Merge tag 'mvebu-fixes-5.2-2' of git://git.infradead.org/linux-mvebu into arm/fixes
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/archrandom.h>
54 #include <asm/debug.h>
55 #include <asm/disassemble.h>
56 #include <asm/cputable.h>
57 #include <asm/cacheflush.h>
58 #include <linux/uaccess.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78
79 #include "book3s.h"
80
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
92
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL  (~(u64)0)
95
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops = {
115         .set = param_set_int,
116         .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133         return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138
139 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141
142 /*
143  * RWMR values for POWER8.  These control the rate at which PURR
144  * and SPURR count and should be set according to the number of
145  * online threads in the vcore being run.
146  */
147 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
149 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
150 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
151 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
154 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
155
156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_1THREAD,
159         RWMR_RPA_P8_2THREAD,
160         RWMR_RPA_P8_3THREAD,
161         RWMR_RPA_P8_4THREAD,
162         RWMR_RPA_P8_5THREAD,
163         RWMR_RPA_P8_6THREAD,
164         RWMR_RPA_P8_7THREAD,
165         RWMR_RPA_P8_8THREAD,
166 };
167
168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
169                 int *ip)
170 {
171         int i = *ip;
172         struct kvm_vcpu *vcpu;
173
174         while (++i < MAX_SMT_THREADS) {
175                 vcpu = READ_ONCE(vc->runnable_threads[i]);
176                 if (vcpu) {
177                         *ip = i;
178                         return vcpu;
179                 }
180         }
181         return NULL;
182 }
183
184 /* Used to traverse the list of runnable threads for a given vcore */
185 #define for_each_runnable_thread(i, vcpu, vc) \
186         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187
188 static bool kvmppc_ipi_thread(int cpu)
189 {
190         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
191
192         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
193         if (kvmhv_on_pseries())
194                 return false;
195
196         /* On POWER9 we can use msgsnd to IPI any cpu */
197         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
198                 msg |= get_hard_smp_processor_id(cpu);
199                 smp_mb();
200                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
201                 return true;
202         }
203
204         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
205         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
206                 preempt_disable();
207                 if (cpu_first_thread_sibling(cpu) ==
208                     cpu_first_thread_sibling(smp_processor_id())) {
209                         msg |= cpu_thread_in_core(cpu);
210                         smp_mb();
211                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
212                         preempt_enable();
213                         return true;
214                 }
215                 preempt_enable();
216         }
217
218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219         if (cpu >= 0 && cpu < nr_cpu_ids) {
220                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221                         xics_wake_cpu(cpu);
222                         return true;
223                 }
224                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225                 return true;
226         }
227 #endif
228
229         return false;
230 }
231
232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233 {
234         int cpu;
235         struct swait_queue_head *wqp;
236
237         wqp = kvm_arch_vcpu_wq(vcpu);
238         if (swq_has_sleeper(wqp)) {
239                 swake_up_one(wqp);
240                 ++vcpu->stat.halt_wakeup;
241         }
242
243         cpu = READ_ONCE(vcpu->arch.thread_cpu);
244         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245                 return;
246
247         /* CPU points to the first thread of the core */
248         cpu = vcpu->cpu;
249         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250                 smp_send_reschedule(cpu);
251 }
252
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  * Stolen time is counted as time when either the vcpu is able to
256  * run as part of a virtual core, but the task running the vcore
257  * is preempted or sleeping, or when the vcpu needs something done
258  * in the kernel by the task running the vcpu, but that task is
259  * preempted or sleeping.  Those two things have to be counted
260  * separately, since one of the vcpu tasks will take on the job
261  * of running the core, and the other vcpu tasks in the vcore will
262  * sleep waiting for it to do that, but that sleep shouldn't count
263  * as stolen time.
264  *
265  * Hence we accumulate stolen time when the vcpu can run as part of
266  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
267  * needs its task to do other things in the kernel (for example,
268  * service a page fault) in busy_stolen.  We don't accumulate
269  * stolen time for a vcore when it is inactive, or for a vcpu
270  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
271  * a misnomer; it means that the vcpu task is not executing in
272  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
273  * the kernel.  We don't have any way of dividing up that time
274  * between time that the vcpu is genuinely stopped, time that
275  * the task is actively working on behalf of the vcpu, and time
276  * that the task is preempted, so we don't count any of it as
277  * stolen.
278  *
279  * Updates to busy_stolen are protected by arch.tbacct_lock;
280  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
281  * lock.  The stolen times are measured in units of timebase ticks.
282  * (Note that the != TB_NIL checks below are purely defensive;
283  * they should never fail.)
284  */
285
286 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
287 {
288         unsigned long flags;
289
290         spin_lock_irqsave(&vc->stoltb_lock, flags);
291         vc->preempt_tb = mftb();
292         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
293 }
294
295 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
296 {
297         unsigned long flags;
298
299         spin_lock_irqsave(&vc->stoltb_lock, flags);
300         if (vc->preempt_tb != TB_NIL) {
301                 vc->stolen_tb += mftb() - vc->preempt_tb;
302                 vc->preempt_tb = TB_NIL;
303         }
304         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
305 }
306
307 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
308 {
309         struct kvmppc_vcore *vc = vcpu->arch.vcore;
310         unsigned long flags;
311
312         /*
313          * We can test vc->runner without taking the vcore lock,
314          * because only this task ever sets vc->runner to this
315          * vcpu, and once it is set to this vcpu, only this task
316          * ever sets it to NULL.
317          */
318         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
319                 kvmppc_core_end_stolen(vc);
320
321         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
322         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
323             vcpu->arch.busy_preempt != TB_NIL) {
324                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
325                 vcpu->arch.busy_preempt = TB_NIL;
326         }
327         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
328 }
329
330 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
331 {
332         struct kvmppc_vcore *vc = vcpu->arch.vcore;
333         unsigned long flags;
334
335         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
336                 kvmppc_core_start_stolen(vc);
337
338         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
339         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
340                 vcpu->arch.busy_preempt = mftb();
341         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
342 }
343
344 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
345 {
346         /*
347          * Check for illegal transactional state bit combination
348          * and if we find it, force the TS field to a safe state.
349          */
350         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
351                 msr &= ~MSR_TS_MASK;
352         vcpu->arch.shregs.msr = msr;
353         kvmppc_end_cede(vcpu);
354 }
355
356 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
357 {
358         vcpu->arch.pvr = pvr;
359 }
360
361 /* Dummy value used in computing PCR value below */
362 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
363
364 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
365 {
366         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
367         struct kvmppc_vcore *vc = vcpu->arch.vcore;
368
369         /* We can (emulate) our own architecture version and anything older */
370         if (cpu_has_feature(CPU_FTR_ARCH_300))
371                 host_pcr_bit = PCR_ARCH_300;
372         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
373                 host_pcr_bit = PCR_ARCH_207;
374         else if (cpu_has_feature(CPU_FTR_ARCH_206))
375                 host_pcr_bit = PCR_ARCH_206;
376         else
377                 host_pcr_bit = PCR_ARCH_205;
378
379         /* Determine lowest PCR bit needed to run guest in given PVR level */
380         guest_pcr_bit = host_pcr_bit;
381         if (arch_compat) {
382                 switch (arch_compat) {
383                 case PVR_ARCH_205:
384                         guest_pcr_bit = PCR_ARCH_205;
385                         break;
386                 case PVR_ARCH_206:
387                 case PVR_ARCH_206p:
388                         guest_pcr_bit = PCR_ARCH_206;
389                         break;
390                 case PVR_ARCH_207:
391                         guest_pcr_bit = PCR_ARCH_207;
392                         break;
393                 case PVR_ARCH_300:
394                         guest_pcr_bit = PCR_ARCH_300;
395                         break;
396                 default:
397                         return -EINVAL;
398                 }
399         }
400
401         /* Check requested PCR bits don't exceed our capabilities */
402         if (guest_pcr_bit > host_pcr_bit)
403                 return -EINVAL;
404
405         spin_lock(&vc->lock);
406         vc->arch_compat = arch_compat;
407         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
408         vc->pcr = host_pcr_bit - guest_pcr_bit;
409         spin_unlock(&vc->lock);
410
411         return 0;
412 }
413
414 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
415 {
416         int r;
417
418         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
419         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
420                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
421         for (r = 0; r < 16; ++r)
422                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
423                        r, kvmppc_get_gpr(vcpu, r),
424                        r+16, kvmppc_get_gpr(vcpu, r+16));
425         pr_err("ctr = %.16lx  lr  = %.16lx\n",
426                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
427         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
428                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
429         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
430                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
431         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
432                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
433         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
434                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
435         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
436         pr_err("fault dar = %.16lx dsisr = %.8x\n",
437                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
438         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
439         for (r = 0; r < vcpu->arch.slb_max; ++r)
440                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
441                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
442         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
443                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
444                vcpu->arch.last_inst);
445 }
446
447 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
448 {
449         return kvm_get_vcpu_by_id(kvm, id);
450 }
451
452 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
453 {
454         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
455         vpa->yield_count = cpu_to_be32(1);
456 }
457
458 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
459                    unsigned long addr, unsigned long len)
460 {
461         /* check address is cacheline aligned */
462         if (addr & (L1_CACHE_BYTES - 1))
463                 return -EINVAL;
464         spin_lock(&vcpu->arch.vpa_update_lock);
465         if (v->next_gpa != addr || v->len != len) {
466                 v->next_gpa = addr;
467                 v->len = addr ? len : 0;
468                 v->update_pending = 1;
469         }
470         spin_unlock(&vcpu->arch.vpa_update_lock);
471         return 0;
472 }
473
474 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
475 struct reg_vpa {
476         u32 dummy;
477         union {
478                 __be16 hword;
479                 __be32 word;
480         } length;
481 };
482
483 static int vpa_is_registered(struct kvmppc_vpa *vpap)
484 {
485         if (vpap->update_pending)
486                 return vpap->next_gpa != 0;
487         return vpap->pinned_addr != NULL;
488 }
489
490 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
491                                        unsigned long flags,
492                                        unsigned long vcpuid, unsigned long vpa)
493 {
494         struct kvm *kvm = vcpu->kvm;
495         unsigned long len, nb;
496         void *va;
497         struct kvm_vcpu *tvcpu;
498         int err;
499         int subfunc;
500         struct kvmppc_vpa *vpap;
501
502         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
503         if (!tvcpu)
504                 return H_PARAMETER;
505
506         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
507         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
508             subfunc == H_VPA_REG_SLB) {
509                 /* Registering new area - address must be cache-line aligned */
510                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
511                         return H_PARAMETER;
512
513                 /* convert logical addr to kernel addr and read length */
514                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
515                 if (va == NULL)
516                         return H_PARAMETER;
517                 if (subfunc == H_VPA_REG_VPA)
518                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
519                 else
520                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
521                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
522
523                 /* Check length */
524                 if (len > nb || len < sizeof(struct reg_vpa))
525                         return H_PARAMETER;
526         } else {
527                 vpa = 0;
528                 len = 0;
529         }
530
531         err = H_PARAMETER;
532         vpap = NULL;
533         spin_lock(&tvcpu->arch.vpa_update_lock);
534
535         switch (subfunc) {
536         case H_VPA_REG_VPA:             /* register VPA */
537                 /*
538                  * The size of our lppaca is 1kB because of the way we align
539                  * it for the guest to avoid crossing a 4kB boundary. We only
540                  * use 640 bytes of the structure though, so we should accept
541                  * clients that set a size of 640.
542                  */
543                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
544                 if (len < sizeof(struct lppaca))
545                         break;
546                 vpap = &tvcpu->arch.vpa;
547                 err = 0;
548                 break;
549
550         case H_VPA_REG_DTL:             /* register DTL */
551                 if (len < sizeof(struct dtl_entry))
552                         break;
553                 len -= len % sizeof(struct dtl_entry);
554
555                 /* Check that they have previously registered a VPA */
556                 err = H_RESOURCE;
557                 if (!vpa_is_registered(&tvcpu->arch.vpa))
558                         break;
559
560                 vpap = &tvcpu->arch.dtl;
561                 err = 0;
562                 break;
563
564         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
565                 /* Check that they have previously registered a VPA */
566                 err = H_RESOURCE;
567                 if (!vpa_is_registered(&tvcpu->arch.vpa))
568                         break;
569
570                 vpap = &tvcpu->arch.slb_shadow;
571                 err = 0;
572                 break;
573
574         case H_VPA_DEREG_VPA:           /* deregister VPA */
575                 /* Check they don't still have a DTL or SLB buf registered */
576                 err = H_RESOURCE;
577                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
578                     vpa_is_registered(&tvcpu->arch.slb_shadow))
579                         break;
580
581                 vpap = &tvcpu->arch.vpa;
582                 err = 0;
583                 break;
584
585         case H_VPA_DEREG_DTL:           /* deregister DTL */
586                 vpap = &tvcpu->arch.dtl;
587                 err = 0;
588                 break;
589
590         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
591                 vpap = &tvcpu->arch.slb_shadow;
592                 err = 0;
593                 break;
594         }
595
596         if (vpap) {
597                 vpap->next_gpa = vpa;
598                 vpap->len = len;
599                 vpap->update_pending = 1;
600         }
601
602         spin_unlock(&tvcpu->arch.vpa_update_lock);
603
604         return err;
605 }
606
607 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
608 {
609         struct kvm *kvm = vcpu->kvm;
610         void *va;
611         unsigned long nb;
612         unsigned long gpa;
613
614         /*
615          * We need to pin the page pointed to by vpap->next_gpa,
616          * but we can't call kvmppc_pin_guest_page under the lock
617          * as it does get_user_pages() and down_read().  So we
618          * have to drop the lock, pin the page, then get the lock
619          * again and check that a new area didn't get registered
620          * in the meantime.
621          */
622         for (;;) {
623                 gpa = vpap->next_gpa;
624                 spin_unlock(&vcpu->arch.vpa_update_lock);
625                 va = NULL;
626                 nb = 0;
627                 if (gpa)
628                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
629                 spin_lock(&vcpu->arch.vpa_update_lock);
630                 if (gpa == vpap->next_gpa)
631                         break;
632                 /* sigh... unpin that one and try again */
633                 if (va)
634                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
635         }
636
637         vpap->update_pending = 0;
638         if (va && nb < vpap->len) {
639                 /*
640                  * If it's now too short, it must be that userspace
641                  * has changed the mappings underlying guest memory,
642                  * so unregister the region.
643                  */
644                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
645                 va = NULL;
646         }
647         if (vpap->pinned_addr)
648                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
649                                         vpap->dirty);
650         vpap->gpa = gpa;
651         vpap->pinned_addr = va;
652         vpap->dirty = false;
653         if (va)
654                 vpap->pinned_end = va + vpap->len;
655 }
656
657 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
658 {
659         if (!(vcpu->arch.vpa.update_pending ||
660               vcpu->arch.slb_shadow.update_pending ||
661               vcpu->arch.dtl.update_pending))
662                 return;
663
664         spin_lock(&vcpu->arch.vpa_update_lock);
665         if (vcpu->arch.vpa.update_pending) {
666                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
667                 if (vcpu->arch.vpa.pinned_addr)
668                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
669         }
670         if (vcpu->arch.dtl.update_pending) {
671                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
672                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
673                 vcpu->arch.dtl_index = 0;
674         }
675         if (vcpu->arch.slb_shadow.update_pending)
676                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
677         spin_unlock(&vcpu->arch.vpa_update_lock);
678 }
679
680 /*
681  * Return the accumulated stolen time for the vcore up until `now'.
682  * The caller should hold the vcore lock.
683  */
684 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
685 {
686         u64 p;
687         unsigned long flags;
688
689         spin_lock_irqsave(&vc->stoltb_lock, flags);
690         p = vc->stolen_tb;
691         if (vc->vcore_state != VCORE_INACTIVE &&
692             vc->preempt_tb != TB_NIL)
693                 p += now - vc->preempt_tb;
694         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
695         return p;
696 }
697
698 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
699                                     struct kvmppc_vcore *vc)
700 {
701         struct dtl_entry *dt;
702         struct lppaca *vpa;
703         unsigned long stolen;
704         unsigned long core_stolen;
705         u64 now;
706         unsigned long flags;
707
708         dt = vcpu->arch.dtl_ptr;
709         vpa = vcpu->arch.vpa.pinned_addr;
710         now = mftb();
711         core_stolen = vcore_stolen_time(vc, now);
712         stolen = core_stolen - vcpu->arch.stolen_logged;
713         vcpu->arch.stolen_logged = core_stolen;
714         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
715         stolen += vcpu->arch.busy_stolen;
716         vcpu->arch.busy_stolen = 0;
717         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
718         if (!dt || !vpa)
719                 return;
720         memset(dt, 0, sizeof(struct dtl_entry));
721         dt->dispatch_reason = 7;
722         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
723         dt->timebase = cpu_to_be64(now + vc->tb_offset);
724         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
725         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
726         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
727         ++dt;
728         if (dt == vcpu->arch.dtl.pinned_end)
729                 dt = vcpu->arch.dtl.pinned_addr;
730         vcpu->arch.dtl_ptr = dt;
731         /* order writing *dt vs. writing vpa->dtl_idx */
732         smp_wmb();
733         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
734         vcpu->arch.dtl.dirty = true;
735 }
736
737 /* See if there is a doorbell interrupt pending for a vcpu */
738 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
739 {
740         int thr;
741         struct kvmppc_vcore *vc;
742
743         if (vcpu->arch.doorbell_request)
744                 return true;
745         /*
746          * Ensure that the read of vcore->dpdes comes after the read
747          * of vcpu->doorbell_request.  This barrier matches the
748          * smp_wmb() in kvmppc_guest_entry_inject().
749          */
750         smp_rmb();
751         vc = vcpu->arch.vcore;
752         thr = vcpu->vcpu_id - vc->first_vcpuid;
753         return !!(vc->dpdes & (1 << thr));
754 }
755
756 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
757 {
758         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
759                 return true;
760         if ((!vcpu->arch.vcore->arch_compat) &&
761             cpu_has_feature(CPU_FTR_ARCH_207S))
762                 return true;
763         return false;
764 }
765
766 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
767                              unsigned long resource, unsigned long value1,
768                              unsigned long value2)
769 {
770         switch (resource) {
771         case H_SET_MODE_RESOURCE_SET_CIABR:
772                 if (!kvmppc_power8_compatible(vcpu))
773                         return H_P2;
774                 if (value2)
775                         return H_P4;
776                 if (mflags)
777                         return H_UNSUPPORTED_FLAG_START;
778                 /* Guests can't breakpoint the hypervisor */
779                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
780                         return H_P3;
781                 vcpu->arch.ciabr  = value1;
782                 return H_SUCCESS;
783         case H_SET_MODE_RESOURCE_SET_DAWR:
784                 if (!kvmppc_power8_compatible(vcpu))
785                         return H_P2;
786                 if (!ppc_breakpoint_available())
787                         return H_P2;
788                 if (mflags)
789                         return H_UNSUPPORTED_FLAG_START;
790                 if (value2 & DABRX_HYP)
791                         return H_P4;
792                 vcpu->arch.dawr  = value1;
793                 vcpu->arch.dawrx = value2;
794                 return H_SUCCESS;
795         default:
796                 return H_TOO_HARD;
797         }
798 }
799
800 /* Copy guest memory in place - must reside within a single memslot */
801 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
802                                   unsigned long len)
803 {
804         struct kvm_memory_slot *to_memslot = NULL;
805         struct kvm_memory_slot *from_memslot = NULL;
806         unsigned long to_addr, from_addr;
807         int r;
808
809         /* Get HPA for from address */
810         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
811         if (!from_memslot)
812                 return -EFAULT;
813         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
814                              << PAGE_SHIFT))
815                 return -EINVAL;
816         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
817         if (kvm_is_error_hva(from_addr))
818                 return -EFAULT;
819         from_addr |= (from & (PAGE_SIZE - 1));
820
821         /* Get HPA for to address */
822         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
823         if (!to_memslot)
824                 return -EFAULT;
825         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
826                            << PAGE_SHIFT))
827                 return -EINVAL;
828         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
829         if (kvm_is_error_hva(to_addr))
830                 return -EFAULT;
831         to_addr |= (to & (PAGE_SIZE - 1));
832
833         /* Perform copy */
834         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
835                              len);
836         if (r)
837                 return -EFAULT;
838         mark_page_dirty(kvm, to >> PAGE_SHIFT);
839         return 0;
840 }
841
842 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
843                                unsigned long dest, unsigned long src)
844 {
845         u64 pg_sz = SZ_4K;              /* 4K page size */
846         u64 pg_mask = SZ_4K - 1;
847         int ret;
848
849         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
850         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
851                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
852                 return H_PARAMETER;
853
854         /* dest (and src if copy_page flag set) must be page aligned */
855         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
856                 return H_PARAMETER;
857
858         /* zero and/or copy the page as determined by the flags */
859         if (flags & H_COPY_PAGE) {
860                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
861                 if (ret < 0)
862                         return H_PARAMETER;
863         } else if (flags & H_ZERO_PAGE) {
864                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
865                 if (ret < 0)
866                         return H_PARAMETER;
867         }
868
869         /* We can ignore the remaining flags */
870
871         return H_SUCCESS;
872 }
873
874 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
875 {
876         struct kvmppc_vcore *vcore = target->arch.vcore;
877
878         /*
879          * We expect to have been called by the real mode handler
880          * (kvmppc_rm_h_confer()) which would have directly returned
881          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
882          * have useful work to do and should not confer) so we don't
883          * recheck that here.
