit = 0;
2751         split = core_info.n_subcores;
2752         sip = NULL;
2753         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2754                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2755
2756         if (split > 1 || hpt_on_radix) {
2757                 sip = &split_info;
2758                 memset(&split_info, 0, sizeof(split_info));
2759                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2760                         split_info.vc[sub] = core_info.vc[sub];
2761
2762                 if (is_power8) {
2763                         if (split == 2 && (dynamic_mt_modes & 2)) {
2764                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2765                                 stat_bit = HID0_POWER8_2LPARMODE;
2766                         } else {
2767                                 split = 4;
2768                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2769                                 stat_bit = HID0_POWER8_4LPARMODE;
2770                         }
2771                         subcore_size = MAX_SMT_THREADS / split;
2772                         split_info.rpr = mfspr(SPRN_RPR);
2773                         split_info.pmmar = mfspr(SPRN_PMMAR);
2774                         split_info.ldbar = mfspr(SPRN_LDBAR);
2775                         split_info.subcore_size = subcore_size;
2776                 } else {
2777                         split_info.subcore_size = 1;
2778                         if (hpt_on_radix) {
2779                                 /* Use the split_info for LPCR/LPIDR changes */
2780                                 split_info.lpcr_req = vc->lpcr;
2781                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2782                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2783                                 split_info.do_set = 1;
2784                         }
2785                 }
2786
2787                 /* order writes to split_info before kvm_split_mode pointer */
2788                 smp_wmb();
2789         }
2790
2791         for (thr = 0; thr < controlled_threads; ++thr) {
2792                 paca[pcpu + thr].kvm_hstate.tid = thr;
2793                 paca[pcpu + thr].kvm_hstate.napping = 0;
2794                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2795         }
2796
2797         /* Initiate micro-threading (split-core) on POWER8 if required */
2798         if (cmd_bit) {
2799                 unsigned long hid0 = mfspr(SPRN_HID0);
2800
2801                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2802                 mb();
2803                 mtspr(SPRN_HID0, hid0);
2804                 isync();
2805                 for (;;) {
2806                         hid0 = mfspr(SPRN_HID0);
2807                         if (hid0 & stat_bit)
2808                                 break;
2809                         cpu_relax();
2810                 }
2811         }
2812
2813         /* Start all the threads */
2814         active = 0;
2815         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2816                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2817                 thr0_done = false;
2818                 active |= 1 << thr;
2819                 pvc = core_info.vc[sub];
2820                 pvc->pcpu = pcpu + thr;
2821                 for_each_runnable_thread(i, vcpu, pvc) {
2822                         kvmppc_start_thread(vcpu, pvc);
2823                         kvmppc_create_dtl_entry(vcpu, pvc);
2824                         trace_kvm_guest_enter(vcpu);
2825                         if (!vcpu->arch.ptid)
2826                                 thr0_done = true;
2827                         active |= 1 << (thr + vcpu->arch.ptid);
2828                 }
2829                 /*
2830                  * We need to start the first thread of each subcore
2831                  * even if it doesn't have a vcpu.
2832                  */
2833                 if (!thr0_done)
2834                         kvmppc_start_thread(NULL, pvc);
2835                 thr += pvc->num_threads;
2836         }
2837
2838         /*
2839          * Ensure that split_info.do_nap is set after setting
2840          * the vcore pointer in the PACA of the secondaries.
2841          */
2842         smp_mb();
2843
2844         /*
2845          * When doing micro-threading, poke the inactive threads as well.
2846          * This gets them to the nap instruction after kvm_do_nap,
2847          * which reduces the time taken to unsplit later.
2848          * For POWER9 HPT guest on radix host, we need all the secondary
2849          * threads woken up so they can do the LPCR/LPIDR change.
2850          */
2851         if (cmd_bit || hpt_on_radix) {
2852                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2853                 for (thr = 1; thr < threads_per_subcore; ++thr)
2854                         if (!(active & (1 << thr)))
2855                                 kvmppc_ipi_thread(pcpu + thr);
2856         }
2857
2858         vc->vcore_state = VCORE_RUNNING;
2859         preempt_disable();
2860
2861         trace_kvmppc_run_core(vc, 0);
2862
2863         for (sub = 0; sub < core_info.n_subcores; ++sub)
2864                 spin_unlock(&core_info.vc[sub]->lock);
2865
2866         /*
2867          * Interrupts will be enabled once we get into the guest,
2868          * so tell lockdep that we're about to enable interrupts.
2869          */
2870         trace_hardirqs_on();
2871
2872         guest_enter();
2873
2874         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2875
2876         trap = __kvmppc_vcore_entry();
2877
2878         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2879
2880         guest_exit();
2881
2882         trace_hardirqs_off();
2883         set_irq_happened(trap);
2884
2885         spin_lock(&vc->lock);
2886         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2887         vc->vcore_state = VCORE_EXITING;
2888
2889         /* wait for secondary threads to finish writing their state to memory */
2890         kvmppc_wait_for_nap(controlled_threads);
2891
2892         /* Return to whole-core mode if we split the core earlier */
2893         if (cmd_bit) {
2894                 unsigned long hid0 = mfspr(SPRN_HID0);
2895                 unsigned long loops = 0;
2896
2897                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2898                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2899                 mb();
2900                 mtspr(SPRN_HID0, hid0);
2901                 isync();
2902                 for (;;) {
2903                         hid0 = mfspr(SPRN_HID0);
2904                         if (!(hid0 & stat_bit))
2905                                 break;
2906                         cpu_relax();
2907                         ++loops;
2908                 }
2909         } else if (hpt_on_radix) {
2910                 /* Wait for all threads to have seen final sync */
2911                 for (thr = 1; thr < controlled_threads; ++thr) {
2912                         while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2913                                 HMT_low();
2914                                 barrier();
2915                         }
2916                         HMT_medium();
2917                 }
2918         }
2919         split_info.do_nap = 0;
2920
2921         kvmppc_set_host_core(pcpu);
2922
2923         local_irq_enable();
2924
2925         /* Let secondaries go back to the offline loop */
2926         for (i = 0; i < controlled_threads; ++i) {
2927                 kvmppc_release_hwthread(pcpu + i);
2928                 if (sip && sip->napped[i])
2929                         kvmppc_ipi_thread(pcpu + i);
2930                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2931         }
2932
2933         spin_unlock(&vc->lock);
2934
2935         /* make sure updates to secondary vcpu structs are visible now */
2936         smp_mb();
2937
2938         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2939                 pvc = core_info.vc[sub];
2940                 post_guest_process(pvc, pvc == vc);
2941         }
2942
2943         spin_lock(&vc->lock);
2944         preempt_enable();
2945
2946  out:
2947         vc->vcore_state = VCORE_INACTIVE;
2948         trace_kvmppc_run_core(vc, 1);
2949 }
2950
2951 /*
2952  * Wait for some other vcpu thread to execute us, and
2953  * wake us up when we need to handle something in the host.
