clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/pmc.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 #include <asm/hw_breakpoint.h>
77 #include <asm/kvm_book3s_uvmem.h>
78 #include <asm/ultravisor.h>
79 #include <asm/dtl.h>
80 #include <asm/plpar_wrappers.h>
81
82 #include "book3s.h"
83 #include "book3s_hv.h"
84
85 #define CREATE_TRACE_POINTS
86 #include "trace_hv.h"
87
88 /* #define EXIT_DEBUG */
89 /* #define EXIT_DEBUG_SIMPLE */
90 /* #define EXIT_DEBUG_INT */
91
92 /* Used to indicate that a guest page fault needs to be handled */
93 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
94 /* Used to indicate that a guest passthrough interrupt needs to be handled */
95 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
96
97 /* Used as a "null" value for timebase values */
98 #define TB_NIL  (~(u64)0)
99
100 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
101
102 static int dynamic_mt_modes = 6;
103 module_param(dynamic_mt_modes, int, 0644);
104 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
105 static int target_smt_mode;
106 module_param(target_smt_mode, int, 0644);
107 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
112
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115         .set = param_set_int,
116         .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
131 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
132
133 /*
134  * RWMR values for POWER8.  These control the rate at which PURR
135  * and SPURR count and should be set according to the number of
136  * online threads in the vcore being run.
137  */
138 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
139 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
140 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
141 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
142 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
143 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
146
147 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
148         RWMR_RPA_P8_1THREAD,
149         RWMR_RPA_P8_1THREAD,
150         RWMR_RPA_P8_2THREAD,
151         RWMR_RPA_P8_3THREAD,
152         RWMR_RPA_P8_4THREAD,
153         RWMR_RPA_P8_5THREAD,
154         RWMR_RPA_P8_6THREAD,
155         RWMR_RPA_P8_7THREAD,
156         RWMR_RPA_P8_8THREAD,
157 };
158
159 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
160                 int *ip)
161 {
162         int i = *ip;
163         struct kvm_vcpu *vcpu;
164
165         while (++i < MAX_SMT_THREADS) {
166                 vcpu = READ_ONCE(vc->runnable_threads[i]);
167                 if (vcpu) {
168                         *ip = i;
169                         return vcpu;
170                 }
171         }
172         return NULL;
173 }
174
175 /* Used to traverse the list of runnable threads for a given vcore */
176 #define for_each_runnable_thread(i, vcpu, vc) \
177         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
178
179 static bool kvmppc_ipi_thread(int cpu)
180 {
181         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
182
183         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
184         if (kvmhv_on_pseries())
185                 return false;
186
187         /* On POWER9 we can use msgsnd to IPI any cpu */
188         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
189                 msg |= get_hard_smp_processor_id(cpu);
190                 smp_mb();
191                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192                 return true;
193         }
194
195         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
196         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
197                 preempt_disable();
198                 if (cpu_first_thread_sibling(cpu) ==
199                     cpu_first_thread_sibling(smp_processor_id())) {
200                         msg |= cpu_thread_in_core(cpu);
201                         smp_mb();
202                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
203                         preempt_enable();
204                         return true;
205                 }
206                 preempt_enable();
207         }
208
209 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
210         if (cpu >= 0 && cpu < nr_cpu_ids) {
211                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
212                         xics_wake_cpu(cpu);
213                         return true;
214                 }
215                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
216                 return true;
217         }
218 #endif
219
220         return false;
221 }
222
223 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
224 {
225         int cpu;
226         struct rcuwait *waitp;
227
228         waitp = kvm_arch_vcpu_get_wait(vcpu);
229         if (rcuwait_wake_up(waitp))
230                 ++vcpu->stat.generic.halt_wakeup;
231
232         cpu = READ_ONCE(vcpu->arch.thread_cpu);
233         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
234                 return;
235
236         /* CPU points to the first thread of the core */
237         cpu = vcpu->cpu;
238         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
239                 smp_send_reschedule(cpu);
240 }
241
242 /*
243  * We use the vcpu_load/put functions to measure stolen time.
244  * Stolen time is counted as time when either the vcpu is able to
245  * run as part of a virtual core, but the task running the vcore
246  * is preempted or sleeping, or when the vcpu needs something done
247  * in the kernel by the task running the vcpu, but that task is
248  * preempted or sleeping.  Those two things have to be counted
249  * separately, since one of the vcpu tasks will take on the job
250  * of running the core, and the other vcpu tasks in the vcore will
251  * sleep waiting for it to do that, but that sleep shouldn't count
252  * as stolen time.