884          */
885
886         spin_lock(&vcore->lock);
887         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
888             vcore->vcore_state != VCORE_INACTIVE &&
889             vcore->runner)
890                 target = vcore->runner;
891         spin_unlock(&vcore->lock);
892
893         return kvm_vcpu_yield_to(target);
894 }
895
896 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
897 {
898         int yield_count = 0;
899         struct lppaca *lppaca;
900
901         spin_lock(&vcpu->arch.vpa_update_lock);
902         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
903         if (lppaca)
904                 yield_count = be32_to_cpu(lppaca->yield_count);
905         spin_unlock(&vcpu->arch.vpa_update_lock);
906         return yield_count;
907 }
908
909 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
910 {
911         unsigned long req = kvmppc_get_gpr(vcpu, 3);
912         unsigned long target, ret = H_SUCCESS;
913         int yield_count;
914         struct kvm_vcpu *tvcpu;
915         int idx, rc;
916
917         if (req <= MAX_HCALL_OPCODE &&
918             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
919                 return RESUME_HOST;
920
921         switch (req) {
922         case H_CEDE:
923                 break;
924         case H_PROD:
925                 target = kvmppc_get_gpr(vcpu, 4);
926                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
927                 if (!tvcpu) {
928                         ret = H_PARAMETER;
929                         break;
930                 }
931                 tvcpu->arch.prodded = 1;
932                 smp_mb();
933                 if (tvcpu->arch.ceded)
934                         kvmppc_fast_vcpu_kick_hv(tvcpu);
935                 break;
936         case H_CONFER:
937                 target = kvmppc_get_gpr(vcpu, 4);
938                 if (target == -1)
939                         break;
940                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
941                 if (!tvcpu) {
942                         ret = H_PARAMETER;
943                         break;
944                 }
945                 yield_count = kvmppc_get_gpr(vcpu, 5);
946                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
947                         break;
948                 kvm_arch_vcpu_yield_to(tvcpu);
949                 break;
950         case H_REGISTER_VPA:
951                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
952                                         kvmppc_get_gpr(vcpu, 5),
953                                         kvmppc_get_gpr(vcpu, 6));
954                 break;
955         case H_RTAS:
956                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
957                         return RESUME_HOST;
958
959                 idx = srcu_read_lock(&vcpu->kvm->srcu);
960                 rc = kvmppc_rtas_hcall(vcpu);
961                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
962
963                 if (rc == -ENOENT)
964                         return RESUME_HOST;
965                 else if (rc == 0)
966                         break;
967
968                 /* Send the error out to userspace via KVM_RUN */
969                 return rc;
970         case H_LOGICAL_CI_LOAD:
971                 ret = kvmppc_h_logical_ci_load(vcpu);
972                 if (ret == H_TOO_HARD)
973                         return RESUME_HOST;
974                 break;
975         case H_LOGICAL_CI_STORE:
976                 ret = kvmppc_h_logical_ci_store(vcpu);
977                 if (ret == H_TOO_HARD)
978                         return RESUME_HOST;
979                 break;
980         case H_SET_MODE:
981                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
982                                         kvmppc_get_gpr(vcpu, 5),
983                                         kvmppc_get_gpr(vcpu, 6),
984                                         kvmppc_get_gpr(vcpu, 7));
985                 if (ret == H_TOO_HARD)
986                         return RESUME_HOST;
987                 break;
988         case H_XIRR:
989         case H_CPPR:
990         case H_EOI:
991         case H_IPI:
992         case H_IPOLL:
993         case H_XIRR_X:
994                 if (kvmppc_xics_enabled(vcpu)) {
995                         if (xics_on_xive()) {
996                                 ret = H_NOT_AVAILABLE;
997                                 return RESUME_GUEST;
998                         }
999                         ret = kvmppc_xics_hcall(vcpu, req);
1000                         break;
1001                 }
1002                 return RESUME_HOST;
1003         case H_SET_DABR:
1004                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1005                 break;
1006         case H_SET_XDABR:
1007                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1008                                                 kvmppc_get_gpr(vcpu, 5));
1009                 break;
1010 #ifdef CONFIG_SPAPR_TCE_IOMMU
1011         case H_GET_TCE:
1012                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1013                                                 kvmppc_get_gpr(vcpu, 5));
1014                 if (ret == H_TOO_HARD)
1015                         return RESUME_HOST;
1016                 break;
1017         case H_PUT_TCE:
1018                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1019                                                 kvmppc_get_gpr(vcpu, 5),
1020                                                 kvmppc_get_gpr(vcpu, 6));
1021                 if (ret == H_TOO_HARD)
1022                         return RESUME_HOST;
1023                 break;
1024         case H_PUT_TCE_INDIRECT:
1025                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1026                                                 kvmppc_get_gpr(vcpu, 5),
1027                                                 kvmppc_get_gpr(vcpu, 6),
1028                                                 kvmppc_get_gpr(vcpu, 7));
1029                 if (ret == H_TOO_HARD)
1030                         return RESUME_HOST;
1031                 break;
1032         case H_STUFF_TCE:
1033                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1034                                                 kvmppc_get_gpr(vcpu, 5),
1035                                                 kvmppc_get_gpr(vcpu, 6),
1036                                                 kvmppc_get_gpr(vcpu, 7));
1037                 if (ret == H_TOO_HARD)
1038                         return RESUME_HOST;
1039                 break;
1040 #endif
1041         case H_RANDOM:
1042                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1043                         ret = H_HARDWARE;
1044                 break;
1045
1046         case H_SET_PARTITION_TABLE:
1047                 ret = H_FUNCTION;
1048                 if (nesting_enabled(vcpu->kvm))
1049                         ret = kvmhv_set_partition_table(vcpu);
1050                 break;
1051         case H_ENTER_NESTED:
1052                 ret = H_FUNCTION;
1053                 if (!nesting_enabled(vcpu->kvm))
1054                         break;
1055                 ret = kvmhv_enter_nested_guest(vcpu);
1056                 if (ret == H_INTERRUPT) {
1057                         kvmppc_set_gpr(vcpu, 3, 0);
1058                         vcpu->arch.hcall_needed = 0;
1059                         return -EINTR;
1060                 } else if (ret == H_TOO_HARD) {
1061                         kvmppc_set_gpr(vcpu, 3, 0);
1062                         vcpu->arch.hcall_needed = 0;
1063                         return RESUME_HOST;
1064                 }
1065                 break;
1066         case H_TLB_INVALIDATE:
1067                 ret = H_FUNCTION;
1068                 if (nesting_enabled(vcpu->kvm))
1069                         ret = kvmhv_do_nested_tlbie(vcpu);
1070                 break;
1071         case H_COPY_TOFROM_GUEST:
1072                 ret = H_FUNCTION;
1073                 if (nesting_enabled(vcpu->kvm))
1074                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1075                 break;
1076         case H_PAGE_INIT:
1077                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1078                                          kvmppc_get_gpr(vcpu, 5),
1079                                          kvmppc_get_gpr(vcpu, 6));
1080                 break;
1081         default:
1082                 return RESUME_HOST;
1083         }
1084         kvmppc_set_gpr(vcpu, 3, ret);
1085         vcpu->arch.hcall_needed = 0;
1086         return RESUME_GUEST;
1087 }
1088
1089 /*
1090  * Handle H_CEDE in the nested virtualization case where we haven't
1091  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1092  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1093  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1094  */
1095 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1096 {
1097         vcpu->arch.shregs.msr |= MSR_EE;
1098         vcpu->arch.ceded = 1;
1099         smp_mb();
1100         if (vcpu->arch.prodded) {
1101                 vcpu->arch.prodded = 0;
1102                 smp_mb();
1103                 vcpu->arch.ceded = 0;
1104         }
1105 }
1106
1107 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1108 {
1109         switch (cmd) {
1110         case H_CEDE:
1111         case H_PROD:
1112         case H_CONFER:
1113         case H_REGISTER_VPA:
1114         case H_SET_MODE:
1115         case H_LOGICAL_CI_LOAD:
1116         case H_LOGICAL_CI_STORE:
1117 #ifdef CONFIG_KVM_XICS
1118         case H_XIRR:
1119         case H_CPPR:
1120         case H_EOI:
1121         case H_IPI:
1122         case H_IPOLL:
1123         case H_XIRR_X:
1124 #endif
1125         case H_PAGE_INIT:
1126                 return 1;
1127         }
1128
1129         /* See if it's in the real-mode table */
1130         return kvmppc_hcall_impl_hv_realmode(cmd);
1131 }
1132
1133 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1134                                         struct kvm_vcpu *vcpu)
1135 {
1136         u32 last_inst;
1137
1138         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1139                                         EMULATE_DONE) {
1140                 /*
1141                  * Fetch failed, so return to guest and
1142                  * try executing it again.
1143                  */
1144                 return RESUME_GUEST;
1145         }
1146
1147         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1148                 run->exit_reason = KVM_EXIT_DEBUG;
1149                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1150                 return RESUME_HOST;
1151         } else {
1152                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1153                 return RESUME_GUEST;
1154         }
1155 }
1156
1157 static void do_nothing(void *x)
1158 {
1159 }
1160
1161 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1162 {
1163         int thr, cpu, pcpu, nthreads;
1164         struct kvm_vcpu *v;
1165         unsigned long dpdes;
1166
1167         nthreads = vcpu->kvm->arch.emul_smt_mode;
1168         dpdes = 0;
1169         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1170         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1171                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1172                 if (!v)
1173                         continue;
1174                 /*
1175                  * If the vcpu is currently running on a physical cpu thread,
1176                  * interrupt it in order to pull it out of the guest briefly,
1177                  * which will update its vcore->dpdes value.
1178                  */
1179                 pcpu = READ_ONCE(v->cpu);
1180                 if (pcpu >= 0)
1181                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1182                 if (kvmppc_doorbell_pending(v))
1183                         dpdes |= 1 << thr;
1184         }
1185         return dpdes;
1186 }
1187
1188 /*
1189  * On POWER9, emulate doorbell-related instructions in order to
1190  * give the guest the illusion of running on a multi-threaded core.
1191  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1192  * and mfspr DPDES.
1193  */
1194 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1195 {
1196         u32 inst, rb, thr;
1197         unsigned long arg;
1198         struct kvm *kvm = vcpu->kvm;
1199         struct kvm_vcpu *tvcpu;
1200
1201         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1202                 return RESUME_GUEST;
1203         if (get_op(inst) != 31)
1204                 return EMULATE_FAIL;
1205         rb = get_rb(inst);
1206         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1207         switch (get_xop(inst)) {
1208         case OP_31_XOP_MSGSNDP:
1209                 arg = kvmppc_get_gpr(vcpu, rb);
1210                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1211                         break;
1212                 arg &= 0x3f;
1213                 if (arg >= kvm->arch.emul_smt_mode)
1214                         break;
1215                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1216                 if (!tvcpu)
1217                         break;
1218                 if (!tvcpu->arch.doorbell_request) {
1219                         tvcpu->arch.doorbell_request = 1;
1220                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1221                 }
1222                 break;
1223         case OP_31_XOP_MSGCLRP:
1224                 arg = kvmppc_get_gpr(vcpu, rb);
1225                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1226                         break;
1227                 vcpu->arch.vcore->dpdes = 0;
1228                 vcpu->arch.doorbell_request = 0;
1229                 break;
1230         case OP_31_XOP_MFSPR:
1231                 switch (get_sprn(inst)) {
1232                 case SPRN_TIR:
1233                         arg = thr;
1234                         break;
1235                 case SPRN_DPDES:
1236                         arg = kvmppc_read_dpdes(vcpu);
1237                         break;
1238                 default:
1239                         return EMULATE_FAIL;
1240                 }
1241                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1242                 break;
1243         default:
1244                 return EMULATE_FAIL;
1245         }
1246         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1247         return RESUME_GUEST;
1248 }
1249
1250 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251                                  struct task_struct *tsk)
1252 {
1253         int r = RESUME_HOST;
1254
1255         vcpu->stat.sum_exits++;
1256
1257         /*
1258          * This can happen if an interrupt occurs in the last stages
1259          * of guest entry or the first stages of guest exit (i.e. after
1260          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1261          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1262          * That can happen due to a bug, or due to a machine check
1263          * occurring at just the wrong time.
1264          */
1265         if (vcpu->arch.shregs.msr & MSR_HV) {
1266                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1267                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1268                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1269                         vcpu->arch.shregs.msr);
1270                 kvmppc_dump_regs(vcpu);
1271                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1272                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1273                 return RESUME_HOST;
1274         }
1275         run->exit_reason = KVM_EXIT_UNKNOWN;
1276         run->ready_for_interrupt_injection = 1;
1277         switch (vcpu->arch.trap) {
1278         /* We're good on these - the host merely wanted to get our attention */
1279         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1280                 vcpu->stat.dec_exits++;
1281                 r = RESUME_GUEST;
1282                 break;
1283         case BOOK3S_INTERRUPT_EXTERNAL:
1284         case BOOK3S_INTERRUPT_H_DOORBELL:
1285         case BOOK3S_INTERRUPT_H_VIRT:
1286                 vcpu->stat.ext_intr_exits++;
1287                 r = RESUME_GUEST;
1288                 break;
1289         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1290         case BOOK3S_INTERRUPT_HMI:
1291         case BOOK3S_INTERRUPT_PERFMON:
1292         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1293                 r = RESUME_GUEST;
1294                 break;
1295         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1296                 /* Print the MCE event to host console. */
1297                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1298
1299                 /*
1300                  * If the guest can do FWNMI, exit to userspace so it can
1301                  * deliver a FWNMI to the guest.
1302                  * Otherwise we synthesize a machine check for the guest
1303                  * so that it knows that the machine check occurred.
1304                  */
1305                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1306                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1307                         kvmppc_core_queue_machine_check(vcpu, flags);
1308                         r = RESUME_GUEST;
1309                         break;
1310                 }
1311
1312                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1313                 run->exit_reason = KVM_EXIT_NMI;
1314                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1315                 /* Clear out the old NMI status from run->flags */
1316                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1317                 /* Now set the NMI status */
1318                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1319                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1320                 else
1321                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1322
1323                 r = RESUME_HOST;
1324                 break;
1325         case BOOK3S_INTERRUPT_PROGRAM:
1326         {
1327                 ulong flags;
1328                 /*
1329                  * Normally program interrupts are delivered directly
1330                  * to the guest by the hardware, but we can get here
1331                  * as a result of a hypervisor emulation interrupt
1332                  * (e40) getting turned into a 700 by BML RTAS.
1333                  */
1334                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1335                 kvmppc_core_queue_program(vcpu, flags);
1336                 r = RESUME_GUEST;
1337                 break;
1338         }
1339         case BOOK3S_INTERRUPT_SYSCALL:
1340         {
1341                 /* hcall - punt to userspace */
1342                 int i;
1343
1344                 /* hypercall with MSR_PR has already been handled in rmode,
1345                  * and never reaches here.
1346                  */
1347
1348                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1349                 for (i = 0; i < 9; ++i)
1350                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1351                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1352                 vcpu->arch.hcall_needed = 1;
1353                 r = RESUME_HOST;
1354                 break;
1355         }
1356         /*
1357          * We get these next two if the guest accesses a page which it thinks
1358          * it has mapped but which is not actually present, either because
1359          * it is for an emulated I/O device or because the corresonding
1360          * host page has been paged out.  Any other HDSI/HISI interrupts
1361          * have been handled already.
1362          */
1363         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1364                 r = RESUME_PAGE_FAULT;
1365                 break;
1366         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1367                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1368                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1369                         DSISR_SRR1_MATCH_64S;
1370                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1371                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1372                 r = RESUME_PAGE_FAULT;
1373                 break;
1374         /*
1375          * This occurs if the guest executes an illegal instruction.
1376          * If the guest debug is disabled, generate a program interrupt
1377          * to the guest. If guest debug is enabled, we need to check
1378          * whether the instruction is a software breakpoint instruction.
1379          * Accordingly return to Guest or Host.
1380          */
1381         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1382                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1383                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1384                                 swab32(vcpu->arch.emul_inst) :
1385                                 vcpu->arch.emul_inst;
1386                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1387                         r = kvmppc_emulate_debug_inst(run, vcpu);
1388                 } else {
1389                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1390                         r = RESUME_GUEST;
1391                 }
1392                 break;
1393         /*
1394          * This occurs if the guest (kernel or userspace), does something that
1395          * is prohibited by HFSCR.
1396          * On POWER9, this could be a doorbell instruction that we need
1397          * to emulate.
1398          * Otherwise, we just generate a program interrupt to the guest.
1399          */
1400         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1401                 r = EMULATE_FAIL;
1402                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1403                     cpu_has_feature(CPU_FTR_ARCH_300))
1404                         r = kvmppc_emulate_doorbell_instr(vcpu);
1405                 if (r == EMULATE_FAIL) {
1406                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1407                         r = RESUME_GUEST;
1408                 }
1409                 break;
1410
1411 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1412         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1413                 /*
1414                  * This occurs for various TM-related instructions that
1415                  * we need to emulate on POWER9 DD2.2.  We have already
1416                  * handled the cases where the guest was in real-suspend
1417                  * mode and was transitioning to transactional state.
1418                  */
1419                 r = kvmhv_p9_tm_emulation(vcpu);
1420                 break;
1421 #endif
1422
1423         case BOOK3S_INTERRUPT_HV_RM_HARD:
1424                 r = RESUME_PASSTHROUGH;
1425                 break;
1426         default:
1427                 kvmppc_dump_regs(vcpu);
1428                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1429                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1430                         vcpu->arch.shregs.msr);
1431                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1432                 r = RESUME_HOST;
1433                 break;
1434         }
1435
1436         return r;
1437 }
1438
1439 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1440 {
1441         int r;
1442         int srcu_idx;
1443
1444         vcpu->stat.sum_exits++;
1445
1446         /*
1447          * This can happen if an interrupt occurs in the last stages
1448          * of guest entry or the first stages of guest exit (i.e. after
1449          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1450          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1451          * That can happen due to a bug, or due to a machine check
1452          * occurring at just the wrong time.
1453          */
1454         if (vcpu->arch.shregs.msr & MSR_HV) {
1455                 pr_emerg("KVM trap in HV mode while nested!\n");
1456                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1457                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1458                          vcpu->arch.shregs.msr);
1459                 kvmppc_dump_regs(vcpu);
1460                 return RESUME_HOST;
1461         }
1462         switch (vcpu->arch.trap) {
1463         /* We're good on these - the host merely wanted to get our attention */
1464         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1465                 vcpu->stat.dec_exits++;
1466                 r = RESUME_GUEST;
1467                 break;
1468         case BOOK3S_INTERRUPT_EXTERNAL:
1469                 vcpu->stat.ext_intr_exits++;
1470                 r = RESUME_HOST;
1471                 break;
1472         case BOOK3S_INTERRUPT_H_DOORBELL:
1473         case BOOK3S_INTERRUPT_H_VIRT:
1474                 vcpu->stat.ext_intr_exits++;
1475                 r = RESUME_GUEST;
1476                 break;
1477         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1478         case BOOK3S_INTERRUPT_HMI:
1479         case BOOK3S_INTERRUPT_PERFMON:
1480         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1481                 r = RESUME_GUEST;
1482                 break;
1483         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1484                 /* Pass the machine check to the L1 guest */
1485                 r = RESUME_HOST;
1486                 /* Print the MCE event to host console. */
1487                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1488                 break;
1489         /*
1490          * We get these next two if the guest accesses a page which it thinks
1491          * it has mapped but which is not actually present, either because
1492          * it is for an emulated I/O device or because the corresonding
1493          * host page has been paged out.
1494          */
1495         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1496                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1497                 r = kvmhv_nested_page_fault(run, vcpu);
1498                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1499                 break;
1500         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1501                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1502                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1503                                          DSISR_SRR1_MATCH_64S;
1504                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1505                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1506                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1507                 r = kvmhv_nested_page_fault(run, vcpu);
1508                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1509                 break;
1510
1511 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1512         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1513                 /*
1514                  * This occurs for various TM-related instructions that
1515                  * we need to emulate on POWER9 DD2.2.  We have already
1516                  * handled the cases where the guest was in real-suspend
1517                  * mode and was transitioning to transactional state.
