Merge remote-tracking branch 'riscv/riscv-fix-32bit' into fixes
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 #include <asm/dtl.h>
79 #include <asm/plpar_wrappers.h>
80
81 #include "book3s.h"
82
83 #define CREATE_TRACE_POINTS
84 #include "trace_hv.h"
85
86 /* #define EXIT_DEBUG */
87 /* #define EXIT_DEBUG_SIMPLE */
88 /* #define EXIT_DEBUG_INT */
89
90 /* Used to indicate that a guest page fault needs to be handled */
91 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
92 /* Used to indicate that a guest passthrough interrupt needs to be handled */
93 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
94
95 /* Used as a "null" value for timebase values */
96 #define TB_NIL  (~(u64)0)
97
98 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
99
100 static int dynamic_mt_modes = 6;
101 module_param(dynamic_mt_modes, int, 0644);
102 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
103 static int target_smt_mode;
104 module_param(target_smt_mode, int, 0644);
105 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
106
107 static bool one_vm_per_core;
108 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
110
111 #ifdef CONFIG_KVM_XICS
112 static const struct kernel_param_ops module_param_ops = {
113         .set = param_set_int,
114         .get = param_get_int,
115 };
116
117 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
118 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
119
120 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
121 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
122 #endif
123
124 /* If set, guests are allowed to create and control nested guests */
125 static bool nested = true;
126 module_param(nested, bool, S_IRUGO | S_IWUSR);
127 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
128
129 static inline bool nesting_enabled(struct kvm *kvm)
130 {
131         return kvm->arch.nested_enable && kvm_is_radix(kvm);
132 }
133
134 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
135
136 /*
137  * RWMR values for POWER8.  These control the rate at which PURR
138  * and SPURR count and should be set according to the number of
139  * online threads in the vcore being run.
140  */
141 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
142 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
143 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
145 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
149
150 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
151         RWMR_RPA_P8_1THREAD,
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_2THREAD,
154         RWMR_RPA_P8_3THREAD,
155         RWMR_RPA_P8_4THREAD,
156         RWMR_RPA_P8_5THREAD,
157         RWMR_RPA_P8_6THREAD,
158         RWMR_RPA_P8_7THREAD,
159         RWMR_RPA_P8_8THREAD,
160 };
161
162 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
163                 int *ip)
164 {
165         int i = *ip;
166         struct kvm_vcpu *vcpu;
167
168         while (++i < MAX_SMT_THREADS) {
169                 vcpu = READ_ONCE(vc->runnable_threads[i]);
170                 if (vcpu) {
171                         *ip = i;
172                         return vcpu;
173                 }
174         }
175         return NULL;
176 }
177
178 /* Used to traverse the list of runnable threads for a given vcore */
179 #define for_each_runnable_thread(i, vcpu, vc) \
180         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
181
182 static bool kvmppc_ipi_thread(int cpu)
183 {
184         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
185
186         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
187         if (kvmhv_on_pseries())
188                 return false;
189
190         /* On POWER9 we can use msgsnd to IPI any cpu */
191         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
192                 msg |= get_hard_smp_processor_id(cpu);
193                 smp_mb();
194                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
195                 return true;
196         }
197
198         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
199         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
200                 preempt_disable();
201                 if (cpu_first_thread_sibling(cpu) ==
202                     cpu_first_thread_sibling(smp_processor_id())) {
203                         msg |= cpu_thread_in_core(cpu);
204                         smp_mb();
205                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
206                         preempt_enable();
207                         return true;
208                 }
209                 preempt_enable();
210         }
211
212 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
213         if (cpu >= 0 && cpu < nr_cpu_ids) {
214                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
215                         xics_wake_cpu(cpu);
216                         return true;
217                 }
218                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
219                 return true;
220         }
221 #endif
222
223         return false;
224 }
225
226 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
227 {
228         int cpu;
229         struct rcuwait *waitp;
230
231         waitp = kvm_arch_vcpu_get_wait(vcpu);
232         if (rcuwait_wake_up(waitp))
233                 ++vcpu->stat.generic.halt_wakeup;
234
235         cpu = READ_ONCE(vcpu->arch.thread_cpu);
236         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
237                 return;
238
239         /* CPU points to the first thread of the core */
240         cpu = vcpu->cpu;
241         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
242                 smp_send_reschedule(cpu);
243 }
244
245 /*
246  * We use the vcpu_load/put functions to measure stolen time.
247  * Stolen time is counted as time when either the vcpu is able to
248  * run as part of a virtual core, but the task running the vcore
249  * is preempted or sleeping, or when the vcpu needs something done
250  * in the kernel by the task running the vcpu, but that task is
251  * preempted or sleeping.  Those two things have to be counted
252  * separately, since one of the vcpu tasks will take on the job
253  * of running the core, and the other vcpu tasks in the vcore will
254  * sleep waiting for it to do that, but that sleep shouldn't count
255  * as stolen time.
256  *
257  * Hence we accumulate stolen time when the vcpu can run as part of
258  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
259  * needs its task to do other things in the kernel (for example,
260  * service a page fault) in busy_stolen.  We don't accumulate
261  * stolen time for a vcore when it is inactive, or for a vcpu
262  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
263  * a misnomer; it means that the vcpu task is not executing in
264  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
265  * the kernel.  We don't have any way of dividing up that time
266  * between time that the vcpu is genuinely stopped, time that
267  * the task is actively working on behalf of the vcpu, and time
268  * that the task is preempted, so we don't count any of it as
269  * stolen.
270  *
271  * Updates to busy_stolen are protected by arch.tbacct_lock;
272  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
273  * lock.  The stolen times are measured in units of timebase ticks.
274  * (Note that the != TB_NIL checks below are purely defensive;
275  * they should never fail.)
276  */
277
278 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
279 {
280         unsigned long flags;
281
282         spin_lock_irqsave(&vc->stoltb_lock, flags);
283         vc->preempt_tb = mftb();
284         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286
287 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
288 {
289         unsigned long flags;
290
291         spin_lock_irqsave(&vc->stoltb_lock, flags);
292         if (vc->preempt_tb != TB_NIL) {
293                 vc->stolen_tb += mftb() - vc->preempt_tb;
294                 vc->preempt_tb = TB_NIL;
295         }
296         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
297 }
298
299 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
300 {
301         struct kvmppc_vcore *vc = vcpu->arch.vcore;
302         unsigned long flags;
303
304         /*
305          * We can test vc->runner without taking the vcore lock,
306          * because only this task ever sets vc->runner to this
307          * vcpu, and once it is set to this vcpu, only this task
308          * ever sets it to NULL.
309          */
310         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
311                 kvmppc_core_end_stolen(vc);
312
313         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
314         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
315             vcpu->arch.busy_preempt != TB_NIL) {
316                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
317                 vcpu->arch.busy_preempt = TB_NIL;
318         }
319         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
320 }
321
322 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
323 {
324         struct kvmppc_vcore *vc = vcpu->arch.vcore;
325         unsigned long flags;
326
327         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
328                 kvmppc_core_start_stolen(vc);
329
330         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
331         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
332                 vcpu->arch.busy_preempt = mftb();
333         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
334 }
335
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338         vcpu->arch.pvr = pvr;
339 }
340
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
343
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347         struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
349         /* We can (emulate) our own architecture version and anything older */
350         if (cpu_has_feature(CPU_FTR_ARCH_31))
351                 host_pcr_bit = PCR_ARCH_31;
352         else if (cpu_has_feature(CPU_FTR_ARCH_300))
353                 host_pcr_bit = PCR_ARCH_300;
354         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
355                 host_pcr_bit = PCR_ARCH_207;
356         else if (cpu_has_feature(CPU_FTR_ARCH_206))
357                 host_pcr_bit = PCR_ARCH_206;
358         else
359                 host_pcr_bit = PCR_ARCH_205;
360
361         /* Determine lowest PCR bit needed to run guest in given PVR level */
362         guest_pcr_bit = host_pcr_bit;
363         if (arch_compat) {
364                 switch (arch_compat) {
365                 case PVR_ARCH_205:
366                         guest_pcr_bit = PCR_ARCH_205;
367                         break;
368                 case PVR_ARCH_206:
369                 case PVR_ARCH_206p:
370                         guest_pcr_bit = PCR_ARCH_206;
371                         break;
372                 case PVR_ARCH_207:
373                         guest_pcr_bit = PCR_ARCH_207;
374                         break;
375                 case PVR_ARCH_300:
376                         guest_pcr_bit = PCR_ARCH_300;
377                         break;
378                 case PVR_ARCH_31:
379                         guest_pcr_bit = PCR_ARCH_31;
380                         break;
381                 default:
382                         return -EINVAL;
383                 }
384         }
385
386         /* Check requested PCR bits don't exceed our capabilities */
387         if (guest_pcr_bit > host_pcr_bit)
388                 return -EINVAL;
389
390         spin_lock(&vc->lock);
391         vc->arch_compat = arch_compat;
392         /*
393          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
394          * Also set all reserved PCR bits
395          */
396         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
397         spin_unlock(&vc->lock);
398
399         return 0;
400 }
401
402 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
403 {
404         int r;
405
406         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
407         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
408                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
409         for (r = 0; r < 16; ++r)
410                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
411                        r, kvmppc_get_gpr(vcpu, r),
412                        r+16, kvmppc_get_gpr(vcpu, r+16));
413         pr_err("ctr = %.16lx  lr  = %.16lx\n",
414                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
415         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
416                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
417         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
418                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
419         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
420                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
421         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
422                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
423         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
424         pr_err("fault dar = %.16lx dsisr = %.8x\n",
425                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
426         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
427         for (r = 0; r < vcpu->arch.slb_max; ++r)
428                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
429                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
430         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
431                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
432                vcpu->arch.last_inst);
433 }
434
435 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
436 {
437         return kvm_get_vcpu_by_id(kvm, id);
438 }
439
440 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
441 {
442         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
443         vpa->yield_count = cpu_to_be32(1);
444 }
445
446 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
447                    unsigned long addr, unsigned long len)
448 {
449         /* check address is cacheline aligned */
450         if (addr & (L1_CACHE_BYTES - 1))
451                 return -EINVAL;
452         spin_lock(&vcpu->arch.vpa_update_lock);
453         if (v->next_gpa != addr || v->len != len) {
454                 v->next_gpa = addr;
455                 v->len = addr ? len : 0;
456                 v->update_pending = 1;
457         }
458         spin_unlock(&vcpu->arch.vpa_update_lock);
459         return 0;
460 }
461
462 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
463 struct reg_vpa {
464         u32 dummy;
465         union {
466                 __be16 hword;
467                 __be32 word;
468         } length;
469 };
470
471 static int vpa_is_registered(struct kvmppc_vpa *vpap)
472 {
473         if (vpap->update_pending)
474                 return vpap->next_gpa != 0;
475         return vpap->pinned_addr != NULL;
476 }
477
478 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
479                                        unsigned long flags,
480                                        unsigned long vcpuid, unsigned long vpa)
481 {
482         struct kvm *kvm = vcpu->kvm;
483         unsigned long len, nb;
484         void *va;
485         struct kvm_vcpu *tvcpu;
486         int err;
487         int subfunc;
488         struct kvmppc_vpa *vpap;
489
490         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
491         if (!tvcpu)
492                 return H_PARAMETER;
493
494         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
495         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
496             subfunc == H_VPA_REG_SLB) {
497                 /* Registering new area - address must be cache-line aligned */
498                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
499                         return H_PARAMETER;
500
501                 /* convert logical addr to kernel addr and read length */
502                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
503                 if (va == NULL)
504                         return H_PARAMETER;
505                 if (subfunc == H_VPA_REG_VPA)
506                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
507                 else
508                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
509                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
510
511                 /* Check length */
512                 if (len > nb || len < sizeof(struct reg_vpa))
513                         return H_PARAMETER;
514         } else {
515                 vpa = 0;
516                 len = 0;
517         }
518
519         err = H_PARAMETER;
520         vpap = NULL;
521         spin_lock(&tvcpu->arch.vpa_update_lock);
522
523         switch (subfunc) {
524         case H_VPA_REG_VPA:             /* register VPA */
525                 /*
526                  * The size of our lppaca is 1kB because of the way we align
527                  * it for the guest to avoid crossing a 4kB boundary. We only
528                  * use 640 bytes of the structure though, so we should accept
529                  * clients that set a size of 640.
530                  */
531                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
532                 if (len < sizeof(struct lppaca))
533                         break;
534                 vpap = &tvcpu->arch.vpa;
535                 err = 0;
536                 break;
537
538         case H_VPA_REG_DTL:             /* register DTL */
539                 if (len < sizeof(struct dtl_entry))
540                         break;
541                 len -= len % sizeof(struct dtl_entry);
542
543                 /* Check that they have previously registered a VPA */
544                 err = H_RESOURCE;
545                 if (!vpa_is_registered(&tvcpu->arch.vpa))
546                         break;
547
548                 vpap = &tvcpu->arch.dtl;
549                 err = 0;
550                 break;
551
552         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
553                 /* Check that they have previously registered a VPA */
554                 err = H_RESOURCE;
555                 if (!vpa_is_registered(&tvcpu->arch.vpa))
556                         break;
557
558                 vpap = &tvcpu->arch.slb_shadow;
559                 err = 0;
560                 break;
561
562         case H_VPA_DEREG_VPA:           /* deregister VPA */
563                 /* Check they don't still have a DTL or SLB buf registered */
564                 err = H_RESOURCE;
565                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
566                     vpa_is_registered(&tvcpu->arch.slb_shadow))
567                         break;
568
569                 vpap = &tvcpu->arch.vpa;
570                 err = 0;
571                 break;
572
573         case H_VPA_DEREG_DTL:           /* deregister DTL */
574                 vpap = &tvcpu->arch.dtl;
575                 err = 0;
576                 break;
577
578         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
579                 vpap = &tvcpu->arch.slb_shadow;
580                 err = 0;
581                 break;
582         }
583
584         if (vpap) {
585                 vpap->next_gpa = vpa;
586                 vpap->len = len;
587                 vpap->update_pending = 1;
588         }
589
590         spin_unlock(&tvcpu->arch.vpa_update_lock);
591
592         return err;
593 }
594
595 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
596 {
597         struct kvm *kvm = vcpu->kvm;
598         void *va;
599         unsigned long nb;
600         unsigned long gpa;
601
602         /*
603          * We need to pin the page pointed to by vpap->next_gpa,
604          * but we can't call kvmppc_pin_guest_page under the lock
605          * as it does get_user_pages() and down_read().  So we
606          * have to drop the lock, pin the page, then get the lock
607          * again and check that a new area didn't get registered
608          * in the meantime.
609          */
610         for (;;) {
611                 gpa = vpap->next_gpa;
612                 spin_unlock(&vcpu->arch.vpa_update_lock);
613                 va = NULL;
614                 nb = 0;
615                 if (gpa)
616                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
617                 spin_lock(&vcpu->arch.vpa_update_lock);
618                 if (gpa == vpap->next_gpa)
619                         break;
620                 /* sigh... unpin that one and try again */
621                 if (va)
622                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
623         }
624
625         vpap->update_pending = 0;
626         if (va && nb < vpap->len) {
627                 /*
628                  * If it's now too short, it must be that userspace
629                  * has changed the mappings underlying guest memory,
630                  * so unregister the region.
631                  */
632                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
633                 va = NULL;
634         }
635         if (vpap->pinned_addr)
636                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
637                                         vpap->dirty);
638         vpap->gpa = gpa;
639         vpap->pinned_addr = va;
640         vpap->dirty = false;
641         if (va)
642                 vpap->pinned_end = va + vpap->len;
643 }
644
645 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
646 {
647         if (!(vcpu->arch.vpa.update_pending ||
648               vcpu->arch.slb_shadow.update_pending ||
649               vcpu->arch.dtl.update_pending))
650                 return;
651
652         spin_lock(&vcpu->arch.vpa_update_lock);
653         if (vcpu->arch.vpa.update_pending) {
654                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
655                 if (vcpu->arch.vpa.pinned_addr)
656                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
657         }
658         if (vcpu->arch.dtl.update_pending) {
659                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
660                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
661                 vcpu->arch.dtl_index = 0;
662         }
663         if (vcpu->arch.slb_shadow.update_pending)
664                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
665         spin_unlock(&vcpu->arch.vpa_update_lock);
666 }
667
668 /*
669  * Return the accumulated stolen time for the vcore up until `now'.
670  * The caller should hold the vcore lock.
671  */
672 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
673 {
674         u64 p;
675         unsigned long flags;
676
677         spin_lock_irqsave(&vc->stoltb_lock, flags);
678         p = vc->stolen_tb;
679         if (vc->vcore_state != VCORE_INACTIVE &&
680             vc->preempt_tb != TB_NIL)
681                 p += now - vc->preempt_tb;
682         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
683         return p;
684 }
685
686 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
687                                     struct kvmppc_vcore *vc)
688 {
689         struct dtl_entry *dt;
690         struct lppaca *vpa;
691         unsigned long stolen;
692         unsigned long core_stolen;
693         u64 now;
694         unsigned long flags;
695
696         dt = vcpu->arch.dtl_ptr;
697         vpa = vcpu->arch.vpa.pinned_addr;
698         now = mftb();
699         core_stolen = vcore_stolen_time(vc, now);
700         stolen = core_stolen - vcpu->arch.stolen_logged;
701         vcpu->arch.stolen_logged = core_stolen;
702         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
703         stolen += vcpu->arch.busy_stolen;
704         vcpu->arch.busy_stolen = 0;
705         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
706         if (!dt || !vpa)
707                 return;
708         memset(dt, 0, sizeof(struct dtl_entry));
709         dt->dispatch_reason = 7;
710         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
711         dt->timebase = cpu_to_be64(now + vc->tb_offset);
712         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
713         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
714         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
715         ++dt;
716         if (dt == vcpu->arch.dtl.pinned_end)
717                 dt = vcpu->arch.dtl.pinned_addr;
718         vcpu->arch.dtl_ptr = dt;
719         /* order writing *dt vs. writing vpa->dtl_idx */
720         smp_wmb();
721         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
722         vcpu->arch.dtl.dirty = true;
723 }
724
725 /* See if there is a doorbell interrupt pending for a vcpu */
726 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
727 {
728         int thr;
729         struct kvmppc_vcore *vc;
730
731         if (vcpu->arch.doorbell_request)
732                 return true;
733         /*
734          * Ensure that the read of vcore->dpdes comes after the read
735          * of vcpu->doorbell_request.  This barrier matches the
736          * smp_wmb() in kvmppc_guest_entry_inject().
737          */
738         smp_rmb();
739         vc = vcpu->arch.vcore;
740         thr = vcpu->vcpu_id - vc->first_vcpuid;
741         return !!(vc->dpdes & (1 << thr));
742 }
743
744 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
745 {
746         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
747                 return true;
748         if ((!vcpu->arch.vcore->arch_compat) &&
749             cpu_has_feature(CPU_FTR_ARCH_207S))
750                 return true;
751         return false;
752 }
753
754 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
755                              unsigned long resource, unsigned long value1,
756                              unsigned long value2)
757 {
758         switch (resource) {
759         case H_SET_MODE_RESOURCE_SET_CIABR:
760                 if (!kvmppc_power8_compatible(vcpu))
761                         return H_P2;
762                 if (value2)
763                         return H_P4;
764                 if (mflags)
765                         return H_UNSUPPORTED_FLAG_START;
766                 /* Guests can't breakpoint the hypervisor */
767                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
768                         return H_P3;
769                 vcpu->arch.ciabr  = value1;
770                 return H_SUCCESS;
771         case H_SET_MODE_RESOURCE_SET_DAWR0:
772                 if (!kvmppc_power8_compatible(vcpu))
773                         return H_P2;
774                 if (!ppc_breakpoint_available())
775                         return H_P2;
776                 if (mflags)
777                         return H_UNSUPPORTED_FLAG_START;
778                 if (value2 & DABRX_HYP)
779                         return H_P4;
780                 vcpu->arch.dawr0  = value1;
781                 vcpu->arch.dawrx0 = value2;
782                 return H_SUCCESS;
783         case H_SET_MODE_RESOURCE_SET_DAWR1:
784                 if (!kvmppc_power8_compatible(vcpu))
785                         return H_P2;
786                 if (!ppc_breakpoint_available())
787                         return H_P2;
788                 if (!cpu_has_feature(CPU_FTR_DAWR1))
789                         return H_P2;
790                 if (!vcpu->kvm->arch.dawr1_enabled)
791                         return H_FUNCTION;
792                 if (mflags)
793                         return H_UNSUPPORTED_FLAG_START;
794                 if (value2 & DABRX_HYP)
795                         return H_P4;
796                 vcpu->arch.dawr1  = value1;
797                 vcpu->arch.dawrx1 = value2;
798                 return H_SUCCESS;
799         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
800                 /*
801                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
802                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
803                  */
804                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
805                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
806                         return H_UNSUPPORTED_FLAG_START;
807                 return H_TOO_HARD;
808         default:
809                 return H_TOO_HARD;
810         }
811 }
812
813 /* Copy guest memory in place - must reside within a single memslot */
814 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
815                                   unsigned long len)
816 {
817         struct kvm_memory_slot *to_memslot = NULL;
818         struct kvm_memory_slot *from_memslot = NULL;
819         unsigned long to_addr, from_addr;
820         int r;
821
822         /* Get HPA for from address */
823         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
824         if (!from_memslot)
825                 return -EFAULT;
826         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
827                              << PAGE_SHIFT))
828                 return -EINVAL;
829         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
830         if (kvm_is_error_hva(from_addr))
831                 return -EFAULT;
832         from_addr |= (from & (PAGE_SIZE - 1));
833
834         /* Get HPA for to address */
835         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
836         if (!to_memslot)
837                 return -EFAULT;
838         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
839                            << PAGE_SHIFT))
840                 return -EINVAL;
841         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
842         if (kvm_is_error_hva(to_addr))
843                 return -EFAULT;
844         to_addr |= (to & (PAGE_SIZE - 1));
845
846         /* Perform copy */
847         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
848                              len);
849         if (r)
850                 return -EFAULT;
851         mark_page_dirty(kvm, to >> PAGE_SHIFT);
852         return 0;
853 }
854
855 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
856                                unsigned long dest, unsigned long src)
857 {
858         u64 pg_sz = SZ_4K;              /* 4K page size */
859         u64 pg_mask = SZ_4K - 1;
860         int ret;
861
862         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
863         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
864                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
865                 return H_PARAMETER;
866
867         /* dest (and src if copy_page flag set) must be page aligned */
868         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
869                 return H_PARAMETER;
870
871         /* zero and/or copy the page as determined by the flags */
872         if (flags & H_COPY_PAGE) {
873                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
874                 if (ret < 0)
875                         return H_PARAMETER;
876         } else if (flags & H_ZERO_PAGE) {
877                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
878                 if (ret < 0)
879                         return H_PARAMETER;
880         }
881
882         /* We can ignore the remaining flags */
883
884         return H_SUCCESS;
885 }
886
887 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
888 {
889         struct kvmppc_vcore *vcore = target->arch.vcore;
890
891         /*
892          * We expect to have been called by the real mode handler
893          * (kvmppc_rm_h_confer()) which would have directly returned
894          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
895          * have useful work to do and should not confer) so we don't
896          * recheck that here.