2954  */
2955 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2956                                  struct kvm_vcpu *vcpu, int wait_state)
2957 {
2958         DEFINE_WAIT(wait);
2959
2960         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2961         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2962                 spin_unlock(&vc->lock);
2963                 schedule();
2964                 spin_lock(&vc->lock);
2965         }
2966         finish_wait(&vcpu->arch.cpu_run, &wait);
2967 }
2968
2969 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2970 {
2971         /* 10us base */
2972         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2973                 vc->halt_poll_ns = 10000;
2974         else
2975                 vc->halt_poll_ns *= halt_poll_ns_grow;
2976 }
2977
2978 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2979 {
2980         if (halt_poll_ns_shrink == 0)
2981                 vc->halt_poll_ns = 0;
2982         else
2983                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2984 }
2985
2986 #ifdef CONFIG_KVM_XICS
2987 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2988 {
2989         if (!xive_enabled())
2990                 return false;
2991         return vcpu->arch.xive_saved_state.pipr <
2992                 vcpu->arch.xive_saved_state.cppr;
2993 }
2994 #else
2995 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2996 {
2997         return false;
2998 }
2999 #endif /* CONFIG_KVM_XICS */
3000
3001 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3002 {
3003         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3004             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3005                 return true;
3006
3007         return false;
3008 }
3009
3010 /*
3011  * Check to see if any of the runnable vcpus on the vcore have pending
3012  * exceptions or are no longer ceded
3013  */
3014 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3015 {
3016         struct kvm_vcpu *vcpu;
3017         int i;
3018
3019         for_each_runnable_thread(i, vcpu, vc) {
3020                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3021                         return 1;
3022         }
3023
3024         return 0;
3025 }
3026
3027 /*
3028  * All the vcpus in this vcore are idle, so wait for a decrementer
3029  * or external interrupt to one of the vcpus.  vc->lock is held.
3030  */
3031 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3032 {
3033         ktime_t cur, start_poll, start_wait;
3034         int do_sleep = 1;
3035         u64 block_ns;
3036         DECLARE_SWAITQUEUE(wait);
3037
3038         /* Poll for pending exceptions and ceded state */
3039         cur = start_poll = ktime_get();
3040         if (vc->halt_poll_ns) {
3041                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3042                 ++vc->runner->stat.halt_attempted_poll;
3043
3044                 vc->vcore_state = VCORE_POLLING;
3045                 spin_unlock(&vc->lock);
3046
3047                 do {
3048                         if (kvmppc_vcore_check_block(vc)) {
3049                                 do_sleep = 0;
3050                                 break;
3051                         }
3052                         cur = ktime_get();
3053                 } while (single_task_running() && ktime_before(cur, stop));
3054
3055                 spin_lock(&vc->lock);
3056                 vc->vcore_state = VCORE_INACTIVE;
3057
3058                 if (!do_sleep) {
3059                         ++vc->runner->stat.halt_successful_poll;
3060                         goto out;
3061                 }
3062         }
3063
3064         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3065
3066         if (kvmppc_vcore_check_block(vc)) {
3067                 finish_swait(&vc->wq, &wait);
3068                 do_sleep = 0;
3069                 /* If we polled, count this as a successful poll */
3070                 if (vc->halt_poll_ns)
3071                         ++vc->runner->stat.halt_successful_poll;
3072                 goto out;
3073         }
3074
3075         start_wait = ktime_get();
3076
3077         vc->vcore_state = VCORE_SLEEPING;
3078         trace_kvmppc_vcore_blocked(vc, 0);
3079         spin_unlock(&vc->lock);
3080         schedule();
3081         finish_swait(&vc->wq, &wait);
3082         spin_lock(&vc->lock);
3083         vc->vcore_state = VCORE_INACTIVE;
3084         trace_kvmppc_vcore_blocked(vc, 1);
3085         ++vc->runner->stat.halt_successful_wait;
3086
3087         cur = ktime_get();
3088
3089 out:
3090         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3091
3092         /* Attribute wait time */
3093         if (do_sleep) {
3094                 vc->runner->stat.halt_wait_ns +=
3095                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3096                 /* Attribute failed poll time */
3097                 if (vc->halt_poll_ns)
3098                         vc->runner->stat.halt_poll_fail_ns +=
3099                                 ktime_to_ns(start_wait) -
3100                                 ktime_to_ns(start_poll);
3101         } else {
3102                 /* Attribute successful poll time */
3103                 if (vc->halt_poll_ns)
3104                         vc->runner->stat.halt_poll_success_ns +=
3105                                 ktime_to_ns(cur) -
3106                                 ktime_to_ns(start_poll);
3107         }
3108
3109         /* Adjust poll time */
3110         if (halt_poll_ns) {
3111                 if (block_ns <= vc->halt_poll_ns)
3112                         ;
3113                 /* We slept and blocked for longer than the max halt time */
3114                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3115                         shrink_halt_poll_ns(vc);
3116                 /* We slept and our poll time is too small */
3117                 else if (vc->halt_poll_ns < halt_poll_ns &&
3118                                 block_ns < halt_poll_ns)
3119                         grow_halt_poll_ns(vc);
3120                 if (vc->halt_poll_ns > halt_poll_ns)
3121                         vc->halt_poll_ns = halt_poll_ns;
3122         } else
3123                 vc->halt_poll_ns = 0;
3124
3125         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3126 }
3127
3128 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3129 {
3130         int r = 0;
3131         struct kvm *kvm = vcpu->kvm;
3132
3133         mutex_lock(&kvm->lock);
3134         if (!kvm->arch.mmu_ready) {
3135                 if (!kvm_is_radix(kvm))
3136                         r = kvmppc_hv_setup_htab_rma(vcpu);
3137                 if (!r) {
3138                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3139                                 kvmppc_setup_partition_table(kvm);
3140                         kvm->arch.mmu_ready = 1;
3141                 }
3142         }
3143         mutex_unlock(&kvm->lock);
3144         return r;
3145 }
3146
3147 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3148 {
3149         int n_ceded, i, r;
3150         struct kvmppc_vcore *vc;
3151         struct kvm_vcpu *v;
3152
3153         trace_kvmppc_run_vcpu_enter(vcpu);
3154
3155         kvm_run->exit_reason = 0;
3156         vcpu->arch.ret = RESUME_GUEST;
3157         vcpu->arch.trap = 0;
3158         kvmppc_update_vpas(vcpu);
3159
3160         /*
3161          * Synchronize with other threads in this virtual core
3162          */
3163         vc = vcpu->arch.vcore;
3164         spin_lock(&vc->lock);
3165         vcpu->arch.ceded = 0;
3166         vcpu->arch.run_task = current;
3167         vcpu->arch.kvm_run = kvm_run;
3168         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3169         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3170         vcpu->arch.busy_preempt = TB_NIL;
3171         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3172         ++vc->n_runnable;
3173
3174         /*
3175          * This happens the first time this is called for a vcpu.