1518                  */
1519                 r = kvmhv_p9_tm_emulation(vcpu);
1520                 break;
1521 #endif
1522
1523         case BOOK3S_INTERRUPT_HV_RM_HARD:
1524                 vcpu->arch.trap = 0;
1525                 r = RESUME_GUEST;
1526                 if (!xics_on_xive())
1527                         kvmppc_xics_rm_complete(vcpu, 0);
1528                 break;
1529         default:
1530                 r = RESUME_HOST;
1531                 break;
1532         }
1533
1534         return r;
1535 }
1536
1537 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1538                                             struct kvm_sregs *sregs)
1539 {
1540         int i;
1541
1542         memset(sregs, 0, sizeof(struct kvm_sregs));
1543         sregs->pvr = vcpu->arch.pvr;
1544         for (i = 0; i < vcpu->arch.slb_max; i++) {
1545                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1546                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1547         }
1548
1549         return 0;
1550 }
1551
1552 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1553                                             struct kvm_sregs *sregs)
1554 {
1555         int i, j;
1556
1557         /* Only accept the same PVR as the host's, since we can't spoof it */
1558         if (sregs->pvr != vcpu->arch.pvr)
1559                 return -EINVAL;
1560
1561         j = 0;
1562         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1563                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1564                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1565                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1566                         ++j;
1567                 }
1568         }
1569         vcpu->arch.slb_max = j;
1570
1571         return 0;
1572 }
1573
1574 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1575                 bool preserve_top32)
1576 {
1577         struct kvm *kvm = vcpu->kvm;
1578         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1579         u64 mask;
1580
1581         spin_lock(&vc->lock);
1582         /*
1583          * If ILE (interrupt little-endian) has changed, update the
1584          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1585          */
1586         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1587                 struct kvm_vcpu *vcpu;
1588                 int i;
1589
1590                 kvm_for_each_vcpu(i, vcpu, kvm) {
1591                         if (vcpu->arch.vcore != vc)
1592                                 continue;
1593                         if (new_lpcr & LPCR_ILE)
1594                                 vcpu->arch.intr_msr |= MSR_LE;
1595                         else
1596                                 vcpu->arch.intr_msr &= ~MSR_LE;
1597                 }
1598         }
1599
1600         /*
1601          * Userspace can only modify DPFD (default prefetch depth),
1602          * ILE (interrupt little-endian) and TC (translation control).
1603          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1604          */
1605         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1606         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1607                 mask |= LPCR_AIL;
1608         /*
1609          * On POWER9, allow userspace to enable large decrementer for the
1610          * guest, whether or not the host has it enabled.
1611          */
1612         if (cpu_has_feature(CPU_FTR_ARCH_300))
1613                 mask |= LPCR_LD;
1614
1615         /* Broken 32-bit version of LPCR must not clear top bits */
1616         if (preserve_top32)
1617                 mask &= 0xFFFFFFFF;
1618         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1619         spin_unlock(&vc->lock);
1620 }
1621
1622 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1623                                  union kvmppc_one_reg *val)
1624 {
1625         int r = 0;
1626         long int i;
1627
1628         switch (id) {
1629         case KVM_REG_PPC_DEBUG_INST:
1630                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1631                 break;
1632         case KVM_REG_PPC_HIOR:
1633                 *val = get_reg_val(id, 0);
1634                 break;
1635         case KVM_REG_PPC_DABR:
1636                 *val = get_reg_val(id, vcpu->arch.dabr);
1637                 break;
1638         case KVM_REG_PPC_DABRX:
1639                 *val = get_reg_val(id, vcpu->arch.dabrx);
1640                 break;
1641         case KVM_REG_PPC_DSCR:
1642                 *val = get_reg_val(id, vcpu->arch.dscr);
1643                 break;
1644         case KVM_REG_PPC_PURR:
1645                 *val = get_reg_val(id, vcpu->arch.purr);
1646                 break;
1647         case KVM_REG_PPC_SPURR:
1648                 *val = get_reg_val(id, vcpu->arch.spurr);
1649                 break;
1650         case KVM_REG_PPC_AMR:
1651                 *val = get_reg_val(id, vcpu->arch.amr);
1652                 break;
1653         case KVM_REG_PPC_UAMOR:
1654                 *val = get_reg_val(id, vcpu->arch.uamor);
1655                 break;
1656         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1657                 i = id - KVM_REG_PPC_MMCR0;
1658                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1659                 break;
1660         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1661                 i = id - KVM_REG_PPC_PMC1;
1662                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1663                 break;
1664         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1665                 i = id - KVM_REG_PPC_SPMC1;
1666                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1667                 break;
1668         case KVM_REG_PPC_SIAR:
1669                 *val = get_reg_val(id, vcpu->arch.siar);
1670                 break;
1671         case KVM_REG_PPC_SDAR:
1672                 *val = get_reg_val(id, vcpu->arch.sdar);
1673                 break;
1674         case KVM_REG_PPC_SIER:
1675                 *val = get_reg_val(id, vcpu->arch.sier);
1676                 break;
1677         case KVM_REG_PPC_IAMR:
1678                 *val = get_reg_val(id, vcpu->arch.iamr);
1679                 break;
1680         case KVM_REG_PPC_PSPB:
1681                 *val = get_reg_val(id, vcpu->arch.pspb);
1682                 break;
1683         case KVM_REG_PPC_DPDES:
1684                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1685                 break;
1686         case KVM_REG_PPC_VTB:
1687                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1688                 break;
1689         case KVM_REG_PPC_DAWR:
1690                 *val = get_reg_val(id, vcpu->arch.dawr);
1691                 break;
1692         case KVM_REG_PPC_DAWRX:
1693                 *val = get_reg_val(id, vcpu->arch.dawrx);
1694                 break;
1695         case KVM_REG_PPC_CIABR:
1696                 *val = get_reg_val(id, vcpu->arch.ciabr);
1697                 break;
1698         case KVM_REG_PPC_CSIGR:
1699                 *val = get_reg_val(id, vcpu->arch.csigr);
1700                 break;
1701         case KVM_REG_PPC_TACR:
1702                 *val = get_reg_val(id, vcpu->arch.tacr);
1703                 break;
1704         case KVM_REG_PPC_TCSCR:
1705                 *val = get_reg_val(id, vcpu->arch.tcscr);
1706                 break;
1707         case KVM_REG_PPC_PID:
1708                 *val = get_reg_val(id, vcpu->arch.pid);
1709                 break;
1710         case KVM_REG_PPC_ACOP:
1711                 *val = get_reg_val(id, vcpu->arch.acop);
1712                 break;
1713         case KVM_REG_PPC_WORT:
1714                 *val = get_reg_val(id, vcpu->arch.wort);
1715                 break;
1716         case KVM_REG_PPC_TIDR:
1717                 *val = get_reg_val(id, vcpu->arch.tid);
1718                 break;
1719         case KVM_REG_PPC_PSSCR:
1720                 *val = get_reg_val(id, vcpu->arch.psscr);
1721                 break;
1722         case KVM_REG_PPC_VPA_ADDR:
1723                 spin_lock(&vcpu->arch.vpa_update_lock);
1724                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1725                 spin_unlock(&vcpu->arch.vpa_update_lock);
1726                 break;
1727         case KVM_REG_PPC_VPA_SLB:
1728                 spin_lock(&vcpu->arch.vpa_update_lock);
1729                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1730                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1731                 spin_unlock(&vcpu->arch.vpa_update_lock);
1732                 break;
1733         case KVM_REG_PPC_VPA_DTL:
1734                 spin_lock(&vcpu->arch.vpa_update_lock);
1735                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1736                 val->vpaval.length = vcpu->arch.dtl.len;
1737                 spin_unlock(&vcpu->arch.vpa_update_lock);
1738                 break;
1739         case KVM_REG_PPC_TB_OFFSET:
1740                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1741                 break;
1742         case KVM_REG_PPC_LPCR:
1743         case KVM_REG_PPC_LPCR_64:
1744                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1745                 break;
1746         case KVM_REG_PPC_PPR:
1747                 *val = get_reg_val(id, vcpu->arch.ppr);
1748                 break;
1749 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1750         case KVM_REG_PPC_TFHAR:
1751                 *val = get_reg_val(id, vcpu->arch.tfhar);
1752                 break;
1753         case KVM_REG_PPC_TFIAR:
1754                 *val = get_reg_val(id, vcpu->arch.tfiar);
1755                 break;
1756         case KVM_REG_PPC_TEXASR:
1757                 *val = get_reg_val(id, vcpu->arch.texasr);
1758                 break;
1759         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1760                 i = id - KVM_REG_PPC_TM_GPR0;
1761                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1762                 break;
1763         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1764         {
1765                 int j;
1766                 i = id - KVM_REG_PPC_TM_VSR0;
1767                 if (i < 32)
1768                         for (j = 0; j < TS_FPRWIDTH; j++)
1769                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1770                 else {
1771                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1772                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1773                         else
1774                                 r = -ENXIO;
1775                 }
1776                 break;
1777         }
1778         case KVM_REG_PPC_TM_CR:
1779                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1780                 break;
1781         case KVM_REG_PPC_TM_XER:
1782                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1783                 break;
1784         case KVM_REG_PPC_TM_LR:
1785                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1786                 break;
1787         case KVM_REG_PPC_TM_CTR:
1788                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1789                 break;
1790         case KVM_REG_PPC_TM_FPSCR:
1791                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1792                 break;
1793         case KVM_REG_PPC_TM_AMR:
1794                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1795                 break;
1796         case KVM_REG_PPC_TM_PPR:
1797                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1798                 break;
1799         case KVM_REG_PPC_TM_VRSAVE:
1800                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1801                 break;
1802         case KVM_REG_PPC_TM_VSCR:
1803                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1804                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1805                 else
1806                         r = -ENXIO;
1807                 break;
1808         case KVM_REG_PPC_TM_DSCR:
1809                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1810                 break;
1811         case KVM_REG_PPC_TM_TAR:
1812                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1813                 break;
1814 #endif
1815         case KVM_REG_PPC_ARCH_COMPAT:
1816                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1817                 break;
1818         case KVM_REG_PPC_DEC_EXPIRY:
1819                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1820                                    vcpu->arch.vcore->tb_offset);
1821                 break;
1822         case KVM_REG_PPC_ONLINE:
1823                 *val = get_reg_val(id, vcpu->arch.online);
1824                 break;
1825         case KVM_REG_PPC_PTCR:
1826                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1827                 break;
1828         default:
1829                 r = -EINVAL;
1830                 break;
1831         }
1832
1833         return r;
1834 }
1835
1836 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1837                                  union kvmppc_one_reg *val)
1838 {
1839         int r = 0;
1840         long int i;
1841         unsigned long addr, len;
1842
1843         switch (id) {
1844         case KVM_REG_PPC_HIOR:
1845                 /* Only allow this to be set to zero */
1846                 if (set_reg_val(id, *val))
1847                         r = -EINVAL;
1848                 break;
1849         case KVM_REG_PPC_DABR:
1850                 vcpu->arch.dabr = set_reg_val(id, *val);
1851                 break;
1852         case KVM_REG_PPC_DABRX:
1853                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1854                 break;
1855         case KVM_REG_PPC_DSCR:
1856                 vcpu->arch.dscr = set_reg_val(id, *val);
1857                 break;
1858         case KVM_REG_PPC_PURR:
1859                 vcpu->arch.purr = set_reg_val(id, *val);
1860                 break;
1861         case KVM_REG_PPC_SPURR:
1862                 vcpu->arch.spurr = set_reg_val(id, *val);
1863                 break;
1864         case KVM_REG_PPC_AMR:
1865                 vcpu->arch.amr = set_reg_val(id, *val);
1866                 break;
1867         case KVM_REG_PPC_UAMOR:
1868                 vcpu->arch.uamor = set_reg_val(id, *val);
1869                 break;
1870         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1871                 i = id - KVM_REG_PPC_MMCR0;
1872                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1873                 break;
1874         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1875                 i = id - KVM_REG_PPC_PMC1;
1876                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1877                 break;
1878         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1879                 i = id - KVM_REG_PPC_SPMC1;
1880                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1881                 break;
1882         case KVM_REG_PPC_SIAR:
1883                 vcpu->arch.siar = set_reg_val(id, *val);
1884                 break;
1885         case KVM_REG_PPC_SDAR:
1886                 vcpu->arch.sdar = set_reg_val(id, *val);
1887                 break;
1888         case KVM_REG_PPC_SIER:
1889                 vcpu->arch.sier = set_reg_val(id, *val);
1890                 break;
1891         case KVM_REG_PPC_IAMR:
1892                 vcpu->arch.iamr = set_reg_val(id, *val);
1893                 break;
1894         case KVM_REG_PPC_PSPB:
1895                 vcpu->arch.pspb = set_reg_val(id, *val);
1896                 break;
1897         case KVM_REG_PPC_DPDES:
1898                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1899                 break;
1900         case KVM_REG_PPC_VTB:
1901                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1902                 break;
1903         case KVM_REG_PPC_DAWR:
1904                 vcpu->arch.dawr = set_reg_val(id, *val);
1905                 break;
1906         case KVM_REG_PPC_DAWRX:
1907                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1908                 break;
1909         case KVM_REG_PPC_CIABR:
1910                 vcpu->arch.ciabr = set_reg_val(id, *val);
1911                 /* Don't allow setting breakpoints in hypervisor code */
1912                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1913                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1914                 break;
1915         case KVM_REG_PPC_CSIGR:
1916                 vcpu->arch.csigr = set_reg_val(id, *val);
1917                 break;
1918         case KVM_REG_PPC_TACR:
1919                 vcpu->arch.tacr = set_reg_val(id, *val);
1920                 break;
1921         case KVM_REG_PPC_TCSCR:
1922                 vcpu->arch.tcscr = set_reg_val(id, *val);
1923                 break;
1924         case KVM_REG_PPC_PID:
1925                 vcpu->arch.pid = set_reg_val(id, *val);
1926                 break;
1927         case KVM_REG_PPC_ACOP:
1928                 vcpu->arch.acop = set_reg_val(id, *val);
1929                 break;
1930         case KVM_REG_PPC_WORT:
1931                 vcpu->arch.wort = set_reg_val(id, *val);
1932                 break;
1933         case KVM_REG_PPC_TIDR:
1934                 vcpu->arch.tid = set_reg_val(id, *val);
1935                 break;
1936         case KVM_REG_PPC_PSSCR:
1937                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1938                 break;
1939         case KVM_REG_PPC_VPA_ADDR:
1940                 addr = set_reg_val(id, *val);
1941                 r = -EINVAL;
1942                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1943                               vcpu->arch.dtl.next_gpa))
1944                         break;
1945                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1946                 break;
1947         case KVM_REG_PPC_VPA_SLB:
1948                 addr = val->vpaval.addr;
1949                 len = val->vpaval.length;
1950                 r = -EINVAL;
1951                 if (addr && !vcpu->arch.vpa.next_gpa)
1952                         break;
1953                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1954                 break;
1955         case KVM_REG_PPC_VPA_DTL:
1956                 addr = val->vpaval.addr;
1957                 len = val->vpaval.length;
1958                 r = -EINVAL;
1959                 if (addr && (len < sizeof(struct dtl_entry) ||
1960                              !vcpu->arch.vpa.next_gpa))
1961                         break;
1962                 len -= len % sizeof(struct dtl_entry);
1963                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1964                 break;
1965         case KVM_REG_PPC_TB_OFFSET:
1966                 /* round up to multiple of 2^24 */
1967                 vcpu->arch.vcore->tb_offset =
1968                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1969                 break;
1970         case KVM_REG_PPC_LPCR:
1971                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1972                 break;
1973         case KVM_REG_PPC_LPCR_64:
1974                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1975                 break;
1976         case KVM_REG_PPC_PPR:
1977                 vcpu->arch.ppr = set_reg_val(id, *val);
1978                 break;
1979 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1980         case KVM_REG_PPC_TFHAR:
1981                 vcpu->arch.tfhar = set_reg_val(id, *val);
1982                 break;
1983         case KVM_REG_PPC_TFIAR:
1984                 vcpu->arch.tfiar = set_reg_val(id, *val);
1985                 break;
1986         case KVM_REG_PPC_TEXASR:
1987                 vcpu->arch.texasr = set_reg_val(id, *val);
1988                 break;
1989         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1990                 i = id - KVM_REG_PPC_TM_GPR0;
1991                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1992                 break;
1993         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1994         {
1995                 int j;
1996                 i = id - KVM_REG_PPC_TM_VSR0;
1997                 if (i < 32)
1998                         for (j = 0; j < TS_FPRWIDTH; j++)
1999                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2000                 else
2001                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2002                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2003                         else
2004                                 r = -ENXIO;
2005                 break;
2006         }
2007         case KVM_REG_PPC_TM_CR:
2008                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2009                 break;
2010         case KVM_REG_PPC_TM_XER:
2011                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2012                 break;
2013         case KVM_REG_PPC_TM_LR:
2014                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2015                 break;
2016         case KVM_REG_PPC_TM_CTR:
2017                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2018                 break;
2019         case KVM_REG_PPC_TM_FPSCR:
2020                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2021                 break;
2022         case KVM_REG_PPC_TM_AMR:
2023                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2024                 break;
2025         case KVM_REG_PPC_TM_PPR:
2026                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2027                 break;
2028         case KVM_REG_PPC_TM_VRSAVE:
2029                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2030                 break;
2031         case KVM_REG_PPC_TM_VSCR:
2032                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2033                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2034                 else
2035                         r = - ENXIO;
2036                 break;
2037         case KVM_REG_PPC_TM_DSCR:
2038                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2039                 break;
2040         case KVM_REG_PPC_TM_TAR:
2041                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2042                 break;
2043 #endif
2044         case KVM_REG_PPC_ARCH_COMPAT:
2045                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2046                 break;
2047         case KVM_REG_PPC_DEC_EXPIRY:
2048                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2049                         vcpu->arch.vcore->tb_offset;
2050                 break;
2051         case KVM_REG_PPC_ONLINE:
2052                 i = set_reg_val(id, *val);
2053                 if (i && !vcpu->arch.online)
2054                         atomic_inc(&vcpu->arch.vcore->online_count);
2055                 else if (!i && vcpu->arch.online)
2056                         atomic_dec(&vcpu->arch.vcore->online_count);
2057                 vcpu->arch.online = i;
2058                 break;
2059         case KVM_REG_PPC_PTCR:
2060                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2061                 break;
2062         default:
2063                 r = -EINVAL;
2064                 break;
2065         }
2066
2067         return r;
2068 }
2069
2070 /*
2071  * On POWER9, threads are independent and can be in different partitions.
2072  * Therefore we consider each thread to be a subcore.
2073  * There is a restriction that all threads have to be in the same
2074  * MMU mode (radix or HPT), unfortunately, but since we only support
2075  * HPT guests on a HPT host so far, that isn't an impediment yet.