897          *
898          * In the case of the P9 single vcpu per vcore case, the real
899          * mode handler is not called but no other threads are in the
900          * source vcore.
901          */
902
903         spin_lock(&vcore->lock);
904         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
905             vcore->vcore_state != VCORE_INACTIVE &&
906             vcore->runner)
907                 target = vcore->runner;
908         spin_unlock(&vcore->lock);
909
910         return kvm_vcpu_yield_to(target);
911 }
912
913 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
914 {
915         int yield_count = 0;
916         struct lppaca *lppaca;
917
918         spin_lock(&vcpu->arch.vpa_update_lock);
919         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
920         if (lppaca)
921                 yield_count = be32_to_cpu(lppaca->yield_count);
922         spin_unlock(&vcpu->arch.vpa_update_lock);
923         return yield_count;
924 }
925
926 /*
927  * H_RPT_INVALIDATE hcall handler for nested guests.
928  *
929  * Handles only nested process-scoped invalidation requests in L0.
930  */
931 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
932 {
933         unsigned long type = kvmppc_get_gpr(vcpu, 6);
934         unsigned long pid, pg_sizes, start, end;
935
936         /*
937          * The partition-scoped invalidations aren't handled here in L0.
938          */
939         if (type & H_RPTI_TYPE_NESTED)
940                 return RESUME_HOST;
941
942         pid = kvmppc_get_gpr(vcpu, 4);
943         pg_sizes = kvmppc_get_gpr(vcpu, 7);
944         start = kvmppc_get_gpr(vcpu, 8);
945         end = kvmppc_get_gpr(vcpu, 9);
946
947         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
948                                 type, pg_sizes, start, end);
949
950         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
951         return RESUME_GUEST;
952 }
953
954 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
955                                     unsigned long id, unsigned long target,
956                                     unsigned long type, unsigned long pg_sizes,
957                                     unsigned long start, unsigned long end)
958 {
959         if (!kvm_is_radix(vcpu->kvm))
960                 return H_UNSUPPORTED;
961
962         if (end < start)
963                 return H_P5;
964
965         /*
966          * Partition-scoped invalidation for nested guests.
967          */
968         if (type & H_RPTI_TYPE_NESTED) {
969                 if (!nesting_enabled(vcpu->kvm))
970                         return H_FUNCTION;
971
972                 /* Support only cores as target */
973                 if (target != H_RPTI_TARGET_CMMU)
974                         return H_P2;
975
976                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
977                                                start, end);
978         }
979
980         /*
981          * Process-scoped invalidation for L1 guests.
982          */
983         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
984                                 type, pg_sizes, start, end);
985         return H_SUCCESS;
986 }
987
988 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
989 {
990         struct kvm *kvm = vcpu->kvm;
991         unsigned long req = kvmppc_get_gpr(vcpu, 3);
992         unsigned long target, ret = H_SUCCESS;
993         int yield_count;
994         struct kvm_vcpu *tvcpu;
995         int idx, rc;
996
997         if (req <= MAX_HCALL_OPCODE &&
998             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
999                 return RESUME_HOST;
1000
1001         switch (req) {
1002         case H_REMOVE:
1003                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1004                                         kvmppc_get_gpr(vcpu, 5),
1005                                         kvmppc_get_gpr(vcpu, 6));
1006                 if (ret == H_TOO_HARD)
1007                         return RESUME_HOST;
1008                 break;
1009         case H_ENTER:
1010                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1011                                         kvmppc_get_gpr(vcpu, 5),
1012                                         kvmppc_get_gpr(vcpu, 6),
1013                                         kvmppc_get_gpr(vcpu, 7));
1014                 if (ret == H_TOO_HARD)
1015                         return RESUME_HOST;
1016                 break;
1017         case H_READ:
1018                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1019                                         kvmppc_get_gpr(vcpu, 5));
1020                 if (ret == H_TOO_HARD)
1021                         return RESUME_HOST;
1022                 break;
1023         case H_CLEAR_MOD:
1024                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1025                                         kvmppc_get_gpr(vcpu, 5));
1026                 if (ret == H_TOO_HARD)
1027                         return RESUME_HOST;
1028                 break;
1029         case H_CLEAR_REF:
1030                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1031                                         kvmppc_get_gpr(vcpu, 5));
1032                 if (ret == H_TOO_HARD)
1033                         return RESUME_HOST;
1034                 break;
1035         case H_PROTECT:
1036                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1037                                         kvmppc_get_gpr(vcpu, 5),
1038                                         kvmppc_get_gpr(vcpu, 6));
1039                 if (ret == H_TOO_HARD)
1040                         return RESUME_HOST;
1041                 break;
1042         case H_BULK_REMOVE:
1043                 ret = kvmppc_h_bulk_remove(vcpu);
1044                 if (ret == H_TOO_HARD)
1045                         return RESUME_HOST;
1046                 break;
1047
1048         case H_CEDE:
1049                 break;
1050         case H_PROD:
1051                 target = kvmppc_get_gpr(vcpu, 4);
1052                 tvcpu = kvmppc_find_vcpu(kvm, target);
1053                 if (!tvcpu) {
1054                         ret = H_PARAMETER;
1055                         break;
1056                 }
1057                 tvcpu->arch.prodded = 1;
1058                 smp_mb();
1059                 if (tvcpu->arch.ceded)
1060                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1061                 break;
1062         case H_CONFER:
1063                 target = kvmppc_get_gpr(vcpu, 4);
1064                 if (target == -1)
1065                         break;
1066                 tvcpu = kvmppc_find_vcpu(kvm, target);
1067                 if (!tvcpu) {
1068                         ret = H_PARAMETER;
1069                         break;
1070                 }
1071                 yield_count = kvmppc_get_gpr(vcpu, 5);
1072                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1073                         break;
1074                 kvm_arch_vcpu_yield_to(tvcpu);
1075                 break;
1076         case H_REGISTER_VPA:
1077                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1078                                         kvmppc_get_gpr(vcpu, 5),
1079                                         kvmppc_get_gpr(vcpu, 6));
1080                 break;
1081         case H_RTAS:
1082                 if (list_empty(&kvm->arch.rtas_tokens))
1083                         return RESUME_HOST;
1084
1085                 idx = srcu_read_lock(&kvm->srcu);
1086                 rc = kvmppc_rtas_hcall(vcpu);
1087                 srcu_read_unlock(&kvm->srcu, idx);
1088
1089                 if (rc == -ENOENT)
1090                         return RESUME_HOST;
1091                 else if (rc == 0)
1092                         break;
1093
1094                 /* Send the error out to userspace via KVM_RUN */
1095                 return rc;
1096         case H_LOGICAL_CI_LOAD:
1097                 ret = kvmppc_h_logical_ci_load(vcpu);
1098                 if (ret == H_TOO_HARD)
1099                         return RESUME_HOST;
1100                 break;
1101         case H_LOGICAL_CI_STORE:
1102                 ret = kvmppc_h_logical_ci_store(vcpu);
1103                 if (ret == H_TOO_HARD)
1104                         return RESUME_HOST;
1105                 break;
1106         case H_SET_MODE:
1107                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1108                                         kvmppc_get_gpr(vcpu, 5),
1109                                         kvmppc_get_gpr(vcpu, 6),
1110                                         kvmppc_get_gpr(vcpu, 7));
1111                 if (ret == H_TOO_HARD)
1112                         return RESUME_HOST;
1113                 break;
1114         case H_XIRR:
1115         case H_CPPR:
1116         case H_EOI:
1117         case H_IPI:
1118         case H_IPOLL:
1119         case H_XIRR_X:
1120                 if (kvmppc_xics_enabled(vcpu)) {
1121                         if (xics_on_xive()) {
1122                                 ret = H_NOT_AVAILABLE;
1123                                 return RESUME_GUEST;
1124                         }
1125                         ret = kvmppc_xics_hcall(vcpu, req);
1126                         break;
1127                 }
1128                 return RESUME_HOST;
1129         case H_SET_DABR:
1130                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1131                 break;
1132         case H_SET_XDABR:
1133                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1134                                                 kvmppc_get_gpr(vcpu, 5));
1135                 break;
1136 #ifdef CONFIG_SPAPR_TCE_IOMMU
1137         case H_GET_TCE:
1138                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1139                                                 kvmppc_get_gpr(vcpu, 5));
1140                 if (ret == H_TOO_HARD)
1141                         return RESUME_HOST;
1142                 break;
1143         case H_PUT_TCE:
1144                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1145                                                 kvmppc_get_gpr(vcpu, 5),
1146                                                 kvmppc_get_gpr(vcpu, 6));
1147                 if (ret == H_TOO_HARD)
1148                         return RESUME_HOST;
1149                 break;
1150         case H_PUT_TCE_INDIRECT:
1151                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1152                                                 kvmppc_get_gpr(vcpu, 5),
1153                                                 kvmppc_get_gpr(vcpu, 6),
1154                                                 kvmppc_get_gpr(vcpu, 7));
1155                 if (ret == H_TOO_HARD)
1156                         return RESUME_HOST;
1157                 break;
1158         case H_STUFF_TCE:
1159                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1160                                                 kvmppc_get_gpr(vcpu, 5),
1161                                                 kvmppc_get_gpr(vcpu, 6),
1162                                                 kvmppc_get_gpr(vcpu, 7));
1163                 if (ret == H_TOO_HARD)
1164                         return RESUME_HOST;
1165                 break;
1166 #endif
1167         case H_RANDOM:
1168                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1169                         ret = H_HARDWARE;
1170                 break;
1171         case H_RPT_INVALIDATE:
1172                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1173                                               kvmppc_get_gpr(vcpu, 5),
1174                                               kvmppc_get_gpr(vcpu, 6),
1175                                               kvmppc_get_gpr(vcpu, 7),
1176                                               kvmppc_get_gpr(vcpu, 8),
1177                                               kvmppc_get_gpr(vcpu, 9));
1178                 break;
1179
1180         case H_SET_PARTITION_TABLE:
1181                 ret = H_FUNCTION;
1182                 if (nesting_enabled(kvm))
1183                         ret = kvmhv_set_partition_table(vcpu);
1184                 break;
1185         case H_ENTER_NESTED:
1186                 ret = H_FUNCTION;
1187                 if (!nesting_enabled(kvm))
1188                         break;
1189                 ret = kvmhv_enter_nested_guest(vcpu);
1190                 if (ret == H_INTERRUPT) {
1191                         kvmppc_set_gpr(vcpu, 3, 0);
1192                         vcpu->arch.hcall_needed = 0;
1193                         return -EINTR;
1194                 } else if (ret == H_TOO_HARD) {
1195                         kvmppc_set_gpr(vcpu, 3, 0);
1196                         vcpu->arch.hcall_needed = 0;
1197                         return RESUME_HOST;
1198                 }
1199                 break;
1200         case H_TLB_INVALIDATE:
1201                 ret = H_FUNCTION;
1202                 if (nesting_enabled(kvm))
1203                         ret = kvmhv_do_nested_tlbie(vcpu);
1204                 break;
1205         case H_COPY_TOFROM_GUEST:
1206                 ret = H_FUNCTION;
1207                 if (nesting_enabled(kvm))
1208                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1209                 break;
1210         case H_PAGE_INIT:
1211                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1212                                          kvmppc_get_gpr(vcpu, 5),
1213                                          kvmppc_get_gpr(vcpu, 6));
1214                 break;
1215         case H_SVM_PAGE_IN:
1216                 ret = H_UNSUPPORTED;
1217                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1218                         ret = kvmppc_h_svm_page_in(kvm,
1219                                                    kvmppc_get_gpr(vcpu, 4),
1220                                                    kvmppc_get_gpr(vcpu, 5),
1221                                                    kvmppc_get_gpr(vcpu, 6));
1222                 break;
1223         case H_SVM_PAGE_OUT:
1224                 ret = H_UNSUPPORTED;
1225                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1226                         ret = kvmppc_h_svm_page_out(kvm,
1227                                                     kvmppc_get_gpr(vcpu, 4),
1228                                                     kvmppc_get_gpr(vcpu, 5),
1229                                                     kvmppc_get_gpr(vcpu, 6));
1230                 break;
1231         case H_SVM_INIT_START:
1232                 ret = H_UNSUPPORTED;
1233                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1234                         ret = kvmppc_h_svm_init_start(kvm);
1235                 break;
1236         case H_SVM_INIT_DONE:
1237                 ret = H_UNSUPPORTED;
1238                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1239                         ret = kvmppc_h_svm_init_done(kvm);
1240                 break;
1241         case H_SVM_INIT_ABORT:
1242                 /*
1243                  * Even if that call is made by the Ultravisor, the SSR1 value
1244                  * is the guest context one, with the secure bit clear as it has
1245                  * not yet been secured. So we can't check it here.
1246                  * Instead the kvm->arch.secure_guest flag is checked inside
1247                  * kvmppc_h_svm_init_abort().
1248                  */
1249                 ret = kvmppc_h_svm_init_abort(kvm);
1250                 break;
1251
1252         default:
1253                 return RESUME_HOST;
1254         }
1255         WARN_ON_ONCE(ret == H_TOO_HARD);
1256         kvmppc_set_gpr(vcpu, 3, ret);
1257         vcpu->arch.hcall_needed = 0;
1258         return RESUME_GUEST;
1259 }
1260
1261 /*
1262  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1263  * handlers in book3s_hv_rmhandlers.S.
1264  *
1265  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1266  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1267  */
1268 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1269 {
1270         vcpu->arch.shregs.msr |= MSR_EE;
1271         vcpu->arch.ceded = 1;
1272         smp_mb();
1273         if (vcpu->arch.prodded) {
1274                 vcpu->arch.prodded = 0;
1275                 smp_mb();
1276                 vcpu->arch.ceded = 0;
1277         }
1278 }
1279
1280 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1281 {
1282         switch (cmd) {
1283         case H_CEDE:
1284         case H_PROD:
1285         case H_CONFER:
1286         case H_REGISTER_VPA:
1287         case H_SET_MODE:
1288         case H_LOGICAL_CI_LOAD:
1289         case H_LOGICAL_CI_STORE:
1290 #ifdef CONFIG_KVM_XICS
1291         case H_XIRR:
1292         case H_CPPR:
1293         case H_EOI:
1294         case H_IPI:
1295         case H_IPOLL:
1296         case H_XIRR_X:
1297 #endif
1298         case H_PAGE_INIT:
1299         case H_RPT_INVALIDATE:
1300                 return 1;
1301         }
1302
1303         /* See if it's in the real-mode table */
1304         return kvmppc_hcall_impl_hv_realmode(cmd);
1305 }
1306
1307 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1308 {
1309         u32 last_inst;
1310
1311         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1312                                         EMULATE_DONE) {
1313                 /*
1314                  * Fetch failed, so return to guest and
1315                  * try executing it again.
1316                  */
1317                 return RESUME_GUEST;
1318         }
1319
1320         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1321                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1322                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1323                 return RESUME_HOST;
1324         } else {
1325                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1326                 return RESUME_GUEST;
1327         }
1328 }
1329
1330 static void do_nothing(void *x)
1331 {
1332 }
1333
1334 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1335 {
1336         int thr, cpu, pcpu, nthreads;
1337         struct kvm_vcpu *v;
1338         unsigned long dpdes;
1339
1340         nthreads = vcpu->kvm->arch.emul_smt_mode;
1341         dpdes = 0;
1342         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1343         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1344                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1345                 if (!v)
1346                         continue;
1347                 /*
1348                  * If the vcpu is currently running on a physical cpu thread,
1349                  * interrupt it in order to pull it out of the guest briefly,
1350                  * which will update its vcore->dpdes value.
1351                  */
1352                 pcpu = READ_ONCE(v->cpu);
1353                 if (pcpu >= 0)
1354                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1355                 if (kvmppc_doorbell_pending(v))
1356                         dpdes |= 1 << thr;
1357         }
1358         return dpdes;
1359 }
1360
1361 /*
1362  * On POWER9, emulate doorbell-related instructions in order to
1363  * give the guest the illusion of running on a multi-threaded core.
1364  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1365  * and mfspr DPDES.
1366  */
1367 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1368 {
1369         u32 inst, rb, thr;
1370         unsigned long arg;
1371         struct kvm *kvm = vcpu->kvm;
1372         struct kvm_vcpu *tvcpu;
1373
1374         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1375                 return RESUME_GUEST;
1376         if (get_op(inst) != 31)
1377                 return EMULATE_FAIL;
1378         rb = get_rb(inst);
1379         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1380         switch (get_xop(inst)) {
1381         case OP_31_XOP_MSGSNDP:
1382                 arg = kvmppc_get_gpr(vcpu, rb);
1383                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1384                         break;
1385                 arg &= 0x7f;
1386                 if (arg >= kvm->arch.emul_smt_mode)
1387                         break;
1388                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1389                 if (!tvcpu)
1390                         break;
1391                 if (!tvcpu->arch.doorbell_request) {
1392                         tvcpu->arch.doorbell_request = 1;
1393                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1394                 }
1395                 break;
1396         case OP_31_XOP_MSGCLRP:
1397                 arg = kvmppc_get_gpr(vcpu, rb);
1398                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1399                         break;
1400                 vcpu->arch.vcore->dpdes = 0;
1401                 vcpu->arch.doorbell_request = 0;
1402                 break;
1403         case OP_31_XOP_MFSPR:
1404                 switch (get_sprn(inst)) {
1405                 case SPRN_TIR:
1406                         arg = thr;
1407                         break;
1408                 case SPRN_DPDES:
1409                         arg = kvmppc_read_dpdes(vcpu);
1410                         break;
1411                 default:
1412                         return EMULATE_FAIL;
1413                 }
1414                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1415                 break;
1416         default:
1417                 return EMULATE_FAIL;
1418         }
1419         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1420         return RESUME_GUEST;
1421 }
1422
1423 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1424                                  struct task_struct *tsk)
1425 {
1426         struct kvm_run *run = vcpu->run;
1427         int r = RESUME_HOST;
1428
1429         vcpu->stat.sum_exits++;
1430
1431         /*
1432          * This can happen if an interrupt occurs in the last stages
1433          * of guest entry or the first stages of guest exit (i.e. after
1434          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1435          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1436          * That can happen due to a bug, or due to a machine check
1437          * occurring at just the wrong time.
1438          */
1439         if (vcpu->arch.shregs.msr & MSR_HV) {
1440                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1441                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1442                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1443                         vcpu->arch.shregs.msr);
1444                 kvmppc_dump_regs(vcpu);
1445                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1446                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1447                 return RESUME_HOST;
1448         }
1449         run->exit_reason = KVM_EXIT_UNKNOWN;
1450         run->ready_for_interrupt_injection = 1;
1451         switch (vcpu->arch.trap) {
1452         /* We're good on these - the host merely wanted to get our attention */
1453         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1454                 vcpu->stat.dec_exits++;
1455                 r = RESUME_GUEST;
1456                 break;
1457         case BOOK3S_INTERRUPT_EXTERNAL:
1458         case BOOK3S_INTERRUPT_H_DOORBELL:
1459         case BOOK3S_INTERRUPT_H_VIRT:
1460                 vcpu->stat.ext_intr_exits++;
1461                 r = RESUME_GUEST;
1462                 break;
1463         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1464         case BOOK3S_INTERRUPT_HMI:
1465         case BOOK3S_INTERRUPT_PERFMON:
1466         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1467                 r = RESUME_GUEST;
1468                 break;
1469         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1470                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1471                                               DEFAULT_RATELIMIT_BURST);
1472                 /*
1473                  * Print the MCE event to host console. Ratelimit so the guest
1474                  * can't flood the host log.
1475                  */
1476                 if (__ratelimit(&rs))
1477                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1478
1479                 /*
1480                  * If the guest can do FWNMI, exit to userspace so it can
1481                  * deliver a FWNMI to the guest.
1482                  * Otherwise we synthesize a machine check for the guest
1483                  * so that it knows that the machine check occurred.
1484                  */
1485                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1486                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1487                         kvmppc_core_queue_machine_check(vcpu, flags);
1488                         r = RESUME_GUEST;
1489                         break;
1490                 }
1491
1492                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1493                 run->exit_reason = KVM_EXIT_NMI;
1494                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1495                 /* Clear out the old NMI status from run->flags */
1496                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1497                 /* Now set the NMI status */
1498                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1499                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1500                 else
1501                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1502
1503                 r = RESUME_HOST;
1504                 break;
1505         }
1506         case BOOK3S_INTERRUPT_PROGRAM:
1507         {
1508                 ulong flags;
1509                 /*
1510                  * Normally program interrupts are delivered directly
1511                  * to the guest by the hardware, but we can get here
1512                  * as a result of a hypervisor emulation interrupt
1513                  * (e40) getting turned into a 700 by BML RTAS.
1514                  */
1515                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1516                 kvmppc_core_queue_program(vcpu, flags);
1517                 r = RESUME_GUEST;
1518                 break;
1519         }
1520         case BOOK3S_INTERRUPT_SYSCALL:
1521         {
1522                 int i;
1523
1524                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1525                         /*
1526                          * Guest userspace executed sc 1. This can only be
1527                          * reached by the P9 path because the old path
1528                          * handles this case in realmode hcall handlers.
1529                          */
1530                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1531                                 /*
1532                                  * A guest could be running PR KVM, so this
1533                                  * may be a PR KVM hcall. It must be reflected
1534                                  * to the guest kernel as a sc interrupt.
1535                                  */
1536                                 kvmppc_core_queue_syscall(vcpu);
1537                         } else {
1538                                 /*
1539                                  * Radix guests can not run PR KVM or nested HV
1540                                  * hash guests which might run PR KVM, so this
1541                                  * is always a privilege fault. Send a program
1542                                  * check to guest kernel.
1543                                  */
1544                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1545                         }
1546                         r = RESUME_GUEST;
1547                         break;
1548                 }
1549
1550                 /*
1551                  * hcall - gather args and set exit_reason. This will next be
1552                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1553                  * with it and resume guest, or may punt to userspace.
1554                  */
1555                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1556                 for (i = 0; i < 9; ++i)
1557                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1558                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1559                 vcpu->arch.hcall_needed = 1;
1560                 r = RESUME_HOST;
1561                 break;
1562         }
1563         /*
1564          * We get these next two if the guest accesses a page which it thinks
1565          * it has mapped but which is not actually present, either because
1566          * it is for an emulated I/O device or because the corresonding
1567          * host page has been paged out.
1568          *
1569          * Any other HDSI/HISI interrupts have been handled already for P7/8
1570          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1571          * fault handling is done here.
1572          */
1573         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1574                 unsigned long vsid;
1575                 long err;
1576
1577                 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
1578                         r = RESUME_GUEST; /* Just retry if it's the canary */
1579                         break;
1580                 }
1581
1582                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1583                         /*
1584                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1585                          * already attempted to handle this in rmhandlers. The
1586                          * hash fault handling below is v3 only (it uses ASDR
1587                          * via fault_gpa).