3176          * If the vcore is already running, we may be able to start
3177          * this thread straight away and have it join in.
3178          */
3179         if (!signal_pending(current)) {
3180                 if (vc->vcore_state == VCORE_PIGGYBACK) {
3181                         if (spin_trylock(&vc->lock)) {
3182                                 if (vc->vcore_state == VCORE_RUNNING &&
3183                                     !VCORE_IS_EXITING(vc)) {
3184                                         kvmppc_create_dtl_entry(vcpu, vc);
3185                                         kvmppc_start_thread(vcpu, vc);
3186                                         trace_kvm_guest_enter(vcpu);
3187                                 }
3188                                 spin_unlock(&vc->lock);
3189                         }
3190                 } else if (vc->vcore_state == VCORE_RUNNING &&
3191                            !VCORE_IS_EXITING(vc)) {
3192                         kvmppc_create_dtl_entry(vcpu, vc);
3193                         kvmppc_start_thread(vcpu, vc);
3194                         trace_kvm_guest_enter(vcpu);
3195                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3196                         swake_up(&vc->wq);
3197                 }
3198
3199         }
3200
3201         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3202                !signal_pending(current)) {
3203                 /* See if the MMU is ready to go */
3204                 if (!vcpu->kvm->arch.mmu_ready) {
3205                         spin_unlock(&vc->lock);
3206                         r = kvmhv_setup_mmu(vcpu);
3207                         spin_lock(&vc->lock);
3208                         if (r) {
3209                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3210                                 kvm_run->fail_entry.
3211                                         hardware_entry_failure_reason = 0;
3212                                 vcpu->arch.ret = r;
3213                                 break;
3214                         }
3215                 }
3216
3217                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3218                         kvmppc_vcore_end_preempt(vc);
3219
3220                 if (vc->vcore_state != VCORE_INACTIVE) {
3221                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3222                         continue;
3223                 }
3224                 for_each_runnable_thread(i, v, vc) {
3225                         kvmppc_core_prepare_to_enter(v);
3226                         if (signal_pending(v->arch.run_task)) {
3227                                 kvmppc_remove_runnable(vc, v);
3228                                 v->stat.signal_exits++;
3229                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3230                                 v->arch.ret = -EINTR;
3231                                 wake_up(&v->arch.cpu_run);
3232                         }
3233                 }
3234                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3235                         break;
3236                 n_ceded = 0;
3237                 for_each_runnable_thread(i, v, vc) {
3238                         if (!kvmppc_vcpu_woken(v))
3239                                 n_ceded += v->arch.ceded;
3240                         else
3241                                 v->arch.ceded = 0;
3242                 }
3243                 vc->runner = vcpu;
3244                 if (n_ceded == vc->n_runnable) {
3245                         kvmppc_vcore_blocked(vc);
3246                 } else if (need_resched()) {
3247                         kvmppc_vcore_preempt(vc);
3248                         /* Let something else run */
3249                         cond_resched_lock(&vc->lock);
3250                         if (vc->vcore_state == VCORE_PREEMPT)
3251                                 kvmppc_vcore_end_preempt(vc);
3252                 } else {
3253                         kvmppc_run_core(vc);
3254                 }
3255                 vc->runner = NULL;
3256         }
3257
3258         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3259                (vc->vcore_state == VCORE_RUNNING ||
3260                 vc->vcore_state == VCORE_EXITING ||
3261                 vc->vcore_state == VCORE_PIGGYBACK))
3262                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3263
3264         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3265                 kvmppc_vcore_end_preempt(vc);
3266
3267         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3268                 kvmppc_remove_runnable(vc, vcpu);
3269                 vcpu->stat.signal_exits++;
3270                 kvm_run->exit_reason = KVM_EXIT_INTR;
3271                 vcpu->arch.ret = -EINTR;
3272         }
3273
3274         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3275                 /* Wake up some vcpu to run the core */
3276                 i = -1;
3277                 v = next_runnable_thread(vc, &i);
3278                 wake_up(&v->arch.cpu_run);
3279         }
3280
3281         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3282         spin_unlock(&vc->lock);
3283         return vcpu->arch.ret;
3284 }
3285
3286 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3287 {
3288         int r;
3289         int srcu_idx;
3290         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3291         unsigned long user_tar = 0;
3292         unsigned int user_vrsave;
3293         struct kvm *kvm;
3294
3295         if (!vcpu->arch.sane) {
3296                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3297                 return -EINVAL;
3298         }
3299
3300         /*
3301          * Don't allow entry with a suspended transaction, because
3302          * the guest entry/exit code will lose it.
3303          * If the guest has TM enabled, save away their TM-related SPRs
3304          * (they will get restored by the TM unavailable interrupt).