2076  */
2077 static int threads_per_vcore(struct kvm *kvm)
2078 {
2079         if (kvm->arch.threads_indep)
2080                 return 1;
2081         return threads_per_subcore;
2082 }
2083
2084 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2085 {
2086         struct kvmppc_vcore *vcore;
2087
2088         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2089
2090         if (vcore == NULL)
2091                 return NULL;
2092
2093         spin_lock_init(&vcore->lock);
2094         spin_lock_init(&vcore->stoltb_lock);
2095         init_swait_queue_head(&vcore->wq);
2096         vcore->preempt_tb = TB_NIL;
2097         vcore->lpcr = kvm->arch.lpcr;
2098         vcore->first_vcpuid = id;
2099         vcore->kvm = kvm;
2100         INIT_LIST_HEAD(&vcore->preempt_list);
2101
2102         return vcore;
2103 }
2104
2105 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2106 static struct debugfs_timings_element {
2107         const char *name;
2108         size_t offset;
2109 } timings[] = {
2110         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2111         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2112         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2113         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2114         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2115 };
2116
2117 #define N_TIMINGS       (ARRAY_SIZE(timings))
2118
2119 struct debugfs_timings_state {
2120         struct kvm_vcpu *vcpu;
2121         unsigned int    buflen;
2122         char            buf[N_TIMINGS * 100];
2123 };
2124
2125 static int debugfs_timings_open(struct inode *inode, struct file *file)
2126 {
2127         struct kvm_vcpu *vcpu = inode->i_private;
2128         struct debugfs_timings_state *p;
2129
2130         p = kzalloc(sizeof(*p), GFP_KERNEL);
2131         if (!p)
2132                 return -ENOMEM;
2133
2134         kvm_get_kvm(vcpu->kvm);
2135         p->vcpu = vcpu;
2136         file->private_data = p;
2137
2138         return nonseekable_open(inode, file);
2139 }
2140
2141 static int debugfs_timings_release(struct inode *inode, struct file *file)
2142 {
2143         struct debugfs_timings_state *p = file->private_data;
2144
2145         kvm_put_kvm(p->vcpu->kvm);
2146         kfree(p);
2147         return 0;
2148 }
2149
2150 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2151                                     size_t len, loff_t *ppos)
2152 {
2153         struct debugfs_timings_state *p = file->private_data;
2154         struct kvm_vcpu *vcpu = p->vcpu;
2155         char *s, *buf_end;
2156         struct kvmhv_tb_accumulator tb;
2157         u64 count;
2158         loff_t pos;
2159         ssize_t n;
2160         int i, loops;
2161         bool ok;
2162
2163         if (!p->buflen) {
2164                 s = p->buf;
2165                 buf_end = s + sizeof(p->buf);
2166                 for (i = 0; i < N_TIMINGS; ++i) {
2167                         struct kvmhv_tb_accumulator *acc;
2168
2169                         acc = (struct kvmhv_tb_accumulator *)
2170                                 ((unsigned long)vcpu + timings[i].offset);
2171                         ok = false;
2172                         for (loops = 0; loops < 1000; ++loops) {
2173                                 count = acc->seqcount;
2174                                 if (!(count & 1)) {
2175                                         smp_rmb();
2176                                         tb = *acc;
2177                                         smp_rmb();
2178                                         if (count == acc->seqcount) {
2179                                                 ok = true;
2180                                                 break;
2181                                         }
2182                                 }
2183                                 udelay(1);
2184                         }
2185                         if (!ok)
2186                                 snprintf(s, buf_end - s, "%s: stuck\n",
2187                                         timings[i].name);
2188                         else
2189                                 snprintf(s, buf_end - s,
2190                                         "%s: %llu %llu %llu %llu\n",
2191                                         timings[i].name, count / 2,
2192                                         tb_to_ns(tb.tb_total),
2193                                         tb_to_ns(tb.tb_min),
2194                                         tb_to_ns(tb.tb_max));
2195                         s += strlen(s);
2196                 }
2197                 p->buflen = s - p->buf;
2198         }
2199
2200         pos = *ppos;
2201         if (pos >= p->buflen)
2202                 return 0;
2203         if (len > p->buflen - pos)
2204                 len = p->buflen - pos;
2205         n = copy_to_user(buf, p->buf + pos, len);
2206         if (n) {
2207                 if (n == len)
2208                         return -EFAULT;
2209                 len -= n;
2210         }
2211         *ppos = pos + len;
2212         return len;
2213 }
2214
2215 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2216                                      size_t len, loff_t *ppos)
2217 {
2218         return -EACCES;
2219 }
2220
2221 static const struct file_operations debugfs_timings_ops = {
2222         .owner   = THIS_MODULE,
2223         .open    = debugfs_timings_open,
2224         .release = debugfs_timings_release,
2225         .read    = debugfs_timings_read,
2226         .write   = debugfs_timings_write,
2227         .llseek  = generic_file_llseek,
2228 };
2229
2230 /* Create a debugfs directory for the vcpu */
2231 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2232 {
2233         char buf[16];
2234         struct kvm *kvm = vcpu->kvm;
2235
2236         snprintf(buf, sizeof(buf), "vcpu%u", id);
2237         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2238                 return;
2239         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2240         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2241                 return;
2242         vcpu->arch.debugfs_timings =
2243                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2244                                     vcpu, &debugfs_timings_ops);
2245 }
2246
2247 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2248 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2249 {
2250 }
2251 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2252
2253 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2254                                                    unsigned int id)
2255 {
2256         struct kvm_vcpu *vcpu;
2257         int err;
2258         int core;
2259         struct kvmppc_vcore *vcore;
2260
2261         err = -ENOMEM;
2262         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2263         if (!vcpu)
2264                 goto out;
2265
2266         err = kvm_vcpu_init(vcpu, kvm, id);
2267         if (err)
2268                 goto free_vcpu;
2269
2270         vcpu->arch.shared = &vcpu->arch.shregs;
2271 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2272         /*
2273          * The shared struct is never shared on HV,
2274          * so we can always use host endianness
2275          */
2276 #ifdef __BIG_ENDIAN__
2277         vcpu->arch.shared_big_endian = true;
2278 #else
2279         vcpu->arch.shared_big_endian = false;
2280 #endif
2281 #endif
2282         vcpu->arch.mmcr[0] = MMCR0_FC;
2283         vcpu->arch.ctrl = CTRL_RUNLATCH;
2284         /* default to host PVR, since we can't spoof it */
2285         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2286         spin_lock_init(&vcpu->arch.vpa_update_lock);
2287         spin_lock_init(&vcpu->arch.tbacct_lock);
2288         vcpu->arch.busy_preempt = TB_NIL;
2289         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2290
2291         /*
2292          * Set the default HFSCR for the guest from the host value.
2293          * This value is only used on POWER9.
2294          * On POWER9, we want to virtualize the doorbell facility, so we
2295          * don't set the HFSCR_MSGP bit, and that causes those instructions
2296          * to trap and then we emulate them.
2297          */
2298         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2299                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2300         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2301                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2302                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2303                         vcpu->arch.hfscr |= HFSCR_TM;
2304         }
2305         if (cpu_has_feature(CPU_FTR_TM_COMP))
2306                 vcpu->arch.hfscr |= HFSCR_TM;
2307
2308         kvmppc_mmu_book3s_hv_init(vcpu);
2309
2310         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2311
2312         init_waitqueue_head(&vcpu->arch.cpu_run);
2313
2314         mutex_lock(&kvm->lock);
2315         vcore = NULL;
2316         err = -EINVAL;
2317         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2318                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2319                         pr_devel("KVM: VCPU ID too high\n");
2320                         core = KVM_MAX_VCORES;
2321                 } else {
2322                         BUG_ON(kvm->arch.smt_mode != 1);
2323                         core = kvmppc_pack_vcpu_id(kvm, id);
2324                 }
2325         } else {
2326                 core = id / kvm->arch.smt_mode;
2327         }
2328         if (core < KVM_MAX_VCORES) {
2329                 vcore = kvm->arch.vcores[core];
2330                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2331                         pr_devel("KVM: collision on id %u", id);
2332                         vcore = NULL;
2333                 } else if (!vcore) {
2334                         /*
2335                          * Take mmu_setup_lock for mutual exclusion
2336                          * with kvmppc_update_lpcr().
2337                          */
2338                         err = -ENOMEM;
2339                         vcore = kvmppc_vcore_create(kvm,
2340                                         id & ~(kvm->arch.smt_mode - 1));
2341                         mutex_lock(&kvm->arch.mmu_setup_lock);
2342                         kvm->arch.vcores[core] = vcore;
2343                         kvm->arch.online_vcores++;
2344                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2345                 }
2346         }
2347         mutex_unlock(&kvm->lock);
2348
2349         if (!vcore)
2350                 goto free_vcpu;
2351
2352         spin_lock(&vcore->lock);
2353         ++vcore->num_threads;
2354         spin_unlock(&vcore->lock);
2355         vcpu->arch.vcore = vcore;
2356         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2357         vcpu->arch.thread_cpu = -1;
2358         vcpu->arch.prev_cpu = -1;
2359
2360         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2361         kvmppc_sanity_check(vcpu);
2362
2363         debugfs_vcpu_init(vcpu, id);
2364
2365         return vcpu;
2366
2367 free_vcpu:
2368         kmem_cache_free(kvm_vcpu_cache, vcpu);
2369 out:
2370         return ERR_PTR(err);
2371 }
2372
2373 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2374                               unsigned long flags)
2375 {
2376         int err;
2377         int esmt = 0;
2378
2379         if (flags)
2380                 return -EINVAL;
2381         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2382                 return -EINVAL;
2383         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2384                 /*
2385                  * On POWER8 (or POWER7), the threading mode is "strict",
2386                  * so we pack smt_mode vcpus per vcore.
2387                  */
2388                 if (smt_mode > threads_per_subcore)
2389                         return -EINVAL;
2390         } else {
2391                 /*
2392                  * On POWER9, the threading mode is "loose",
2393                  * so each vcpu gets its own vcore.
2394                  */
2395                 esmt = smt_mode;
2396                 smt_mode = 1;
2397         }
2398         mutex_lock(&kvm->lock);
2399         err = -EBUSY;
2400         if (!kvm->arch.online_vcores) {
2401                 kvm->arch.smt_mode = smt_mode;
2402                 kvm->arch.emul_smt_mode = esmt;
2403                 err = 0;
2404         }
2405         mutex_unlock(&kvm->lock);
2406
2407         return err;
2408 }
2409
2410 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2411 {
2412         if (vpa->pinned_addr)
2413                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2414                                         vpa->dirty);
2415 }
2416
2417 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2418 {
2419         spin_lock(&vcpu->arch.vpa_update_lock);
2420         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2421         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2422         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2423         spin_unlock(&vcpu->arch.vpa_update_lock);
2424         kvm_vcpu_uninit(vcpu);
2425         kmem_cache_free(kvm_vcpu_cache, vcpu);
2426 }
2427
2428 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2429 {
2430         /* Indicate we want to get back into the guest */
2431         return 1;
2432 }
2433
2434 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2435 {
2436         unsigned long dec_nsec, now;
2437
2438         now = get_tb();
2439         if (now > vcpu->arch.dec_expires) {
2440                 /* decrementer has already gone negative */
2441                 kvmppc_core_queue_dec(vcpu);
2442                 kvmppc_core_prepare_to_enter(vcpu);
2443                 return;
2444         }
2445         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2446         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2447         vcpu->arch.timer_running = 1;
2448 }
2449
2450 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2451 {
2452         vcpu->arch.ceded = 0;
2453         if (vcpu->arch.timer_running) {
2454                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2455                 vcpu->arch.timer_running = 0;
2456         }
2457 }
2458
2459 extern int __kvmppc_vcore_entry(void);
2460
2461 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2462                                    struct kvm_vcpu *vcpu)
2463 {
2464         u64 now;
2465
2466         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2467                 return;
2468         spin_lock_irq(&vcpu->arch.tbacct_lock);
2469         now = mftb();
2470         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2471                 vcpu->arch.stolen_logged;
2472         vcpu->arch.busy_preempt = now;
2473         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2474         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2475         --vc->n_runnable;
2476         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2477 }
2478
2479 static int kvmppc_grab_hwthread(int cpu)
2480 {
2481         struct paca_struct *tpaca;
2482         long timeout = 10000;
2483
2484         tpaca = paca_ptrs[cpu];
2485
2486         /* Ensure the thread won't go into the kernel if it wakes */
2487         tpaca->kvm_hstate.kvm_vcpu = NULL;
2488         tpaca->kvm_hstate.kvm_vcore = NULL;
2489         tpaca->kvm_hstate.napping = 0;
2490         smp_wmb();
2491         tpaca->kvm_hstate.hwthread_req = 1;
2492
2493         /*
2494          * If the thread is already executing in the kernel (e.g. handling
2495          * a stray interrupt), wait for it to get back to nap mode.
2496          * The smp_mb() is to ensure that our setting of hwthread_req
2497          * is visible before we look at hwthread_state, so if this
2498          * races with the code at system_reset_pSeries and the thread
2499          * misses our setting of hwthread_req, we are sure to see its
2500          * setting of hwthread_state, and vice versa.
2501          */
2502         smp_mb();
2503         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2504                 if (--timeout <= 0) {
2505                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2506                         return -EBUSY;
2507                 }
2508                 udelay(1);
2509         }
2510         return 0;
2511 }
2512
2513 static void kvmppc_release_hwthread(int cpu)
2514 {
2515         struct paca_struct *tpaca;
2516
2517         tpaca = paca_ptrs[cpu];
2518         tpaca->kvm_hstate.hwthread_req = 0;
2519         tpaca->kvm_hstate.kvm_vcpu = NULL;
2520         tpaca->kvm_hstate.kvm_vcore = NULL;
2521         tpaca->kvm_hstate.kvm_split_mode = NULL;
2522 }
2523
2524 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2525 {
2526         struct kvm_nested_guest *nested = vcpu->arch.nested;
2527         cpumask_t *cpu_in_guest;
2528         int i;
2529
2530         cpu = cpu_first_thread_sibling(cpu);
2531         if (nested) {
2532                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2533                 cpu_in_guest = &nested->cpu_in_guest;
2534         } else {
2535                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2536                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2537         }
2538         /*
2539          * Make sure setting of bit in need_tlb_flush precedes
2540          * testing of cpu_in_guest bits.  The matching barrier on
2541          * the other side is the first smp_mb() in kvmppc_run_core().
2542          */
2543         smp_mb();
2544         for (i = 0; i < threads_per_core; ++i)
2545                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2546                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2547 }
2548
2549 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2550 {
2551         struct kvm_nested_guest *nested = vcpu->arch.nested;
2552         struct kvm *kvm = vcpu->kvm;
2553         int prev_cpu;
2554
2555         if (!cpu_has_feature(CPU_FTR_HVMODE))
2556                 return;
2557
2558         if (nested)
2559                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2560         else
2561                 prev_cpu = vcpu->arch.prev_cpu;
2562
2563         /*
2564          * With radix, the guest can do TLB invalidations itself,
2565          * and it could choose to use the local form (tlbiel) if
2566          * it is invalidating a translation that has only ever been
2567          * used on one vcpu.  However, that doesn't mean it has
2568          * only ever been used on one physical cpu, since vcpus
2569          * can move around between pcpus.  To cope with this, when
2570          * a vcpu moves from one pcpu to another, we need to tell
2571          * any vcpus running on the same core as this vcpu previously
2572          * ran to flush the TLB.  The TLB is shared between threads,
2573          * so we use a single bit in .need_tlb_flush for all 4 threads.
2574          */
2575         if (prev_cpu != pcpu) {
2576                 if (prev_cpu >= 0 &&
2577                     cpu_first_thread_sibling(prev_cpu) !=
2578                     cpu_first_thread_sibling(pcpu))
2579                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2580                 if (nested)
2581                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2582                 else
2583                         vcpu->arch.prev_cpu = pcpu;
2584         }
2585 }
2586
2587 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2588 {
2589         int cpu;
2590         struct paca_struct *tpaca;
2591         struct kvm *kvm = vc->kvm;
2592
2593         cpu = vc->pcpu;
2594         if (vcpu) {
2595                 if (vcpu->arch.timer_running) {
2596                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2597                         vcpu->arch.timer_running = 0;
2598                 }
2599                 cpu += vcpu->arch.ptid;
2600                 vcpu->cpu = vc->pcpu;
2601                 vcpu->arch.thread_cpu = cpu;
2602                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2603         }
2604         tpaca = paca_ptrs[cpu];
2605         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2606         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2607         tpaca->kvm_hstate.fake_suspend = 0;
2608         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2609         smp_wmb();
2610         tpaca->kvm_hstate.kvm_vcore = vc;
2611         if (cpu != smp_processor_id())
2612                 kvmppc_ipi_thread(cpu);
2613 }
2614
2615 static void kvmppc_wait_for_nap(int n_threads)
2616 {
2617         int cpu = smp_processor_id();
2618         int i, loops;
2619
2620         if (n_threads <= 1)
2621                 return;
2622         for (loops = 0; loops < 1000000; ++loops) {
2623                 /*
2624                  * Check if all threads are finished.
2625                  * We set the vcore pointer when starting a thread
2626                  * and the thread clears it when finished, so we look
2627                  * for any threads that still have a non-NULL vcore ptr.
2628                  */
2629                 for (i = 1; i < n_threads; ++i)
2630                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2631                                 break;
2632                 if (i == n_threads) {
2633                         HMT_medium();
2634                         return;
2635                 }
2636                 HMT_low();
2637         }
2638         HMT_medium();
2639         for (i = 1; i < n_threads; ++i)
2640                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2641                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2642 }
2643
2644 /*
2645  * Check that we are on thread 0 and that any other threads in
2646  * this core are off-line.  Then grab the threads so they can't
2647  * enter the kernel.
2648  */
2649 static int on_primary_thread(void)
2650 {
2651         int cpu = smp_processor_id();
2652         int thr;
2653
2654         /* Are we on a primary subcore? */
2655         if (cpu_thread_in_subcore(cpu))
2656                 return 0;
2657
2658         thr = 0;
2659         while (++thr < threads_per_subcore)
2660                 if (cpu_online(cpu + thr))
2661                         return 0;
2662
2663         /* Grab all hw threads so they can't go into the kernel */
2664         for (thr = 1; thr < threads_per_subcore; ++thr) {
2665                 if (kvmppc_grab_hwthread(cpu + thr)) {
2666                         /* Couldn't grab one; let the others go */
2667                         do {
2668                                 kvmppc_release_hwthread(cpu + thr);
2669                         } while (--thr > 0);
2670                         return 0;
2671                 }
2672         }
2673         return 1;
2674 }
2675
2676 /*
2677  * A list of virtual cores for each physical CPU.
2678  * These are vcores that could run but their runner VCPU tasks are
2679  * (or may be) preempted.
2680  */
2681 struct preempted_vcore_list {
2682         struct list_head        list;
2683         spinlock_t              lock;
2684 };
2685
2686 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2687
2688 static void init_vcore_lists(void)
2689 {
2690         int cpu;
2691
2692         for_each_possible_cpu(cpu) {
2693                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2694                 spin_lock_init(&lp->lock);
2695                 INIT_LIST_HEAD(&lp->list);
2696         }
2697 }
2698
2699 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2700 {
2701         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2702
2703         vc->vcore_state = VCORE_PREEMPT;
2704         vc->pcpu = smp_processor_id();
2705         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2706                 spin_lock(&lp->lock);
2707                 list_add_tail(&vc->preempt_list, &lp->list);
2708                 spin_unlock(&lp->lock);
2709         }
2710
2711         /* Start accumulating stolen time */
2712         kvmppc_core_start_stolen(vc);
2713 }
2714
2715 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2716 {
2717         struct preempted_vcore_list *lp;
2718
2719         kvmppc_core_end_stolen(vc);
2720         if (!list_empty(&vc->preempt_list)) {
2721                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2722                 spin_lock(&lp->lock);
2723                 list_del_init(&vc->preempt_list);
2724                 spin_unlock(&lp->lock);
2725         }
2726         vc->vcore_state = VCORE_INACTIVE;
2727 }
2728
2729 /*
2730  * This stores information about the virtual cores currently
2731  * assigned to a physical core.
2732  */
2733 struct core_info {
2734         int             n_subcores;
2735         int             max_subcore_threads;
2736         int             total_threads;
2737         int             subcore_threads[MAX_SUBCORES];
2738         struct kvmppc_vcore *vc[MAX_SUBCORES];
2739 };
2740
2741 /*
2742  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2743  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2744  */
2745 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2746
2747 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2748 {
2749         memset(cip, 0, sizeof(*cip));
2750         cip->n_subcores = 1;
2751         cip->max_subcore_threads = vc->num_threads;
2752         cip->total_threads = vc->num_threads;
2753         cip->subcore_threads[0] = vc->num_threads;
2754         cip->vc[0] = vc;
2755 }
2756
2757 static bool subcore_config_ok(int n_subcores, int n_threads)
2758 {
2759         /*
2760          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2761          * split-core mode, with one thread per subcore.
2762          */
2763         if (cpu_has_feature(CPU_FTR_ARCH_300))
2764                 return n_subcores <= 4 && n_threads == 1;
2765
2766         /* On POWER8, can only dynamically split if unsplit to begin with */
2767         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2768                 return false;
2769         if (n_subcores > MAX_SUBCORES)
2770                 return false;
2771         if (n_subcores > 1) {
2772                 if (!(dynamic_mt_modes & 2))
2773                         n_subcores = 4;
2774                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2775                         return false;
2776         }
2777
2778         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2779 }
2780
2781 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2782 {
2783         vc->entry_exit_map = 0;
2784         vc->in_guest = 0;
2785         vc->napping_threads = 0;
2786         vc->conferring_threads = 0;
2787         vc->tb_offset_applied = 0;
2788 }
2789
2790 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2791 {
2792         int n_threads = vc->num_threads;
2793         int sub;
2794
2795         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2796                 return false;
2797
2798         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2799         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2800                 return false;
2801
2802         /* Some POWER9 chips require all threads to be in the same MMU mode */
2803         if (no_mixing_hpt_and_radix &&
2804             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2805                 return false;
2806
2807         if (n_threads < cip->max_subcore_threads)
2808                 n_threads = cip->max_subcore_threads;
2809         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2810                 return false;
2811         cip->max_subcore_threads = n_threads;
2812
2813         sub = cip->n_subcores;
2814         ++cip->n_subcores;
2815         cip->total_threads += vc->num_threads;
2816         cip->subcore_threads[sub] = vc->num_threads;
2817         cip->vc[sub] = vc;
2818         init_vcore_to_run(vc);
2819         list_del_init(&vc->preempt_list);
2820
2821         return true;
2822 }
2823
2824 /*
2825  * Work out whether it is possible to piggyback the execution of
2826  * vcore *pvc onto the execution of the other vcores described in *cip.