1588                          */
1589                         r = RESUME_PAGE_FAULT;
1590                         break;
1591                 }
1592
1593                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1594                         kvmppc_core_queue_data_storage(vcpu,
1595                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1596                         r = RESUME_GUEST;
1597                         break;
1598                 }
1599
1600                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1601                         vsid = vcpu->kvm->arch.vrma_slb_v;
1602                 else
1603                         vsid = vcpu->arch.fault_gpa;
1604
1605                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1606                                 vsid, vcpu->arch.fault_dsisr, true);
1607                 if (err == 0) {
1608                         r = RESUME_GUEST;
1609                 } else if (err == -1 || err == -2) {
1610                         r = RESUME_PAGE_FAULT;
1611                 } else {
1612                         kvmppc_core_queue_data_storage(vcpu,
1613                                 vcpu->arch.fault_dar, err);
1614                         r = RESUME_GUEST;
1615                 }
1616                 break;
1617         }
1618         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1619                 unsigned long vsid;
1620                 long err;
1621
1622                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1623                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1624                         DSISR_SRR1_MATCH_64S;
1625                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1626                         /*
1627                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1628                          * already attempted to handle this in rmhandlers. The
1629                          * hash fault handling below is v3 only (it uses ASDR
1630                          * via fault_gpa).
1631                          */
1632                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1633                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1634                         r = RESUME_PAGE_FAULT;
1635                         break;
1636                 }
1637
1638                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1639                         kvmppc_core_queue_inst_storage(vcpu,
1640                                 vcpu->arch.fault_dsisr);
1641                         r = RESUME_GUEST;
1642                         break;
1643                 }
1644
1645                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1646                         vsid = vcpu->kvm->arch.vrma_slb_v;
1647                 else
1648                         vsid = vcpu->arch.fault_gpa;
1649
1650                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1651                                 vsid, vcpu->arch.fault_dsisr, false);
1652                 if (err == 0) {
1653                         r = RESUME_GUEST;
1654                 } else if (err == -1) {
1655                         r = RESUME_PAGE_FAULT;
1656                 } else {
1657                         kvmppc_core_queue_inst_storage(vcpu, err);
1658                         r = RESUME_GUEST;
1659                 }
1660                 break;
1661         }
1662
1663         /*
1664          * This occurs if the guest executes an illegal instruction.
1665          * If the guest debug is disabled, generate a program interrupt
1666          * to the guest. If guest debug is enabled, we need to check
1667          * whether the instruction is a software breakpoint instruction.
1668          * Accordingly return to Guest or Host.
1669          */
1670         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1671                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1672                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1673                                 swab32(vcpu->arch.emul_inst) :
1674                                 vcpu->arch.emul_inst;
1675                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1676                         r = kvmppc_emulate_debug_inst(vcpu);
1677                 } else {
1678                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1679                         r = RESUME_GUEST;
1680                 }
1681                 break;
1682         /*
1683          * This occurs if the guest (kernel or userspace), does something that
1684          * is prohibited by HFSCR.
1685          * On POWER9, this could be a doorbell instruction that we need
1686          * to emulate.
1687          * Otherwise, we just generate a program interrupt to the guest.
1688          */
1689         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1690                 r = EMULATE_FAIL;
1691                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1692                     cpu_has_feature(CPU_FTR_ARCH_300))
1693                         r = kvmppc_emulate_doorbell_instr(vcpu);
1694                 if (r == EMULATE_FAIL) {
1695                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1696                         r = RESUME_GUEST;
1697                 }
1698                 break;
1699
1700 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1701         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1702                 /*
1703                  * This occurs for various TM-related instructions that
1704                  * we need to emulate on POWER9 DD2.2.  We have already
1705                  * handled the cases where the guest was in real-suspend
1706                  * mode and was transitioning to transactional state.
1707                  */
1708                 r = kvmhv_p9_tm_emulation(vcpu);
1709                 break;
1710 #endif
1711
1712         case BOOK3S_INTERRUPT_HV_RM_HARD:
1713                 r = RESUME_PASSTHROUGH;
1714                 break;
1715         default:
1716                 kvmppc_dump_regs(vcpu);
1717                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1718                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1719                         vcpu->arch.shregs.msr);
1720                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1721                 r = RESUME_HOST;
1722                 break;
1723         }
1724
1725         return r;
1726 }
1727
1728 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1729 {
1730         int r;
1731         int srcu_idx;
1732
1733         vcpu->stat.sum_exits++;
1734
1735         /*
1736          * This can happen if an interrupt occurs in the last stages
1737          * of guest entry or the first stages of guest exit (i.e. after
1738          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1739          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1740          * That can happen due to a bug, or due to a machine check
1741          * occurring at just the wrong time.
1742          */
1743         if (vcpu->arch.shregs.msr & MSR_HV) {
1744                 pr_emerg("KVM trap in HV mode while nested!\n");
1745                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1746                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1747                          vcpu->arch.shregs.msr);
1748                 kvmppc_dump_regs(vcpu);
1749                 return RESUME_HOST;
1750         }
1751         switch (vcpu->arch.trap) {
1752         /* We're good on these - the host merely wanted to get our attention */
1753         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1754                 vcpu->stat.dec_exits++;
1755                 r = RESUME_GUEST;
1756                 break;
1757         case BOOK3S_INTERRUPT_EXTERNAL:
1758                 vcpu->stat.ext_intr_exits++;
1759                 r = RESUME_HOST;
1760                 break;
1761         case BOOK3S_INTERRUPT_H_DOORBELL:
1762         case BOOK3S_INTERRUPT_H_VIRT:
1763                 vcpu->stat.ext_intr_exits++;
1764                 r = RESUME_GUEST;
1765                 break;
1766         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1767         case BOOK3S_INTERRUPT_HMI:
1768         case BOOK3S_INTERRUPT_PERFMON:
1769         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1770                 r = RESUME_GUEST;
1771                 break;
1772         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1773         {
1774                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1775                                               DEFAULT_RATELIMIT_BURST);
1776                 /* Pass the machine check to the L1 guest */
1777                 r = RESUME_HOST;
1778                 /* Print the MCE event to host console. */
1779                 if (__ratelimit(&rs))
1780                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1781                 break;
1782         }
1783         /*
1784          * We get these next two if the guest accesses a page which it thinks
1785          * it has mapped but which is not actually present, either because
1786          * it is for an emulated I/O device or because the corresonding
1787          * host page has been paged out.
1788          */
1789         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1790                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1791                 r = kvmhv_nested_page_fault(vcpu);
1792                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1793                 break;
1794         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1795                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1796                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1797                                          DSISR_SRR1_MATCH_64S;
1798                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1799                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1800                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1801                 r = kvmhv_nested_page_fault(vcpu);
1802                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1803                 break;
1804
1805 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1806         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1807                 /*
1808                  * This occurs for various TM-related instructions that
1809                  * we need to emulate on POWER9 DD2.2.  We have already
1810                  * handled the cases where the guest was in real-suspend
1811                  * mode and was transitioning to transactional state.
1812                  */
1813                 r = kvmhv_p9_tm_emulation(vcpu);
1814                 break;
1815 #endif
1816
1817         case BOOK3S_INTERRUPT_HV_RM_HARD:
1818                 vcpu->arch.trap = 0;
1819                 r = RESUME_GUEST;
1820                 if (!xics_on_xive())
1821                         kvmppc_xics_rm_complete(vcpu, 0);
1822                 break;
1823         case BOOK3S_INTERRUPT_SYSCALL:
1824         {
1825                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1826
1827                 /*
1828                  * The H_RPT_INVALIDATE hcalls issued by nested
1829                  * guests for process-scoped invalidations when
1830                  * GTSE=0, are handled here in L0.
1831                  */
1832                 if (req == H_RPT_INVALIDATE) {
1833                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
1834                         break;
1835                 }
1836
1837                 r = RESUME_HOST;
1838                 break;
1839         }
1840         default:
1841                 r = RESUME_HOST;
1842                 break;
1843         }
1844
1845         return r;
1846 }
1847
1848 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1849                                             struct kvm_sregs *sregs)
1850 {
1851         int i;
1852
1853         memset(sregs, 0, sizeof(struct kvm_sregs));
1854         sregs->pvr = vcpu->arch.pvr;
1855         for (i = 0; i < vcpu->arch.slb_max; i++) {
1856                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1857                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1858         }
1859
1860         return 0;
1861 }
1862
1863 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1864                                             struct kvm_sregs *sregs)
1865 {
1866         int i, j;
1867
1868         /* Only accept the same PVR as the host's, since we can't spoof it */
1869         if (sregs->pvr != vcpu->arch.pvr)
1870                 return -EINVAL;
1871
1872         j = 0;
1873         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1874                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1875                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1876                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1877                         ++j;
1878                 }
1879         }
1880         vcpu->arch.slb_max = j;
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * Enforce limits on guest LPCR values based on hardware availability,
1887  * guest configuration, and possibly hypervisor support and security
1888  * concerns.
1889  */
1890 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1891 {
1892         /* LPCR_TC only applies to HPT guests */
1893         if (kvm_is_radix(kvm))
1894                 lpcr &= ~LPCR_TC;
1895
1896         /* On POWER8 and above, userspace can modify AIL */
1897         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1898                 lpcr &= ~LPCR_AIL;
1899         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1900                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1901         /*
1902          * On some POWER9s we force AIL off for radix guests to prevent
1903          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1904          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1905          * be cached, which the host TLB management does not expect.
1906          */
1907         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1908                 lpcr &= ~LPCR_AIL;
1909
1910         /*
1911          * On POWER9, allow userspace to enable large decrementer for the
1912          * guest, whether or not the host has it enabled.
1913          */
1914         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1915                 lpcr &= ~LPCR_LD;
1916
1917         return lpcr;
1918 }
1919
1920 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1921 {
1922         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1923                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1924                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1925         }
1926 }
1927
1928 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1929                 bool preserve_top32)
1930 {
1931         struct kvm *kvm = vcpu->kvm;
1932         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1933         u64 mask;
1934
1935         spin_lock(&vc->lock);
1936
1937         /*
1938          * Userspace can only modify
1939          * DPFD (default prefetch depth), ILE (interrupt little-endian),
1940          * TC (translation control), AIL (alternate interrupt location),
1941          * LD (large decrementer).
1942          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1943          */
1944         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1945
1946         /* Broken 32-bit version of LPCR must not clear top bits */
1947         if (preserve_top32)
1948                 mask &= 0xFFFFFFFF;
1949
1950         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1951                         (vc->lpcr & ~mask) | (new_lpcr & mask));
1952
1953         /*
1954          * If ILE (interrupt little-endian) has changed, update the
1955          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1956          */
1957         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1958                 struct kvm_vcpu *vcpu;
1959                 int i;
1960
1961                 kvm_for_each_vcpu(i, vcpu, kvm) {
1962                         if (vcpu->arch.vcore != vc)
1963                                 continue;
1964                         if (new_lpcr & LPCR_ILE)
1965                                 vcpu->arch.intr_msr |= MSR_LE;
1966                         else
1967                                 vcpu->arch.intr_msr &= ~MSR_LE;
1968                 }
1969         }
1970
1971         vc->lpcr = new_lpcr;
1972
1973         spin_unlock(&vc->lock);
1974 }
1975
1976 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1977                                  union kvmppc_one_reg *val)
1978 {
1979         int r = 0;
1980         long int i;
1981
1982         switch (id) {
1983         case KVM_REG_PPC_DEBUG_INST:
1984                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1985                 break;
1986         case KVM_REG_PPC_HIOR:
1987                 *val = get_reg_val(id, 0);
1988                 break;
1989         case KVM_REG_PPC_DABR:
1990                 *val = get_reg_val(id, vcpu->arch.dabr);
1991                 break;
1992         case KVM_REG_PPC_DABRX:
1993                 *val = get_reg_val(id, vcpu->arch.dabrx);
1994                 break;
1995         case KVM_REG_PPC_DSCR:
1996                 *val = get_reg_val(id, vcpu->arch.dscr);
1997                 break;
1998         case KVM_REG_PPC_PURR:
1999                 *val = get_reg_val(id, vcpu->arch.purr);
2000                 break;
2001         case KVM_REG_PPC_SPURR:
2002                 *val = get_reg_val(id, vcpu->arch.spurr);
2003                 break;
2004         case KVM_REG_PPC_AMR:
2005                 *val = get_reg_val(id, vcpu->arch.amr);
2006                 break;
2007         case KVM_REG_PPC_UAMOR:
2008                 *val = get_reg_val(id, vcpu->arch.uamor);
2009                 break;
2010         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2011                 i = id - KVM_REG_PPC_MMCR0;
2012                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2013                 break;
2014         case KVM_REG_PPC_MMCR2:
2015                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2016                 break;
2017         case KVM_REG_PPC_MMCRA:
2018                 *val = get_reg_val(id, vcpu->arch.mmcra);
2019                 break;
2020         case KVM_REG_PPC_MMCRS:
2021                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2022                 break;
2023         case KVM_REG_PPC_MMCR3:
2024                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2025                 break;
2026         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2027                 i = id - KVM_REG_PPC_PMC1;
2028                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2029                 break;
2030         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2031                 i = id - KVM_REG_PPC_SPMC1;
2032                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2033                 break;
2034         case KVM_REG_PPC_SIAR:
2035                 *val = get_reg_val(id, vcpu->arch.siar);
2036                 break;
2037         case KVM_REG_PPC_SDAR:
2038                 *val = get_reg_val(id, vcpu->arch.sdar);
2039                 break;
2040         case KVM_REG_PPC_SIER:
2041                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2042                 break;
2043         case KVM_REG_PPC_SIER2:
2044                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2045                 break;
2046         case KVM_REG_PPC_SIER3:
2047                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2048                 break;
2049         case KVM_REG_PPC_IAMR:
2050                 *val = get_reg_val(id, vcpu->arch.iamr);
2051                 break;
2052         case KVM_REG_PPC_PSPB:
2053                 *val = get_reg_val(id, vcpu->arch.pspb);
2054                 break;
2055         case KVM_REG_PPC_DPDES:
2056                 /*
2057                  * On POWER9, where we are emulating msgsndp etc.,
2058                  * we return 1 bit for each vcpu, which can come from
2059                  * either vcore->dpdes or doorbell_request.
2060                  * On POWER8, doorbell_request is 0.
2061                  */
2062                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2063                                    vcpu->arch.doorbell_request);
2064                 break;
2065         case KVM_REG_PPC_VTB:
2066                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2067                 break;
2068         case KVM_REG_PPC_DAWR:
2069                 *val = get_reg_val(id, vcpu->arch.dawr0);
2070                 break;
2071         case KVM_REG_PPC_DAWRX:
2072                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2073                 break;
2074         case KVM_REG_PPC_DAWR1:
2075                 *val = get_reg_val(id, vcpu->arch.dawr1);
2076                 break;
2077         case KVM_REG_PPC_DAWRX1:
2078                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2079                 break;
2080         case KVM_REG_PPC_CIABR:
2081                 *val = get_reg_val(id, vcpu->arch.ciabr);
2082                 break;
2083         case KVM_REG_PPC_CSIGR:
2084                 *val = get_reg_val(id, vcpu->arch.csigr);
2085                 break;
2086         case KVM_REG_PPC_TACR:
2087                 *val = get_reg_val(id, vcpu->arch.tacr);
2088                 break;
2089         case KVM_REG_PPC_TCSCR:
2090                 *val = get_reg_val(id, vcpu->arch.tcscr);
2091                 break;
2092         case KVM_REG_PPC_PID:
2093                 *val = get_reg_val(id, vcpu->arch.pid);
2094                 break;
2095         case KVM_REG_PPC_ACOP:
2096                 *val = get_reg_val(id, vcpu->arch.acop);
2097                 break;
2098         case KVM_REG_PPC_WORT:
2099                 *val = get_reg_val(id, vcpu->arch.wort);
2100                 break;
2101         case KVM_REG_PPC_TIDR:
2102                 *val = get_reg_val(id, vcpu->arch.tid);
2103                 break;
2104         case KVM_REG_PPC_PSSCR:
2105                 *val = get_reg_val(id, vcpu->arch.psscr);
2106                 break;
2107         case KVM_REG_PPC_VPA_ADDR:
2108                 spin_lock(&vcpu->arch.vpa_update_lock);
2109                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2110                 spin_unlock(&vcpu->arch.vpa_update_lock);
2111                 break;
2112         case KVM_REG_PPC_VPA_SLB:
2113                 spin_lock(&vcpu->arch.vpa_update_lock);
2114                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2115                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2116                 spin_unlock(&vcpu->arch.vpa_update_lock);
2117                 break;
2118         case KVM_REG_PPC_VPA_DTL:
2119                 spin_lock(&vcpu->arch.vpa_update_lock);
2120                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2121                 val->vpaval.length = vcpu->arch.dtl.len;
2122                 spin_unlock(&vcpu->arch.vpa_update_lock);
2123                 break;
2124         case KVM_REG_PPC_TB_OFFSET:
2125                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2126                 break;
2127         case KVM_REG_PPC_LPCR:
2128         case KVM_REG_PPC_LPCR_64:
2129                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2130                 break;
2131         case KVM_REG_PPC_PPR:
2132                 *val = get_reg_val(id, vcpu->arch.ppr);
2133                 break;
2134 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2135         case KVM_REG_PPC_TFHAR:
2136                 *val = get_reg_val(id, vcpu->arch.tfhar);
2137                 break;
2138         case KVM_REG_PPC_TFIAR:
2139                 *val = get_reg_val(id, vcpu->arch.tfiar);
2140                 break;
2141         case KVM_REG_PPC_TEXASR:
2142                 *val = get_reg_val(id, vcpu->arch.texasr);
2143                 break;
2144         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2145                 i = id - KVM_REG_PPC_TM_GPR0;
2146                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2147                 break;
2148         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2149         {
2150                 int j;
2151                 i = id - KVM_REG_PPC_TM_VSR0;
2152                 if (i < 32)
2153                         for (j = 0; j < TS_FPRWIDTH; j++)
2154                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2155                 else {
2156                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2157                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2158                         else
2159                                 r = -ENXIO;
2160                 }
2161                 break;
2162         }
2163         case KVM_REG_PPC_TM_CR:
2164                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2165                 break;
2166         case KVM_REG_PPC_TM_XER:
2167                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2168                 break;
2169         case KVM_REG_PPC_TM_LR:
2170                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2171                 break;
2172         case KVM_REG_PPC_TM_CTR:
2173                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2174                 break;
2175         case KVM_REG_PPC_TM_FPSCR:
2176                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2177                 break;
2178         case KVM_REG_PPC_TM_AMR:
2179                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2180                 break;
2181         case KVM_REG_PPC_TM_PPR:
2182                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2183                 break;
2184         case KVM_REG_PPC_TM_VRSAVE:
2185                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2186                 break;
2187         case KVM_REG_PPC_TM_VSCR:
2188                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2189                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2190                 else
2191                         r = -ENXIO;
2192                 break;
2193         case KVM_REG_PPC_TM_DSCR:
2194                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2195                 break;
2196         case KVM_REG_PPC_TM_TAR:
2197                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2198                 break;
2199 #endif
2200         case KVM_REG_PPC_ARCH_COMPAT:
2201                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2202                 break;
2203         case KVM_REG_PPC_DEC_EXPIRY:
2204                 *val = get_reg_val(id, vcpu->arch.dec_expires +
2205                                    vcpu->arch.vcore->tb_offset);
2206                 break;
2207         case KVM_REG_PPC_ONLINE:
2208                 *val = get_reg_val(id, vcpu->arch.online);
2209                 break;
2210         case KVM_REG_PPC_PTCR:
2211                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2212                 break;
2213         default:
2214                 r = -EINVAL;
2215                 break;
2216         }
2217
2218         return r;
2219 }
2220
2221 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2222                                  union kvmppc_one_reg *val)
2223 {
2224         int r = 0;
2225         long int i;
2226         unsigned long addr, len;
2227
2228         switch (id) {
2229         case KVM_REG_PPC_HIOR:
2230                 /* Only allow this to be set to zero */
2231                 if (set_reg_val(id, *val))
2232                         r = -EINVAL;
2233                 break;
2234         case KVM_REG_PPC_DABR:
2235                 vcpu->arch.dabr = set_reg_val(id, *val);
2236                 break;
2237         case KVM_REG_PPC_DABRX:
2238                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2239                 break;
2240         case KVM_REG_PPC_DSCR:
2241                 vcpu->arch.dscr = set_reg_val(id, *val);
2242                 break;
2243         case KVM_REG_PPC_PURR:
2244                 vcpu->arch.purr = set_reg_val(id, *val);
2245                 break;
2246         case KVM_REG_PPC_SPURR:
2247                 vcpu->arch.spurr = set_reg_val(id, *val);
2248                 break;
2249         case KVM_REG_PPC_AMR:
2250                 vcpu->arch.amr = set_reg_val(id, *val);
2251                 break;
2252         case KVM_REG_PPC_UAMOR:
2253                 vcpu->arch.uamor = set_reg_val(id, *val);
2254                 break;
2255         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2256                 i = id - KVM_REG_PPC_MMCR0;
2257                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2258                 break;
2259         case KVM_REG_PPC_MMCR2:
2260                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2261                 break;
2262         case KVM_REG_PPC_MMCRA:
2263                 vcpu->arch.mmcra = set_reg_val(id, *val);
2264                 break;
2265         case KVM_REG_PPC_MMCRS:
2266                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2267                 break;
2268         case KVM_REG_PPC_MMCR3:
2269                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2270                 break;
2271         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2272                 i = id - KVM_REG_PPC_PMC1;
2273                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2274                 break;
2275         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2276                 i = id - KVM_REG_PPC_SPMC1;
2277                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2278                 break;
2279         case KVM_REG_PPC_SIAR:
2280                 vcpu->arch.siar = set_reg_val(id, *val);
2281                 break;
2282         case KVM_REG_PPC_SDAR:
2283                 vcpu->arch.sdar = set_reg_val(id, *val);
2284                 break;
2285         case KVM_REG_PPC_SIER:
2286                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2287                 break;
2288         case KVM_REG_PPC_SIER2:
2289                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2290                 break;
2291         case KVM_REG_PPC_SIER3:
2292                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2293                 break;
2294         case KVM_REG_PPC_IAMR:
2295                 vcpu->arch.iamr = set_reg_val(id, *val);
2296                 break;
2297         case KVM_REG_PPC_PSPB:
2298                 vcpu->arch.pspb = set_reg_val(id, *val);
2299                 break;
2300         case KVM_REG_PPC_DPDES:
2301                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2302                 break;
2303         case KVM_REG_PPC_VTB:
2304                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2305                 break;
2306         case KVM_REG_PPC_DAWR:
2307                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2308                 break;
2309         case KVM_REG_PPC_DAWRX:
2310                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2311                 break;
2312         case KVM_REG_PPC_DAWR1:
2313                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2314                 break;
2315         case KVM_REG_PPC_DAWRX1:
2316                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2317                 break;
2318         case KVM_REG_PPC_CIABR:
2319                 vcpu->arch.ciabr = set_reg_val(id, *val);
2320                 /* Don't allow setting breakpoints in hypervisor code */
2321                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2322                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2323                 break;
2324         case KVM_REG_PPC_CSIGR:
2325                 vcpu->arch.csigr = set_reg_val(id, *val);
2326                 break;
2327         case KVM_REG_PPC_TACR:
2328                 vcpu->arch.tacr = set_reg_val(id, *val);
2329                 break;
2330         case KVM_REG_PPC_TCSCR:
2331                 vcpu->arch.tcscr = set_reg_val(id, *val);
2332                 break;
2333         case KVM_REG_PPC_PID:
2334                 vcpu->arch.pid = set_reg_val(id, *val);
2335                 break;
2336         case KVM_REG_PPC_ACOP:
2337                 vcpu->arch.acop = set_reg_val(id, *val);
2338                 break;
2339         case KVM_REG_PPC_WORT:
2340                 vcpu->arch.wort = set_reg_val(id, *val);
2341                 break;
2342         case KVM_REG_PPC_TIDR:
2343                 vcpu->arch.tid = set_reg_val(id, *val);
2344                 break;
2345         case KVM_REG_PPC_PSSCR:
2346                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2347                 break;
2348         case KVM_REG_PPC_VPA_ADDR:
2349                 addr = set_reg_val(id, *val);
2350                 r = -EINVAL;
2351                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2352                               vcpu->arch.dtl.next_gpa))
2353                         break;
2354                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2355                 break;
2356         case KVM_REG_PPC_VPA_SLB:
2357                 addr = val->vpaval.addr;
2358                 len = val->vpaval.length;
2359                 r = -EINVAL;
2360                 if (addr && !vcpu->arch.vpa.next_gpa)
2361                         break;
2362                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2363                 break;
2364         case KVM_REG_PPC_VPA_DTL:
2365                 addr = val->vpaval.addr;
2366                 len = val->vpaval.length;
2367                 r = -EINVAL;
2368                 if (addr && (len < sizeof(struct dtl_entry) ||
2369                              !vcpu->arch.vpa.next_gpa))
2370                         break;
2371                 len -= len % sizeof(struct dtl_entry);
2372                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2373                 break;
2374         case KVM_REG_PPC_TB_OFFSET:
2375                 /* round up to multiple of 2^24 */
2376                 vcpu->arch.vcore->tb_offset =
2377                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2378                 break;
2379         case KVM_REG_PPC_LPCR:
2380                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2381                 break;
2382         case KVM_REG_PPC_LPCR_64:
2383                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2384                 break;
2385         case KVM_REG_PPC_PPR:
2386                 vcpu->arch.ppr = set_reg_val(id, *val);
2387                 break;
2388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2389         case KVM_REG_PPC_TFHAR:
2390                 vcpu->arch.tfhar = set_reg_val(id, *val);
2391                 break;
2392         case KVM_REG_PPC_TFIAR:
2393                 vcpu->arch.tfiar = set_reg_val(id, *val);
2394                 break;
2395         case KVM_REG_PPC_TEXASR:
2396                 vcpu->arch.texasr = set_reg_val(id, *val);
2397                 break;
2398         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2399                 i = id - KVM_REG_PPC_TM_GPR0;
2400                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2401                 break;
2402         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2403         {
2404                 int j;
2405                 i = id - KVM_REG_PPC_TM_VSR0;
2406                 if (i < 32)
2407                         for (j = 0; j < TS_FPRWIDTH; j++)
2408                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2409                 else
2410                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2411                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2412                         else
2413                                 r = -ENXIO;
2414                 break;
2415         }
2416         case KVM_REG_PPC_TM_CR:
2417                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2418                 break;
2419         case KVM_REG_PPC_TM_XER:
2420                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2421                 break;
2422         case KVM_REG_PPC_TM_LR:
2423                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2424                 break;
2425         case KVM_REG_PPC_TM_CTR:
2426                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2427                 break;
2428         case KVM_REG_PPC_TM_FPSCR:
2429                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2430                 break;
2431         case KVM_REG_PPC_TM_AMR:
2432                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2433                 break;
2434         case KVM_REG_PPC_TM_PPR:
2435                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2436                 break;
2437         case KVM_REG_PPC_TM_VRSAVE:
2438                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2439                 break;
2440         case KVM_REG_PPC_TM_VSCR:
2441                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2442                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2443                 else
2444                         r = - ENXIO;
2445                 break;
2446         case KVM_REG_PPC_TM_DSCR:
2447                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2448                 break;
2449         case KVM_REG_PPC_TM_TAR:
2450                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2451                 break;
2452 #endif
2453         case KVM_REG_PPC_ARCH_COMPAT:
2454                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2455                 break;
2456         case KVM_REG_PPC_DEC_EXPIRY:
2457                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2458                         vcpu->arch.vcore->tb_offset;
2459                 break;
2460         case KVM_REG_PPC_ONLINE:
2461                 i = set_reg_val(id, *val);
2462                 if (i && !vcpu->arch.online)
2463                         atomic_inc(&vcpu->arch.vcore->online_count);
2464                 else if (!i && vcpu->arch.online)
2465                         atomic_dec(&vcpu->arch.vcore->online_count);
2466                 vcpu->arch.online = i;
2467                 break;
2468         case KVM_REG_PPC_PTCR:
2469                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2470                 break;
2471         default:
2472                 r = -EINVAL;
2473                 break;
2474         }
2475
2476         return r;
2477 }
2478
2479 /*
2480  * On POWER9, threads are independent and can be in different partitions.