3305          */
3306 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3307         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3308             (current->thread.regs->msr & MSR_TM)) {
3309                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3310                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3311                         run->fail_entry.hardware_entry_failure_reason = 0;
3312                         return -EINVAL;
3313                 }
3314                 /* Enable TM so we can read the TM SPRs */
3315                 mtmsr(mfmsr() | MSR_TM);
3316                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3317                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3318                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3319                 current->thread.regs->msr &= ~MSR_TM;
3320         }
3321 #endif
3322
3323         kvmppc_core_prepare_to_enter(vcpu);
3324
3325         /* No need to go into the guest when all we'll do is come back out */
3326         if (signal_pending(current)) {
3327                 run->exit_reason = KVM_EXIT_INTR;
3328                 return -EINTR;
3329         }
3330
3331         kvm = vcpu->kvm;
3332         atomic_inc(&kvm->arch.vcpus_running);
3333         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3334         smp_mb();
3335
3336         flush_all_to_thread(current);
3337
3338         /* Save userspace EBB and other register values */
3339         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3340                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3341                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3342                 ebb_regs[2] = mfspr(SPRN_BESCR);
3343                 user_tar = mfspr(SPRN_TAR);
3344         }
3345         user_vrsave = mfspr(SPRN_VRSAVE);
3346
3347         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3348         vcpu->arch.pgdir = current->mm->pgd;
3349         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3350
3351         do {
3352                 r = kvmppc_run_vcpu(run, vcpu);
3353
3354                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3355                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3356                         trace_kvm_hcall_enter(vcpu);
3357                         r = kvmppc_pseries_do_hcall(vcpu);
3358                         trace_kvm_hcall_exit(vcpu, r);
3359                         kvmppc_core_prepare_to_enter(vcpu);
3360                 } else if (r == RESUME_PAGE_FAULT) {
3361                         srcu_idx = srcu_read_lock(&kvm->srcu);
3362                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3363                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3364                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3365                 } else if (r == RESUME_PASSTHROUGH) {
3366                         if (WARN_ON(xive_enabled()))
3367                                 r = H_SUCCESS;
3368                         else
3369                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3370                 }
3371         } while (is_kvmppc_resume_guest(r));
3372
3373         /* Restore userspace EBB and other register values */
3374         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3375                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3376                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3377                 mtspr(SPRN_BESCR, ebb_regs[2]);
3378                 mtspr(SPRN_TAR, user_tar);
3379                 mtspr(SPRN_FSCR, current->thread.fscr);
3380         }
3381         mtspr(SPRN_VRSAVE, user_vrsave);
3382
3383         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3384         atomic_dec(&kvm->arch.vcpus_running);
3385         return r;
3386 }
3387
3388 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3389                                      int shift, int sllp)
3390 {
3391         (*sps)->page_shift = shift;
3392         (*sps)->slb_enc = sllp;
3393         (*sps)->enc[0].page_shift = shift;
3394         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3395         /*
3396          * Add 16MB MPSS support (may get filtered out by userspace)
3397          */
3398         if (shift != 24) {
3399                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3400                 if (penc != -1) {
3401                         (*sps)->enc[1].page_shift = 24;
3402                         (*sps)->enc[1].pte_enc = penc;
3403                 }
3404         }
3405         (*sps)++;
3406 }
3407
3408 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3409                                          struct kvm_ppc_smmu_info *info)
3410 {
3411         struct kvm_ppc_one_seg_page_size *sps;
3412
3413         /*
3414          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3415          * POWER7 doesn't support keys for instruction accesses,
3416          * POWER8 and POWER9 do.
3417          */
3418         info->data_keys = 32;
3419         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3420
3421         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3422         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3423         info->slb_size = 32;
3424
3425         /* We only support these sizes for now, and no muti-size segments */
3426         sps = &info->sps[0];
3427         kvmppc_add_seg_page_size(&sps, 12, 0);
3428         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3429         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3430
3431         return 0;
3432 }
3433
3434 /*
3435  * Get (and clear) the dirty memory log for a memory slot.
3436  */
3437 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3438                                          struct kvm_dirty_log *log)
3439 {
3440         struct kvm_memslots *slots;
3441         struct kvm_memory_slot *memslot;
3442         int i, r;
3443         unsigned long n;
3444         unsigned long *buf, *p;
3445         struct kvm_vcpu *vcpu;
3446
3447         mutex_lock(&kvm->slots_lock);
3448
3449         r = -EINVAL;
3450         if (log->slot >= KVM_USER_MEM_SLOTS)
3451                 goto out;
3452
3453         slots = kvm_memslots(kvm);
3454         memslot = id_to_memslot(slots, log->slot);
3455         r = -ENOENT;
3456         if (!memslot->dirty_bitmap)
3457                 goto out;
3458
3459         /*
3460          * Use second half of bitmap area because both HPT and radix
3461          * accumulate bits in the first half.
3462          */
3463         n = kvm_dirty_bitmap_bytes(memslot);
3464         buf = memslot->dirty_bitmap + n / sizeof(long);
3465         memset(buf, 0, n);
3466
3467         if (kvm_is_radix(kvm))
3468                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3469         else
3470                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3471         if (r)
3472                 goto out;
3473
3474         /*
3475          * We accumulate dirty bits in the first half of the
3476          * memslot's dirty_bitmap area, for when pages are paged
3477          * out or modified by the host directly.  Pick up these
3478          * bits and add them to the map.
3479          */
3480         p = memslot->dirty_bitmap;
3481         for (i = 0; i < n / sizeof(long); ++i)
3482                 buf[i] |= xchg(&p[i], 0);
3483
3484         /* Harvest dirty bits from VPA and DTL updates */
3485         /* Note: we never modify the SLB shadow buffer areas */
3486         kvm_for_each_vcpu(i, vcpu, kvm) {
3487                 spin_lock(&vcpu->arch.vpa_update_lock);
3488                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3489                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3490                 spin_unlock(&vcpu->arch.vpa_update_lock);
3491         }
3492
3493         r = -EFAULT;
3494         if (copy_to_user(log->dirty_bitmap, buf, n))
3495                 goto out;
3496
3497         r = 0;
3498 out:
3499         mutex_unlock(&kvm->slots_lock);
3500         return r;
3501 }
3502
3503 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3504                                         struct kvm_memory_slot *dont)
3505 {
3506         if (!dont || free->arch.rmap != dont->arch.rmap) {
3507                 vfree(free->arch.rmap);
3508                 free->arch.rmap = NULL;
3509         }
3510 }
3511
3512 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3513                                          unsigned long npages)
3514 {
3515         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3516         if (!slot->arch.rmap)
3517                 return -ENOMEM;
3518
3519         return 0;
3520 }
3521
3522 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3523                                         struct kvm_memory_slot *memslot,
3524                                         const struct kvm_userspace_memory_region *mem)
3525 {
3526         return 0;
3527 }
3528
3529 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3530                                 const struct kvm_userspace_memory_region *mem,
3531                                 const struct kvm_memory_slot *old,
3532                                 const struct kvm_memory_slot *new)
3533 {
3534         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3535
3536         /*
3537          * If we are making a new memslot, it might make
3538          * some address that was previously cached as emulated
3539          * MMIO be no longer emulated MMIO, so invalidate
3540          * all the caches of emulated MMIO translations.
3541          */
3542         if (npages)
3543                 atomic64_inc(&kvm->arch.mmio_update);
3544 }
3545
3546 /*
3547  * Update LPCR values in kvm->arch and in vcores.
3548  * Caller must hold kvm->lock.