2827  */
2828 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2829                           int target_threads)
2830 {
2831         if (cip->total_threads + pvc->num_threads > target_threads)
2832                 return false;
2833
2834         return can_dynamic_split(pvc, cip);
2835 }
2836
2837 static void prepare_threads(struct kvmppc_vcore *vc)
2838 {
2839         int i;
2840         struct kvm_vcpu *vcpu;
2841
2842         for_each_runnable_thread(i, vcpu, vc) {
2843                 if (signal_pending(vcpu->arch.run_task))
2844                         vcpu->arch.ret = -EINTR;
2845                 else if (vcpu->arch.vpa.update_pending ||
2846                          vcpu->arch.slb_shadow.update_pending ||
2847                          vcpu->arch.dtl.update_pending)
2848                         vcpu->arch.ret = RESUME_GUEST;
2849                 else
2850                         continue;
2851                 kvmppc_remove_runnable(vc, vcpu);
2852                 wake_up(&vcpu->arch.cpu_run);
2853         }
2854 }
2855
2856 static void collect_piggybacks(struct core_info *cip, int target_threads)
2857 {
2858         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2859         struct kvmppc_vcore *pvc, *vcnext;
2860
2861         spin_lock(&lp->lock);
2862         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2863                 if (!spin_trylock(&pvc->lock))
2864                         continue;
2865                 prepare_threads(pvc);
2866                 if (!pvc->n_runnable) {
2867                         list_del_init(&pvc->preempt_list);
2868                         if (pvc->runner == NULL) {
2869                                 pvc->vcore_state = VCORE_INACTIVE;
2870                                 kvmppc_core_end_stolen(pvc);
2871                         }
2872                         spin_unlock(&pvc->lock);
2873                         continue;
2874                 }
2875                 if (!can_piggyback(pvc, cip, target_threads)) {
2876                         spin_unlock(&pvc->lock);
2877                         continue;
2878                 }
2879                 kvmppc_core_end_stolen(pvc);
2880                 pvc->vcore_state = VCORE_PIGGYBACK;
2881                 if (cip->total_threads >= target_threads)
2882                         break;
2883         }
2884         spin_unlock(&lp->lock);
2885 }
2886
2887 static bool recheck_signals(struct core_info *cip)
2888 {
2889         int sub, i;
2890         struct kvm_vcpu *vcpu;
2891
2892         for (sub = 0; sub < cip->n_subcores; ++sub)
2893                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2894                         if (signal_pending(vcpu->arch.run_task))
2895                                 return true;
2896         return false;
2897 }
2898
2899 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2900 {
2901         int still_running = 0, i;
2902         u64 now;
2903         long ret;
2904         struct kvm_vcpu *vcpu;
2905
2906         spin_lock(&vc->lock);
2907         now = get_tb();
2908         for_each_runnable_thread(i, vcpu, vc) {
2909                 /*
2910                  * It's safe to unlock the vcore in the loop here, because
2911                  * for_each_runnable_thread() is safe against removal of
2912                  * the vcpu, and the vcore state is VCORE_EXITING here,
2913                  * so any vcpus becoming runnable will have their arch.trap
2914                  * set to zero and can't actually run in the guest.
2915                  */
2916                 spin_unlock(&vc->lock);
2917                 /* cancel pending dec exception if dec is positive */
2918                 if (now < vcpu->arch.dec_expires &&
2919                     kvmppc_core_pending_dec(vcpu))
2920                         kvmppc_core_dequeue_dec(vcpu);
2921
2922                 trace_kvm_guest_exit(vcpu);
2923
2924                 ret = RESUME_GUEST;
2925                 if (vcpu->arch.trap)
2926                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2927                                                     vcpu->arch.run_task);
2928
2929                 vcpu->arch.ret = ret;
2930                 vcpu->arch.trap = 0;
2931
2932                 spin_lock(&vc->lock);
2933                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2934                         if (vcpu->arch.pending_exceptions)
2935                                 kvmppc_core_prepare_to_enter(vcpu);
2936                         if (vcpu->arch.ceded)
2937                                 kvmppc_set_timer(vcpu);
2938                         else
2939                                 ++still_running;
2940                 } else {
2941                         kvmppc_remove_runnable(vc, vcpu);
2942                         wake_up(&vcpu->arch.cpu_run);
2943                 }
2944         }
2945         if (!is_master) {
2946                 if (still_running > 0) {
2947                         kvmppc_vcore_preempt(vc);
2948                 } else if (vc->runner) {
2949                         vc->vcore_state = VCORE_PREEMPT;
2950                         kvmppc_core_start_stolen(vc);
2951                 } else {
2952                         vc->vcore_state = VCORE_INACTIVE;
2953                 }
2954                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2955                         /* make sure there's a candidate runner awake */
2956                         i = -1;
2957                         vcpu = next_runnable_thread(vc, &i);
2958                         wake_up(&vcpu->arch.cpu_run);
2959                 }
2960         }
2961         spin_unlock(&vc->lock);
2962 }
2963
2964 /*
2965  * Clear core from the list of active host cores as we are about to
2966  * enter the guest. Only do this if it is the primary thread of the
2967  * core (not if a subcore) that is entering the guest.
2968  */
2969 static inline int kvmppc_clear_host_core(unsigned int cpu)
2970 {
2971         int core;
2972
2973         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2974                 return 0;
2975         /*
2976          * Memory barrier can be omitted here as we will do a smp_wmb()
2977          * later in kvmppc_start_thread and we need ensure that state is
2978          * visible to other CPUs only after we enter guest.
2979          */
2980         core = cpu >> threads_shift;
2981         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2982         return 0;
2983 }
2984
2985 /*
2986  * Advertise this core as an active host core since we exited the guest
2987  * Only need to do this if it is the primary thread of the core that is
2988  * exiting.
2989  */
2990 static inline int kvmppc_set_host_core(unsigned int cpu)
2991 {
2992         int core;
2993
2994         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2995                 return 0;
2996
2997         /*
2998          * Memory barrier can be omitted here because we do a spin_unlock
2999          * immediately after this which provides the memory barrier.
3000          */
3001         core = cpu >> threads_shift;
3002         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3003         return 0;
3004 }
3005
3006 static void set_irq_happened(int trap)
3007 {
3008         switch (trap) {
3009         case BOOK3S_INTERRUPT_EXTERNAL:
3010                 local_paca->irq_happened |= PACA_IRQ_EE;
3011                 break;
3012         case BOOK3S_INTERRUPT_H_DOORBELL:
3013                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3014                 break;
3015         case BOOK3S_INTERRUPT_HMI:
3016                 local_paca->irq_happened |= PACA_IRQ_HMI;
3017                 break;
3018         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3019                 replay_system_reset();
3020                 break;
3021         }
3022 }
3023
3024 /*
3025  * Run a set of guest threads on a physical core.
3026  * Called with vc->lock held.
3027  */
3028 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3029 {
3030         struct kvm_vcpu *vcpu;
3031         int i;
3032         int srcu_idx;
3033         struct core_info core_info;
3034         struct kvmppc_vcore *pvc;
3035         struct kvm_split_mode split_info, *sip;
3036         int split, subcore_size, active;
3037         int sub;
3038         bool thr0_done;
3039         unsigned long cmd_bit, stat_bit;
3040         int pcpu, thr;
3041         int target_threads;
3042         int controlled_threads;
3043         int trap;
3044         bool is_power8;
3045         bool hpt_on_radix;
3046
3047         /*
3048          * Remove from the list any threads that have a signal pending
3049          * or need a VPA update done
3050          */
3051         prepare_threads(vc);
3052
3053         /* if the runner is no longer runnable, let the caller pick a new one */
3054         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3055                 return;
3056
3057         /*
3058          * Initialize *vc.
3059          */
3060         init_vcore_to_run(vc);
3061         vc->preempt_tb = TB_NIL;
3062
3063         /*
3064          * Number of threads that we will be controlling: the same as
3065          * the number of threads per subcore, except on POWER9,
3066          * where it's 1 because the threads are (mostly) independent.
3067          */
3068         controlled_threads = threads_per_vcore(vc->kvm);
3069
3070         /*
3071          * Make sure we are running on primary threads, and that secondary
3072          * threads are offline.  Also check if the number of threads in this
3073          * guest are greater than the current system threads per guest.
3074          * On POWER9, we need to be not in independent-threads mode if
3075          * this is a HPT guest on a radix host machine where the
3076          * CPU threads may not be in different MMU modes.
3077          */
3078         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3079                 !kvm_is_radix(vc->kvm);
3080         if (((controlled_threads > 1) &&
3081              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3082             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3083                 for_each_runnable_thread(i, vcpu, vc) {
3084                         vcpu->arch.ret = -EBUSY;
3085                         kvmppc_remove_runnable(vc, vcpu);
3086                         wake_up(&vcpu->arch.cpu_run);
3087                 }
3088                 goto out;
3089         }
3090
3091         /*
3092          * See if we could run any other vcores on the physical core
3093          * along with this one.
3094          */
3095         init_core_info(&core_info, vc);
3096         pcpu = smp_processor_id();
3097         target_threads = controlled_threads;
3098         if (target_smt_mode && target_smt_mode < target_threads)
3099                 target_threads = target_smt_mode;
3100         if (vc->num_threads < target_threads)
3101                 collect_piggybacks(&core_info, target_threads);
3102
3103         /*
3104          * On radix, arrange for TLB flushing if necessary.
3105          * This has to be done before disabling interrupts since
3106          * it uses smp_call_function().
3107          */
3108         pcpu = smp_processor_id();
3109         if (kvm_is_radix(vc->kvm)) {
3110                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3111                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3112                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3113         }
3114
3115         /*
3116          * Hard-disable interrupts, and check resched flag and signals.
3117          * If we need to reschedule or deliver a signal, clean up
3118          * and return without going into the guest(s).
3119          * If the mmu_ready flag has been cleared, don't go into the
3120          * guest because that means a HPT resize operation is in progress.
3121          */
3122         local_irq_disable();
3123         hard_irq_disable();
3124         if (lazy_irq_pending() || need_resched() ||
3125             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3126                 local_irq_enable();
3127                 vc->vcore_state = VCORE_INACTIVE;
3128                 /* Unlock all except the primary vcore */
3129                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3130                         pvc = core_info.vc[sub];
3131                         /* Put back on to the preempted vcores list */
3132                         kvmppc_vcore_preempt(pvc);
3133                         spin_unlock(&pvc->lock);
3134                 }
3135                 for (i = 0; i < controlled_threads; ++i)
3136                         kvmppc_release_hwthread(pcpu + i);
3137                 return;
3138         }
3139
3140         kvmppc_clear_host_core(pcpu);
3141
3142         /* Decide on micro-threading (split-core) mode */
3143         subcore_size = threads_per_subcore;
3144         cmd_bit = stat_bit = 0;
3145         split = core_info.n_subcores;
3146         sip = NULL;
3147         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3148                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3149
3150         if (split > 1 || hpt_on_radix) {
3151                 sip = &split_info;
3152                 memset(&split_info, 0, sizeof(split_info));
3153                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3154                         split_info.vc[sub] = core_info.vc[sub];
3155
3156                 if (is_power8) {
3157                         if (split == 2 && (dynamic_mt_modes & 2)) {
3158                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3159                                 stat_bit = HID0_POWER8_2LPARMODE;
3160                         } else {
3161                                 split = 4;
3162                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3163                                 stat_bit = HID0_POWER8_4LPARMODE;
3164                         }
3165                         subcore_size = MAX_SMT_THREADS / split;
3166                         split_info.rpr = mfspr(SPRN_RPR);
3167                         split_info.pmmar = mfspr(SPRN_PMMAR);
3168                         split_info.ldbar = mfspr(SPRN_LDBAR);
3169                         split_info.subcore_size = subcore_size;
3170                 } else {
3171                         split_info.subcore_size = 1;
3172                         if (hpt_on_radix) {
3173                                 /* Use the split_info for LPCR/LPIDR changes */
3174                                 split_info.lpcr_req = vc->lpcr;
3175                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3176                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3177                                 split_info.do_set = 1;
3178                         }
3179                 }
3180
3181                 /* order writes to split_info before kvm_split_mode pointer */
3182                 smp_wmb();
3183         }
3184
3185         for (thr = 0; thr < controlled_threads; ++thr) {
3186                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3187
3188                 paca->kvm_hstate.tid = thr;
3189                 paca->kvm_hstate.napping = 0;
3190                 paca->kvm_hstate.kvm_split_mode = sip;
3191         }
3192
3193         /* Initiate micro-threading (split-core) on POWER8 if required */
3194         if (cmd_bit) {
3195                 unsigned long hid0 = mfspr(SPRN_HID0);
3196
3197                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3198                 mb();
3199                 mtspr(SPRN_HID0, hid0);
3200                 isync();
3201                 for (;;) {
3202                         hid0 = mfspr(SPRN_HID0);
3203                         if (hid0 & stat_bit)
3204                                 break;
3205                         cpu_relax();
3206                 }
3207         }
3208
3209         /*
3210          * On POWER8, set RWMR register.
3211          * Since it only affects PURR and SPURR, it doesn't affect
3212          * the host, so we don't save/restore the host value.
3213          */
3214         if (is_power8) {
3215                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3216                 int n_online = atomic_read(&vc->online_count);
3217
3218                 /*
3219                  * Use the 8-thread value if we're doing split-core
3220                  * or if the vcore's online count looks bogus.
3221                  */
3222                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3223                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3224                         rwmr_val = p8_rwmr_values[n_online];
3225                 mtspr(SPRN_RWMR, rwmr_val);
3226         }
3227
3228         /* Start all the threads */
3229         active = 0;
3230         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3231                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3232                 thr0_done = false;
3233                 active |= 1 << thr;
3234                 pvc = core_info.vc[sub];
3235                 pvc->pcpu = pcpu + thr;
3236                 for_each_runnable_thread(i, vcpu, pvc) {
3237                         kvmppc_start_thread(vcpu, pvc);
3238                         kvmppc_create_dtl_entry(vcpu, pvc);
3239                         trace_kvm_guest_enter(vcpu);
3240                         if (!vcpu->arch.ptid)
3241                                 thr0_done = true;
3242                         active |= 1 << (thr + vcpu->arch.ptid);
3243                 }
3244                 /*
3245                  * We need to start the first thread of each subcore
3246                  * even if it doesn't have a vcpu.
3247                  */
3248                 if (!thr0_done)
3249                         kvmppc_start_thread(NULL, pvc);
3250         }
3251
3252         /*
3253          * Ensure that split_info.do_nap is set after setting
3254          * the vcore pointer in the PACA of the secondaries.
3255          */
3256         smp_mb();
3257
3258         /*
3259          * When doing micro-threading, poke the inactive threads as well.
3260          * This gets them to the nap instruction after kvm_do_nap,
3261          * which reduces the time taken to unsplit later.
3262          * For POWER9 HPT guest on radix host, we need all the secondary
3263          * threads woken up so they can do the LPCR/LPIDR change.
3264          */
3265         if (cmd_bit || hpt_on_radix) {
3266                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3267                 for (thr = 1; thr < threads_per_subcore; ++thr)
3268                         if (!(active & (1 << thr)))
3269                                 kvmppc_ipi_thread(pcpu + thr);
3270         }
3271
3272         vc->vcore_state = VCORE_RUNNING;
3273         preempt_disable();
3274
3275         trace_kvmppc_run_core(vc, 0);
3276
3277         for (sub = 0; sub < core_info.n_subcores; ++sub)
3278                 spin_unlock(&core_info.vc[sub]->lock);
3279
3280         guest_enter_irqoff();
3281
3282         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3283
3284         this_cpu_disable_ftrace();
3285
3286         /*
3287          * Interrupts will be enabled once we get into the guest,
3288          * so tell lockdep that we're about to enable interrupts.
3289          */
3290         trace_hardirqs_on();
3291
3292         trap = __kvmppc_vcore_entry();
3293
3294         trace_hardirqs_off();
3295
3296         this_cpu_enable_ftrace();
3297
3298         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3299
3300         set_irq_happened(trap);
3301
3302         spin_lock(&vc->lock);
3303         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3304         vc->vcore_state = VCORE_EXITING;
3305
3306         /* wait for secondary threads to finish writing their state to memory */
3307         kvmppc_wait_for_nap(controlled_threads);
3308
3309         /* Return to whole-core mode if we split the core earlier */
3310         if (cmd_bit) {
3311                 unsigned long hid0 = mfspr(SPRN_HID0);
3312                 unsigned long loops = 0;
3313
3314                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3315                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3316                 mb();
3317                 mtspr(SPRN_HID0, hid0);
3318                 isync();
3319                 for (;;) {
3320                         hid0 = mfspr(SPRN_HID0);
3321                         if (!(hid0 & stat_bit))
3322                                 break;
3323                         cpu_relax();
3324                         ++loops;
3325                 }
3326         } else if (hpt_on_radix) {
3327                 /* Wait for all threads to have seen final sync */
3328                 for (thr = 1; thr < controlled_threads; ++thr) {
3329                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3330
3331                         while (paca->kvm_hstate.kvm_split_mode) {
3332                                 HMT_low();
3333                                 barrier();
3334                         }
3335                         HMT_medium();
3336                 }
3337         }
3338         split_info.do_nap = 0;
3339
3340         kvmppc_set_host_core(pcpu);
3341
3342         local_irq_enable();
3343         guest_exit();
3344
3345         /* Let secondaries go back to the offline loop */
3346         for (i = 0; i < controlled_threads; ++i) {
3347                 kvmppc_release_hwthread(pcpu + i);
3348                 if (sip && sip->napped[i])
3349                         kvmppc_ipi_thread(pcpu + i);
3350                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3351         }
3352
3353         spin_unlock(&vc->lock);
3354
3355         /* make sure updates to secondary vcpu structs are visible now */
3356         smp_mb();
3357
3358         preempt_enable();
3359
3360         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3361                 pvc = core_info.vc[sub];
3362                 post_guest_process(pvc, pvc == vc);
3363         }
3364
3365         spin_lock(&vc->lock);
3366
3367  out:
3368         vc->vcore_state = VCORE_INACTIVE;
3369         trace_kvmppc_run_core(vc, 1);
3370 }
3371
3372 /*
3373  * Load up hypervisor-mode registers on P9.
3374  */
3375 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3376                                      unsigned long lpcr)
3377 {
3378         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3379         s64 hdec;
3380         u64 tb, purr, spurr;
3381         int trap;
3382         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3383         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3384         unsigned long host_dawr = mfspr(SPRN_DAWR);
3385         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3386         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3387         unsigned long host_pidr = mfspr(SPRN_PID);
3388
3389         hdec = time_limit - mftb();
3390         if (hdec < 0)
3391                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3392         mtspr(SPRN_HDEC, hdec);
3393
3394         if (vc->tb_offset) {
3395                 u64 new_tb = mftb() + vc->tb_offset;
3396                 mtspr(SPRN_TBU40, new_tb);
3397                 tb = mftb();
3398                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3399                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3400                 vc->tb_offset_applied = vc->tb_offset;
3401         }
3402
3403         if (vc->pcr)
3404                 mtspr(SPRN_PCR, vc->pcr);
3405         mtspr(SPRN_DPDES, vc->dpdes);
3406         mtspr(SPRN_VTB, vc->vtb);
3407
3408         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3409         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3410         mtspr(SPRN_PURR, vcpu->arch.purr);
3411         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3412
3413         if (dawr_enabled()) {
3414                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3415                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3416         }
3417         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3418         mtspr(SPRN_IC, vcpu->arch.ic);
3419         mtspr(SPRN_PID, vcpu->arch.pid);
3420
3421         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3422               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3423
3424         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3425
3426         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3427         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3428         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3429         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3430
3431         mtspr(SPRN_AMOR, ~0UL);
3432
3433         mtspr(SPRN_LPCR, lpcr);
3434         isync();
3435
3436         kvmppc_xive_push_vcpu(vcpu);
3437
3438         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3439         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3440
3441         trap = __kvmhv_vcpu_entry_p9(vcpu);
3442
3443         /* Advance host PURR/SPURR by the amount used by guest */
3444         purr = mfspr(SPRN_PURR);
3445         spurr = mfspr(SPRN_SPURR);
3446         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3447               purr - vcpu->arch.purr);
3448         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3449               spurr - vcpu->arch.spurr);
3450         vcpu->arch.purr = purr;
3451         vcpu->arch.spurr = spurr;
3452
3453         vcpu->arch.ic = mfspr(SPRN_IC);
3454         vcpu->arch.pid = mfspr(SPRN_PID);
3455         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3456
3457         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3458         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3459         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3460         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3461
3462         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3463         mtspr(SPRN_PSSCR, host_psscr |
3464               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3465         mtspr(SPRN_HFSCR, host_hfscr);
3466         mtspr(SPRN_CIABR, host_ciabr);
3467         mtspr(SPRN_DAWR, host_dawr);
3468         mtspr(SPRN_DAWRX, host_dawrx);
3469         mtspr(SPRN_PID, host_pidr);
3470
3471         /*
3472          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3473          * case we interrupted the guest between a tlbie and a ptesync.