2481  * Therefore we consider each thread to be a subcore.
2482  * There is a restriction that all threads have to be in the same
2483  * MMU mode (radix or HPT), unfortunately, but since we only support
2484  * HPT guests on a HPT host so far, that isn't an impediment yet.
2485  */
2486 static int threads_per_vcore(struct kvm *kvm)
2487 {
2488         if (cpu_has_feature(CPU_FTR_ARCH_300))
2489                 return 1;
2490         return threads_per_subcore;
2491 }
2492
2493 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2494 {
2495         struct kvmppc_vcore *vcore;
2496
2497         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2498
2499         if (vcore == NULL)
2500                 return NULL;
2501
2502         spin_lock_init(&vcore->lock);
2503         spin_lock_init(&vcore->stoltb_lock);
2504         rcuwait_init(&vcore->wait);
2505         vcore->preempt_tb = TB_NIL;
2506         vcore->lpcr = kvm->arch.lpcr;
2507         vcore->first_vcpuid = id;
2508         vcore->kvm = kvm;
2509         INIT_LIST_HEAD(&vcore->preempt_list);
2510
2511         return vcore;
2512 }
2513
2514 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2515 static struct debugfs_timings_element {
2516         const char *name;
2517         size_t offset;
2518 } timings[] = {
2519         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2520         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2521         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2522         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2523         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2524 };
2525
2526 #define N_TIMINGS       (ARRAY_SIZE(timings))
2527
2528 struct debugfs_timings_state {
2529         struct kvm_vcpu *vcpu;
2530         unsigned int    buflen;
2531         char            buf[N_TIMINGS * 100];
2532 };
2533
2534 static int debugfs_timings_open(struct inode *inode, struct file *file)
2535 {
2536         struct kvm_vcpu *vcpu = inode->i_private;
2537         struct debugfs_timings_state *p;
2538
2539         p = kzalloc(sizeof(*p), GFP_KERNEL);
2540         if (!p)
2541                 return -ENOMEM;
2542
2543         kvm_get_kvm(vcpu->kvm);
2544         p->vcpu = vcpu;
2545         file->private_data = p;
2546
2547         return nonseekable_open(inode, file);
2548 }
2549
2550 static int debugfs_timings_release(struct inode *inode, struct file *file)
2551 {
2552         struct debugfs_timings_state *p = file->private_data;
2553
2554         kvm_put_kvm(p->vcpu->kvm);
2555         kfree(p);
2556         return 0;
2557 }
2558
2559 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2560                                     size_t len, loff_t *ppos)
2561 {
2562         struct debugfs_timings_state *p = file->private_data;
2563         struct kvm_vcpu *vcpu = p->vcpu;
2564         char *s, *buf_end;
2565         struct kvmhv_tb_accumulator tb;
2566         u64 count;
2567         loff_t pos;
2568         ssize_t n;
2569         int i, loops;
2570         bool ok;
2571
2572         if (!p->buflen) {
2573                 s = p->buf;
2574                 buf_end = s + sizeof(p->buf);
2575                 for (i = 0; i < N_TIMINGS; ++i) {
2576                         struct kvmhv_tb_accumulator *acc;
2577
2578                         acc = (struct kvmhv_tb_accumulator *)
2579                                 ((unsigned long)vcpu + timings[i].offset);
2580                         ok = false;
2581                         for (loops = 0; loops < 1000; ++loops) {
2582                                 count = acc->seqcount;
2583                                 if (!(count & 1)) {
2584                                         smp_rmb();
2585                                         tb = *acc;
2586                                         smp_rmb();
2587                                         if (count == acc->seqcount) {
2588                                                 ok = true;
2589                                                 break;
2590                                         }
2591                                 }
2592                                 udelay(1);
2593                         }
2594                         if (!ok)
2595                                 snprintf(s, buf_end - s, "%s: stuck\n",
2596                                         timings[i].name);
2597                         else
2598                                 snprintf(s, buf_end - s,
2599                                         "%s: %llu %llu %llu %llu\n",
2600                                         timings[i].name, count / 2,
2601                                         tb_to_ns(tb.tb_total),
2602                                         tb_to_ns(tb.tb_min),
2603                                         tb_to_ns(tb.tb_max));
2604                         s += strlen(s);
2605                 }
2606                 p->buflen = s - p->buf;
2607         }
2608
2609         pos = *ppos;
2610         if (pos >= p->buflen)
2611                 return 0;
2612         if (len > p->buflen - pos)
2613                 len = p->buflen - pos;
2614         n = copy_to_user(buf, p->buf + pos, len);
2615         if (n) {
2616                 if (n == len)
2617                         return -EFAULT;
2618                 len -= n;
2619         }
2620         *ppos = pos + len;
2621         return len;
2622 }
2623
2624 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2625                                      size_t len, loff_t *ppos)
2626 {
2627         return -EACCES;
2628 }
2629
2630 static const struct file_operations debugfs_timings_ops = {
2631         .owner   = THIS_MODULE,
2632         .open    = debugfs_timings_open,
2633         .release = debugfs_timings_release,
2634         .read    = debugfs_timings_read,
2635         .write   = debugfs_timings_write,
2636         .llseek  = generic_file_llseek,
2637 };
2638
2639 /* Create a debugfs directory for the vcpu */
2640 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2641 {
2642         char buf[16];
2643         struct kvm *kvm = vcpu->kvm;
2644
2645         snprintf(buf, sizeof(buf), "vcpu%u", id);
2646         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2647         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2648                             &debugfs_timings_ops);
2649 }
2650
2651 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2652 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2653 {
2654 }
2655 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2656
2657 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2658 {
2659         int err;
2660         int core;
2661         struct kvmppc_vcore *vcore;
2662         struct kvm *kvm;
2663         unsigned int id;
2664
2665         kvm = vcpu->kvm;
2666         id = vcpu->vcpu_id;
2667
2668         vcpu->arch.shared = &vcpu->arch.shregs;
2669 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2670         /*
2671          * The shared struct is never shared on HV,
2672          * so we can always use host endianness
2673          */
2674 #ifdef __BIG_ENDIAN__
2675         vcpu->arch.shared_big_endian = true;
2676 #else
2677         vcpu->arch.shared_big_endian = false;
2678 #endif
2679 #endif
2680         vcpu->arch.mmcr[0] = MMCR0_FC;
2681         vcpu->arch.ctrl = CTRL_RUNLATCH;
2682         /* default to host PVR, since we can't spoof it */
2683         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2684         spin_lock_init(&vcpu->arch.vpa_update_lock);
2685         spin_lock_init(&vcpu->arch.tbacct_lock);
2686         vcpu->arch.busy_preempt = TB_NIL;
2687         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2688
2689         /*
2690          * Set the default HFSCR for the guest from the host value.
2691          * This value is only used on POWER9.
2692          * On POWER9, we want to virtualize the doorbell facility, so we
2693          * don't set the HFSCR_MSGP bit, and that causes those instructions
2694          * to trap and then we emulate them.
2695          */
2696         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2697                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2698         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2699                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2700                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2701                         vcpu->arch.hfscr |= HFSCR_TM;
2702         }
2703         if (cpu_has_feature(CPU_FTR_TM_COMP))
2704                 vcpu->arch.hfscr |= HFSCR_TM;
2705
2706         kvmppc_mmu_book3s_hv_init(vcpu);
2707
2708         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2709
2710         init_waitqueue_head(&vcpu->arch.cpu_run);
2711
2712         mutex_lock(&kvm->lock);
2713         vcore = NULL;
2714         err = -EINVAL;
2715         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2716                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2717                         pr_devel("KVM: VCPU ID too high\n");
2718                         core = KVM_MAX_VCORES;
2719                 } else {
2720                         BUG_ON(kvm->arch.smt_mode != 1);
2721                         core = kvmppc_pack_vcpu_id(kvm, id);
2722                 }
2723         } else {
2724                 core = id / kvm->arch.smt_mode;
2725         }
2726         if (core < KVM_MAX_VCORES) {
2727                 vcore = kvm->arch.vcores[core];
2728                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2729                         pr_devel("KVM: collision on id %u", id);
2730                         vcore = NULL;
2731                 } else if (!vcore) {
2732                         /*
2733                          * Take mmu_setup_lock for mutual exclusion
2734                          * with kvmppc_update_lpcr().
2735                          */
2736                         err = -ENOMEM;
2737                         vcore = kvmppc_vcore_create(kvm,
2738                                         id & ~(kvm->arch.smt_mode - 1));
2739                         mutex_lock(&kvm->arch.mmu_setup_lock);
2740                         kvm->arch.vcores[core] = vcore;
2741                         kvm->arch.online_vcores++;
2742                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2743                 }
2744         }
2745         mutex_unlock(&kvm->lock);
2746
2747         if (!vcore)
2748                 return err;
2749
2750         spin_lock(&vcore->lock);
2751         ++vcore->num_threads;
2752         spin_unlock(&vcore->lock);
2753         vcpu->arch.vcore = vcore;
2754         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2755         vcpu->arch.thread_cpu = -1;
2756         vcpu->arch.prev_cpu = -1;
2757
2758         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2759         kvmppc_sanity_check(vcpu);
2760
2761         debugfs_vcpu_init(vcpu, id);
2762
2763         return 0;
2764 }
2765
2766 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2767                               unsigned long flags)
2768 {
2769         int err;
2770         int esmt = 0;
2771
2772         if (flags)
2773                 return -EINVAL;
2774         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2775                 return -EINVAL;
2776         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2777                 /*
2778                  * On POWER8 (or POWER7), the threading mode is "strict",
2779                  * so we pack smt_mode vcpus per vcore.
2780                  */
2781                 if (smt_mode > threads_per_subcore)
2782                         return -EINVAL;
2783         } else {
2784                 /*
2785                  * On POWER9, the threading mode is "loose",
2786                  * so each vcpu gets its own vcore.
2787                  */
2788                 esmt = smt_mode;
2789                 smt_mode = 1;
2790         }
2791         mutex_lock(&kvm->lock);
2792         err = -EBUSY;
2793         if (!kvm->arch.online_vcores) {
2794                 kvm->arch.smt_mode = smt_mode;
2795                 kvm->arch.emul_smt_mode = esmt;
2796                 err = 0;
2797         }
2798         mutex_unlock(&kvm->lock);
2799
2800         return err;
2801 }
2802
2803 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2804 {
2805         if (vpa->pinned_addr)
2806                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2807                                         vpa->dirty);
2808 }
2809
2810 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2811 {
2812         spin_lock(&vcpu->arch.vpa_update_lock);
2813         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2814         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2815         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2816         spin_unlock(&vcpu->arch.vpa_update_lock);
2817 }
2818
2819 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2820 {
2821         /* Indicate we want to get back into the guest */
2822         return 1;
2823 }
2824
2825 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2826 {
2827         unsigned long dec_nsec, now;
2828
2829         now = get_tb();
2830         if (now > vcpu->arch.dec_expires) {
2831                 /* decrementer has already gone negative */
2832                 kvmppc_core_queue_dec(vcpu);
2833                 kvmppc_core_prepare_to_enter(vcpu);
2834                 return;
2835         }
2836         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2837         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2838         vcpu->arch.timer_running = 1;
2839 }
2840
2841 extern int __kvmppc_vcore_entry(void);
2842
2843 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2844                                    struct kvm_vcpu *vcpu)
2845 {
2846         u64 now;
2847
2848         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2849                 return;
2850         spin_lock_irq(&vcpu->arch.tbacct_lock);
2851         now = mftb();
2852         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2853                 vcpu->arch.stolen_logged;
2854         vcpu->arch.busy_preempt = now;
2855         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2856         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2857         --vc->n_runnable;
2858         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2859 }
2860
2861 static int kvmppc_grab_hwthread(int cpu)
2862 {
2863         struct paca_struct *tpaca;
2864         long timeout = 10000;
2865
2866         tpaca = paca_ptrs[cpu];
2867
2868         /* Ensure the thread won't go into the kernel if it wakes */
2869         tpaca->kvm_hstate.kvm_vcpu = NULL;
2870         tpaca->kvm_hstate.kvm_vcore = NULL;
2871         tpaca->kvm_hstate.napping = 0;
2872         smp_wmb();
2873         tpaca->kvm_hstate.hwthread_req = 1;
2874
2875         /*
2876          * If the thread is already executing in the kernel (e.g. handling
2877          * a stray interrupt), wait for it to get back to nap mode.
2878          * The smp_mb() is to ensure that our setting of hwthread_req
2879          * is visible before we look at hwthread_state, so if this
2880          * races with the code at system_reset_pSeries and the thread
2881          * misses our setting of hwthread_req, we are sure to see its
2882          * setting of hwthread_state, and vice versa.
2883          */
2884         smp_mb();
2885         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2886                 if (--timeout <= 0) {
2887                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2888                         return -EBUSY;
2889                 }
2890                 udelay(1);
2891         }
2892         return 0;
2893 }
2894
2895 static void kvmppc_release_hwthread(int cpu)
2896 {
2897         struct paca_struct *tpaca;
2898
2899         tpaca = paca_ptrs[cpu];
2900         tpaca->kvm_hstate.hwthread_req = 0;
2901         tpaca->kvm_hstate.kvm_vcpu = NULL;
2902         tpaca->kvm_hstate.kvm_vcore = NULL;
2903         tpaca->kvm_hstate.kvm_split_mode = NULL;
2904 }
2905
2906 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2907 {
2908         struct kvm_nested_guest *nested = vcpu->arch.nested;
2909         cpumask_t *cpu_in_guest;
2910         int i;
2911
2912         cpu = cpu_first_tlb_thread_sibling(cpu);
2913         if (nested) {
2914                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2915                 cpu_in_guest = &nested->cpu_in_guest;
2916         } else {
2917                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2918                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2919         }
2920         /*
2921          * Make sure setting of bit in need_tlb_flush precedes
2922          * testing of cpu_in_guest bits.  The matching barrier on
2923          * the other side is the first smp_mb() in kvmppc_run_core().
2924          */
2925         smp_mb();
2926         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2927                                         i += cpu_tlb_thread_sibling_step())
2928                 if (cpumask_test_cpu(i, cpu_in_guest))
2929                         smp_call_function_single(i, do_nothing, NULL, 1);
2930 }
2931
2932 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2933 {
2934         struct kvm_nested_guest *nested = vcpu->arch.nested;
2935         struct kvm *kvm = vcpu->kvm;
2936         int prev_cpu;
2937
2938         if (!cpu_has_feature(CPU_FTR_HVMODE))
2939                 return;
2940
2941         if (nested)
2942                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2943         else
2944                 prev_cpu = vcpu->arch.prev_cpu;
2945
2946         /*
2947          * With radix, the guest can do TLB invalidations itself,
2948          * and it could choose to use the local form (tlbiel) if
2949          * it is invalidating a translation that has only ever been
2950          * used on one vcpu.  However, that doesn't mean it has
2951          * only ever been used on one physical cpu, since vcpus
2952          * can move around between pcpus.  To cope with this, when
2953          * a vcpu moves from one pcpu to another, we need to tell
2954          * any vcpus running on the same core as this vcpu previously
2955          * ran to flush the TLB.  The TLB is shared between threads,
2956          * so we use a single bit in .need_tlb_flush for all 4 threads.
2957          */
2958         if (prev_cpu != pcpu) {
2959                 if (prev_cpu >= 0 &&
2960                     cpu_first_tlb_thread_sibling(prev_cpu) !=
2961                     cpu_first_tlb_thread_sibling(pcpu))
2962                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2963                 if (nested)
2964                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2965                 else
2966                         vcpu->arch.prev_cpu = pcpu;
2967         }
2968 }
2969
2970 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2971 {
2972         int cpu;
2973         struct paca_struct *tpaca;
2974         struct kvm *kvm = vc->kvm;
2975
2976         cpu = vc->pcpu;
2977         if (vcpu) {
2978                 if (vcpu->arch.timer_running) {
2979                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2980                         vcpu->arch.timer_running = 0;
2981                 }
2982                 cpu += vcpu->arch.ptid;
2983                 vcpu->cpu = vc->pcpu;
2984                 vcpu->arch.thread_cpu = cpu;
2985                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2986         }
2987         tpaca = paca_ptrs[cpu];
2988         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2989         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2990         tpaca->kvm_hstate.fake_suspend = 0;
2991         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2992         smp_wmb();
2993         tpaca->kvm_hstate.kvm_vcore = vc;
2994         if (cpu != smp_processor_id())
2995                 kvmppc_ipi_thread(cpu);
2996 }
2997
2998 static void kvmppc_wait_for_nap(int n_threads)
2999 {
3000         int cpu = smp_processor_id();
3001         int i, loops;
3002
3003         if (n_threads <= 1)
3004                 return;
3005         for (loops = 0; loops < 1000000; ++loops) {
3006                 /*
3007                  * Check if all threads are finished.
3008                  * We set the vcore pointer when starting a thread
3009                  * and the thread clears it when finished, so we look
3010                  * for any threads that still have a non-NULL vcore ptr.
3011                  */
3012                 for (i = 1; i < n_threads; ++i)
3013                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3014                                 break;
3015                 if (i == n_threads) {
3016                         HMT_medium();
3017                         return;
3018                 }
3019                 HMT_low();
3020         }
3021         HMT_medium();
3022         for (i = 1; i < n_threads; ++i)
3023                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3024                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3025 }
3026
3027 /*
3028  * Check that we are on thread 0 and that any other threads in
3029  * this core are off-line.  Then grab the threads so they can't
3030  * enter the kernel.