3549  */
3550 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3551 {
3552         long int i;
3553         u32 cores_done = 0;
3554
3555         if ((kvm->arch.lpcr & mask) == lpcr)
3556                 return;
3557
3558         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3559
3560         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3561                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3562                 if (!vc)
3563                         continue;
3564                 spin_lock(&vc->lock);
3565                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3566                 spin_unlock(&vc->lock);
3567                 if (++cores_done >= kvm->arch.online_vcores)
3568                         break;
3569         }
3570 }
3571
3572 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3573 {
3574         return;
3575 }
3576
3577 static void kvmppc_setup_partition_table(struct kvm *kvm)
3578 {
3579         unsigned long dw0, dw1;
3580
3581         if (!kvm_is_radix(kvm)) {
3582                 /* PS field - page size for VRMA */
3583                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3584                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3585                 /* HTABSIZE and HTABORG fields */
3586                 dw0 |= kvm->arch.sdr1;
3587
3588                 /* Second dword as set by userspace */
3589                 dw1 = kvm->arch.process_table;
3590         } else {
3591                 dw0 = PATB_HR | radix__get_tree_size() |
3592                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3593                 dw1 = PATB_GR | kvm->arch.process_table;
3594         }
3595
3596         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3597 }
3598
3599 /*
3600  * Set up HPT (hashed page table) and RMA (real-mode area).
3601  * Must be called with kvm->lock held.
3602  */
3603 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3604 {
3605         int err = 0;
3606         struct kvm *kvm = vcpu->kvm;
3607         unsigned long hva;
3608         struct kvm_memory_slot *memslot;
3609         struct vm_area_struct *vma;
3610         unsigned long lpcr = 0, senc;
3611         unsigned long psize, porder;
3612         int srcu_idx;
3613
3614         /* Allocate hashed page table (if not done already) and reset it */
3615         if (!kvm->arch.hpt.virt) {
3616                 int order = KVM_DEFAULT_HPT_ORDER;
3617                 struct kvm_hpt_info info;
3618
3619                 err = kvmppc_allocate_hpt(&info, order);
3620                 /* If we get here, it means userspace didn't specify a
3621                  * size explicitly.  So, try successively smaller
3622                  * sizes if the default failed. */
3623                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3624                         err  = kvmppc_allocate_hpt(&info, order);
3625
3626                 if (err < 0) {
3627                         pr_err("KVM: Couldn't alloc HPT\n");
3628                         goto out;
3629                 }
3630
3631                 kvmppc_set_hpt(kvm, &info);
3632         }
3633
3634         /* Look up the memslot for guest physical address 0 */
3635         srcu_idx = srcu_read_lock(&kvm->srcu);
3636         memslot = gfn_to_memslot(kvm, 0);
3637
3638         /* We must have some memory at 0 by now */
3639         err = -EINVAL;
3640         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3641                 goto out_srcu;
3642
3643         /* Look up the VMA for the start of this memory slot */
3644         hva = memslot->userspace_addr;
3645         down_read(&current->mm->mmap_sem);
3646         vma = find_vma(current->mm, hva);
3647         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3648                 goto up_out;
3649
3650         psize = vma_kernel_pagesize(vma);
3651         porder = __ilog2(psize);
3652
3653         up_read(&current->mm->mmap_sem);
3654
3655         /* We can handle 4k, 64k or 16M pages in the VRMA */
3656         err = -EINVAL;
3657         if (!(psize == 0x1000 || psize == 0x10000 ||
3658               psize == 0x1000000))
3659                 goto out_srcu;
3660
3661         senc = slb_pgsize_encoding(psize);
3662         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3663                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3664         /* Create HPTEs in the hash page table for the VRMA */
3665         kvmppc_map_vrma(vcpu, memslot, porder);
3666
3667         /* Update VRMASD field in the LPCR */
3668         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3669                 /* the -4 is to account for senc values starting at 0x10 */
3670                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3671                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3672         }
3673
3674         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3675         smp_wmb();
3676         err = 0;
3677  out_srcu:
3678         srcu_read_unlock(&kvm->srcu, srcu_idx);
3679  out:
3680         return err;
3681
3682  up_out:
3683         up_read(&current->mm->mmap_sem);
3684         goto out_srcu;
3685 }
3686
3687 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3688 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3689 {
3690         kvmppc_free_radix(kvm);
3691         kvmppc_update_lpcr(kvm, LPCR_VPM1,
3692                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3693         kvmppc_rmap_reset(kvm);
3694         kvm->arch.radix = 0;
3695         kvm->arch.process_table = 0;
3696         return 0;
3697 }
3698
3699 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3700 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3701 {
3702         int err;
3703
3704         err = kvmppc_init_vm_radix(kvm);
3705         if (err)
3706                 return err;
3707
3708         kvmppc_free_hpt(&kvm->arch.hpt);
3709         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3710                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3711         kvm->arch.radix = 1;
3712         return 0;
3713 }
3714
3715 #ifdef CONFIG_KVM_XICS
3716 /*
3717  * Allocate a per-core structure for managing state about which cores are
3718  * running in the host versus the guest and for exchanging data between
3719  * real mode KVM and CPU running in the host.
3720  * This is only done for the first VM.
3721  * The allocated structure stays even if all VMs have stopped.
3722  * It is only freed when the kvm-hv module is unloaded.
3723  * It's OK for this routine to fail, we just don't support host
3724  * core operations like redirecting H_IPI wakeups.
3725  */
3726 void kvmppc_alloc_host_rm_ops(void)
3727 {
3728         struct kvmppc_host_rm_ops *ops;
3729         unsigned long l_ops;
3730         int cpu, core;
3731         int size;
3732
3733         /* Not the first time here ? */
3734         if (kvmppc_host_rm_ops_hv != NULL)
3735                 return;
3736
3737         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3738         if (!ops)
3739                 return;
3740
3741         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3742         ops->rm_core = kzalloc(size, GFP_KERNEL);
3743
3744         if (!ops->rm_core) {
3745                 kfree(ops);
3746                 return;
3747         }
3748
3749         cpus_read_lock();
3750
3751         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3752                 if (!cpu_online(cpu))
3753                         continue;
3754
3755                 core = cpu >> threads_shift;
3756                 ops->rm_core[core].rm_state.in_host = 1;
3757         }
3758
3759         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3760
3761         /*
3762          * Make the contents of the kvmppc_host_rm_ops structure visible
3763          * to other CPUs before we assign it to the global variable.
3764          * Do an atomic assignment (no locks used here), but if someone
3765          * beats us to it, just free our copy and return.
3766          */
3767         smp_wmb();
3768         l_ops = (unsigned long) ops;
3769
3770         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3771                 cpus_read_unlock();
3772                 kfree(ops->rm_core);
3773                 kfree(ops);
3774                 return;
3775         }
3776
3777         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3778                                              "ppc/kvm_book3s:prepare",
3779                                              kvmppc_set_host_core,
3780                                              kvmppc_clear_host_core);
3781         cpus_read_unlock();
3782 }
3783
3784 void kvmppc_free_host_rm_ops(void)
3785 {
3786         if (kvmppc_host_rm_ops_hv) {
3787                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3788                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3789                 kfree(kvmppc_host_rm_ops_hv);
3790                 kvmppc_host_rm_ops_hv = NULL;
3791         }
3792 }
3793 #endif
3794
3795 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3796 {
3797         unsigned long lpcr, lpid;
3798         char buf[32];
3799         int ret;
3800
3801         /* Allocate the guest's logical partition ID */
3802
3803         lpid = kvmppc_alloc_lpid();
3804         if ((long)lpid < 0)
3805                 return -ENOMEM;
3806         kvm->arch.lpid = lpid;
3807
3808         kvmppc_alloc_host_rm_ops();
3809
3810         /*
3811          * Since we don't flush the TLB when tearing down a VM,
3812          * and this lpid might have previously been used,
3813          * make sure we flush on each core before running the new VM.