3474          */
3475         asm volatile("eieio; tlbsync; ptesync");
3476
3477         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3478         isync();
3479
3480         vc->dpdes = mfspr(SPRN_DPDES);
3481         vc->vtb = mfspr(SPRN_VTB);
3482         mtspr(SPRN_DPDES, 0);
3483         if (vc->pcr)
3484                 mtspr(SPRN_PCR, 0);
3485
3486         if (vc->tb_offset_applied) {
3487                 u64 new_tb = mftb() - vc->tb_offset_applied;
3488                 mtspr(SPRN_TBU40, new_tb);
3489                 tb = mftb();
3490                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3491                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3492                 vc->tb_offset_applied = 0;
3493         }
3494
3495         mtspr(SPRN_HDEC, 0x7fffffff);
3496         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3497
3498         return trap;
3499 }
3500
3501 /*
3502  * Virtual-mode guest entry for POWER9 and later when the host and
3503  * guest are both using the radix MMU.  The LPIDR has already been set.
3504  */
3505 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3506                          unsigned long lpcr)
3507 {
3508         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3509         unsigned long host_dscr = mfspr(SPRN_DSCR);
3510         unsigned long host_tidr = mfspr(SPRN_TIDR);
3511         unsigned long host_iamr = mfspr(SPRN_IAMR);
3512         unsigned long host_amr = mfspr(SPRN_AMR);
3513         s64 dec;
3514         u64 tb;
3515         int trap, save_pmu;
3516
3517         dec = mfspr(SPRN_DEC);
3518         tb = mftb();
3519         if (dec < 512)
3520                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3521         local_paca->kvm_hstate.dec_expires = dec + tb;
3522         if (local_paca->kvm_hstate.dec_expires < time_limit)
3523                 time_limit = local_paca->kvm_hstate.dec_expires;
3524
3525         vcpu->arch.ceded = 0;
3526
3527         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3528
3529         kvmppc_subcore_enter_guest();
3530
3531         vc->entry_exit_map = 1;
3532         vc->in_guest = 1;
3533
3534         if (vcpu->arch.vpa.pinned_addr) {
3535                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3536                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3537                 lp->yield_count = cpu_to_be32(yield_count);
3538                 vcpu->arch.vpa.dirty = 1;
3539         }
3540
3541         if (cpu_has_feature(CPU_FTR_TM) ||
3542             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3543                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3544
3545         kvmhv_load_guest_pmu(vcpu);
3546
3547         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3548         load_fp_state(&vcpu->arch.fp);
3549 #ifdef CONFIG_ALTIVEC
3550         load_vr_state(&vcpu->arch.vr);
3551 #endif
3552         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3553
3554         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3555         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3556         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3557         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3558         mtspr(SPRN_TAR, vcpu->arch.tar);
3559         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3560         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3561         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3562         mtspr(SPRN_WORT, vcpu->arch.wort);
3563         mtspr(SPRN_TIDR, vcpu->arch.tid);
3564         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3565         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3566         mtspr(SPRN_AMR, vcpu->arch.amr);
3567         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3568
3569         if (!(vcpu->arch.ctrl & 1))
3570                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3571
3572         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3573
3574         if (kvmhv_on_pseries()) {
3575                 /* call our hypervisor to load up HV regs and go */
3576                 struct hv_guest_state hvregs;
3577
3578                 kvmhv_save_hv_regs(vcpu, &hvregs);
3579                 hvregs.lpcr = lpcr;
3580                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3581                 hvregs.version = HV_GUEST_STATE_VERSION;
3582                 if (vcpu->arch.nested) {
3583                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3584                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3585                 } else {
3586                         hvregs.lpid = vcpu->kvm->arch.lpid;
3587                         hvregs.vcpu_token = vcpu->vcpu_id;
3588                 }
3589                 hvregs.hdec_expiry = time_limit;
3590                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3591                                           __pa(&vcpu->arch.regs));
3592                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3593                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3594                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3595                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3596
3597                 /* H_CEDE has to be handled now, not later */
3598                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3599                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3600                         kvmppc_nested_cede(vcpu);
3601                         trap = 0;
3602                 }
3603         } else {
3604                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3605         }
3606
3607         vcpu->arch.slb_max = 0;
3608         dec = mfspr(SPRN_DEC);
3609         tb = mftb();
3610         vcpu->arch.dec_expires = dec + tb;
3611         vcpu->cpu = -1;
3612         vcpu->arch.thread_cpu = -1;
3613         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3614
3615         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3616         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3617         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3618         vcpu->arch.tar = mfspr(SPRN_TAR);
3619         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3620         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3621         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3622         vcpu->arch.wort = mfspr(SPRN_WORT);
3623         vcpu->arch.tid = mfspr(SPRN_TIDR);
3624         vcpu->arch.amr = mfspr(SPRN_AMR);
3625         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3626         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3627
3628         mtspr(SPRN_PSPB, 0);
3629         mtspr(SPRN_WORT, 0);
3630         mtspr(SPRN_UAMOR, 0);
3631         mtspr(SPRN_DSCR, host_dscr);
3632         mtspr(SPRN_TIDR, host_tidr);
3633         mtspr(SPRN_IAMR, host_iamr);
3634         mtspr(SPRN_PSPB, 0);
3635
3636         if (host_amr != vcpu->arch.amr)
3637                 mtspr(SPRN_AMR, host_amr);
3638
3639         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3640         store_fp_state(&vcpu->arch.fp);
3641 #ifdef CONFIG_ALTIVEC
3642         store_vr_state(&vcpu->arch.vr);
3643 #endif
3644         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3645
3646         if (cpu_has_feature(CPU_FTR_TM) ||
3647             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3648                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3649
3650         save_pmu = 1;
3651         if (vcpu->arch.vpa.pinned_addr) {
3652                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3653                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3654                 lp->yield_count = cpu_to_be32(yield_count);
3655                 vcpu->arch.vpa.dirty = 1;
3656                 save_pmu = lp->pmcregs_in_use;
3657         }
3658
3659         kvmhv_save_guest_pmu(vcpu, save_pmu);
3660
3661         vc->entry_exit_map = 0x101;
3662         vc->in_guest = 0;
3663
3664         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3665         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3666
3667         kvmhv_load_host_pmu();
3668
3669         kvmppc_subcore_exit_guest();
3670
3671         return trap;
3672 }
3673
3674 /*
3675  * Wait for some other vcpu thread to execute us, and
3676  * wake us up when we need to handle something in the host.
3677  */
3678 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3679                                  struct kvm_vcpu *vcpu, int wait_state)
3680 {
3681         DEFINE_WAIT(wait);
3682
3683         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3684         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3685                 spin_unlock(&vc->lock);
3686                 schedule();
3687                 spin_lock(&vc->lock);
3688         }
3689         finish_wait(&vcpu->arch.cpu_run, &wait);
3690 }
3691
3692 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3693 {
3694         if (!halt_poll_ns_grow)
3695                 return;
3696
3697         vc->halt_poll_ns *= halt_poll_ns_grow;
3698         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3699                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3700 }
3701
3702 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3703 {
3704         if (halt_poll_ns_shrink == 0)
3705                 vc->halt_poll_ns = 0;
3706         else
3707                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3708 }
3709
3710 #ifdef CONFIG_KVM_XICS
3711 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3712 {
3713         if (!xics_on_xive())
3714                 return false;
3715         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3716                 vcpu->arch.xive_saved_state.cppr;
3717 }
3718 #else
3719 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3720 {
3721         return false;
3722 }
3723 #endif /* CONFIG_KVM_XICS */
3724
3725 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3726 {
3727         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3728             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3729                 return true;
3730
3731         return false;
3732 }
3733
3734 /*
3735  * Check to see if any of the runnable vcpus on the vcore have pending
3736  * exceptions or are no longer ceded
3737  */
3738 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3739 {
3740         struct kvm_vcpu *vcpu;
3741         int i;
3742
3743         for_each_runnable_thread(i, vcpu, vc) {
3744                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3745                         return 1;
3746         }
3747
3748         return 0;
3749 }
3750
3751 /*
3752  * All the vcpus in this vcore are idle, so wait for a decrementer
3753  * or external interrupt to one of the vcpus.  vc->lock is held.
3754  */
3755 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3756 {
3757         ktime_t cur, start_poll, start_wait;
3758         int do_sleep = 1;
3759         u64 block_ns;
3760         DECLARE_SWAITQUEUE(wait);
3761
3762         /* Poll for pending exceptions and ceded state */
3763         cur = start_poll = ktime_get();
3764         if (vc->halt_poll_ns) {
3765                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3766                 ++vc->runner->stat.halt_attempted_poll;
3767
3768                 vc->vcore_state = VCORE_POLLING;
3769                 spin_unlock(&vc->lock);
3770
3771                 do {
3772                         if (kvmppc_vcore_check_block(vc)) {
3773                                 do_sleep = 0;
3774                                 break;
3775                         }
3776                         cur = ktime_get();
3777                 } while (single_task_running() && ktime_before(cur, stop));
3778
3779                 spin_lock(&vc->lock);
3780                 vc->vcore_state = VCORE_INACTIVE;
3781
3782                 if (!do_sleep) {
3783                         ++vc->runner->stat.halt_successful_poll;
3784                         goto out;
3785                 }
3786         }
3787
3788         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3789
3790         if (kvmppc_vcore_check_block(vc)) {
3791                 finish_swait(&vc->wq, &wait);
3792                 do_sleep = 0;
3793                 /* If we polled, count this as a successful poll */
3794                 if (vc->halt_poll_ns)
3795                         ++vc->runner->stat.halt_successful_poll;
3796                 goto out;
3797         }
3798
3799         start_wait = ktime_get();
3800
3801         vc->vcore_state = VCORE_SLEEPING;
3802         trace_kvmppc_vcore_blocked(vc, 0);
3803         spin_unlock(&vc->lock);
3804         schedule();
3805         finish_swait(&vc->wq, &wait);
3806         spin_lock(&vc->lock);
3807         vc->vcore_state = VCORE_INACTIVE;
3808         trace_kvmppc_vcore_blocked(vc, 1);
3809         ++vc->runner->stat.halt_successful_wait;
3810
3811         cur = ktime_get();
3812
3813 out:
3814         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3815
3816         /* Attribute wait time */
3817         if (do_sleep) {
3818                 vc->runner->stat.halt_wait_ns +=
3819                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3820                 /* Attribute failed poll time */
3821                 if (vc->halt_poll_ns)
3822                         vc->runner->stat.halt_poll_fail_ns +=
3823                                 ktime_to_ns(start_wait) -
3824                                 ktime_to_ns(start_poll);
3825         } else {
3826                 /* Attribute successful poll time */
3827                 if (vc->halt_poll_ns)
3828                         vc->runner->stat.halt_poll_success_ns +=
3829                                 ktime_to_ns(cur) -
3830                                 ktime_to_ns(start_poll);
3831         }
3832
3833         /* Adjust poll time */
3834         if (halt_poll_ns) {
3835                 if (block_ns <= vc->halt_poll_ns)
3836                         ;
3837                 /* We slept and blocked for longer than the max halt time */
3838                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3839                         shrink_halt_poll_ns(vc);
3840                 /* We slept and our poll time is too small */
3841                 else if (vc->halt_poll_ns < halt_poll_ns &&
3842                                 block_ns < halt_poll_ns)
3843                         grow_halt_poll_ns(vc);
3844                 if (vc->halt_poll_ns > halt_poll_ns)
3845                         vc->halt_poll_ns = halt_poll_ns;
3846         } else
3847                 vc->halt_poll_ns = 0;
3848
3849         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3850 }
3851
3852 /*
3853  * This never fails for a radix guest, as none of the operations it does
3854  * for a radix guest can fail or have a way to report failure.
3855  * kvmhv_run_single_vcpu() relies on this fact.
3856  */
3857 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3858 {
3859         int r = 0;
3860         struct kvm *kvm = vcpu->kvm;
3861
3862         mutex_lock(&kvm->arch.mmu_setup_lock);
3863         if (!kvm->arch.mmu_ready) {
3864                 if (!kvm_is_radix(kvm))
3865                         r = kvmppc_hv_setup_htab_rma(vcpu);
3866                 if (!r) {
3867                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3868                                 kvmppc_setup_partition_table(kvm);
3869                         kvm->arch.mmu_ready = 1;
3870                 }
3871         }
3872         mutex_unlock(&kvm->arch.mmu_setup_lock);
3873         return r;
3874 }
3875
3876 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3877 {
3878         int n_ceded, i, r;
3879         struct kvmppc_vcore *vc;
3880         struct kvm_vcpu *v;
3881
3882         trace_kvmppc_run_vcpu_enter(vcpu);
3883
3884         kvm_run->exit_reason = 0;
3885         vcpu->arch.ret = RESUME_GUEST;
3886         vcpu->arch.trap = 0;
3887         kvmppc_update_vpas(vcpu);
3888
3889         /*
3890          * Synchronize with other threads in this virtual core
3891          */
3892         vc = vcpu->arch.vcore;
3893         spin_lock(&vc->lock);
3894         vcpu->arch.ceded = 0;
3895         vcpu->arch.run_task = current;
3896         vcpu->arch.kvm_run = kvm_run;
3897         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3898         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3899         vcpu->arch.busy_preempt = TB_NIL;
3900         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3901         ++vc->n_runnable;
3902
3903         /*
3904          * This happens the first time this is called for a vcpu.
3905          * If the vcore is already running, we may be able to start
3906          * this thread straight away and have it join in.
3907          */
3908         if (!signal_pending(current)) {
3909                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3910                      vc->vcore_state == VCORE_RUNNING) &&
3911                            !VCORE_IS_EXITING(vc)) {
3912                         kvmppc_create_dtl_entry(vcpu, vc);
3913                         kvmppc_start_thread(vcpu, vc);
3914                         trace_kvm_guest_enter(vcpu);
3915                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3916                         swake_up_one(&vc->wq);
3917                 }
3918
3919         }
3920
3921         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3922                !signal_pending(current)) {
3923                 /* See if the MMU is ready to go */
3924                 if (!vcpu->kvm->arch.mmu_ready) {
3925                         spin_unlock(&vc->lock);
3926                         r = kvmhv_setup_mmu(vcpu);
3927                         spin_lock(&vc->lock);
3928                         if (r) {
3929                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3930                                 kvm_run->fail_entry.
3931                                         hardware_entry_failure_reason = 0;
3932                                 vcpu->arch.ret = r;
3933                                 break;
3934                         }
3935                 }
3936
3937                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3938                         kvmppc_vcore_end_preempt(vc);
3939
3940                 if (vc->vcore_state != VCORE_INACTIVE) {
3941                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3942                         continue;
3943                 }
3944                 for_each_runnable_thread(i, v, vc) {
3945                         kvmppc_core_prepare_to_enter(v);
3946                         if (signal_pending(v->arch.run_task)) {
3947                                 kvmppc_remove_runnable(vc, v);
3948                                 v->stat.signal_exits++;
3949                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3950                                 v->arch.ret = -EINTR;
3951                                 wake_up(&v->arch.cpu_run);
3952                         }
3953                 }
3954                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3955                         break;
3956                 n_ceded = 0;
3957                 for_each_runnable_thread(i, v, vc) {
3958                         if (!kvmppc_vcpu_woken(v))
3959                                 n_ceded += v->arch.ceded;
3960                         else
3961                                 v->arch.ceded = 0;
3962                 }
3963                 vc->runner = vcpu;
3964                 if (n_ceded == vc->n_runnable) {
3965                         kvmppc_vcore_blocked(vc);
3966                 } else if (need_resched()) {
3967                         kvmppc_vcore_preempt(vc);
3968                         /* Let something else run */
3969                         cond_resched_lock(&vc->lock);
3970                         if (vc->vcore_state == VCORE_PREEMPT)
3971                                 kvmppc_vcore_end_preempt(vc);
3972                 } else {
3973                         kvmppc_run_core(vc);
3974                 }
3975                 vc->runner = NULL;
3976         }
3977
3978         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3979                (vc->vcore_state == VCORE_RUNNING ||
3980                 vc->vcore_state == VCORE_EXITING ||
3981                 vc->vcore_state == VCORE_PIGGYBACK))
3982                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3983
3984         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3985                 kvmppc_vcore_end_preempt(vc);
3986
3987         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3988                 kvmppc_remove_runnable(vc, vcpu);
3989                 vcpu->stat.signal_exits++;
3990                 kvm_run->exit_reason = KVM_EXIT_INTR;
3991                 vcpu->arch.ret = -EINTR;
3992         }
3993
3994         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3995                 /* Wake up some vcpu to run the core */
3996                 i = -1;
3997                 v = next_runnable_thread(vc, &i);
3998                 wake_up(&v->arch.cpu_run);
3999         }
4000
4001         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4002         spin_unlock(&vc->lock);
4003         return vcpu->arch.ret;
4004 }
4005
4006 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4007                           struct kvm_vcpu *vcpu, u64 time_limit,
4008                           unsigned long lpcr)
4009 {
4010         int trap, r, pcpu;
4011         int srcu_idx, lpid;
4012         struct kvmppc_vcore *vc;
4013         struct kvm *kvm = vcpu->kvm;
4014         struct kvm_nested_guest *nested = vcpu->arch.nested;
4015
4016         trace_kvmppc_run_vcpu_enter(vcpu);
4017
4018         kvm_run->exit_reason = 0;
4019         vcpu->arch.ret = RESUME_GUEST;
4020         vcpu->arch.trap = 0;
4021
4022         vc = vcpu->arch.vcore;
4023         vcpu->arch.ceded = 0;
4024         vcpu->arch.run_task = current;
4025         vcpu->arch.kvm_run = kvm_run;
4026         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4027         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4028         vcpu->arch.busy_preempt = TB_NIL;
4029         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4030         vc->runnable_threads[0] = vcpu;
4031         vc->n_runnable = 1;
4032         vc->runner = vcpu;
4033
4034         /* See if the MMU is ready to go */
4035         if (!kvm->arch.mmu_ready)
4036                 kvmhv_setup_mmu(vcpu);
4037
4038         if (need_resched())
4039                 cond_resched();
4040
4041         kvmppc_update_vpas(vcpu);
4042
4043         init_vcore_to_run(vc);
4044         vc->preempt_tb = TB_NIL;
4045
4046         preempt_disable();
4047         pcpu = smp_processor_id();
4048         vc->pcpu = pcpu;
4049         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4050
4051         local_irq_disable();
4052         hard_irq_disable();
4053         if (signal_pending(current))
4054                 goto sigpend;
4055         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4056                 goto out;
4057
4058         if (!nested) {
4059                 kvmppc_core_prepare_to_enter(vcpu);
4060                 if (vcpu->arch.doorbell_request) {
4061                         vc->dpdes = 1;
4062                         smp_wmb();
4063                         vcpu->arch.doorbell_request = 0;
4064                 }
4065                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4066                              &vcpu->arch.pending_exceptions))
4067                         lpcr |= LPCR_MER;
4068         } else if (vcpu->arch.pending_exceptions ||
4069                    vcpu->arch.doorbell_request ||
4070                    xive_interrupt_pending(vcpu)) {
4071                 vcpu->arch.ret = RESUME_HOST;
4072                 goto out;
4073         }
4074
4075         kvmppc_clear_host_core(pcpu);
4076
4077         local_paca->kvm_hstate.tid = 0;
4078         local_paca->kvm_hstate.napping = 0;
4079         local_paca->kvm_hstate.kvm_split_mode = NULL;
4080         kvmppc_start_thread(vcpu, vc);
4081         kvmppc_create_dtl_entry(vcpu, vc);
4082         trace_kvm_guest_enter(vcpu);
4083
4084         vc->vcore_state = VCORE_RUNNING;
4085         trace_kvmppc_run_core(vc, 0);
4086
4087         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4088                 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4089                 mtspr(SPRN_LPID, lpid);
4090                 isync();
4091                 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4092         }
4093
4094         guest_enter_irqoff();
4095
4096         srcu_idx = srcu_read_lock(&kvm->srcu);
4097
4098         this_cpu_disable_ftrace();
4099
4100         /* Tell lockdep that we're about to enable interrupts */
4101         trace_hardirqs_on();
4102
4103         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4104         vcpu->arch.trap = trap;
4105
4106         trace_hardirqs_off();
4107
4108         this_cpu_enable_ftrace();
4109
4110         srcu_read_unlock(&kvm->srcu, srcu_idx);
4111
4112         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4113                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4114                 isync();
4115         }
4116
4117         set_irq_happened(trap);
4118
4119         kvmppc_set_host_core(pcpu);
4120
4121         local_irq_enable();
4122         guest_exit();
4123
4124         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4125
4126         preempt_enable();
4127
4128         /* cancel pending decrementer exception if DEC is now positive */
4129         if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
4130                 kvmppc_core_dequeue_dec(vcpu);
4131
4132         trace_kvm_guest_exit(vcpu);
4133         r = RESUME_GUEST;
4134         if (trap) {
4135                 if (!nested)
4136                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4137                 else
4138                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4139         }
4140         vcpu->arch.ret = r;
4141
4142         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4143             !kvmppc_vcpu_woken(vcpu)) {
4144                 kvmppc_set_timer(vcpu);
4145                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4146                         if (signal_pending(current)) {
4147                                 vcpu->stat.signal_exits++;
4148                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4149                                 vcpu->arch.ret = -EINTR;
4150                                 break;
4151                         }
4152                         spin_lock(&vc->lock);
4153                         kvmppc_vcore_blocked(vc);
4154                         spin_unlock(&vc->lock);
4155                 }
4156         }
4157         vcpu->arch.ceded = 0;
4158
4159         vc->vcore_state = VCORE_INACTIVE;
4160         trace_kvmppc_run_core(vc, 1);
4161
4162  done:
4163         kvmppc_remove_runnable(vc, vcpu);
4164         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4165
4166         return vcpu->arch.ret;
4167
4168  sigpend:
4169         vcpu->stat.signal_exits++;
4170         kvm_run->exit_reason = KVM_EXIT_INTR;
4171         vcpu->arch.ret = -EINTR;
4172  out:
4173         local_irq_enable();
4174         preempt_enable();
4175         goto done;
4176 }
4177
4178 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4179 {
4180         int r;
4181         int srcu_idx;
4182         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4183         unsigned long user_tar = 0;
4184         unsigned int user_vrsave;
4185         struct kvm *kvm;
4186
4187         if (!vcpu->arch.sane) {
4188                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4189                 return -EINVAL;
4190         }
4191
4192         /*
4193          * Don't allow entry with a suspended transaction, because
4194          * the guest entry/exit code will lose it.