3031  */
3032 static int on_primary_thread(void)
3033 {
3034         int cpu = smp_processor_id();
3035         int thr;
3036
3037         /* Are we on a primary subcore? */
3038         if (cpu_thread_in_subcore(cpu))
3039                 return 0;
3040
3041         thr = 0;
3042         while (++thr < threads_per_subcore)
3043                 if (cpu_online(cpu + thr))
3044                         return 0;
3045
3046         /* Grab all hw threads so they can't go into the kernel */
3047         for (thr = 1; thr < threads_per_subcore; ++thr) {
3048                 if (kvmppc_grab_hwthread(cpu + thr)) {
3049                         /* Couldn't grab one; let the others go */
3050                         do {
3051                                 kvmppc_release_hwthread(cpu + thr);
3052                         } while (--thr > 0);
3053                         return 0;
3054                 }
3055         }
3056         return 1;
3057 }
3058
3059 /*
3060  * A list of virtual cores for each physical CPU.
3061  * These are vcores that could run but their runner VCPU tasks are
3062  * (or may be) preempted.
3063  */
3064 struct preempted_vcore_list {
3065         struct list_head        list;
3066         spinlock_t              lock;
3067 };
3068
3069 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3070
3071 static void init_vcore_lists(void)
3072 {
3073         int cpu;
3074
3075         for_each_possible_cpu(cpu) {
3076                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3077                 spin_lock_init(&lp->lock);
3078                 INIT_LIST_HEAD(&lp->list);
3079         }
3080 }
3081
3082 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3083 {
3084         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3085
3086         vc->vcore_state = VCORE_PREEMPT;
3087         vc->pcpu = smp_processor_id();
3088         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3089                 spin_lock(&lp->lock);
3090                 list_add_tail(&vc->preempt_list, &lp->list);
3091                 spin_unlock(&lp->lock);
3092         }
3093
3094         /* Start accumulating stolen time */
3095         kvmppc_core_start_stolen(vc);
3096 }
3097
3098 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3099 {
3100         struct preempted_vcore_list *lp;
3101
3102         kvmppc_core_end_stolen(vc);
3103         if (!list_empty(&vc->preempt_list)) {
3104                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3105                 spin_lock(&lp->lock);
3106                 list_del_init(&vc->preempt_list);
3107                 spin_unlock(&lp->lock);
3108         }
3109         vc->vcore_state = VCORE_INACTIVE;
3110 }
3111
3112 /*
3113  * This stores information about the virtual cores currently
3114  * assigned to a physical core.
3115  */
3116 struct core_info {
3117         int             n_subcores;
3118         int             max_subcore_threads;
3119         int             total_threads;
3120         int             subcore_threads[MAX_SUBCORES];
3121         struct kvmppc_vcore *vc[MAX_SUBCORES];
3122 };
3123
3124 /*
3125  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3126  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3127  */
3128 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3129
3130 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3131 {
3132         memset(cip, 0, sizeof(*cip));
3133         cip->n_subcores = 1;
3134         cip->max_subcore_threads = vc->num_threads;
3135         cip->total_threads = vc->num_threads;
3136         cip->subcore_threads[0] = vc->num_threads;
3137         cip->vc[0] = vc;
3138 }
3139
3140 static bool subcore_config_ok(int n_subcores, int n_threads)
3141 {
3142         /*
3143          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3144          * split-core mode, with one thread per subcore.
3145          */
3146         if (cpu_has_feature(CPU_FTR_ARCH_300))
3147                 return n_subcores <= 4 && n_threads == 1;
3148
3149         /* On POWER8, can only dynamically split if unsplit to begin with */
3150         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3151                 return false;
3152         if (n_subcores > MAX_SUBCORES)
3153                 return false;
3154         if (n_subcores > 1) {
3155                 if (!(dynamic_mt_modes & 2))
3156                         n_subcores = 4;
3157                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3158                         return false;
3159         }
3160
3161         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3162 }
3163
3164 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3165 {
3166         vc->entry_exit_map = 0;
3167         vc->in_guest = 0;
3168         vc->napping_threads = 0;
3169         vc->conferring_threads = 0;
3170         vc->tb_offset_applied = 0;
3171 }
3172
3173 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3174 {
3175         int n_threads = vc->num_threads;
3176         int sub;
3177
3178         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3179                 return false;
3180
3181         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3182         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3183                 return false;
3184
3185         if (n_threads < cip->max_subcore_threads)
3186                 n_threads = cip->max_subcore_threads;
3187         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3188                 return false;
3189         cip->max_subcore_threads = n_threads;
3190
3191         sub = cip->n_subcores;
3192         ++cip->n_subcores;
3193         cip->total_threads += vc->num_threads;
3194         cip->subcore_threads[sub] = vc->num_threads;
3195         cip->vc[sub] = vc;
3196         init_vcore_to_run(vc);
3197         list_del_init(&vc->preempt_list);
3198
3199         return true;
3200 }
3201
3202 /*
3203  * Work out whether it is possible to piggyback the execution of
3204  * vcore *pvc onto the execution of the other vcores described in *cip.
3205  */
3206 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3207                           int target_threads)
3208 {
3209         if (cip->total_threads + pvc->num_threads > target_threads)
3210                 return false;
3211
3212         return can_dynamic_split(pvc, cip);
3213 }
3214
3215 static void prepare_threads(struct kvmppc_vcore *vc)
3216 {
3217         int i;
3218         struct kvm_vcpu *vcpu;
3219
3220         for_each_runnable_thread(i, vcpu, vc) {
3221                 if (signal_pending(vcpu->arch.run_task))
3222                         vcpu->arch.ret = -EINTR;
3223                 else if (vcpu->arch.vpa.update_pending ||
3224                          vcpu->arch.slb_shadow.update_pending ||
3225                          vcpu->arch.dtl.update_pending)
3226                         vcpu->arch.ret = RESUME_GUEST;
3227                 else
3228                         continue;
3229                 kvmppc_remove_runnable(vc, vcpu);
3230                 wake_up(&vcpu->arch.cpu_run);
3231         }
3232 }
3233
3234 static void collect_piggybacks(struct core_info *cip, int target_threads)
3235 {
3236         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3237         struct kvmppc_vcore *pvc, *vcnext;
3238
3239         spin_lock(&lp->lock);
3240         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3241                 if (!spin_trylock(&pvc->lock))
3242                         continue;
3243                 prepare_threads(pvc);
3244                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3245                         list_del_init(&pvc->preempt_list);
3246                         if (pvc->runner == NULL) {
3247                                 pvc->vcore_state = VCORE_INACTIVE;
3248                                 kvmppc_core_end_stolen(pvc);
3249                         }
3250                         spin_unlock(&pvc->lock);
3251                         continue;
3252                 }
3253                 if (!can_piggyback(pvc, cip, target_threads)) {
3254                         spin_unlock(&pvc->lock);
3255                         continue;
3256                 }
3257                 kvmppc_core_end_stolen(pvc);
3258                 pvc->vcore_state = VCORE_PIGGYBACK;
3259                 if (cip->total_threads >= target_threads)
3260                         break;
3261         }
3262         spin_unlock(&lp->lock);
3263 }
3264
3265 static bool recheck_signals_and_mmu(struct core_info *cip)
3266 {
3267         int sub, i;
3268         struct kvm_vcpu *vcpu;
3269         struct kvmppc_vcore *vc;
3270
3271         for (sub = 0; sub < cip->n_subcores; ++sub) {
3272                 vc = cip->vc[sub];
3273                 if (!vc->kvm->arch.mmu_ready)
3274                         return true;
3275                 for_each_runnable_thread(i, vcpu, vc)
3276                         if (signal_pending(vcpu->arch.run_task))
3277                                 return true;
3278         }
3279         return false;
3280 }
3281
3282 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3283 {
3284         int still_running = 0, i;
3285         u64 now;
3286         long ret;
3287         struct kvm_vcpu *vcpu;
3288
3289         spin_lock(&vc->lock);
3290         now = get_tb();
3291         for_each_runnable_thread(i, vcpu, vc) {
3292                 /*
3293                  * It's safe to unlock the vcore in the loop here, because
3294                  * for_each_runnable_thread() is safe against removal of
3295                  * the vcpu, and the vcore state is VCORE_EXITING here,
3296                  * so any vcpus becoming runnable will have their arch.trap
3297                  * set to zero and can't actually run in the guest.
3298                  */
3299                 spin_unlock(&vc->lock);
3300                 /* cancel pending dec exception if dec is positive */
3301                 if (now < vcpu->arch.dec_expires &&
3302                     kvmppc_core_pending_dec(vcpu))
3303                         kvmppc_core_dequeue_dec(vcpu);
3304
3305                 trace_kvm_guest_exit(vcpu);
3306
3307                 ret = RESUME_GUEST;
3308                 if (vcpu->arch.trap)
3309                         ret = kvmppc_handle_exit_hv(vcpu,
3310                                                     vcpu->arch.run_task);
3311
3312                 vcpu->arch.ret = ret;
3313                 vcpu->arch.trap = 0;
3314
3315                 spin_lock(&vc->lock);
3316                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3317                         if (vcpu->arch.pending_exceptions)
3318                                 kvmppc_core_prepare_to_enter(vcpu);
3319                         if (vcpu->arch.ceded)
3320                                 kvmppc_set_timer(vcpu);
3321                         else
3322                                 ++still_running;
3323                 } else {
3324                         kvmppc_remove_runnable(vc, vcpu);
3325                         wake_up(&vcpu->arch.cpu_run);
3326                 }
3327         }
3328         if (!is_master) {
3329                 if (still_running > 0) {
3330                         kvmppc_vcore_preempt(vc);
3331                 } else if (vc->runner) {
3332                         vc->vcore_state = VCORE_PREEMPT;
3333                         kvmppc_core_start_stolen(vc);
3334                 } else {
3335                         vc->vcore_state = VCORE_INACTIVE;
3336                 }
3337                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3338                         /* make sure there's a candidate runner awake */
3339                         i = -1;
3340                         vcpu = next_runnable_thread(vc, &i);
3341                         wake_up(&vcpu->arch.cpu_run);
3342                 }
3343         }
3344         spin_unlock(&vc->lock);
3345 }
3346
3347 /*
3348  * Clear core from the list of active host cores as we are about to
3349  * enter the guest. Only do this if it is the primary thread of the
3350  * core (not if a subcore) that is entering the guest.
3351  */
3352 static inline int kvmppc_clear_host_core(unsigned int cpu)
3353 {
3354         int core;
3355
3356         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3357                 return 0;
3358         /*
3359          * Memory barrier can be omitted here as we will do a smp_wmb()
3360          * later in kvmppc_start_thread and we need ensure that state is
3361          * visible to other CPUs only after we enter guest.
3362          */
3363         core = cpu >> threads_shift;
3364         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3365         return 0;
3366 }
3367
3368 /*
3369  * Advertise this core as an active host core since we exited the guest
3370  * Only need to do this if it is the primary thread of the core that is
3371  * exiting.
3372  */
3373 static inline int kvmppc_set_host_core(unsigned int cpu)
3374 {
3375         int core;
3376
3377         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3378                 return 0;
3379
3380         /*
3381          * Memory barrier can be omitted here because we do a spin_unlock
3382          * immediately after this which provides the memory barrier.
3383          */
3384         core = cpu >> threads_shift;
3385         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3386         return 0;
3387 }
3388
3389 static void set_irq_happened(int trap)
3390 {
3391         switch (trap) {
3392         case BOOK3S_INTERRUPT_EXTERNAL:
3393                 local_paca->irq_happened |= PACA_IRQ_EE;
3394                 break;
3395         case BOOK3S_INTERRUPT_H_DOORBELL:
3396                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3397                 break;
3398         case BOOK3S_INTERRUPT_HMI:
3399                 local_paca->irq_happened |= PACA_IRQ_HMI;
3400                 break;
3401         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3402                 replay_system_reset();
3403                 break;
3404         }
3405 }
3406
3407 /*
3408  * Run a set of guest threads on a physical core.
3409  * Called with vc->lock held.
3410  */
3411 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3412 {
3413         struct kvm_vcpu *vcpu;
3414         int i;
3415         int srcu_idx;
3416         struct core_info core_info;
3417         struct kvmppc_vcore *pvc;
3418         struct kvm_split_mode split_info, *sip;
3419         int split, subcore_size, active;
3420         int sub;
3421         bool thr0_done;
3422         unsigned long cmd_bit, stat_bit;
3423         int pcpu, thr;
3424         int target_threads;
3425         int controlled_threads;
3426         int trap;
3427         bool is_power8;
3428
3429         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3430                 return;
3431
3432         /*
3433          * Remove from the list any threads that have a signal pending
3434          * or need a VPA update done
3435          */
3436         prepare_threads(vc);
3437
3438         /* if the runner is no longer runnable, let the caller pick a new one */
3439         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3440                 return;
3441
3442         /*
3443          * Initialize *vc.
3444          */
3445         init_vcore_to_run(vc);
3446         vc->preempt_tb = TB_NIL;
3447
3448         /*
3449          * Number of threads that we will be controlling: the same as
3450          * the number of threads per subcore, except on POWER9,
3451          * where it's 1 because the threads are (mostly) independent.
3452          */
3453         controlled_threads = threads_per_vcore(vc->kvm);
3454
3455         /*
3456          * Make sure we are running on primary threads, and that secondary
3457          * threads are offline.  Also check if the number of threads in this
3458          * guest are greater than the current system threads per guest.
3459          */
3460         if ((controlled_threads > 1) &&
3461             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3462                 for_each_runnable_thread(i, vcpu, vc) {
3463                         vcpu->arch.ret = -EBUSY;
3464                         kvmppc_remove_runnable(vc, vcpu);
3465                         wake_up(&vcpu->arch.cpu_run);
3466                 }
3467                 goto out;
3468         }
3469
3470         /*
3471          * See if we could run any other vcores on the physical core
3472          * along with this one.
3473          */
3474         init_core_info(&core_info, vc);
3475         pcpu = smp_processor_id();
3476         target_threads = controlled_threads;
3477         if (target_smt_mode && target_smt_mode < target_threads)
3478                 target_threads = target_smt_mode;
3479         if (vc->num_threads < target_threads)
3480                 collect_piggybacks(&core_info, target_threads);
3481
3482         /*
3483          * Hard-disable interrupts, and check resched flag and signals.
3484          * If we need to reschedule or deliver a signal, clean up
3485          * and return without going into the guest(s).
3486          * If the mmu_ready flag has been cleared, don't go into the
3487          * guest because that means a HPT resize operation is in progress.
3488          */
3489         local_irq_disable();
3490         hard_irq_disable();
3491         if (lazy_irq_pending() || need_resched() ||
3492             recheck_signals_and_mmu(&core_info)) {
3493                 local_irq_enable();
3494                 vc->vcore_state = VCORE_INACTIVE;
3495                 /* Unlock all except the primary vcore */
3496                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3497                         pvc = core_info.vc[sub];
3498                         /* Put back on to the preempted vcores list */
3499                         kvmppc_vcore_preempt(pvc);
3500                         spin_unlock(&pvc->lock);
3501                 }
3502                 for (i = 0; i < controlled_threads; ++i)
3503                         kvmppc_release_hwthread(pcpu + i);
3504                 return;
3505         }
3506
3507         kvmppc_clear_host_core(pcpu);
3508
3509         /* Decide on micro-threading (split-core) mode */
3510         subcore_size = threads_per_subcore;
3511         cmd_bit = stat_bit = 0;
3512         split = core_info.n_subcores;
3513         sip = NULL;
3514         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3515
3516         if (split > 1) {
3517                 sip = &split_info;
3518                 memset(&split_info, 0, sizeof(split_info));
3519                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3520                         split_info.vc[sub] = core_info.vc[sub];
3521
3522                 if (is_power8) {
3523                         if (split == 2 && (dynamic_mt_modes & 2)) {
3524                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3525                                 stat_bit = HID0_POWER8_2LPARMODE;
3526                         } else {
3527                                 split = 4;
3528                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3529                                 stat_bit = HID0_POWER8_4LPARMODE;
3530                         }
3531                         subcore_size = MAX_SMT_THREADS / split;
3532                         split_info.rpr = mfspr(SPRN_RPR);
3533                         split_info.pmmar = mfspr(SPRN_PMMAR);
3534                         split_info.ldbar = mfspr(SPRN_LDBAR);
3535                         split_info.subcore_size = subcore_size;
3536                 } else {
3537                         split_info.subcore_size = 1;
3538                 }
3539
3540                 /* order writes to split_info before kvm_split_mode pointer */
3541                 smp_wmb();
3542         }
3543
3544         for (thr = 0; thr < controlled_threads; ++thr) {
3545                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3546
3547                 paca->kvm_hstate.napping = 0;
3548                 paca->kvm_hstate.kvm_split_mode = sip;
3549         }
3550
3551         /* Initiate micro-threading (split-core) on POWER8 if required */
3552         if (cmd_bit) {
3553                 unsigned long hid0 = mfspr(SPRN_HID0);
3554
3555                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3556                 mb();
3557                 mtspr(SPRN_HID0, hid0);
3558                 isync();
3559                 for (;;) {
3560                         hid0 = mfspr(SPRN_HID0);
3561                         if (hid0 & stat_bit)
3562                                 break;
3563                         cpu_relax();
3564                 }
3565         }
3566
3567         /*
3568          * On POWER8, set RWMR register.
3569          * Since it only affects PURR and SPURR, it doesn't affect
3570          * the host, so we don't save/restore the host value.
3571          */
3572         if (is_power8) {
3573                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3574                 int n_online = atomic_read(&vc->online_count);
3575
3576                 /*
3577                  * Use the 8-thread value if we're doing split-core
3578                  * or if the vcore's online count looks bogus.
3579                  */
3580                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3581                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3582                         rwmr_val = p8_rwmr_values[n_online];
3583                 mtspr(SPRN_RWMR, rwmr_val);
3584         }
3585
3586         /* Start all the threads */
3587         active = 0;
3588         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3589                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3590                 thr0_done = false;
3591                 active |= 1 << thr;
3592                 pvc = core_info.vc[sub];
3593                 pvc->pcpu = pcpu + thr;
3594                 for_each_runnable_thread(i, vcpu, pvc) {
3595                         kvmppc_start_thread(vcpu, pvc);
3596                         kvmppc_create_dtl_entry(vcpu, pvc);
3597                         trace_kvm_guest_enter(vcpu);
3598                         if (!vcpu->arch.ptid)
3599                                 thr0_done = true;
3600                         active |= 1 << (thr + vcpu->arch.ptid);
3601                 }
3602                 /*
3603                  * We need to start the first thread of each subcore
3604                  * even if it doesn't have a vcpu.
3605                  */
3606                 if (!thr0_done)
3607                         kvmppc_start_thread(NULL, pvc);
3608         }
3609
3610         /*
3611          * Ensure that split_info.do_nap is set after setting
3612          * the vcore pointer in the PACA of the secondaries.
3613          */
3614         smp_mb();
3615
3616         /*
3617          * When doing micro-threading, poke the inactive threads as well.
3618          * This gets them to the nap instruction after kvm_do_nap,
3619          * which reduces the time taken to unsplit later.
3620          */
3621         if (cmd_bit) {
3622                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3623                 for (thr = 1; thr < threads_per_subcore; ++thr)
3624                         if (!(active & (1 << thr)))
3625                                 kvmppc_ipi_thread(pcpu + thr);
3626         }
3627
3628         vc->vcore_state = VCORE_RUNNING;
3629         preempt_disable();
3630
3631         trace_kvmppc_run_core(vc, 0);
3632
3633         for (sub = 0; sub < core_info.n_subcores; ++sub)
3634                 spin_unlock(&core_info.vc[sub]->lock);
3635
3636         guest_enter_irqoff();
3637
3638         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3639
3640         this_cpu_disable_ftrace();
3641
3642         /*
3643          * Interrupts will be enabled once we get into the guest,
3644          * so tell lockdep that we're about to enable interrupts.
3645          */
3646         trace_hardirqs_on();
3647
3648         trap = __kvmppc_vcore_entry();
3649
3650         trace_hardirqs_off();
3651
3652         this_cpu_enable_ftrace();
3653
3654         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3655
3656         set_irq_happened(trap);
3657
3658         spin_lock(&vc->lock);
3659         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3660         vc->vcore_state = VCORE_EXITING;
3661
3662         /* wait for secondary threads to finish writing their state to memory */
3663         kvmppc_wait_for_nap(controlled_threads);
3664
3665         /* Return to whole-core mode if we split the core earlier */
3666         if (cmd_bit) {
3667                 unsigned long hid0 = mfspr(SPRN_HID0);
3668                 unsigned long loops = 0;
3669
3670                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3671                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3672                 mb();
3673                 mtspr(SPRN_HID0, hid0);
3674                 isync();
3675                 for (;;) {
3676                         hid0 = mfspr(SPRN_HID0);
3677                         if (!(hid0 & stat_bit))
3678                                 break;
3679                         cpu_relax();
3680                         ++loops;
3681                 }
3682                 split_info.do_nap = 0;
3683         }
3684
3685         kvmppc_set_host_core(pcpu);
3686
3687         guest_exit_irqoff();
3688
3689         local_irq_enable();
3690
3691         /* Let secondaries go back to the offline loop */
3692         for (i = 0; i < controlled_threads; ++i) {
3693                 kvmppc_release_hwthread(pcpu + i);
3694                 if (sip && sip->napped[i])
3695                         kvmppc_ipi_thread(pcpu + i);
3696                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3697         }
3698
3699         spin_unlock(&vc->lock);
3700
3701         /* make sure updates to secondary vcpu structs are visible now */
3702         smp_mb();
3703
3704         preempt_enable();
3705
3706         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3707                 pvc = core_info.vc[sub];
3708                 post_guest_process(pvc, pvc == vc);
3709         }
3710
3711         spin_lock(&vc->lock);
3712
3713  out:
3714         vc->vcore_state = VCORE_INACTIVE;
3715         trace_kvmppc_run_core(vc, 1);
3716 }
3717
3718 static void load_spr_state(struct kvm_vcpu *vcpu)
3719 {
3720         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3721         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3722         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3723         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3724         mtspr(SPRN_TAR, vcpu->arch.tar);
3725         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3726         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3727         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3728         mtspr(SPRN_WORT, vcpu->arch.wort);
3729         mtspr(SPRN_TIDR, vcpu->arch.tid);
3730         mtspr(SPRN_AMR, vcpu->arch.amr);
3731         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3732
3733         /*
3734          * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3735          * clear (or hstate set appropriately to catch those registers
3736          * being clobbered if we take a MCE or SRESET), so those are done
3737          * later.
3738          */
3739
3740         if (!(vcpu->arch.ctrl & 1))
3741                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3742 }
3743
3744 static void store_spr_state(struct kvm_vcpu *vcpu)
3745 {
3746         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3747
3748         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3749         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3750         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3751         vcpu->arch.tar = mfspr(SPRN_TAR);
3752         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3753         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3754         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3755         vcpu->arch.wort = mfspr(SPRN_WORT);
3756         vcpu->arch.tid = mfspr(SPRN_TIDR);
3757         vcpu->arch.amr = mfspr(SPRN_AMR);
3758         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3759         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3760 }
3761
3762 /*
3763  * Privileged (non-hypervisor) host registers to save.