3814          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3815          * does this flush for us.
3816          */
3817         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3818                 cpumask_setall(&kvm->arch.need_tlb_flush);
3819
3820         /* Start out with the default set of hcalls enabled */
3821         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3822                sizeof(kvm->arch.enabled_hcalls));
3823
3824         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3825                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3826
3827         /* Init LPCR for virtual RMA mode */
3828         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3829         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3830         lpcr &= LPCR_PECE | LPCR_LPES;
3831         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3832                 LPCR_VPM0 | LPCR_VPM1;
3833         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3834                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3835         /* On POWER8 turn on online bit to enable PURR/SPURR */
3836         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3837                 lpcr |= LPCR_ONL;
3838         /*
3839          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3840          * Set HVICE bit to enable hypervisor virtualization interrupts.
3841          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3842          * be unnecessary but better safe than sorry in case we re-enable
3843          * EE in HV mode with this LPCR still set)
3844          */
3845         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3846                 lpcr &= ~LPCR_VPM0;
3847                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3848
3849                 /*
3850                  * If xive is enabled, we route 0x500 interrupts directly
3851                  * to the guest.
3852                  */
3853                 if (xive_enabled())
3854                         lpcr |= LPCR_LPES;
3855         }
3856
3857         /*
3858          * If the host uses radix, the guest starts out as radix.
3859          */
3860         if (radix_enabled()) {
3861                 kvm->arch.radix = 1;
3862                 kvm->arch.mmu_ready = 1;
3863                 lpcr &= ~LPCR_VPM1;
3864                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3865                 ret = kvmppc_init_vm_radix(kvm);
3866                 if (ret) {
3867                         kvmppc_free_lpid(kvm->arch.lpid);
3868                         return ret;
3869                 }
3870                 kvmppc_setup_partition_table(kvm);
3871         }
3872
3873         kvm->arch.lpcr = lpcr;
3874
3875         /* Initialization for future HPT resizes */
3876         kvm->arch.resize_hpt = NULL;
3877
3878         /*
3879          * Work out how many sets the TLB has, for the use of
3880          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3881          */
3882         if (radix_enabled())
3883                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3884         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3885                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3886         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3887                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3888         else
3889                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3890
3891         /*
3892          * Track that we now have a HV mode VM active. This blocks secondary
3893          * CPU threads from coming online.
3894          * On POWER9, we only need to do this if the "indep_threads_mode"
3895          * module parameter has been set to N.
3896          */
3897         if (cpu_has_feature(CPU_FTR_ARCH_300))
3898                 kvm->arch.threads_indep = indep_threads_mode;
3899         if (!kvm->arch.threads_indep)
3900                 kvm_hv_vm_activated();
3901
3902         /*
3903          * Initialize smt_mode depending on processor.
3904          * POWER8 and earlier have to use "strict" threading, where
3905          * all vCPUs in a vcore have to run on the same (sub)core,
3906          * whereas on POWER9 the threads can each run a different
3907          * guest.
3908          */
3909         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3910                 kvm->arch.smt_mode = threads_per_subcore;
3911         else
3912                 kvm->arch.smt_mode = 1;
3913         kvm->arch.emul_smt_mode = 1;
3914
3915         /*
3916          * Create a debugfs directory for the VM
3917          */
3918         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3919         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3920         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3921                 kvmppc_mmu_debugfs_init(kvm);
3922
3923         return 0;
3924 }
3925
3926 static void kvmppc_free_vcores(struct kvm *kvm)
3927 {
3928         long int i;
3929
3930         for (i = 0; i < KVM_MAX_VCORES; ++i)
3931                 kfree(kvm->arch.vcores[i]);
3932         kvm->arch.online_vcores = 0;
3933 }
3934
3935 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3936 {
3937         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3938
3939         if (!kvm->arch.threads_indep)
3940                 kvm_hv_vm_deactivated();
3941
3942         kvmppc_free_vcores(kvm);
3943
3944         kvmppc_free_lpid(kvm->arch.lpid);
3945
3946         if (kvm_is_radix(kvm))
3947                 kvmppc_free_radix(kvm);
3948         else
3949                 kvmppc_free_hpt(&kvm->arch.hpt);
3950
3951         kvmppc_free_pimap(kvm);
3952 }
3953
3954 /* We don't need to emulate any privileged instructions or dcbz */
3955 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3956                                      unsigned int inst, int *advance)
3957 {
3958         return EMULATE_FAIL;
3959 }
3960
3961 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3962                                         ulong spr_val)
3963 {
3964         return EMULATE_FAIL;
3965 }
3966
3967 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3968                                         ulong *spr_val)
3969 {
3970         return EMULATE_FAIL;
3971 }
3972
3973 static int kvmppc_core_check_processor_compat_hv(void)
3974 {
3975         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3976             !cpu_has_feature(CPU_FTR_ARCH_206))
3977                 return -EIO;
3978
3979         return 0;
3980 }
3981
3982 #ifdef CONFIG_KVM_XICS
3983
3984 void kvmppc_free_pimap(struct kvm *kvm)
3985 {
3986         kfree(kvm->arch.pimap);
3987 }
3988
3989 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3990 {
3991         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3992 }
3993
3994 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3995 {
3996         struct irq_desc *desc;
3997         struct kvmppc_irq_map *irq_map;
3998         struct kvmppc_passthru_irqmap *pimap;
3999         struct irq_chip *chip;
4000         int i, rc = 0;
4001
4002         if (!kvm_irq_bypass)
4003                 return 1;
4004
4005         desc = irq_to_desc(host_irq);
4006         if (!desc)
4007                 return -EIO;
4008
4009         mutex_lock(&kvm->lock);
4010
4011         pimap = kvm->arch.pimap;
4012         if (pimap == NULL) {
4013                 /* First call, allocate structure to hold IRQ map */
4014                 pimap = kvmppc_alloc_pimap();
4015                 if (pimap == NULL) {
4016                         mutex_unlock(&kvm->lock);
4017                         return -ENOMEM;
4018                 }
4019                 kvm->arch.pimap = pimap;
4020         }
4021
4022         /*
4023          * For now, we only support interrupts for which the EOI operation
4024          * is an OPAL call followed by a write to XIRR, since that's
4025          * what our real-mode EOI code does, or a XIVE interrupt
4026          */
4027         chip = irq_data_get_irq_chip(&desc->irq_data);
4028         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4029                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4030                         host_irq, guest_gsi);
4031                 mutex_unlock(&kvm->lock);
4032                 return -ENOENT;
4033         }
4034
4035         /*
4036          * See if we already have an entry for this guest IRQ number.