4195          * If the guest has TM enabled, save away their TM-related SPRs
4196          * (they will get restored by the TM unavailable interrupt).
4197          */
4198 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4199         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4200             (current->thread.regs->msr & MSR_TM)) {
4201                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4202                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4203                         run->fail_entry.hardware_entry_failure_reason = 0;
4204                         return -EINVAL;
4205                 }
4206                 /* Enable TM so we can read the TM SPRs */
4207                 mtmsr(mfmsr() | MSR_TM);
4208                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4209                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4210                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4211                 current->thread.regs->msr &= ~MSR_TM;
4212         }
4213 #endif
4214
4215         /*
4216          * Force online to 1 for the sake of old userspace which doesn't
4217          * set it.
4218          */
4219         if (!vcpu->arch.online) {
4220                 atomic_inc(&vcpu->arch.vcore->online_count);
4221                 vcpu->arch.online = 1;
4222         }
4223
4224         kvmppc_core_prepare_to_enter(vcpu);
4225
4226         /* No need to go into the guest when all we'll do is come back out */
4227         if (signal_pending(current)) {
4228                 run->exit_reason = KVM_EXIT_INTR;
4229                 return -EINTR;
4230         }
4231
4232         kvm = vcpu->kvm;
4233         atomic_inc(&kvm->arch.vcpus_running);
4234         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4235         smp_mb();
4236
4237         flush_all_to_thread(current);
4238
4239         /* Save userspace EBB and other register values */
4240         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4241                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4242                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4243                 ebb_regs[2] = mfspr(SPRN_BESCR);
4244                 user_tar = mfspr(SPRN_TAR);
4245         }
4246         user_vrsave = mfspr(SPRN_VRSAVE);
4247
4248         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4249         vcpu->arch.pgdir = current->mm->pgd;
4250         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4251
4252         do {
4253                 /*
4254                  * The early POWER9 chips that can't mix radix and HPT threads
4255                  * on the same core also need the workaround for the problem
4256                  * where the TLB would prefetch entries in the guest exit path
4257                  * for radix guests using the guest PIDR value and LPID 0.
4258                  * The workaround is in the old path (kvmppc_run_vcpu())
4259                  * but not the new path (kvmhv_run_single_vcpu()).
4260                  */
4261                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4262                     !no_mixing_hpt_and_radix)
4263                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4264                                                   vcpu->arch.vcore->lpcr);
4265                 else
4266                         r = kvmppc_run_vcpu(run, vcpu);
4267
4268                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4269                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4270                         trace_kvm_hcall_enter(vcpu);
4271                         r = kvmppc_pseries_do_hcall(vcpu);
4272                         trace_kvm_hcall_exit(vcpu, r);
4273                         kvmppc_core_prepare_to_enter(vcpu);
4274                 } else if (r == RESUME_PAGE_FAULT) {
4275                         srcu_idx = srcu_read_lock(&kvm->srcu);
4276                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4277                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4278                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4279                 } else if (r == RESUME_PASSTHROUGH) {
4280                         if (WARN_ON(xics_on_xive()))
4281                                 r = H_SUCCESS;
4282                         else
4283                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4284                 }
4285         } while (is_kvmppc_resume_guest(r));
4286
4287         /* Restore userspace EBB and other register values */
4288         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4289                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4290                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4291                 mtspr(SPRN_BESCR, ebb_regs[2]);
4292                 mtspr(SPRN_TAR, user_tar);
4293                 mtspr(SPRN_FSCR, current->thread.fscr);
4294         }
4295         mtspr(SPRN_VRSAVE, user_vrsave);
4296
4297         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4298         atomic_dec(&kvm->arch.vcpus_running);
4299         return r;
4300 }
4301
4302 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4303                                      int shift, int sllp)
4304 {
4305         (*sps)->page_shift = shift;
4306         (*sps)->slb_enc = sllp;
4307         (*sps)->enc[0].page_shift = shift;
4308         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4309         /*
4310          * Add 16MB MPSS support (may get filtered out by userspace)
4311          */
4312         if (shift != 24) {
4313                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4314                 if (penc != -1) {
4315                         (*sps)->enc[1].page_shift = 24;
4316                         (*sps)->enc[1].pte_enc = penc;
4317                 }
4318         }
4319         (*sps)++;
4320 }
4321
4322 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4323                                          struct kvm_ppc_smmu_info *info)
4324 {
4325         struct kvm_ppc_one_seg_page_size *sps;
4326
4327         /*
4328          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4329          * POWER7 doesn't support keys for instruction accesses,
4330          * POWER8 and POWER9 do.
4331          */
4332         info->data_keys = 32;
4333         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4334
4335         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4336         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4337         info->slb_size = 32;
4338
4339         /* We only support these sizes for now, and no muti-size segments */
4340         sps = &info->sps[0];
4341         kvmppc_add_seg_page_size(&sps, 12, 0);
4342         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4343         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4344
4345         /* If running as a nested hypervisor, we don't support HPT guests */
4346         if (kvmhv_on_pseries())
4347                 info->flags |= KVM_PPC_NO_HASH;
4348
4349         return 0;
4350 }
4351
4352 /*
4353  * Get (and clear) the dirty memory log for a memory slot.
4354  */
4355 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4356                                          struct kvm_dirty_log *log)
4357 {
4358         struct kvm_memslots *slots;
4359         struct kvm_memory_slot *memslot;
4360         int i, r;
4361         unsigned long n;
4362         unsigned long *buf, *p;
4363         struct kvm_vcpu *vcpu;
4364
4365         mutex_lock(&kvm->slots_lock);
4366
4367         r = -EINVAL;
4368         if (log->slot >= KVM_USER_MEM_SLOTS)
4369                 goto out;
4370
4371         slots = kvm_memslots(kvm);
4372         memslot = id_to_memslot(slots, log->slot);
4373         r = -ENOENT;
4374         if (!memslot->dirty_bitmap)
4375                 goto out;
4376
4377         /*
4378          * Use second half of bitmap area because both HPT and radix
4379          * accumulate bits in the first half.
4380          */
4381         n = kvm_dirty_bitmap_bytes(memslot);
4382         buf = memslot->dirty_bitmap + n / sizeof(long);
4383         memset(buf, 0, n);
4384
4385         if (kvm_is_radix(kvm))
4386                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4387         else
4388                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4389         if (r)
4390                 goto out;
4391
4392         /*
4393          * We accumulate dirty bits in the first half of the
4394          * memslot's dirty_bitmap area, for when pages are paged
4395          * out or modified by the host directly.  Pick up these
4396          * bits and add them to the map.
4397          */
4398         p = memslot->dirty_bitmap;
4399         for (i = 0; i < n / sizeof(long); ++i)
4400                 buf[i] |= xchg(&p[i], 0);
4401
4402         /* Harvest dirty bits from VPA and DTL updates */
4403         /* Note: we never modify the SLB shadow buffer areas */
4404         kvm_for_each_vcpu(i, vcpu, kvm) {
4405                 spin_lock(&vcpu->arch.vpa_update_lock);
4406                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4407                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4408                 spin_unlock(&vcpu->arch.vpa_update_lock);
4409         }
4410
4411         r = -EFAULT;
4412         if (copy_to_user(log->dirty_bitmap, buf, n))
4413                 goto out;
4414
4415         r = 0;
4416 out:
4417         mutex_unlock(&kvm->slots_lock);
4418         return r;
4419 }
4420
4421 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4422                                         struct kvm_memory_slot *dont)
4423 {
4424         if (!dont || free->arch.rmap != dont->arch.rmap) {
4425                 vfree(free->arch.rmap);
4426                 free->arch.rmap = NULL;
4427         }
4428 }
4429
4430 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4431                                          unsigned long npages)
4432 {
4433         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4434         if (!slot->arch.rmap)
4435                 return -ENOMEM;
4436
4437         return 0;
4438 }
4439
4440 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4441                                         struct kvm_memory_slot *memslot,
4442                                         const struct kvm_userspace_memory_region *mem)
4443 {
4444         return 0;
4445 }
4446
4447 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4448                                 const struct kvm_userspace_memory_region *mem,
4449                                 const struct kvm_memory_slot *old,
4450                                 const struct kvm_memory_slot *new,
4451                                 enum kvm_mr_change change)
4452 {
4453         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4454
4455         /*
4456          * If we are making a new memslot, it might make
4457          * some address that was previously cached as emulated
4458          * MMIO be no longer emulated MMIO, so invalidate
4459          * all the caches of emulated MMIO translations.
4460          */
4461         if (npages)
4462                 atomic64_inc(&kvm->arch.mmio_update);
4463
4464         /*
4465          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4466          * have already called kvm_arch_flush_shadow_memslot() to
4467          * flush shadow mappings.  For KVM_MR_CREATE we have no
4468          * previous mappings.  So the only case to handle is
4469          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4470          * has been changed.
4471          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4472          * to get rid of any THP PTEs in the partition-scoped page tables
4473          * so we can track dirtiness at the page level; we flush when
4474          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4475          * using THP PTEs.
4476          */
4477         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4478             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4479                 kvmppc_radix_flush_memslot(kvm, old);
4480 }
4481
4482 /*
4483  * Update LPCR values in kvm->arch and in vcores.
4484  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4485  * of kvm->arch.lpcr update).
4486  */
4487 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4488 {
4489         long int i;
4490         u32 cores_done = 0;
4491
4492         if ((kvm->arch.lpcr & mask) == lpcr)
4493                 return;
4494
4495         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4496
4497         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4498                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4499                 if (!vc)
4500                         continue;
4501                 spin_lock(&vc->lock);
4502                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4503                 spin_unlock(&vc->lock);
4504                 if (++cores_done >= kvm->arch.online_vcores)
4505                         break;
4506         }
4507 }
4508
4509 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4510 {
4511         return;
4512 }
4513
4514 void kvmppc_setup_partition_table(struct kvm *kvm)
4515 {
4516         unsigned long dw0, dw1;
4517
4518         if (!kvm_is_radix(kvm)) {
4519                 /* PS field - page size for VRMA */
4520                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4521                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4522                 /* HTABSIZE and HTABORG fields */
4523                 dw0 |= kvm->arch.sdr1;
4524
4525                 /* Second dword as set by userspace */
4526                 dw1 = kvm->arch.process_table;
4527         } else {
4528                 dw0 = PATB_HR | radix__get_tree_size() |
4529                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4530                 dw1 = PATB_GR | kvm->arch.process_table;
4531         }
4532         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4533 }
4534
4535 /*
4536  * Set up HPT (hashed page table) and RMA (real-mode area).
4537  * Must be called with kvm->arch.mmu_setup_lock held.
4538  */
4539 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4540 {
4541         int err = 0;
4542         struct kvm *kvm = vcpu->kvm;
4543         unsigned long hva;
4544         struct kvm_memory_slot *memslot;
4545         struct vm_area_struct *vma;
4546         unsigned long lpcr = 0, senc;
4547         unsigned long psize, porder;
4548         int srcu_idx;
4549
4550         /* Allocate hashed page table (if not done already) and reset it */
4551         if (!kvm->arch.hpt.virt) {
4552                 int order = KVM_DEFAULT_HPT_ORDER;
4553                 struct kvm_hpt_info info;
4554
4555                 err = kvmppc_allocate_hpt(&info, order);
4556                 /* If we get here, it means userspace didn't specify a
4557                  * size explicitly.  So, try successively smaller
4558                  * sizes if the default failed. */
4559                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4560                         err  = kvmppc_allocate_hpt(&info, order);
4561
4562                 if (err < 0) {
4563                         pr_err("KVM: Couldn't alloc HPT\n");
4564                         goto out;
4565                 }
4566
4567                 kvmppc_set_hpt(kvm, &info);
4568         }
4569
4570         /* Look up the memslot for guest physical address 0 */
4571         srcu_idx = srcu_read_lock(&kvm->srcu);
4572         memslot = gfn_to_memslot(kvm, 0);
4573
4574         /* We must have some memory at 0 by now */
4575         err = -EINVAL;
4576         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4577                 goto out_srcu;
4578
4579         /* Look up the VMA for the start of this memory slot */
4580         hva = memslot->userspace_addr;
4581         down_read(&current->mm->mmap_sem);
4582         vma = find_vma(current->mm, hva);
4583         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4584                 goto up_out;
4585
4586         psize = vma_kernel_pagesize(vma);
4587
4588         up_read(&current->mm->mmap_sem);
4589
4590         /* We can handle 4k, 64k or 16M pages in the VRMA */
4591         if (psize >= 0x1000000)
4592                 psize = 0x1000000;
4593         else if (psize >= 0x10000)
4594                 psize = 0x10000;
4595         else
4596                 psize = 0x1000;
4597         porder = __ilog2(psize);
4598
4599         senc = slb_pgsize_encoding(psize);
4600         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4601                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4602         /* Create HPTEs in the hash page table for the VRMA */
4603         kvmppc_map_vrma(vcpu, memslot, porder);
4604
4605         /* Update VRMASD field in the LPCR */
4606         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4607                 /* the -4 is to account for senc values starting at 0x10 */
4608                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4609                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4610         }
4611
4612         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4613         smp_wmb();
4614         err = 0;
4615  out_srcu:
4616         srcu_read_unlock(&kvm->srcu, srcu_idx);
4617  out:
4618         return err;
4619
4620  up_out:
4621         up_read(&current->mm->mmap_sem);
4622         goto out_srcu;
4623 }
4624
4625 /*
4626  * Must be called with kvm->arch.mmu_setup_lock held and
4627  * mmu_ready = 0 and no vcpus running.
4628  */
4629 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4630 {
4631         if (nesting_enabled(kvm))
4632                 kvmhv_release_all_nested(kvm);
4633         kvmppc_rmap_reset(kvm);
4634         kvm->arch.process_table = 0;
4635         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4636         spin_lock(&kvm->mmu_lock);
4637         kvm->arch.radix = 0;
4638         spin_unlock(&kvm->mmu_lock);
4639         kvmppc_free_radix(kvm);
4640         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4641                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4642         return 0;
4643 }
4644
4645 /*
4646  * Must be called with kvm->arch.mmu_setup_lock held and
4647  * mmu_ready = 0 and no vcpus running.
4648  */
4649 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4650 {
4651         int err;
4652
4653         err = kvmppc_init_vm_radix(kvm);
4654         if (err)
4655                 return err;
4656         kvmppc_rmap_reset(kvm);
4657         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4658         spin_lock(&kvm->mmu_lock);
4659         kvm->arch.radix = 1;
4660         spin_unlock(&kvm->mmu_lock);
4661         kvmppc_free_hpt(&kvm->arch.hpt);
4662         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4663                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4664         return 0;
4665 }
4666
4667 #ifdef CONFIG_KVM_XICS
4668 /*
4669  * Allocate a per-core structure for managing state about which cores are
4670  * running in the host versus the guest and for exchanging data between
4671  * real mode KVM and CPU running in the host.
4672  * This is only done for the first VM.
4673  * The allocated structure stays even if all VMs have stopped.
4674  * It is only freed when the kvm-hv module is unloaded.
4675  * It's OK for this routine to fail, we just don't support host
4676  * core operations like redirecting H_IPI wakeups.
4677  */
4678 void kvmppc_alloc_host_rm_ops(void)
4679 {
4680         struct kvmppc_host_rm_ops *ops;
4681         unsigned long l_ops;
4682         int cpu, core;
4683         int size;
4684
4685         /* Not the first time here ? */
4686         if (kvmppc_host_rm_ops_hv != NULL)
4687                 return;
4688
4689         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4690         if (!ops)
4691                 return;
4692
4693         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4694         ops->rm_core = kzalloc(size, GFP_KERNEL);
4695
4696         if (!ops->rm_core) {
4697                 kfree(ops);
4698                 return;
4699         }
4700
4701         cpus_read_lock();
4702
4703         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4704                 if (!cpu_online(cpu))
4705                         continue;
4706
4707                 core = cpu >> threads_shift;
4708                 ops->rm_core[core].rm_state.in_host = 1;
4709         }
4710
4711         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4712
4713         /*
4714          * Make the contents of the kvmppc_host_rm_ops structure visible
4715          * to other CPUs before we assign it to the global variable.
4716          * Do an atomic assignment (no locks used here), but if someone
4717          * beats us to it, just free our copy and return.
4718          */
4719         smp_wmb();
4720         l_ops = (unsigned long) ops;
4721
4722         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4723                 cpus_read_unlock();
4724                 kfree(ops->rm_core);
4725                 kfree(ops);
4726                 return;
4727         }
4728
4729         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4730                                              "ppc/kvm_book3s:prepare",
4731                                              kvmppc_set_host_core,
4732                                              kvmppc_clear_host_core);
4733         cpus_read_unlock();
4734 }
4735
4736 void kvmppc_free_host_rm_ops(void)
4737 {
4738         if (kvmppc_host_rm_ops_hv) {
4739                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4740                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4741                 kfree(kvmppc_host_rm_ops_hv);
4742                 kvmppc_host_rm_ops_hv = NULL;
4743         }
4744 }
4745 #endif
4746
4747 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4748 {
4749         unsigned long lpcr, lpid;
4750         char buf[32];
4751         int ret;
4752
4753         mutex_init(&kvm->arch.mmu_setup_lock);
4754
4755         /* Allocate the guest's logical partition ID */
4756
4757         lpid = kvmppc_alloc_lpid();
4758         if ((long)lpid < 0)
4759                 return -ENOMEM;
4760         kvm->arch.lpid = lpid;
4761
4762         kvmppc_alloc_host_rm_ops();
4763
4764         kvmhv_vm_nested_init(kvm);
4765
4766         /*
4767          * Since we don't flush the TLB when tearing down a VM,
4768          * and this lpid might have previously been used,
4769          * make sure we flush on each core before running the new VM.
4770          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4771          * does this flush for us.
4772          */
4773         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4774                 cpumask_setall(&kvm->arch.need_tlb_flush);
4775
4776         /* Start out with the default set of hcalls enabled */
4777         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4778                sizeof(kvm->arch.enabled_hcalls));
4779
4780         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4781                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4782
4783         /* Init LPCR for virtual RMA mode */
4784         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4785                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4786                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4787                 lpcr &= LPCR_PECE | LPCR_LPES;
4788         } else {
4789                 lpcr = 0;
4790         }
4791         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4792                 LPCR_VPM0 | LPCR_VPM1;
4793         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4794                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4795         /* On POWER8 turn on online bit to enable PURR/SPURR */
4796         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4797                 lpcr |= LPCR_ONL;
4798         /*
4799          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4800          * Set HVICE bit to enable hypervisor virtualization interrupts.