3764  */
3765 struct p9_host_os_sprs {
3766         unsigned long dscr;
3767         unsigned long tidr;
3768         unsigned long iamr;
3769         unsigned long amr;
3770         unsigned long fscr;
3771 };
3772
3773 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3774 {
3775         host_os_sprs->dscr = mfspr(SPRN_DSCR);
3776         host_os_sprs->tidr = mfspr(SPRN_TIDR);
3777         host_os_sprs->iamr = mfspr(SPRN_IAMR);
3778         host_os_sprs->amr = mfspr(SPRN_AMR);
3779         host_os_sprs->fscr = mfspr(SPRN_FSCR);
3780 }
3781
3782 /* vcpu guest regs must already be saved */
3783 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3784                                     struct p9_host_os_sprs *host_os_sprs)
3785 {
3786         mtspr(SPRN_PSPB, 0);
3787         mtspr(SPRN_WORT, 0);
3788         mtspr(SPRN_UAMOR, 0);
3789
3790         mtspr(SPRN_DSCR, host_os_sprs->dscr);
3791         mtspr(SPRN_TIDR, host_os_sprs->tidr);
3792         mtspr(SPRN_IAMR, host_os_sprs->iamr);
3793
3794         if (host_os_sprs->amr != vcpu->arch.amr)
3795                 mtspr(SPRN_AMR, host_os_sprs->amr);
3796
3797         if (host_os_sprs->fscr != vcpu->arch.fscr)
3798                 mtspr(SPRN_FSCR, host_os_sprs->fscr);
3799
3800         /* Save guest CTRL register, set runlatch to 1 */
3801         if (!(vcpu->arch.ctrl & 1))
3802                 mtspr(SPRN_CTRLT, 1);
3803 }
3804
3805 static inline bool hcall_is_xics(unsigned long req)
3806 {
3807         return req == H_EOI || req == H_CPPR || req == H_IPI ||
3808                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3809 }
3810
3811 /*
3812  * Guest entry for POWER9 and later CPUs.
3813  */
3814 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3815                          unsigned long lpcr)
3816 {
3817         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3818         struct p9_host_os_sprs host_os_sprs;
3819         s64 dec;
3820         u64 tb;
3821         int trap, save_pmu;
3822
3823         WARN_ON_ONCE(vcpu->arch.ceded);
3824
3825         dec = mfspr(SPRN_DEC);
3826         tb = mftb();
3827         if (dec < 0)
3828                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3829         local_paca->kvm_hstate.dec_expires = dec + tb;
3830         if (local_paca->kvm_hstate.dec_expires < time_limit)
3831                 time_limit = local_paca->kvm_hstate.dec_expires;
3832
3833         save_p9_host_os_sprs(&host_os_sprs);
3834
3835         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3836
3837         kvmppc_subcore_enter_guest();
3838
3839         vc->entry_exit_map = 1;
3840         vc->in_guest = 1;
3841
3842         if (vcpu->arch.vpa.pinned_addr) {
3843                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3844                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3845                 lp->yield_count = cpu_to_be32(yield_count);
3846                 vcpu->arch.vpa.dirty = 1;
3847         }
3848
3849         if (cpu_has_feature(CPU_FTR_TM) ||
3850             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3851                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3852
3853         kvmhv_load_guest_pmu(vcpu);
3854
3855         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3856         load_fp_state(&vcpu->arch.fp);
3857 #ifdef CONFIG_ALTIVEC
3858         load_vr_state(&vcpu->arch.vr);
3859 #endif
3860         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3861
3862         load_spr_state(vcpu);
3863
3864         /*
3865          * When setting DEC, we must always deal with irq_work_raise via NMI vs
3866          * setting DEC. The problem occurs right as we switch into guest mode
3867          * if a NMI hits and sets pending work and sets DEC, then that will
3868          * apply to the guest and not bring us back to the host.
3869          *
3870          * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3871          * example) and set HDEC to 1? That wouldn't solve the nested hv
3872          * case which needs to abort the hcall or zero the time limit.
3873          *
3874          * XXX: Another day's problem.
3875          */
3876         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3877
3878         if (kvmhv_on_pseries()) {
3879                 /*
3880                  * We need to save and restore the guest visible part of the
3881                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3882                  * doesn't do this for us. Note only required if pseries since
3883                  * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3884                  */
3885                 unsigned long host_psscr;
3886                 /* call our hypervisor to load up HV regs and go */
3887                 struct hv_guest_state hvregs;
3888
3889                 host_psscr = mfspr(SPRN_PSSCR_PR);
3890                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3891                 kvmhv_save_hv_regs(vcpu, &hvregs);
3892                 hvregs.lpcr = lpcr;
3893                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3894                 hvregs.version = HV_GUEST_STATE_VERSION;
3895                 if (vcpu->arch.nested) {
3896                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3897                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3898                 } else {
3899                         hvregs.lpid = vcpu->kvm->arch.lpid;
3900                         hvregs.vcpu_token = vcpu->vcpu_id;
3901                 }
3902                 hvregs.hdec_expiry = time_limit;
3903                 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3904                 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3905                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3906                                           __pa(&vcpu->arch.regs));
3907                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3908                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3909                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3910                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3911                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3912                 mtspr(SPRN_PSSCR_PR, host_psscr);
3913
3914                 /* H_CEDE has to be handled now, not later */
3915                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3916                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3917                         kvmppc_cede(vcpu);
3918                         kvmppc_set_gpr(vcpu, 3, 0);
3919                         trap = 0;
3920                 }
3921         } else {
3922                 kvmppc_xive_push_vcpu(vcpu);
3923                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
3924                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3925                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3926                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
3927
3928                         /* H_CEDE has to be handled now, not later */
3929                         if (req == H_CEDE) {
3930                                 kvmppc_cede(vcpu);
3931                                 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3932                                 kvmppc_set_gpr(vcpu, 3, 0);
3933                                 trap = 0;
3934
3935                         /* XICS hcalls must be handled before xive is pulled */
3936                         } else if (hcall_is_xics(req)) {
3937                                 int ret;
3938
3939                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
3940                                 if (ret != H_TOO_HARD) {
3941                                         kvmppc_set_gpr(vcpu, 3, ret);
3942                                         trap = 0;
3943                                 }
3944                         }
3945                 }
3946                 kvmppc_xive_pull_vcpu(vcpu);
3947
3948                 if (kvm_is_radix(vcpu->kvm))
3949                         vcpu->arch.slb_max = 0;
3950         }
3951
3952         dec = mfspr(SPRN_DEC);
3953         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3954                 dec = (s32) dec;
3955         tb = mftb();
3956         vcpu->arch.dec_expires = dec + tb;
3957         vcpu->cpu = -1;
3958         vcpu->arch.thread_cpu = -1;
3959
3960         store_spr_state(vcpu);
3961
3962         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
3963
3964         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3965         store_fp_state(&vcpu->arch.fp);
3966 #ifdef CONFIG_ALTIVEC
3967         store_vr_state(&vcpu->arch.vr);
3968 #endif
3969         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3970
3971         if (cpu_has_feature(CPU_FTR_TM) ||
3972             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3973                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3974
3975         save_pmu = 1;
3976         if (vcpu->arch.vpa.pinned_addr) {
3977                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3978                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3979                 lp->yield_count = cpu_to_be32(yield_count);
3980                 vcpu->arch.vpa.dirty = 1;
3981                 save_pmu = lp->pmcregs_in_use;
3982         }
3983         /* Must save pmu if this guest is capable of running nested guests */
3984         save_pmu |= nesting_enabled(vcpu->kvm);
3985
3986         kvmhv_save_guest_pmu(vcpu, save_pmu);
3987
3988         vc->entry_exit_map = 0x101;
3989         vc->in_guest = 0;
3990
3991         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3992         /* We may have raced with new irq work */
3993         if (test_irq_work_pending())
3994                 set_dec(1);
3995         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3996
3997         kvmhv_load_host_pmu();
3998
3999         kvmppc_subcore_exit_guest();
4000
4001         return trap;
4002 }
4003
4004 /*
4005  * Wait for some other vcpu thread to execute us, and
4006  * wake us up when we need to handle something in the host.
4007  */
4008 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4009                                  struct kvm_vcpu *vcpu, int wait_state)
4010 {
4011         DEFINE_WAIT(wait);
4012
4013         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4014         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4015                 spin_unlock(&vc->lock);
4016                 schedule();
4017                 spin_lock(&vc->lock);
4018         }
4019         finish_wait(&vcpu->arch.cpu_run, &wait);
4020 }
4021
4022 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4023 {
4024         if (!halt_poll_ns_grow)
4025                 return;
4026
4027         vc->halt_poll_ns *= halt_poll_ns_grow;
4028         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4029                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4030 }
4031
4032 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4033 {
4034         if (halt_poll_ns_shrink == 0)
4035                 vc->halt_poll_ns = 0;
4036         else
4037                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4038 }
4039
4040 #ifdef CONFIG_KVM_XICS
4041 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4042 {
4043         if (!xics_on_xive())
4044                 return false;
4045         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4046                 vcpu->arch.xive_saved_state.cppr;
4047 }
4048 #else
4049 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4050 {
4051         return false;
4052 }
4053 #endif /* CONFIG_KVM_XICS */
4054
4055 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4056 {
4057         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4058             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4059                 return true;
4060
4061         return false;
4062 }
4063
4064 /*
4065  * Check to see if any of the runnable vcpus on the vcore have pending
4066  * exceptions or are no longer ceded
4067  */
4068 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4069 {
4070         struct kvm_vcpu *vcpu;
4071         int i;
4072
4073         for_each_runnable_thread(i, vcpu, vc) {
4074                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4075                         return 1;
4076         }
4077
4078         return 0;
4079 }
4080
4081 /*
4082  * All the vcpus in this vcore are idle, so wait for a decrementer
4083  * or external interrupt to one of the vcpus.  vc->lock is held.
4084  */
4085 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4086 {
4087         ktime_t cur, start_poll, start_wait;
4088         int do_sleep = 1;
4089         u64 block_ns;
4090
4091         /* Poll for pending exceptions and ceded state */
4092         cur = start_poll = ktime_get();
4093         if (vc->halt_poll_ns) {
4094                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4095                 ++vc->runner->stat.generic.halt_attempted_poll;
4096
4097                 vc->vcore_state = VCORE_POLLING;
4098                 spin_unlock(&vc->lock);
4099
4100                 do {
4101                         if (kvmppc_vcore_check_block(vc)) {
4102                                 do_sleep = 0;
4103                                 break;
4104                         }
4105                         cur = ktime_get();
4106                 } while (kvm_vcpu_can_poll(cur, stop));
4107
4108                 spin_lock(&vc->lock);
4109                 vc->vcore_state = VCORE_INACTIVE;
4110
4111                 if (!do_sleep) {
4112                         ++vc->runner->stat.generic.halt_successful_poll;
4113                         goto out;
4114                 }
4115         }
4116
4117         prepare_to_rcuwait(&vc->wait);
4118         set_current_state(TASK_INTERRUPTIBLE);
4119         if (kvmppc_vcore_check_block(vc)) {
4120                 finish_rcuwait(&vc->wait);
4121                 do_sleep = 0;
4122                 /* If we polled, count this as a successful poll */
4123                 if (vc->halt_poll_ns)
4124                         ++vc->runner->stat.generic.halt_successful_poll;
4125                 goto out;
4126         }
4127
4128         start_wait = ktime_get();
4129
4130         vc->vcore_state = VCORE_SLEEPING;
4131         trace_kvmppc_vcore_blocked(vc, 0);
4132         spin_unlock(&vc->lock);
4133         schedule();
4134         finish_rcuwait(&vc->wait);
4135         spin_lock(&vc->lock);
4136         vc->vcore_state = VCORE_INACTIVE;
4137         trace_kvmppc_vcore_blocked(vc, 1);
4138         ++vc->runner->stat.halt_successful_wait;
4139
4140         cur = ktime_get();
4141
4142 out:
4143         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4144
4145         /* Attribute wait time */
4146         if (do_sleep) {
4147                 vc->runner->stat.halt_wait_ns +=
4148                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4149                 /* Attribute failed poll time */
4150                 if (vc->halt_poll_ns)
4151                         vc->runner->stat.generic.halt_poll_fail_ns +=
4152                                 ktime_to_ns(start_wait) -
4153                                 ktime_to_ns(start_poll);
4154         } else {
4155                 /* Attribute successful poll time */
4156                 if (vc->halt_poll_ns)
4157                         vc->runner->stat.generic.halt_poll_success_ns +=
4158                                 ktime_to_ns(cur) -
4159                                 ktime_to_ns(start_poll);
4160         }
4161
4162         /* Adjust poll time */
4163         if (halt_poll_ns) {
4164                 if (block_ns <= vc->halt_poll_ns)
4165                         ;
4166                 /* We slept and blocked for longer than the max halt time */
4167                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4168                         shrink_halt_poll_ns(vc);
4169                 /* We slept and our poll time is too small */
4170                 else if (vc->halt_poll_ns < halt_poll_ns &&
4171                                 block_ns < halt_poll_ns)
4172                         grow_halt_poll_ns(vc);
4173                 if (vc->halt_poll_ns > halt_poll_ns)
4174                         vc->halt_poll_ns = halt_poll_ns;
4175         } else
4176                 vc->halt_poll_ns = 0;
4177
4178         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4179 }
4180
4181 /*
4182  * This never fails for a radix guest, as none of the operations it does
4183  * for a radix guest can fail or have a way to report failure.
4184  */
4185 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4186 {
4187         int r = 0;
4188         struct kvm *kvm = vcpu->kvm;
4189
4190         mutex_lock(&kvm->arch.mmu_setup_lock);
4191         if (!kvm->arch.mmu_ready) {
4192                 if (!kvm_is_radix(kvm))
4193                         r = kvmppc_hv_setup_htab_rma(vcpu);
4194                 if (!r) {
4195                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4196                                 kvmppc_setup_partition_table(kvm);
4197                         kvm->arch.mmu_ready = 1;
4198                 }
4199         }
4200         mutex_unlock(&kvm->arch.mmu_setup_lock);
4201         return r;
4202 }
4203
4204 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4205 {
4206         struct kvm_run *run = vcpu->run;
4207         int n_ceded, i, r;
4208         struct kvmppc_vcore *vc;
4209         struct kvm_vcpu *v;
4210
4211         trace_kvmppc_run_vcpu_enter(vcpu);
4212
4213         run->exit_reason = 0;
4214         vcpu->arch.ret = RESUME_GUEST;
4215         vcpu->arch.trap = 0;
4216         kvmppc_update_vpas(vcpu);
4217
4218         /*
4219          * Synchronize with other threads in this virtual core
4220          */
4221         vc = vcpu->arch.vcore;
4222         spin_lock(&vc->lock);
4223         vcpu->arch.ceded = 0;
4224         vcpu->arch.run_task = current;
4225         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4226         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4227         vcpu->arch.busy_preempt = TB_NIL;
4228         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4229         ++vc->n_runnable;
4230
4231         /*
4232          * This happens the first time this is called for a vcpu.
4233          * If the vcore is already running, we may be able to start
4234          * this thread straight away and have it join in.
4235          */
4236         if (!signal_pending(current)) {
4237                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4238                      vc->vcore_state == VCORE_RUNNING) &&
4239                            !VCORE_IS_EXITING(vc)) {
4240                         kvmppc_create_dtl_entry(vcpu, vc);
4241                         kvmppc_start_thread(vcpu, vc);
4242                         trace_kvm_guest_enter(vcpu);
4243                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4244                         rcuwait_wake_up(&vc->wait);
4245                 }
4246
4247         }
4248
4249         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4250                !signal_pending(current)) {
4251                 /* See if the MMU is ready to go */
4252                 if (!vcpu->kvm->arch.mmu_ready) {
4253                         spin_unlock(&vc->lock);
4254                         r = kvmhv_setup_mmu(vcpu);
4255                         spin_lock(&vc->lock);
4256                         if (r) {
4257                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4258                                 run->fail_entry.
4259                                         hardware_entry_failure_reason = 0;
4260                                 vcpu->arch.ret = r;
4261                                 break;
4262                         }
4263                 }
4264
4265                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4266                         kvmppc_vcore_end_preempt(vc);
4267
4268                 if (vc->vcore_state != VCORE_INACTIVE) {
4269                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4270                         continue;
4271                 }
4272                 for_each_runnable_thread(i, v, vc) {
4273                         kvmppc_core_prepare_to_enter(v);
4274                         if (signal_pending(v->arch.run_task)) {
4275                                 kvmppc_remove_runnable(vc, v);
4276                                 v->stat.signal_exits++;
4277                                 v->run->exit_reason = KVM_EXIT_INTR;
4278                                 v->arch.ret = -EINTR;
4279                                 wake_up(&v->arch.cpu_run);
4280                         }
4281                 }
4282                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4283                         break;
4284                 n_ceded = 0;
4285                 for_each_runnable_thread(i, v, vc) {
4286                         if (!kvmppc_vcpu_woken(v))
4287                                 n_ceded += v->arch.ceded;
4288                         else
4289                                 v->arch.ceded = 0;
4290                 }
4291                 vc->runner = vcpu;
4292                 if (n_ceded == vc->n_runnable) {
4293                         kvmppc_vcore_blocked(vc);
4294                 } else if (need_resched()) {
4295                         kvmppc_vcore_preempt(vc);
4296                         /* Let something else run */
4297                         cond_resched_lock(&vc->lock);
4298                         if (vc->vcore_state == VCORE_PREEMPT)
4299                                 kvmppc_vcore_end_preempt(vc);
4300                 } else {
4301                         kvmppc_run_core(vc);
4302                 }
4303                 vc->runner = NULL;
4304         }
4305
4306         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4307                (vc->vcore_state == VCORE_RUNNING ||
4308                 vc->vcore_state == VCORE_EXITING ||
4309                 vc->vcore_state == VCORE_PIGGYBACK))
4310                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4311
4312         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4313                 kvmppc_vcore_end_preempt(vc);
4314
4315         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4316                 kvmppc_remove_runnable(vc, vcpu);
4317                 vcpu->stat.signal_exits++;
4318                 run->exit_reason = KVM_EXIT_INTR;
4319                 vcpu->arch.ret = -EINTR;
4320         }
4321
4322         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4323                 /* Wake up some vcpu to run the core */
4324                 i = -1;
4325                 v = next_runnable_thread(vc, &i);
4326                 wake_up(&v->arch.cpu_run);
4327         }
4328
4329         trace_kvmppc_run_vcpu_exit(vcpu);
4330         spin_unlock(&vc->lock);
4331         return vcpu->arch.ret;
4332 }
4333
4334 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4335                           unsigned long lpcr)
4336 {
4337         struct kvm_run *run = vcpu->run;
4338         int trap, r, pcpu;
4339         int srcu_idx;
4340         struct kvmppc_vcore *vc;
4341         struct kvm *kvm = vcpu->kvm;
4342         struct kvm_nested_guest *nested = vcpu->arch.nested;
4343
4344         trace_kvmppc_run_vcpu_enter(vcpu);
4345
4346         run->exit_reason = 0;
4347         vcpu->arch.ret = RESUME_GUEST;
4348         vcpu->arch.trap = 0;
4349
4350         vc = vcpu->arch.vcore;
4351         vcpu->arch.ceded = 0;
4352         vcpu->arch.run_task = current;
4353         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4354         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4355         vcpu->arch.busy_preempt = TB_NIL;
4356         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4357         vc->runnable_threads[0] = vcpu;
4358         vc->n_runnable = 1;
4359         vc->runner = vcpu;
4360
4361         /* See if the MMU is ready to go */
4362         if (!kvm->arch.mmu_ready) {
4363                 r = kvmhv_setup_mmu(vcpu);
4364                 if (r) {
4365                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4366                         run->fail_entry.hardware_entry_failure_reason = 0;
4367                         vcpu->arch.ret = r;
4368                         return r;
4369                 }
4370         }
4371
4372         if (need_resched())
4373                 cond_resched();
4374
4375         kvmppc_update_vpas(vcpu);
4376
4377         init_vcore_to_run(vc);
4378         vc->preempt_tb = TB_NIL;
4379
4380         preempt_disable();
4381         pcpu = smp_processor_id();
4382         vc->pcpu = pcpu;
4383         if (kvm_is_radix(kvm))
4384                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4385
4386         local_irq_disable();
4387         hard_irq_disable();
4388         if (signal_pending(current))
4389                 goto sigpend;
4390         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4391                 goto out;
4392
4393         if (!nested) {
4394                 kvmppc_core_prepare_to_enter(vcpu);
4395                 if (vcpu->arch.doorbell_request) {
4396                         vc->dpdes = 1;
4397                         smp_wmb();
4398                         vcpu->arch.doorbell_request = 0;
4399                 }
4400                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4401                              &vcpu->arch.pending_exceptions))
4402                         lpcr |= LPCR_MER;
4403         } else if (vcpu->arch.pending_exceptions ||
4404                    vcpu->arch.doorbell_request ||
4405                    xive_interrupt_pending(vcpu)) {
4406                 vcpu->arch.ret = RESUME_HOST;
4407                 goto out;
4408         }
4409
4410         kvmppc_clear_host_core(pcpu);
4411
4412         local_paca->kvm_hstate.napping = 0;
4413         local_paca->kvm_hstate.kvm_split_mode = NULL;
4414         kvmppc_start_thread(vcpu, vc);
4415         kvmppc_create_dtl_entry(vcpu, vc);
4416         trace_kvm_guest_enter(vcpu);
4417
4418         vc->vcore_state = VCORE_RUNNING;
4419         trace_kvmppc_run_core(vc, 0);
4420
4421         guest_enter_irqoff();
4422
4423         srcu_idx = srcu_read_lock(&kvm->srcu);
4424
4425         this_cpu_disable_ftrace();
4426
4427         /* Tell lockdep that we're about to enable interrupts */
4428         trace_hardirqs_on();
4429
4430         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4431         vcpu->arch.trap = trap;
4432
4433         trace_hardirqs_off();
4434
4435         this_cpu_enable_ftrace();
4436
4437         srcu_read_unlock(&kvm->srcu, srcu_idx);
4438
4439         set_irq_happened(trap);
4440
4441         kvmppc_set_host_core(pcpu);
4442
4443         guest_exit_irqoff();
4444
4445         local_irq_enable();
4446
4447         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4448
4449         preempt_enable();
4450
4451         /*
4452          * cancel pending decrementer exception if DEC is now positive, or if
4453          * entering a nested guest in which case the decrementer is now owned
4454          * by L2 and the L1 decrementer is provided in hdec_expires
4455          */
4456         if (kvmppc_core_pending_dec(vcpu) &&
4457                         ((get_tb() < vcpu->arch.dec_expires) ||
4458                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4459                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4460                 kvmppc_core_dequeue_dec(vcpu);
4461
4462         trace_kvm_guest_exit(vcpu);
4463         r = RESUME_GUEST;
4464         if (trap) {
4465                 if (!nested)
4466                         r = kvmppc_handle_exit_hv(vcpu, current);
4467                 else
4468                         r = kvmppc_handle_nested_exit(vcpu);
4469         }
4470         vcpu->arch.ret = r;
4471
4472         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4473             !kvmppc_vcpu_woken(vcpu)) {
4474                 kvmppc_set_timer(vcpu);
4475                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4476                         if (signal_pending(current)) {
4477                                 vcpu->stat.signal_exits++;
4478                                 run->exit_reason = KVM_EXIT_INTR;
4479                                 vcpu->arch.ret = -EINTR;
4480                                 break;
4481                         }
4482                         spin_lock(&vc->lock);
4483                         kvmppc_vcore_blocked(vc);
4484                         spin_unlock(&vc->lock);
4485                 }
4486         }
4487         vcpu->arch.ceded = 0;
4488
4489         vc->vcore_state = VCORE_INACTIVE;
4490         trace_kvmppc_run_core(vc, 1);
4491
4492  done:
4493         kvmppc_remove_runnable(vc, vcpu);
4494         trace_kvmppc_run_vcpu_exit(vcpu);
4495
4496         return vcpu->arch.ret;
4497
4498  sigpend:
4499         vcpu->stat.signal_exits++;
4500         run->exit_reason = KVM_EXIT_INTR;
4501         vcpu->arch.ret = -EINTR;
4502  out:
4503         local_irq_enable();
4504         preempt_enable();
4505         goto done;
4506 }
4507
4508 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4509 {
4510         struct kvm_run *run = vcpu->run;
4511         int r;
4512         int srcu_idx;
4513         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4514         unsigned long user_tar = 0;
4515         unsigned int user_vrsave;
4516         struct kvm *kvm;
4517
4518         if (!vcpu->arch.sane) {
4519                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4520                 return -EINVAL;
4521         }
4522
4523         /*
4524          * Don't allow entry with a suspended transaction, because
4525          * the guest entry/exit code will lose it.