4037          * If it's mapped to a hardware IRQ number, that's an error,
4038          * otherwise re-use this entry.
4039          */
4040         for (i = 0; i < pimap->n_mapped; i++) {
4041                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4042                         if (pimap->mapped[i].r_hwirq) {
4043                                 mutex_unlock(&kvm->lock);
4044                                 return -EINVAL;
4045                         }
4046                         break;
4047                 }
4048         }
4049
4050         if (i == KVMPPC_PIRQ_MAPPED) {
4051                 mutex_unlock(&kvm->lock);
4052                 return -EAGAIN;         /* table is full */
4053         }
4054
4055         irq_map = &pimap->mapped[i];
4056
4057         irq_map->v_hwirq = guest_gsi;
4058         irq_map->desc = desc;
4059
4060         /*
4061          * Order the above two stores before the next to serialize with
4062          * the KVM real mode handler.
4063          */
4064         smp_wmb();
4065         irq_map->r_hwirq = desc->irq_data.hwirq;
4066
4067         if (i == pimap->n_mapped)
4068                 pimap->n_mapped++;
4069
4070         if (xive_enabled())
4071                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4072         else
4073                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4074         if (rc)
4075                 irq_map->r_hwirq = 0;
4076
4077         mutex_unlock(&kvm->lock);
4078
4079         return 0;
4080 }
4081
4082 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4083 {
4084         struct irq_desc *desc;
4085         struct kvmppc_passthru_irqmap *pimap;
4086         int i, rc = 0;
4087
4088         if (!kvm_irq_bypass)
4089                 return 0;
4090
4091         desc = irq_to_desc(host_irq);
4092         if (!desc)
4093                 return -EIO;
4094
4095         mutex_lock(&kvm->lock);
4096         if (!kvm->arch.pimap)
4097                 goto unlock;
4098
4099         pimap = kvm->arch.pimap;
4100
4101         for (i = 0; i < pimap->n_mapped; i++) {
4102                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4103                         break;
4104         }
4105
4106         if (i == pimap->n_mapped) {
4107                 mutex_unlock(&kvm->lock);
4108                 return -ENODEV;
4109         }
4110
4111         if (xive_enabled())
4112                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4113         else
4114                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4115
4116         /* invalidate the entry (what do do on error from the above ?) */
4117         pimap->mapped[i].r_hwirq = 0;
4118
4119         /*
4120          * We don't free this structure even when the count goes to
4121          * zero. The structure is freed when we destroy the VM.
4122          */
4123  unlock:
4124         mutex_unlock(&kvm->lock);
4125         return rc;
4126 }
4127
4128 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4129                                              struct irq_bypass_producer *prod)
4130 {
4131         int ret = 0;
4132         struct kvm_kernel_irqfd *irqfd =
4133                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4134
4135         irqfd->producer = prod;
4136
4137         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4138         if (ret)
4139                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4140                         prod->irq, irqfd->gsi, ret);
4141
4142         return ret;
4143 }
4144
4145 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4146                                               struct irq_bypass_producer *prod)
4147 {
4148         int ret;
4149         struct kvm_kernel_irqfd *irqfd =
4150                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4151
4152         irqfd->producer = NULL;
4153
4154         /*
4155          * When producer of consumer is unregistered, we change back to
4156          * default external interrupt handling mode - KVM real mode
4157          * will switch back to host.
4158          */
4159         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4160         if (ret)
4161                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4162                         prod->irq, irqfd->gsi, ret);
4163 }
4164 #endif
4165
4166 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4167                                  unsigned int ioctl, unsigned long arg)
4168 {
4169         struct kvm *kvm __maybe_unused = filp->private_data;
4170         void __user *argp = (void __user *)arg;
4171         long r;
4172
4173         switch (ioctl) {
4174
4175         case KVM_PPC_ALLOCATE_HTAB: {
4176                 u32 htab_order;
4177
4178                 r = -EFAULT;
4179                 if (get_user(htab_order, (u32 __user *)argp))
4180                         break;
4181                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4182                 if (r)
4183                         break;
4184                 r = 0;
4185                 break;
4186         }
4187
4188         case KVM_PPC_GET_HTAB_FD: {
4189                 struct kvm_get_htab_fd ghf;
4190
4191                 r = -EFAULT;
4192                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4193                         break;
4194                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4195                 break;
4196         }
4197
4198         case KVM_PPC_RESIZE_HPT_PREPARE: {
4199                 struct kvm_ppc_resize_hpt rhpt;
4200
4201                 r = -EFAULT;
4202                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4203                         break;
4204
4205                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4206                 break;
4207         }
4208
4209         case KVM_PPC_RESIZE_HPT_COMMIT: {
4210                 struct kvm_ppc_resize_hpt rhpt;
4211
4212                 r = -EFAULT;
4213                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4214                         break;
4215
4216                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4217                 break;
4218         }
4219
4220         default:
4221                 r = -ENOTTY;
4222         }
4223
4224         return r;
4225 }
4226
4227 /*
4228  * List of hcall numbers to enable by default.
4229  * For compatibility with old userspace, we enable by default
4230  * all hcalls that were implemented before the hcall-enabling
4231  * facility was added.  Note this list should not include H_RTAS.