4801          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4802          * be unnecessary but better safe than sorry in case we re-enable
4803          * EE in HV mode with this LPCR still set)
4804          */
4805         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4806                 lpcr &= ~LPCR_VPM0;
4807                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4808
4809                 /*
4810                  * If xive is enabled, we route 0x500 interrupts directly
4811                  * to the guest.
4812                  */
4813                 if (xics_on_xive())
4814                         lpcr |= LPCR_LPES;
4815         }
4816
4817         /*
4818          * If the host uses radix, the guest starts out as radix.
4819          */
4820         if (radix_enabled()) {
4821                 kvm->arch.radix = 1;
4822                 kvm->arch.mmu_ready = 1;
4823                 lpcr &= ~LPCR_VPM1;
4824                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4825                 ret = kvmppc_init_vm_radix(kvm);
4826                 if (ret) {
4827                         kvmppc_free_lpid(kvm->arch.lpid);
4828                         return ret;
4829                 }
4830                 kvmppc_setup_partition_table(kvm);
4831         }
4832
4833         kvm->arch.lpcr = lpcr;
4834
4835         /* Initialization for future HPT resizes */
4836         kvm->arch.resize_hpt = NULL;
4837
4838         /*
4839          * Work out how many sets the TLB has, for the use of
4840          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4841          */
4842         if (radix_enabled())
4843                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4844         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4845                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4846         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4847                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4848         else
4849                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4850
4851         /*
4852          * Track that we now have a HV mode VM active. This blocks secondary
4853          * CPU threads from coming online.
4854          * On POWER9, we only need to do this if the "indep_threads_mode"
4855          * module parameter has been set to N.
4856          */
4857         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4858                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4859                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4860                         kvm->arch.threads_indep = true;
4861                 } else {
4862                         kvm->arch.threads_indep = indep_threads_mode;
4863                 }
4864         }
4865         if (!kvm->arch.threads_indep)
4866                 kvm_hv_vm_activated();
4867
4868         /*
4869          * Initialize smt_mode depending on processor.
4870          * POWER8 and earlier have to use "strict" threading, where
4871          * all vCPUs in a vcore have to run on the same (sub)core,
4872          * whereas on POWER9 the threads can each run a different
4873          * guest.
4874          */
4875         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4876                 kvm->arch.smt_mode = threads_per_subcore;
4877         else
4878                 kvm->arch.smt_mode = 1;
4879         kvm->arch.emul_smt_mode = 1;
4880
4881         /*
4882          * Create a debugfs directory for the VM
4883          */
4884         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4885         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4886         kvmppc_mmu_debugfs_init(kvm);
4887         if (radix_enabled())
4888                 kvmhv_radix_debugfs_init(kvm);
4889
4890         return 0;
4891 }
4892
4893 static void kvmppc_free_vcores(struct kvm *kvm)
4894 {
4895         long int i;
4896
4897         for (i = 0; i < KVM_MAX_VCORES; ++i)
4898                 kfree(kvm->arch.vcores[i]);
4899         kvm->arch.online_vcores = 0;
4900 }
4901
4902 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4903 {
4904         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4905
4906         if (!kvm->arch.threads_indep)
4907                 kvm_hv_vm_deactivated();
4908
4909         kvmppc_free_vcores(kvm);
4910
4911
4912         if (kvm_is_radix(kvm))
4913                 kvmppc_free_radix(kvm);
4914         else
4915                 kvmppc_free_hpt(&kvm->arch.hpt);
4916
4917         /* Perform global invalidation and return lpid to the pool */
4918         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4919                 if (nesting_enabled(kvm))
4920                         kvmhv_release_all_nested(kvm);
4921                 kvm->arch.process_table = 0;
4922                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4923         }
4924         kvmppc_free_lpid(kvm->arch.lpid);
4925
4926         kvmppc_free_pimap(kvm);
4927 }
4928
4929 /* We don't need to emulate any privileged instructions or dcbz */
4930 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4931                                      unsigned int inst, int *advance)
4932 {
4933         return EMULATE_FAIL;
4934 }
4935
4936 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4937                                         ulong spr_val)
4938 {
4939         return EMULATE_FAIL;
4940 }
4941
4942 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4943                                         ulong *spr_val)
4944 {
4945         return EMULATE_FAIL;
4946 }
4947
4948 static int kvmppc_core_check_processor_compat_hv(void)
4949 {
4950         if (cpu_has_feature(CPU_FTR_HVMODE) &&
4951             cpu_has_feature(CPU_FTR_ARCH_206))
4952                 return 0;
4953
4954         /* POWER9 in radix mode is capable of being a nested hypervisor. */
4955         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4956                 return 0;
4957
4958         return -EIO;
4959 }
4960
4961 #ifdef CONFIG_KVM_XICS
4962
4963 void kvmppc_free_pimap(struct kvm *kvm)
4964 {
4965         kfree(kvm->arch.pimap);
4966 }
4967
4968 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4969 {
4970         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4971 }
4972
4973 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4974 {
4975         struct irq_desc *desc;
4976         struct kvmppc_irq_map *irq_map;
4977         struct kvmppc_passthru_irqmap *pimap;
4978         struct irq_chip *chip;
4979         int i, rc = 0;
4980
4981         if (!kvm_irq_bypass)
4982                 return 1;
4983
4984         desc = irq_to_desc(host_irq);
4985         if (!desc)
4986                 return -EIO;
4987
4988         mutex_lock(&kvm->lock);
4989
4990         pimap = kvm->arch.pimap;
4991         if (pimap == NULL) {
4992                 /* First call, allocate structure to hold IRQ map */
4993                 pimap = kvmppc_alloc_pimap();
4994                 if (pimap == NULL) {
4995                         mutex_unlock(&kvm->lock);
4996                         return -ENOMEM;
4997                 }
4998                 kvm->arch.pimap = pimap;
4999         }
5000
5001         /*
5002          * For now, we only support interrupts for which the EOI operation
5003          * is an OPAL call followed by a write to XIRR, since that's
5004          * what our real-mode EOI code does, or a XIVE interrupt
5005          */
5006         chip = irq_data_get_irq_chip(&desc->irq_data);
5007         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5008                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5009                         host_irq, guest_gsi);
5010                 mutex_unlock(&kvm->lock);
5011                 return -ENOENT;
5012         }
5013
5014         /*
5015          * See if we already have an entry for this guest IRQ number.
5016          * If it's mapped to a hardware IRQ number, that's an error,
5017          * otherwise re-use this entry.
5018          */
5019         for (i = 0; i < pimap->n_mapped; i++) {
5020                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5021                         if (pimap->mapped[i].r_hwirq) {
5022                                 mutex_unlock(&kvm->lock);
5023                                 return -EINVAL;
5024                         }
5025                         break;
5026                 }
5027         }
5028
5029         if (i == KVMPPC_PIRQ_MAPPED) {
5030                 mutex_unlock(&kvm->lock);
5031                 return -EAGAIN;         /* table is full */
5032         }
5033
5034         irq_map = &pimap->mapped[i];
5035
5036         irq_map->v_hwirq = guest_gsi;
5037         irq_map->desc = desc;
5038
5039         /*
5040          * Order the above two stores before the next to serialize with
5041          * the KVM real mode handler.
5042          */
5043         smp_wmb();
5044         irq_map->r_hwirq = desc->irq_data.hwirq;
5045
5046         if (i == pimap->n_mapped)
5047                 pimap->n_mapped++;
5048
5049         if (xics_on_xive())
5050                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5051         else
5052                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5053         if (rc)
5054                 irq_map->r_hwirq = 0;
5055
5056         mutex_unlock(&kvm->lock);
5057
5058         return 0;
5059 }
5060
5061 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5062 {
5063         struct irq_desc *desc;
5064         struct kvmppc_passthru_irqmap *pimap;
5065         int i, rc = 0;
5066
5067         if (!kvm_irq_bypass)
5068                 return 0;
5069
5070         desc = irq_to_desc(host_irq);
5071         if (!desc)
5072                 return -EIO;
5073
5074         mutex_lock(&kvm->lock);
5075         if (!kvm->arch.pimap)
5076                 goto unlock;
5077
5078         pimap = kvm->arch.pimap;
5079
5080         for (i = 0; i < pimap->n_mapped; i++) {
5081                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5082                         break;
5083         }
5084
5085         if (i == pimap->n_mapped) {
5086                 mutex_unlock(&kvm->lock);
5087                 return -ENODEV;
5088         }
5089
5090         if (xics_on_xive())
5091                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5092         else
5093                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5094
5095         /* invalidate the entry (what do do on error from the above ?) */
5096         pimap->mapped[i].r_hwirq = 0;
5097
5098         /*
5099          * We don't free this structure even when the count goes to
5100          * zero. The structure is freed when we destroy the VM.
5101          */
5102  unlock:
5103         mutex_unlock(&kvm->lock);
5104         return rc;
5105 }
5106
5107 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5108                                              struct irq_bypass_producer *prod)
5109 {
5110         int ret = 0;
5111         struct kvm_kernel_irqfd *irqfd =
5112                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5113
5114         irqfd->producer = prod;
5115
5116         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5117         if (ret)
5118                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5119                         prod->irq, irqfd->gsi, ret);
5120
5121         return ret;
5122 }
5123
5124 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5125                                               struct irq_bypass_producer *prod)
5126 {
5127         int ret;
5128         struct kvm_kernel_irqfd *irqfd =
5129                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5130
5131         irqfd->producer = NULL;
5132
5133         /*
5134          * When producer of consumer is unregistered, we change back to
5135          * default external interrupt handling mode - KVM real mode
5136          * will switch back to host.
5137          */
5138         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5139         if (ret)
5140                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5141                         prod->irq, irqfd->gsi, ret);
5142 }
5143 #endif
5144
5145 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5146                                  unsigned int ioctl, unsigned long arg)
5147 {
5148         struct kvm *kvm __maybe_unused = filp->private_data;
5149         void __user *argp = (void __user *)arg;
5150         long r;
5151
5152         switch (ioctl) {
5153
5154         case KVM_PPC_ALLOCATE_HTAB: {
5155                 u32 htab_order;
5156
5157                 r = -EFAULT;
5158                 if (get_user(htab_order, (u32 __user *)argp))
5159                         break;
5160                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5161                 if (r)
5162                         break;
5163                 r = 0;
5164                 break;
5165         }
5166
5167         case KVM_PPC_GET_HTAB_FD: {
5168                 struct kvm_get_htab_fd ghf;
5169
5170                 r = -EFAULT;
5171                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5172                         break;
5173                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5174                 break;
5175         }
5176
5177         case KVM_PPC_RESIZE_HPT_PREPARE: {
5178                 struct kvm_ppc_resize_hpt rhpt;
5179
5180                 r = -EFAULT;
5181                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5182                         break;
5183
5184                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5185                 break;
5186         }
5187
5188         case KVM_PPC_RESIZE_HPT_COMMIT: {
5189                 struct kvm_ppc_resize_hpt rhpt;
5190
5191                 r = -EFAULT;
5192                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5193                         break;
5194
5195                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5196                 break;
5197         }
5198
5199         default:
5200                 r = -ENOTTY;
5201         }
5202
5203         return r;
5204 }
5205
5206 /*
5207  * List of hcall numbers to enable by default.
5208  * For compatibility with old userspace, we enable by default
5209  * all hcalls that were implemented before the hcall-enabling
5210  * facility was added.  Note this list should not include H_RTAS.
5211  */
5212 static unsigned int default_hcall_list[] = {
5213         H_REMOVE,
5214         H_ENTER,
5215         H_READ,
5216         H_PROTECT,
5217         H_BULK_REMOVE,
5218         H_GET_TCE,
5219         H_PUT_TCE,
5220         H_SET_DABR,
5221         H_SET_XDABR,
5222         H_CEDE,
5223         H_PROD,
5224         H_CONFER,
5225         H_REGISTER_VPA,
5226 #ifdef CONFIG_KVM_XICS
5227         H_EOI,
5228         H_CPPR,
5229         H_IPI,
5230         H_IPOLL,
5231         H_XIRR,
5232         H_XIRR_X,
5233 #endif
5234         0
5235 };
5236
5237 static void init_default_hcalls(void)
5238 {
5239         int i;
5240         unsigned int hcall;
5241
5242         for (i = 0; default_hcall_list[i]; ++i) {
5243                 hcall = default_hcall_list[i];
5244                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5245                 __set_bit(hcall / 4, default_enabled_hcalls);
5246         }
5247 }
5248
5249 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5250 {
5251         unsigned long lpcr;
5252         int radix;
5253         int err;
5254
5255         /* If not on a POWER9, reject it */
5256         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5257                 return -ENODEV;
5258
5259         /* If any unknown flags set, reject it */
5260         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5261                 return -EINVAL;
5262
5263         /* GR (guest radix) bit in process_table field must match */
5264         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5265         if (!!(cfg->process_table & PATB_GR) != radix)
5266                 return -EINVAL;
5267
5268         /* Process table size field must be reasonable, i.e. <= 24 */
5269         if ((cfg->process_table & PRTS_MASK) > 24)
5270                 return -EINVAL;
5271
5272         /* We can change a guest to/from radix now, if the host is radix */
5273         if (radix && !radix_enabled())
5274                 return -EINVAL;
5275
5276         /* If we're a nested hypervisor, we currently only support radix */
5277         if (kvmhv_on_pseries() && !radix)
5278                 return -EINVAL;
5279
5280         mutex_lock(&kvm->arch.mmu_setup_lock);
5281         if (radix != kvm_is_radix(kvm)) {
5282                 if (kvm->arch.mmu_ready) {
5283                         kvm->arch.mmu_ready = 0;
5284                         /* order mmu_ready vs. vcpus_running */
5285                         smp_mb();
5286                         if (atomic_read(&kvm->arch.vcpus_running)) {
5287                                 kvm->arch.mmu_ready = 1;
5288                                 err = -EBUSY;
5289                                 goto out_unlock;
5290                         }
5291                 }
5292                 if (radix)
5293                         err = kvmppc_switch_mmu_to_radix(kvm);
5294                 else
5295                         err = kvmppc_switch_mmu_to_hpt(kvm);
5296                 if (err)
5297                         goto out_unlock;
5298         }
5299
5300         kvm->arch.process_table = cfg->process_table;
5301         kvmppc_setup_partition_table(kvm);
5302
5303         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5304         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5305         err = 0;
5306
5307  out_unlock:
5308         mutex_unlock(&kvm->arch.mmu_setup_lock);
5309         return err;
5310 }
5311
5312 static int kvmhv_enable_nested(struct kvm *kvm)
5313 {
5314         if (!nested)
5315                 return -EPERM;
5316         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5317                 return -ENODEV;
5318
5319         /* kvm == NULL means the caller is testing if the capability exists */
5320         if (kvm)
5321                 kvm->arch.nested_enable = true;
5322         return 0;
5323 }
5324
5325 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5326                                  int size)
5327 {
5328         int rc = -EINVAL;
5329
5330         if (kvmhv_vcpu_is_radix(vcpu)) {
5331                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5332
5333                 if (rc > 0)
5334                         rc = -EINVAL;
5335         }
5336
5337         /* For now quadrants are the only way to access nested guest memory */
5338         if (rc && vcpu->arch.nested)
5339                 rc = -EAGAIN;
5340
5341         return rc;
5342 }
5343
5344 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5345                                 int size)
5346 {
5347         int rc = -EINVAL;
5348
5349         if (kvmhv_vcpu_is_radix(vcpu)) {
5350                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5351
5352                 if (rc > 0)
5353                         rc = -EINVAL;
5354         }
5355
5356         /* For now quadrants are the only way to access nested guest memory */
5357         if (rc && vcpu->arch.nested)
5358                 rc = -EAGAIN;
5359
5360         return rc;
5361 }
5362
5363 static struct kvmppc_ops kvm_ops_hv = {
5364         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5365         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5366         .get_one_reg = kvmppc_get_one_reg_hv,
5367         .set_one_reg = kvmppc_set_one_reg_hv,
5368         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5369         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5370         .set_msr     = kvmppc_set_msr_hv,
5371         .vcpu_run    = kvmppc_vcpu_run_hv,
5372         .vcpu_create = kvmppc_core_vcpu_create_hv,
5373         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5374         .check_requests = kvmppc_core_check_requests_hv,
5375         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5376         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5377         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5378         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5379         .unmap_hva_range = kvm_unmap_hva_range_hv,
5380         .age_hva  = kvm_age_hva_hv,
5381         .test_age_hva = kvm_test_age_hva_hv,
5382         .set_spte_hva = kvm_set_spte_hva_hv,
5383         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5384         .free_memslot = kvmppc_core_free_memslot_hv,
5385         .create_memslot = kvmppc_core_create_memslot_hv,
5386         .init_vm =  kvmppc_core_init_vm_hv,
5387         .destroy_vm = kvmppc_core_destroy_vm_hv,
5388         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5389         .emulate_op = kvmppc_core_emulate_op_hv,
5390         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5391         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5392         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5393         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5394         .hcall_implemented = kvmppc_hcall_impl_hv,
5395 #ifdef CONFIG_KVM_XICS
5396         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5397         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5398 #endif
5399         .configure_mmu = kvmhv_configure_mmu,
5400         .get_rmmu_info = kvmhv_get_rmmu_info,
5401         .set_smt_mode = kvmhv_set_smt_mode,
5402         .enable_nested = kvmhv_enable_nested,
5403         .load_from_eaddr = kvmhv_load_from_eaddr,
5404         .store_to_eaddr = kvmhv_store_to_eaddr,
5405 };
5406
5407 static int kvm_init_subcore_bitmap(void)
5408 {
5409         int i, j;
5410         int nr_cores = cpu_nr_cores();
5411         struct sibling_subcore_state *sibling_subcore_state;
5412
5413         for (i = 0; i < nr_cores; i++) {
5414                 int first_cpu = i * threads_per_core;
5415                 int node = cpu_to_node(first_cpu);
5416
5417                 /* Ignore if it is already allocated. */
5418                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5419                         continue;
5420
5421                 sibling_subcore_state =
5422                         kzalloc_node(sizeof(struct sibling_subcore_state),
5423                                                         GFP_KERNEL, node);
5424                 if (!sibling_subcore_state)
5425                         return -ENOMEM;
5426
5427
5428                 for (j = 0; j < threads_per_core; j++) {
5429                         int cpu = first_cpu + j;
5430
5431                         paca_ptrs[cpu]->sibling_subcore_state =
5432                                                 sibling_subcore_state;
5433                 }
5434         }
5435         return 0;
5436 }
5437
5438 static int kvmppc_radix_possible(void)
5439 {
5440         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5441 }
5442
5443 static int kvmppc_book3s_init_hv(void)
5444 {
5445         int r;
5446         /*
5447          * FIXME!! Do we need to check on all cpus ?
5448          */
5449         r = kvmppc_core_check_processor_compat_hv();
5450         if (r < 0)
5451                 return -ENODEV;
5452
5453         r = kvmhv_nested_init();
5454         if (r)
5455                 return r;
5456
5457         r = kvm_init_subcore_bitmap();
5458         if (r)
5459                 return r;
5460
5461         /*
5462          * We need a way of accessing the XICS interrupt controller,
5463          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5464          * indirectly, via OPAL.
5465          */
5466 #ifdef CONFIG_SMP
5467         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5468             !local_paca->kvm_hstate.xics_phys) {
5469                 struct device_node *np;
5470
5471                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5472                 if (!np) {
5473                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5474                         return -ENODEV;
5475                 }
5476                 /* presence of intc confirmed - node can be dropped again */
5477                 of_node_put(np);
5478         }
5479 #endif
5480
5481         kvm_ops_hv.owner = THIS_MODULE;
5482         kvmppc_hv_ops = &kvm_ops_hv;
5483
5484         init_default_hcalls();
5485
5486         init_vcore_lists();
5487
5488         r = kvmppc_mmu_hv_init();
5489         if (r)
5490                 return r;
5491
5492         if (kvmppc_radix_possible())
5493                 r = kvmppc_radix_init();
5494
5495         /*
5496          * POWER9 chips before version 2.02 can't have some threads in
5497          * HPT mode and some in radix mode on the same core.
5498          */
5499         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5500                 unsigned int pvr = mfspr(SPRN_PVR);
5501                 if ((pvr >> 16) == PVR_POWER9 &&
5502                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5503                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5504                         no_mixing_hpt_and_radix = true;
5505         }
5506
5507         return r;
5508 }
5509
5510 static void kvmppc_book3s_exit_hv(void)
5511 {
5512         kvmppc_free_host_rm_ops();
5513         if (kvmppc_radix_possible())
5514                 kvmppc_radix_exit();
5515         kvmppc_hv_ops = NULL;
5516         kvmhv_nested_exit();
5517 }
5518
5519 module_init(kvmppc_book3s_init_hv);
5520 module_exit(kvmppc_book3s_exit_hv);
5521 MODULE_LICENSE("GPL");
5522 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5523 MODULE_ALIAS("devname:kvm");