4526          * If the guest has TM enabled, save away their TM-related SPRs
4527          * (they will get restored by the TM unavailable interrupt).
4528          */
4529 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4530         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4531             (current->thread.regs->msr & MSR_TM)) {
4532                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4533                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4534                         run->fail_entry.hardware_entry_failure_reason = 0;
4535                         return -EINVAL;
4536                 }
4537                 /* Enable TM so we can read the TM SPRs */
4538                 mtmsr(mfmsr() | MSR_TM);
4539                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4540                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4541                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4542                 current->thread.regs->msr &= ~MSR_TM;
4543         }
4544 #endif
4545
4546         /*
4547          * Force online to 1 for the sake of old userspace which doesn't
4548          * set it.
4549          */
4550         if (!vcpu->arch.online) {
4551                 atomic_inc(&vcpu->arch.vcore->online_count);
4552                 vcpu->arch.online = 1;
4553         }
4554
4555         kvmppc_core_prepare_to_enter(vcpu);
4556
4557         /* No need to go into the guest when all we'll do is come back out */
4558         if (signal_pending(current)) {
4559                 run->exit_reason = KVM_EXIT_INTR;
4560                 return -EINTR;
4561         }
4562
4563         kvm = vcpu->kvm;
4564         atomic_inc(&kvm->arch.vcpus_running);
4565         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4566         smp_mb();
4567
4568         flush_all_to_thread(current);
4569
4570         /* Save userspace EBB and other register values */
4571         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4572                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4573                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4574                 ebb_regs[2] = mfspr(SPRN_BESCR);
4575                 user_tar = mfspr(SPRN_TAR);
4576         }
4577         user_vrsave = mfspr(SPRN_VRSAVE);
4578
4579         vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4580         vcpu->arch.pgdir = kvm->mm->pgd;
4581         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4582
4583         do {
4584                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4585                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4586                                                   vcpu->arch.vcore->lpcr);
4587                 else
4588                         r = kvmppc_run_vcpu(vcpu);
4589
4590                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4591                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4592                                 /*
4593                                  * These should have been caught reflected
4594                                  * into the guest by now. Final sanity check:
4595                                  * don't allow userspace to execute hcalls in
4596                                  * the hypervisor.
4597                                  */
4598                                 r = RESUME_GUEST;
4599                                 continue;
4600                         }
4601                         trace_kvm_hcall_enter(vcpu);
4602                         r = kvmppc_pseries_do_hcall(vcpu);
4603                         trace_kvm_hcall_exit(vcpu, r);
4604                         kvmppc_core_prepare_to_enter(vcpu);
4605                 } else if (r == RESUME_PAGE_FAULT) {
4606                         srcu_idx = srcu_read_lock(&kvm->srcu);
4607                         r = kvmppc_book3s_hv_page_fault(vcpu,
4608                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4609                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4610                 } else if (r == RESUME_PASSTHROUGH) {
4611                         if (WARN_ON(xics_on_xive()))
4612                                 r = H_SUCCESS;
4613                         else
4614                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4615                 }
4616         } while (is_kvmppc_resume_guest(r));
4617
4618         /* Restore userspace EBB and other register values */
4619         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4620                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4621                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4622                 mtspr(SPRN_BESCR, ebb_regs[2]);
4623                 mtspr(SPRN_TAR, user_tar);
4624         }
4625         mtspr(SPRN_VRSAVE, user_vrsave);
4626
4627         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4628         atomic_dec(&kvm->arch.vcpus_running);
4629
4630         srr_regs_clobbered();
4631
4632         return r;
4633 }
4634
4635 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4636                                      int shift, int sllp)
4637 {
4638         (*sps)->page_shift = shift;
4639         (*sps)->slb_enc = sllp;
4640         (*sps)->enc[0].page_shift = shift;
4641         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4642         /*
4643          * Add 16MB MPSS support (may get filtered out by userspace)
4644          */
4645         if (shift != 24) {
4646                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4647                 if (penc != -1) {
4648                         (*sps)->enc[1].page_shift = 24;
4649                         (*sps)->enc[1].pte_enc = penc;
4650                 }
4651         }
4652         (*sps)++;
4653 }
4654
4655 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4656                                          struct kvm_ppc_smmu_info *info)
4657 {
4658         struct kvm_ppc_one_seg_page_size *sps;
4659
4660         /*
4661          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4662          * POWER7 doesn't support keys for instruction accesses,
4663          * POWER8 and POWER9 do.
4664          */
4665         info->data_keys = 32;
4666         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4667
4668         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4669         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4670         info->slb_size = 32;
4671
4672         /* We only support these sizes for now, and no muti-size segments */
4673         sps = &info->sps[0];
4674         kvmppc_add_seg_page_size(&sps, 12, 0);
4675         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4676         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4677
4678         /* If running as a nested hypervisor, we don't support HPT guests */
4679         if (kvmhv_on_pseries())
4680                 info->flags |= KVM_PPC_NO_HASH;
4681
4682         return 0;
4683 }
4684
4685 /*
4686  * Get (and clear) the dirty memory log for a memory slot.
4687  */
4688 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4689                                          struct kvm_dirty_log *log)
4690 {
4691         struct kvm_memslots *slots;
4692         struct kvm_memory_slot *memslot;
4693         int i, r;
4694         unsigned long n;
4695         unsigned long *buf, *p;
4696         struct kvm_vcpu *vcpu;
4697
4698         mutex_lock(&kvm->slots_lock);
4699
4700         r = -EINVAL;
4701         if (log->slot >= KVM_USER_MEM_SLOTS)
4702                 goto out;
4703
4704         slots = kvm_memslots(kvm);
4705         memslot = id_to_memslot(slots, log->slot);
4706         r = -ENOENT;
4707         if (!memslot || !memslot->dirty_bitmap)
4708                 goto out;
4709
4710         /*
4711          * Use second half of bitmap area because both HPT and radix
4712          * accumulate bits in the first half.
4713          */
4714         n = kvm_dirty_bitmap_bytes(memslot);
4715         buf = memslot->dirty_bitmap + n / sizeof(long);
4716         memset(buf, 0, n);
4717
4718         if (kvm_is_radix(kvm))
4719                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4720         else
4721                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4722         if (r)
4723                 goto out;
4724
4725         /*
4726          * We accumulate dirty bits in the first half of the
4727          * memslot's dirty_bitmap area, for when pages are paged
4728          * out or modified by the host directly.  Pick up these
4729          * bits and add them to the map.
4730          */
4731         p = memslot->dirty_bitmap;
4732         for (i = 0; i < n / sizeof(long); ++i)
4733                 buf[i] |= xchg(&p[i], 0);
4734
4735         /* Harvest dirty bits from VPA and DTL updates */
4736         /* Note: we never modify the SLB shadow buffer areas */
4737         kvm_for_each_vcpu(i, vcpu, kvm) {
4738                 spin_lock(&vcpu->arch.vpa_update_lock);
4739                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4740                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4741                 spin_unlock(&vcpu->arch.vpa_update_lock);
4742         }
4743
4744         r = -EFAULT;
4745         if (copy_to_user(log->dirty_bitmap, buf, n))
4746                 goto out;
4747
4748         r = 0;
4749 out:
4750         mutex_unlock(&kvm->slots_lock);
4751         return r;
4752 }
4753
4754 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4755 {
4756         vfree(slot->arch.rmap);
4757         slot->arch.rmap = NULL;
4758 }
4759
4760 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4761                                         struct kvm_memory_slot *slot,
4762                                         const struct kvm_userspace_memory_region *mem,
4763                                         enum kvm_mr_change change)
4764 {
4765         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4766
4767         if (change == KVM_MR_CREATE) {
4768                 slot->arch.rmap = vzalloc(array_size(npages,
4769                                           sizeof(*slot->arch.rmap)));
4770                 if (!slot->arch.rmap)
4771                         return -ENOMEM;
4772         }
4773
4774         return 0;
4775 }
4776
4777 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4778                                 const struct kvm_userspace_memory_region *mem,
4779                                 const struct kvm_memory_slot *old,
4780                                 const struct kvm_memory_slot *new,
4781                                 enum kvm_mr_change change)
4782 {
4783         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4784
4785         /*
4786          * If we are making a new memslot, it might make
4787          * some address that was previously cached as emulated
4788          * MMIO be no longer emulated MMIO, so invalidate
4789          * all the caches of emulated MMIO translations.
4790          */
4791         if (npages)
4792                 atomic64_inc(&kvm->arch.mmio_update);
4793
4794         /*
4795          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4796          * have already called kvm_arch_flush_shadow_memslot() to
4797          * flush shadow mappings.  For KVM_MR_CREATE we have no
4798          * previous mappings.  So the only case to handle is
4799          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4800          * has been changed.
4801          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4802          * to get rid of any THP PTEs in the partition-scoped page tables
4803          * so we can track dirtiness at the page level; we flush when
4804          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4805          * using THP PTEs.
4806          */
4807         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4808             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4809                 kvmppc_radix_flush_memslot(kvm, old);
4810         /*
4811          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4812          */
4813         if (!kvm->arch.secure_guest)
4814                 return;
4815
4816         switch (change) {
4817         case KVM_MR_CREATE:
4818                 /*
4819                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4820                  * return error. Fix this.
4821                  */
4822                 kvmppc_uvmem_memslot_create(kvm, new);
4823                 break;
4824         case KVM_MR_DELETE:
4825                 kvmppc_uvmem_memslot_delete(kvm, old);
4826                 break;
4827         default:
4828                 /* TODO: Handle KVM_MR_MOVE */
4829                 break;
4830         }
4831 }
4832
4833 /*
4834  * Update LPCR values in kvm->arch and in vcores.
4835  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4836  * of kvm->arch.lpcr update).
4837  */
4838 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4839 {
4840         long int i;
4841         u32 cores_done = 0;
4842
4843         if ((kvm->arch.lpcr & mask) == lpcr)
4844                 return;
4845
4846         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4847
4848         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4849                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4850                 if (!vc)
4851                         continue;
4852
4853                 spin_lock(&vc->lock);
4854                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4855                 verify_lpcr(kvm, vc->lpcr);
4856                 spin_unlock(&vc->lock);
4857                 if (++cores_done >= kvm->arch.online_vcores)
4858                         break;
4859         }
4860 }
4861
4862 void kvmppc_setup_partition_table(struct kvm *kvm)
4863 {
4864         unsigned long dw0, dw1;
4865
4866         if (!kvm_is_radix(kvm)) {
4867                 /* PS field - page size for VRMA */
4868                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4869                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4870                 /* HTABSIZE and HTABORG fields */
4871                 dw0 |= kvm->arch.sdr1;
4872
4873                 /* Second dword as set by userspace */
4874                 dw1 = kvm->arch.process_table;
4875         } else {
4876                 dw0 = PATB_HR | radix__get_tree_size() |
4877                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4878                 dw1 = PATB_GR | kvm->arch.process_table;
4879         }
4880         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4881 }
4882
4883 /*
4884  * Set up HPT (hashed page table) and RMA (real-mode area).
4885  * Must be called with kvm->arch.mmu_setup_lock held.
4886  */
4887 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4888 {
4889         int err = 0;
4890         struct kvm *kvm = vcpu->kvm;
4891         unsigned long hva;
4892         struct kvm_memory_slot *memslot;
4893         struct vm_area_struct *vma;
4894         unsigned long lpcr = 0, senc;
4895         unsigned long psize, porder;
4896         int srcu_idx;
4897
4898         /* Allocate hashed page table (if not done already) and reset it */
4899         if (!kvm->arch.hpt.virt) {
4900                 int order = KVM_DEFAULT_HPT_ORDER;
4901                 struct kvm_hpt_info info;
4902
4903                 err = kvmppc_allocate_hpt(&info, order);
4904                 /* If we get here, it means userspace didn't specify a
4905                  * size explicitly.  So, try successively smaller
4906                  * sizes if the default failed. */
4907                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4908                         err  = kvmppc_allocate_hpt(&info, order);
4909
4910                 if (err < 0) {
4911                         pr_err("KVM: Couldn't alloc HPT\n");
4912                         goto out;
4913                 }
4914
4915                 kvmppc_set_hpt(kvm, &info);
4916         }
4917
4918         /* Look up the memslot for guest physical address 0 */
4919         srcu_idx = srcu_read_lock(&kvm->srcu);
4920         memslot = gfn_to_memslot(kvm, 0);
4921
4922         /* We must have some memory at 0 by now */
4923         err = -EINVAL;
4924         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4925                 goto out_srcu;
4926
4927         /* Look up the VMA for the start of this memory slot */
4928         hva = memslot->userspace_addr;
4929         mmap_read_lock(kvm->mm);
4930         vma = vma_lookup(kvm->mm, hva);
4931         if (!vma || (vma->vm_flags & VM_IO))
4932                 goto up_out;
4933
4934         psize = vma_kernel_pagesize(vma);
4935
4936         mmap_read_unlock(kvm->mm);
4937
4938         /* We can handle 4k, 64k or 16M pages in the VRMA */
4939         if (psize >= 0x1000000)
4940                 psize = 0x1000000;
4941         else if (psize >= 0x10000)
4942                 psize = 0x10000;
4943         else
4944                 psize = 0x1000;
4945         porder = __ilog2(psize);
4946
4947         senc = slb_pgsize_encoding(psize);
4948         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4949                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4950         /* Create HPTEs in the hash page table for the VRMA */
4951         kvmppc_map_vrma(vcpu, memslot, porder);
4952
4953         /* Update VRMASD field in the LPCR */
4954         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4955                 /* the -4 is to account for senc values starting at 0x10 */
4956                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4957                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4958         }
4959
4960         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4961         smp_wmb();
4962         err = 0;
4963  out_srcu:
4964         srcu_read_unlock(&kvm->srcu, srcu_idx);
4965  out:
4966         return err;
4967
4968  up_out:
4969         mmap_read_unlock(kvm->mm);
4970         goto out_srcu;
4971 }
4972
4973 /*
4974  * Must be called with kvm->arch.mmu_setup_lock held and
4975  * mmu_ready = 0 and no vcpus running.
4976  */
4977 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4978 {
4979         if (nesting_enabled(kvm))
4980                 kvmhv_release_all_nested(kvm);
4981         kvmppc_rmap_reset(kvm);
4982         kvm->arch.process_table = 0;
4983         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
4984         spin_lock(&kvm->mmu_lock);
4985         kvm->arch.radix = 0;
4986         spin_unlock(&kvm->mmu_lock);
4987         kvmppc_free_radix(kvm);
4988         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4989                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4990         return 0;
4991 }
4992
4993 /*
4994  * Must be called with kvm->arch.mmu_setup_lock held and
4995  * mmu_ready = 0 and no vcpus running.
4996  */
4997 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4998 {
4999         int err;
5000
5001         err = kvmppc_init_vm_radix(kvm);
5002         if (err)
5003                 return err;
5004         kvmppc_rmap_reset(kvm);
5005         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5006         spin_lock(&kvm->mmu_lock);
5007         kvm->arch.radix = 1;
5008         spin_unlock(&kvm->mmu_lock);
5009         kvmppc_free_hpt(&kvm->arch.hpt);
5010         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
5011                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5012         return 0;
5013 }
5014
5015 #ifdef CONFIG_KVM_XICS
5016 /*
5017  * Allocate a per-core structure for managing state about which cores are
5018  * running in the host versus the guest and for exchanging data between
5019  * real mode KVM and CPU running in the host.
5020  * This is only done for the first VM.
5021  * The allocated structure stays even if all VMs have stopped.
5022  * It is only freed when the kvm-hv module is unloaded.
5023  * It's OK for this routine to fail, we just don't support host
5024  * core operations like redirecting H_IPI wakeups.
5025  */
5026 void kvmppc_alloc_host_rm_ops(void)
5027 {
5028         struct kvmppc_host_rm_ops *ops;
5029         unsigned long l_ops;
5030         int cpu, core;
5031         int size;
5032
5033         /* Not the first time here ? */
5034         if (kvmppc_host_rm_ops_hv != NULL)
5035                 return;
5036
5037         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5038         if (!ops)
5039                 return;
5040
5041         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5042         ops->rm_core = kzalloc(size, GFP_KERNEL);
5043
5044         if (!ops->rm_core) {
5045                 kfree(ops);
5046                 return;
5047         }
5048
5049         cpus_read_lock();
5050
5051         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5052                 if (!cpu_online(cpu))
5053                         continue;
5054
5055                 core = cpu >> threads_shift;
5056                 ops->rm_core[core].rm_state.in_host = 1;
5057         }
5058
5059         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5060
5061         /*
5062          * Make the contents of the kvmppc_host_rm_ops structure visible
5063          * to other CPUs before we assign it to the global variable.
5064          * Do an atomic assignment (no locks used here), but if someone
5065          * beats us to it, just free our copy and return.
5066          */
5067         smp_wmb();
5068         l_ops = (unsigned long) ops;
5069
5070         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5071                 cpus_read_unlock();
5072                 kfree(ops->rm_core);
5073                 kfree(ops);
5074                 return;
5075         }
5076
5077         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5078                                              "ppc/kvm_book3s:prepare",
5079                                              kvmppc_set_host_core,
5080                                              kvmppc_clear_host_core);
5081         cpus_read_unlock();
5082 }
5083
5084 void kvmppc_free_host_rm_ops(void)
5085 {
5086         if (kvmppc_host_rm_ops_hv) {
5087                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5088                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5089                 kfree(kvmppc_host_rm_ops_hv);
5090                 kvmppc_host_rm_ops_hv = NULL;
5091         }
5092 }
5093 #endif
5094
5095 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5096 {
5097         unsigned long lpcr, lpid;
5098         char buf[32];
5099         int ret;
5100
5101         mutex_init(&kvm->arch.uvmem_lock);
5102         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5103         mutex_init(&kvm->arch.mmu_setup_lock);
5104
5105         /* Allocate the guest's logical partition ID */
5106
5107         lpid = kvmppc_alloc_lpid();
5108         if ((long)lpid < 0)
5109                 return -ENOMEM;
5110         kvm->arch.lpid = lpid;
5111
5112         kvmppc_alloc_host_rm_ops();
5113
5114         kvmhv_vm_nested_init(kvm);
5115
5116         /*
5117          * Since we don't flush the TLB when tearing down a VM,
5118          * and this lpid might have previously been used,
5119          * make sure we flush on each core before running the new VM.
5120          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5121          * does this flush for us.
5122          */
5123         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5124                 cpumask_setall(&kvm->arch.need_tlb_flush);
5125
5126         /* Start out with the default set of hcalls enabled */
5127         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5128                sizeof(kvm->arch.enabled_hcalls));
5129
5130         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5131                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5132
5133         /* Init LPCR for virtual RMA mode */
5134         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5135                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5136                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5137                 lpcr &= LPCR_PECE | LPCR_LPES;
5138         } else {
5139                 lpcr = 0;
5140         }
5141         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5142                 LPCR_VPM0 | LPCR_VPM1;
5143         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5144                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5145         /* On POWER8 turn on online bit to enable PURR/SPURR */
5146         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5147                 lpcr |= LPCR_ONL;
5148         /*
5149          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5150          * Set HVICE bit to enable hypervisor virtualization interrupts.
5151          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5152          * be unnecessary but better safe than sorry in case we re-enable
5153          * EE in HV mode with this LPCR still set)
5154          */
5155         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5156                 lpcr &= ~LPCR_VPM0;
5157                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5158
5159                 /*
5160                  * If xive is enabled, we route 0x500 interrupts directly
5161                  * to the guest.
5162                  */
5163                 if (xics_on_xive())
5164                         lpcr |= LPCR_LPES;
5165         }
5166
5167         /*
5168          * If the host uses radix, the guest starts out as radix.
5169          */
5170         if (radix_enabled()) {
5171                 kvm->arch.radix = 1;
5172                 kvm->arch.mmu_ready = 1;
5173                 lpcr &= ~LPCR_VPM1;
5174                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5175                 ret = kvmppc_init_vm_radix(kvm);
5176                 if (ret) {
5177                         kvmppc_free_lpid(kvm->arch.lpid);
5178                         return ret;
5179                 }
5180                 kvmppc_setup_partition_table(kvm);
5181         }
5182
5183         verify_lpcr(kvm, lpcr);
5184         kvm->arch.lpcr = lpcr;
5185
5186         /* Initialization for future HPT resizes */
5187         kvm->arch.resize_hpt = NULL;
5188
5189         /*
5190          * Work out how many sets the TLB has, for the use of
5191          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5192          */
5193         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5194                 /*
5195                  * P10 will flush all the congruence class with a single tlbiel
5196                  */
5197                 kvm->arch.tlb_sets = 1;
5198         } else if (radix_enabled())
5199                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5200         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5201                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5202         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5203                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5204         else
5205                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5206
5207         /*
5208          * Track that we now have a HV mode VM active. This blocks secondary
5209          * CPU threads from coming online.
5210          */
5211         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5212                 kvm_hv_vm_activated();
5213
5214         /*
5215          * Initialize smt_mode depending on processor.
5216          * POWER8 and earlier have to use "strict" threading, where
5217          * all vCPUs in a vcore have to run on the same (sub)core,
5218          * whereas on POWER9 the threads can each run a different
5219          * guest.