4232  */
4233 static unsigned int default_hcall_list[] = {
4234         H_REMOVE,
4235         H_ENTER,
4236         H_READ,
4237         H_PROTECT,
4238         H_BULK_REMOVE,
4239         H_GET_TCE,
4240         H_PUT_TCE,
4241         H_SET_DABR,
4242         H_SET_XDABR,
4243         H_CEDE,
4244         H_PROD,
4245         H_CONFER,
4246         H_REGISTER_VPA,
4247 #ifdef CONFIG_KVM_XICS
4248         H_EOI,
4249         H_CPPR,
4250         H_IPI,
4251         H_IPOLL,
4252         H_XIRR,
4253         H_XIRR_X,
4254 #endif
4255         0
4256 };
4257
4258 static void init_default_hcalls(void)
4259 {
4260         int i;
4261         unsigned int hcall;
4262
4263         for (i = 0; default_hcall_list[i]; ++i) {
4264                 hcall = default_hcall_list[i];
4265                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4266                 __set_bit(hcall / 4, default_enabled_hcalls);
4267         }
4268 }
4269
4270 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4271 {
4272         unsigned long lpcr;
4273         int radix;
4274         int err;
4275
4276         /* If not on a POWER9, reject it */
4277         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4278                 return -ENODEV;
4279
4280         /* If any unknown flags set, reject it */
4281         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4282                 return -EINVAL;
4283
4284         /* GR (guest radix) bit in process_table field must match */
4285         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4286         if (!!(cfg->process_table & PATB_GR) != radix)
4287                 return -EINVAL;
4288
4289         /* Process table size field must be reasonable, i.e. <= 24 */
4290         if ((cfg->process_table & PRTS_MASK) > 24)
4291                 return -EINVAL;
4292
4293         /* We can change a guest to/from radix now, if the host is radix */
4294         if (radix && !radix_enabled())
4295                 return -EINVAL;
4296
4297         mutex_lock(&kvm->lock);
4298         if (radix != kvm_is_radix(kvm)) {
4299                 if (kvm->arch.mmu_ready) {
4300                         kvm->arch.mmu_ready = 0;
4301                         /* order mmu_ready vs. vcpus_running */
4302                         smp_mb();
4303                         if (atomic_read(&kvm->arch.vcpus_running)) {
4304                                 kvm->arch.mmu_ready = 1;
4305                                 err = -EBUSY;
4306                                 goto out_unlock;
4307                         }
4308                 }
4309                 if (radix)
4310                         err = kvmppc_switch_mmu_to_radix(kvm);
4311                 else
4312                         err = kvmppc_switch_mmu_to_hpt(kvm);
4313                 if (err)
4314                         goto out_unlock;
4315         }
4316
4317         kvm->arch.process_table = cfg->process_table;
4318         kvmppc_setup_partition_table(kvm);
4319
4320         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4321         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4322         err = 0;
4323
4324  out_unlock:
4325         mutex_unlock(&kvm->lock);
4326         return err;
4327 }
4328
4329 static struct kvmppc_ops kvm_ops_hv = {
4330         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4331         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4332         .get_one_reg = kvmppc_get_one_reg_hv,
4333         .set_one_reg = kvmppc_set_one_reg_hv,
4334         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4335         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4336         .set_msr     = kvmppc_set_msr_hv,
4337         .vcpu_run    = kvmppc_vcpu_run_hv,
4338         .vcpu_create = kvmppc_core_vcpu_create_hv,
4339         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4340         .check_requests = kvmppc_core_check_requests_hv,
4341         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4342         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4343         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4344         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4345         .unmap_hva = kvm_unmap_hva_hv,
4346         .unmap_hva_range = kvm_unmap_hva_range_hv,
4347         .age_hva  = kvm_age_hva_hv,
4348         .test_age_hva = kvm_test_age_hva_hv,
4349         .set_spte_hva = kvm_set_spte_hva_hv,
4350         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4351         .free_memslot = kvmppc_core_free_memslot_hv,
4352         .create_memslot = kvmppc_core_create_memslot_hv,
4353         .init_vm =  kvmppc_core_init_vm_hv,
4354         .destroy_vm = kvmppc_core_destroy_vm_hv,
4355         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4356         .emulate_op = kvmppc_core_emulate_op_hv,
4357         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4358         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4359         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4360         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4361         .hcall_implemented = kvmppc_hcall_impl_hv,
4362 #ifdef CONFIG_KVM_XICS
4363         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4364         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4365 #endif
4366         .configure_mmu = kvmhv_configure_mmu,
4367         .get_rmmu_info = kvmhv_get_rmmu_info,
4368         .set_smt_mode = kvmhv_set_smt_mode,
4369 };
4370
4371 static int kvm_init_subcore_bitmap(void)
4372 {
4373         int i, j;
4374         int nr_cores = cpu_nr_cores();
4375         struct sibling_subcore_state *sibling_subcore_state;
4376
4377         for (i = 0; i < nr_cores; i++) {
4378                 int first_cpu = i * threads_per_core;
4379                 int node = cpu_to_node(first_cpu);
4380
4381                 /* Ignore if it is already allocated. */
4382                 if (paca[first_cpu].sibling_subcore_state)
4383                         continue;
4384
4385                 sibling_subcore_state =
4386                         kmalloc_node(sizeof(struct sibling_subcore_state),
4387                                                         GFP_KERNEL, node);
4388                 if (!sibling_subcore_state)
4389                         return -ENOMEM;
4390
4391                 memset(sibling_subcore_state, 0,
4392                                 sizeof(struct sibling_subcore_state));
4393
4394                 for (j = 0; j < threads_per_core; j++) {
4395                         int cpu = first_cpu + j;
4396
4397                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4398                 }
4399         }
4400         return 0;
4401 }
4402
4403 static int kvmppc_radix_possible(void)
4404 {
4405         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4406 }
4407
4408 static int kvmppc_book3s_init_hv(void)
4409 {
4410         int r;
4411         /*
4412          * FIXME!! Do we need to check on all cpus ?
4413          */
4414         r = kvmppc_core_check_processor_compat_hv();
4415         if (r < 0)
4416                 return -ENODEV;
4417
4418         r = kvm_init_subcore_bitmap();
4419         if (r)
4420                 return r;
4421
4422         /*
4423          * We need a way of accessing the XICS interrupt controller,
4424          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4425          * indirectly, via OPAL.
4426          */
4427 #ifdef CONFIG_SMP
4428         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4429                 struct device_node *np;
4430
4431                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4432                 if (!np) {
4433                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4434                         return -ENODEV;
4435                 }
4436         }
4437 #endif
4438
4439         kvm_ops_hv.owner = THIS_MODULE;
4440         kvmppc_hv_ops = &kvm_ops_hv;
4441
4442         init_default_hcalls();
4443
4444         init_vcore_lists();
4445
4446         r = kvmppc_mmu_hv_init();
4447         if (r)
4448                 return r;
4449
4450         if (kvmppc_radix_possible())
4451                 r = kvmppc_radix_init();
4452         return r;
4453 }
4454
4455 static void kvmppc_book3s_exit_hv(void)
4456 {
4457         kvmppc_free_host_rm_ops();
4458         if (kvmppc_radix_possible())
4459                 kvmppc_radix_exit();
4460         kvmppc_hv_ops = NULL;
4461 }
4462
4463 module_init(kvmppc_book3s_init_hv);
4464 module_exit(kvmppc_book3s_exit_hv);
4465 MODULE_LICENSE("GPL");
4466 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4467 MODULE_ALIAS("devname:kvm");