5220          */
5221         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5222                 kvm->arch.smt_mode = threads_per_subcore;
5223         else
5224                 kvm->arch.smt_mode = 1;
5225         kvm->arch.emul_smt_mode = 1;
5226
5227         /*
5228          * Create a debugfs directory for the VM
5229          */
5230         snprintf(buf, sizeof(buf), "vm%d", current->pid);
5231         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5232         kvmppc_mmu_debugfs_init(kvm);
5233         if (radix_enabled())
5234                 kvmhv_radix_debugfs_init(kvm);
5235
5236         return 0;
5237 }
5238
5239 static void kvmppc_free_vcores(struct kvm *kvm)
5240 {
5241         long int i;
5242
5243         for (i = 0; i < KVM_MAX_VCORES; ++i)
5244                 kfree(kvm->arch.vcores[i]);
5245         kvm->arch.online_vcores = 0;
5246 }
5247
5248 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5249 {
5250         debugfs_remove_recursive(kvm->arch.debugfs_dir);
5251
5252         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5253                 kvm_hv_vm_deactivated();
5254
5255         kvmppc_free_vcores(kvm);
5256
5257
5258         if (kvm_is_radix(kvm))
5259                 kvmppc_free_radix(kvm);
5260         else
5261                 kvmppc_free_hpt(&kvm->arch.hpt);
5262
5263         /* Perform global invalidation and return lpid to the pool */
5264         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5265                 if (nesting_enabled(kvm))
5266                         kvmhv_release_all_nested(kvm);
5267                 kvm->arch.process_table = 0;
5268                 if (kvm->arch.secure_guest)
5269                         uv_svm_terminate(kvm->arch.lpid);
5270                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5271         }
5272
5273         kvmppc_free_lpid(kvm->arch.lpid);
5274
5275         kvmppc_free_pimap(kvm);
5276 }
5277
5278 /* We don't need to emulate any privileged instructions or dcbz */
5279 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5280                                      unsigned int inst, int *advance)
5281 {
5282         return EMULATE_FAIL;
5283 }
5284
5285 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5286                                         ulong spr_val)
5287 {
5288         return EMULATE_FAIL;
5289 }
5290
5291 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5292                                         ulong *spr_val)
5293 {
5294         return EMULATE_FAIL;
5295 }
5296
5297 static int kvmppc_core_check_processor_compat_hv(void)
5298 {
5299         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5300             cpu_has_feature(CPU_FTR_ARCH_206))
5301                 return 0;
5302
5303         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5304         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5305                 return 0;
5306
5307         return -EIO;
5308 }
5309
5310 #ifdef CONFIG_KVM_XICS
5311
5312 void kvmppc_free_pimap(struct kvm *kvm)
5313 {
5314         kfree(kvm->arch.pimap);
5315 }
5316
5317 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5318 {
5319         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5320 }
5321
5322 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5323 {
5324         struct irq_desc *desc;
5325         struct kvmppc_irq_map *irq_map;
5326         struct kvmppc_passthru_irqmap *pimap;
5327         struct irq_chip *chip;
5328         int i, rc = 0;
5329
5330         if (!kvm_irq_bypass)
5331                 return 1;
5332
5333         desc = irq_to_desc(host_irq);
5334         if (!desc)
5335                 return -EIO;
5336
5337         mutex_lock(&kvm->lock);
5338
5339         pimap = kvm->arch.pimap;
5340         if (pimap == NULL) {
5341                 /* First call, allocate structure to hold IRQ map */
5342                 pimap = kvmppc_alloc_pimap();
5343                 if (pimap == NULL) {
5344                         mutex_unlock(&kvm->lock);
5345                         return -ENOMEM;
5346                 }
5347                 kvm->arch.pimap = pimap;
5348         }
5349
5350         /*
5351          * For now, we only support interrupts for which the EOI operation
5352          * is an OPAL call followed by a write to XIRR, since that's
5353          * what our real-mode EOI code does, or a XIVE interrupt
5354          */
5355         chip = irq_data_get_irq_chip(&desc->irq_data);
5356         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5357                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5358                         host_irq, guest_gsi);
5359                 mutex_unlock(&kvm->lock);
5360                 return -ENOENT;
5361         }
5362
5363         /*
5364          * See if we already have an entry for this guest IRQ number.
5365          * If it's mapped to a hardware IRQ number, that's an error,
5366          * otherwise re-use this entry.
5367          */
5368         for (i = 0; i < pimap->n_mapped; i++) {
5369                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5370                         if (pimap->mapped[i].r_hwirq) {
5371                                 mutex_unlock(&kvm->lock);
5372                                 return -EINVAL;
5373                         }
5374                         break;
5375                 }
5376         }
5377
5378         if (i == KVMPPC_PIRQ_MAPPED) {
5379                 mutex_unlock(&kvm->lock);
5380                 return -EAGAIN;         /* table is full */
5381         }
5382
5383         irq_map = &pimap->mapped[i];
5384
5385         irq_map->v_hwirq = guest_gsi;
5386         irq_map->desc = desc;
5387
5388         /*
5389          * Order the above two stores before the next to serialize with
5390          * the KVM real mode handler.
5391          */
5392         smp_wmb();
5393         irq_map->r_hwirq = desc->irq_data.hwirq;
5394
5395         if (i == pimap->n_mapped)
5396                 pimap->n_mapped++;
5397
5398         if (xics_on_xive())
5399                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5400         else
5401                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5402         if (rc)
5403                 irq_map->r_hwirq = 0;
5404
5405         mutex_unlock(&kvm->lock);
5406
5407         return 0;
5408 }
5409
5410 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5411 {
5412         struct irq_desc *desc;
5413         struct kvmppc_passthru_irqmap *pimap;
5414         int i, rc = 0;
5415
5416         if (!kvm_irq_bypass)
5417                 return 0;
5418
5419         desc = irq_to_desc(host_irq);
5420         if (!desc)
5421                 return -EIO;
5422
5423         mutex_lock(&kvm->lock);
5424         if (!kvm->arch.pimap)
5425                 goto unlock;
5426
5427         pimap = kvm->arch.pimap;
5428
5429         for (i = 0; i < pimap->n_mapped; i++) {
5430                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5431                         break;
5432         }
5433
5434         if (i == pimap->n_mapped) {
5435                 mutex_unlock(&kvm->lock);
5436                 return -ENODEV;
5437         }
5438
5439         if (xics_on_xive())
5440                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5441         else
5442                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5443
5444         /* invalidate the entry (what do do on error from the above ?) */
5445         pimap->mapped[i].r_hwirq = 0;
5446
5447         /*
5448          * We don't free this structure even when the count goes to
5449          * zero. The structure is freed when we destroy the VM.
5450          */
5451  unlock:
5452         mutex_unlock(&kvm->lock);
5453         return rc;
5454 }
5455
5456 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5457                                              struct irq_bypass_producer *prod)
5458 {
5459         int ret = 0;
5460         struct kvm_kernel_irqfd *irqfd =
5461                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5462
5463         irqfd->producer = prod;
5464
5465         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5466         if (ret)
5467                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5468                         prod->irq, irqfd->gsi, ret);
5469
5470         return ret;
5471 }
5472
5473 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5474                                               struct irq_bypass_producer *prod)
5475 {
5476         int ret;
5477         struct kvm_kernel_irqfd *irqfd =
5478                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5479
5480         irqfd->producer = NULL;
5481
5482         /*
5483          * When producer of consumer is unregistered, we change back to
5484          * default external interrupt handling mode - KVM real mode
5485          * will switch back to host.
5486          */
5487         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5488         if (ret)
5489                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5490                         prod->irq, irqfd->gsi, ret);
5491 }
5492 #endif
5493
5494 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5495                                  unsigned int ioctl, unsigned long arg)
5496 {
5497         struct kvm *kvm __maybe_unused = filp->private_data;
5498         void __user *argp = (void __user *)arg;
5499         long r;
5500
5501         switch (ioctl) {
5502
5503         case KVM_PPC_ALLOCATE_HTAB: {
5504                 u32 htab_order;
5505
5506                 /* If we're a nested hypervisor, we currently only support radix */
5507                 if (kvmhv_on_pseries()) {
5508                         r = -EOPNOTSUPP;
5509                         break;
5510                 }
5511
5512                 r = -EFAULT;
5513                 if (get_user(htab_order, (u32 __user *)argp))
5514                         break;
5515                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5516                 if (r)
5517                         break;
5518                 r = 0;
5519                 break;
5520         }
5521
5522         case KVM_PPC_GET_HTAB_FD: {
5523                 struct kvm_get_htab_fd ghf;
5524
5525                 r = -EFAULT;
5526                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5527                         break;
5528                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5529                 break;
5530         }
5531
5532         case KVM_PPC_RESIZE_HPT_PREPARE: {
5533                 struct kvm_ppc_resize_hpt rhpt;
5534
5535                 r = -EFAULT;
5536                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5537                         break;
5538
5539                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5540                 break;
5541         }
5542
5543         case KVM_PPC_RESIZE_HPT_COMMIT: {
5544                 struct kvm_ppc_resize_hpt rhpt;
5545
5546                 r = -EFAULT;
5547                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5548                         break;
5549
5550                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5551                 break;
5552         }
5553
5554         default:
5555                 r = -ENOTTY;
5556         }
5557
5558         return r;
5559 }
5560
5561 /*
5562  * List of hcall numbers to enable by default.
5563  * For compatibility with old userspace, we enable by default
5564  * all hcalls that were implemented before the hcall-enabling
5565  * facility was added.  Note this list should not include H_RTAS.
5566  */
5567 static unsigned int default_hcall_list[] = {
5568         H_REMOVE,
5569         H_ENTER,
5570         H_READ,
5571         H_PROTECT,
5572         H_BULK_REMOVE,
5573 #ifdef CONFIG_SPAPR_TCE_IOMMU
5574         H_GET_TCE,
5575         H_PUT_TCE,
5576 #endif
5577         H_SET_DABR,
5578         H_SET_XDABR,
5579         H_CEDE,
5580         H_PROD,
5581         H_CONFER,
5582         H_REGISTER_VPA,
5583 #ifdef CONFIG_KVM_XICS
5584         H_EOI,
5585         H_CPPR,
5586         H_IPI,
5587         H_IPOLL,
5588         H_XIRR,
5589         H_XIRR_X,
5590 #endif
5591         0
5592 };
5593
5594 static void init_default_hcalls(void)
5595 {
5596         int i;
5597         unsigned int hcall;
5598
5599         for (i = 0; default_hcall_list[i]; ++i) {
5600                 hcall = default_hcall_list[i];
5601                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5602                 __set_bit(hcall / 4, default_enabled_hcalls);
5603         }
5604 }
5605
5606 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5607 {
5608         unsigned long lpcr;
5609         int radix;
5610         int err;
5611
5612         /* If not on a POWER9, reject it */
5613         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5614                 return -ENODEV;
5615
5616         /* If any unknown flags set, reject it */
5617         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5618                 return -EINVAL;
5619
5620         /* GR (guest radix) bit in process_table field must match */
5621         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5622         if (!!(cfg->process_table & PATB_GR) != radix)
5623                 return -EINVAL;
5624
5625         /* Process table size field must be reasonable, i.e. <= 24 */
5626         if ((cfg->process_table & PRTS_MASK) > 24)
5627                 return -EINVAL;
5628
5629         /* We can change a guest to/from radix now, if the host is radix */
5630         if (radix && !radix_enabled())
5631                 return -EINVAL;
5632
5633         /* If we're a nested hypervisor, we currently only support radix */
5634         if (kvmhv_on_pseries() && !radix)
5635                 return -EINVAL;
5636
5637         mutex_lock(&kvm->arch.mmu_setup_lock);
5638         if (radix != kvm_is_radix(kvm)) {
5639                 if (kvm->arch.mmu_ready) {
5640                         kvm->arch.mmu_ready = 0;
5641                         /* order mmu_ready vs. vcpus_running */
5642                         smp_mb();
5643                         if (atomic_read(&kvm->arch.vcpus_running)) {
5644                                 kvm->arch.mmu_ready = 1;
5645                                 err = -EBUSY;
5646                                 goto out_unlock;
5647                         }
5648                 }
5649                 if (radix)
5650                         err = kvmppc_switch_mmu_to_radix(kvm);
5651                 else
5652                         err = kvmppc_switch_mmu_to_hpt(kvm);
5653                 if (err)
5654                         goto out_unlock;
5655         }
5656
5657         kvm->arch.process_table = cfg->process_table;
5658         kvmppc_setup_partition_table(kvm);
5659
5660         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5661         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5662         err = 0;
5663
5664  out_unlock:
5665         mutex_unlock(&kvm->arch.mmu_setup_lock);
5666         return err;
5667 }
5668
5669 static int kvmhv_enable_nested(struct kvm *kvm)
5670 {
5671         if (!nested)
5672                 return -EPERM;
5673         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5674                 return -ENODEV;
5675         if (!radix_enabled())
5676                 return -ENODEV;
5677
5678         /* kvm == NULL means the caller is testing if the capability exists */
5679         if (kvm)
5680                 kvm->arch.nested_enable = true;
5681         return 0;
5682 }
5683
5684 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5685                                  int size)
5686 {
5687         int rc = -EINVAL;
5688
5689         if (kvmhv_vcpu_is_radix(vcpu)) {
5690                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5691
5692                 if (rc > 0)
5693                         rc = -EINVAL;
5694         }
5695
5696         /* For now quadrants are the only way to access nested guest memory */
5697         if (rc && vcpu->arch.nested)
5698                 rc = -EAGAIN;
5699
5700         return rc;
5701 }
5702
5703 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5704                                 int size)
5705 {
5706         int rc = -EINVAL;
5707
5708         if (kvmhv_vcpu_is_radix(vcpu)) {
5709                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5710
5711                 if (rc > 0)
5712                         rc = -EINVAL;
5713         }
5714
5715         /* For now quadrants are the only way to access nested guest memory */
5716         if (rc && vcpu->arch.nested)
5717                 rc = -EAGAIN;
5718
5719         return rc;
5720 }
5721
5722 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5723 {
5724         unpin_vpa(kvm, vpa);
5725         vpa->gpa = 0;
5726         vpa->pinned_addr = NULL;
5727         vpa->dirty = false;
5728         vpa->update_pending = 0;
5729 }
5730
5731 /*
5732  * Enable a guest to become a secure VM, or test whether
5733  * that could be enabled.
5734  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5735  * tested (kvm == NULL) or enabled (kvm != NULL).
5736  */
5737 static int kvmhv_enable_svm(struct kvm *kvm)
5738 {
5739         if (!kvmppc_uvmem_available())
5740                 return -EINVAL;
5741         if (kvm)
5742                 kvm->arch.svm_enabled = 1;
5743         return 0;
5744 }
5745
5746 /*
5747  *  IOCTL handler to turn off secure mode of guest
5748  *
5749  * - Release all device pages
5750  * - Issue ucall to terminate the guest on the UV side
5751  * - Unpin the VPA pages.
5752  * - Reinit the partition scoped page tables
5753  */
5754 static int kvmhv_svm_off(struct kvm *kvm)
5755 {
5756         struct kvm_vcpu *vcpu;
5757         int mmu_was_ready;
5758         int srcu_idx;
5759         int ret = 0;
5760         int i;
5761
5762         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5763                 return ret;
5764
5765         mutex_lock(&kvm->arch.mmu_setup_lock);
5766         mmu_was_ready = kvm->arch.mmu_ready;
5767         if (kvm->arch.mmu_ready) {
5768                 kvm->arch.mmu_ready = 0;
5769                 /* order mmu_ready vs. vcpus_running */
5770                 smp_mb();
5771                 if (atomic_read(&kvm->arch.vcpus_running)) {
5772                         kvm->arch.mmu_ready = 1;
5773                         ret = -EBUSY;
5774                         goto out;
5775                 }
5776         }
5777
5778         srcu_idx = srcu_read_lock(&kvm->srcu);
5779         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5780                 struct kvm_memory_slot *memslot;
5781                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5782
5783                 if (!slots)
5784                         continue;
5785
5786                 kvm_for_each_memslot(memslot, slots) {
5787                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5788                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5789                 }
5790         }
5791         srcu_read_unlock(&kvm->srcu, srcu_idx);
5792
5793         ret = uv_svm_terminate(kvm->arch.lpid);
5794         if (ret != U_SUCCESS) {
5795                 ret = -EINVAL;
5796                 goto out;
5797         }
5798
5799         /*
5800          * When secure guest is reset, all the guest pages are sent
5801          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5802          * chance to run and unpin their VPA pages. Unpinning of all
5803          * VPA pages is done here explicitly so that VPA pages
5804          * can be migrated to the secure side.
5805          *
5806          * This is required to for the secure SMP guest to reboot
5807          * correctly.
5808          */
5809         kvm_for_each_vcpu(i, vcpu, kvm) {
5810                 spin_lock(&vcpu->arch.vpa_update_lock);
5811                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5812                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5813                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5814                 spin_unlock(&vcpu->arch.vpa_update_lock);
5815         }
5816
5817         kvmppc_setup_partition_table(kvm);
5818         kvm->arch.secure_guest = 0;
5819         kvm->arch.mmu_ready = mmu_was_ready;
5820 out:
5821         mutex_unlock(&kvm->arch.mmu_setup_lock);
5822         return ret;
5823 }
5824
5825 static int kvmhv_enable_dawr1(struct kvm *kvm)
5826 {
5827         if (!cpu_has_feature(CPU_FTR_DAWR1))
5828                 return -ENODEV;
5829
5830         /* kvm == NULL means the caller is testing if the capability exists */
5831         if (kvm)
5832                 kvm->arch.dawr1_enabled = true;
5833         return 0;
5834 }
5835
5836 static bool kvmppc_hash_v3_possible(void)
5837 {
5838         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5839                 return false;
5840
5841         if (!cpu_has_feature(CPU_FTR_HVMODE))
5842                 return false;
5843
5844         /*
5845          * POWER9 chips before version 2.02 can't have some threads in
5846          * HPT mode and some in radix mode on the same core.
5847          */
5848         if (radix_enabled()) {
5849                 unsigned int pvr = mfspr(SPRN_PVR);
5850                 if ((pvr >> 16) == PVR_POWER9 &&
5851                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5852                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5853                         return false;
5854         }
5855
5856         return true;
5857 }
5858
5859 static struct kvmppc_ops kvm_ops_hv = {
5860         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5861         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5862         .get_one_reg = kvmppc_get_one_reg_hv,
5863         .set_one_reg = kvmppc_set_one_reg_hv,
5864         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5865         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5866         .inject_interrupt = kvmppc_inject_interrupt_hv,
5867         .set_msr     = kvmppc_set_msr_hv,
5868         .vcpu_run    = kvmppc_vcpu_run_hv,
5869         .vcpu_create = kvmppc_core_vcpu_create_hv,
5870         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5871         .check_requests = kvmppc_core_check_requests_hv,
5872         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5873         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5874         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5875         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5876         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5877         .age_gfn = kvm_age_gfn_hv,
5878         .test_age_gfn = kvm_test_age_gfn_hv,
5879         .set_spte_gfn = kvm_set_spte_gfn_hv,
5880         .free_memslot = kvmppc_core_free_memslot_hv,
5881         .init_vm =  kvmppc_core_init_vm_hv,
5882         .destroy_vm = kvmppc_core_destroy_vm_hv,
5883         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5884         .emulate_op = kvmppc_core_emulate_op_hv,
5885         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5886         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5887         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5888         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5889         .hcall_implemented = kvmppc_hcall_impl_hv,
5890 #ifdef CONFIG_KVM_XICS
5891         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5892         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5893 #endif
5894         .configure_mmu = kvmhv_configure_mmu,
5895         .get_rmmu_info = kvmhv_get_rmmu_info,
5896         .set_smt_mode = kvmhv_set_smt_mode,
5897         .enable_nested = kvmhv_enable_nested,
5898         .load_from_eaddr = kvmhv_load_from_eaddr,
5899         .store_to_eaddr = kvmhv_store_to_eaddr,
5900         .enable_svm = kvmhv_enable_svm,
5901         .svm_off = kvmhv_svm_off,
5902         .enable_dawr1 = kvmhv_enable_dawr1,
5903         .hash_v3_possible = kvmppc_hash_v3_possible,
5904 };
5905
5906 static int kvm_init_subcore_bitmap(void)
5907 {
5908         int i, j;
5909         int nr_cores = cpu_nr_cores();
5910         struct sibling_subcore_state *sibling_subcore_state;
5911
5912         for (i = 0; i < nr_cores; i++) {
5913                 int first_cpu = i * threads_per_core;
5914                 int node = cpu_to_node(first_cpu);
5915
5916                 /* Ignore if it is already allocated. */
5917                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5918                         continue;
5919
5920                 sibling_subcore_state =
5921                         kzalloc_node(sizeof(struct sibling_subcore_state),
5922                                                         GFP_KERNEL, node);
5923                 if (!sibling_subcore_state)
5924                         return -ENOMEM;
5925
5926
5927                 for (j = 0; j < threads_per_core; j++) {
5928                         int cpu = first_cpu + j;
5929
5930                         paca_ptrs[cpu]->sibling_subcore_state =
5931                                                 sibling_subcore_state;
5932                 }
5933         }
5934         return 0;
5935 }
5936
5937 static int kvmppc_radix_possible(void)
5938 {
5939         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5940 }
5941
5942 static int kvmppc_book3s_init_hv(void)
5943 {
5944         int r;
5945
5946         if (!tlbie_capable) {
5947                 pr_err("KVM-HV: Host does not support TLBIE\n");
5948                 return -ENODEV;
5949         }
5950
5951         /*
5952          * FIXME!! Do we need to check on all cpus ?
5953          */
5954         r = kvmppc_core_check_processor_compat_hv();
5955         if (r < 0)
5956                 return -ENODEV;
5957
5958         r = kvmhv_nested_init();
5959         if (r)
5960                 return r;
5961
5962         r = kvm_init_subcore_bitmap();
5963         if (r)
5964                 return r;
5965
5966         /*
5967          * We need a way of accessing the XICS interrupt controller,
5968          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5969          * indirectly, via OPAL.
5970          */
5971 #ifdef CONFIG_SMP
5972         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5973             !local_paca->kvm_hstate.xics_phys) {
5974                 struct device_node *np;
5975
5976                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5977                 if (!np) {
5978                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5979                         return -ENODEV;
5980                 }
5981                 /* presence of intc confirmed - node can be dropped again */
5982                 of_node_put(np);
5983         }
5984 #endif
5985
5986         kvm_ops_hv.owner = THIS_MODULE;
5987         kvmppc_hv_ops = &kvm_ops_hv;
5988
5989         init_default_hcalls();
5990
5991         init_vcore_lists();
5992
5993         r = kvmppc_mmu_hv_init();
5994         if (r)
5995                 return r;
5996
5997         if (kvmppc_radix_possible())
5998                 r = kvmppc_radix_init();
5999
6000         r = kvmppc_uvmem_init();
6001         if (r < 0)
6002                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6003
6004         return r;
6005 }
6006
6007 static void kvmppc_book3s_exit_hv(void)
6008 {
6009         kvmppc_uvmem_free();
6010         kvmppc_free_host_rm_ops();
6011         if (kvmppc_radix_possible())
6012                 kvmppc_radix_exit();
6013         kvmppc_hv_ops = NULL;
6014         kvmhv_nested_exit();
6015 }
6016
6017 module_init(kvmppc_book3s_init_hv);
6018 module_exit(kvmppc_book3s_exit_hv);
6019 MODULE_LICENSE("GPL");
6020 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6021 MODULE_ALIAS("devname:kvm");