253  *
254  * Hence we accumulate stolen time when the vcpu can run as part of
255  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
256  * needs its task to do other things in the kernel (for example,
257  * service a page fault) in busy_stolen.  We don't accumulate
258  * stolen time for a vcore when it is inactive, or for a vcpu
259  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
260  * a misnomer; it means that the vcpu task is not executing in
261  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
262  * the kernel.  We don't have any way of dividing up that time
263  * between time that the vcpu is genuinely stopped, time that
264  * the task is actively working on behalf of the vcpu, and time
265  * that the task is preempted, so we don't count any of it as
266  * stolen.
267  *
268  * Updates to busy_stolen are protected by arch.tbacct_lock;
269  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
270  * lock.  The stolen times are measured in units of timebase ticks.
271  * (Note that the != TB_NIL checks below are purely defensive;
272  * they should never fail.)
273  */
274
275 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
276 {
277         unsigned long flags;
278
279         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
280
281         spin_lock_irqsave(&vc->stoltb_lock, flags);
282         vc->preempt_tb = tb;
283         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
284 }
285
286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
287 {
288         unsigned long flags;
289
290         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
291
292         spin_lock_irqsave(&vc->stoltb_lock, flags);
293         if (vc->preempt_tb != TB_NIL) {
294                 vc->stolen_tb += tb - vc->preempt_tb;
295                 vc->preempt_tb = TB_NIL;
296         }
297         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
298 }
299
300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
301 {
302         struct kvmppc_vcore *vc = vcpu->arch.vcore;
303         unsigned long flags;
304         u64 now;
305
306         if (cpu_has_feature(CPU_FTR_ARCH_300))
307                 return;
308
309         now = mftb();
310
311         /*
312          * We can test vc->runner without taking the vcore lock,
313          * because only this task ever sets vc->runner to this
314          * vcpu, and once it is set to this vcpu, only this task
315          * ever sets it to NULL.
316          */
317         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318                 kvmppc_core_end_stolen(vc, now);
319
320         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322             vcpu->arch.busy_preempt != TB_NIL) {
323                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
324                 vcpu->arch.busy_preempt = TB_NIL;
325         }
326         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331         struct kvmppc_vcore *vc = vcpu->arch.vcore;
332         unsigned long flags;
333         u64 now;
334
335         if (cpu_has_feature(CPU_FTR_ARCH_300))
336                 return;
337
338         now = mftb();
339
340         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
341                 kvmppc_core_start_stolen(vc, now);
342
343         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
344         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
345                 vcpu->arch.busy_preempt = now;
346         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
347 }
348
349 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
350 {
351         vcpu->arch.pvr = pvr;
352 }
353
354 /* Dummy value used in computing PCR value below */
355 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
356
357 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
358 {
359         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
360         struct kvmppc_vcore *vc = vcpu->arch.vcore;
361
362         /* We can (emulate) our own architecture version and anything older */
363         if (cpu_has_feature(CPU_FTR_ARCH_31))
364                 host_pcr_bit = PCR_ARCH_31;
365         else if (cpu_has_feature(CPU_FTR_ARCH_300))
366                 host_pcr_bit = PCR_ARCH_300;
367         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
368                 host_pcr_bit = PCR_ARCH_207;
369         else if (cpu_has_feature(CPU_FTR_ARCH_206))
370                 host_pcr_bit = PCR_ARCH_206;
371         else
372                 host_pcr_bit = PCR_ARCH_205;
373
374         /* Determine lowest PCR bit needed to run guest in given PVR level */
375         guest_pcr_bit = host_pcr_bit;
376         if (arch_compat) {
377                 switch (arch_compat) {
378                 case PVR_ARCH_205:
379                         guest_pcr_bit = PCR_ARCH_205;
380                         break;
381                 case PVR_ARCH_206:
382                 case PVR_ARCH_206p:
383                         guest_pcr_bit = PCR_ARCH_206;
384                         break;
385                 case PVR_ARCH_207:
386                         guest_pcr_bit = PCR_ARCH_207;
387                         break;
388                 case PVR_ARCH_300:
389                         guest_pcr_bit = PCR_ARCH_300;
390                         break;
391                 case PVR_ARCH_31:
392                         guest_pcr_bit = PCR_ARCH_31;
393                         break;
394                 default:
395                         return -EINVAL;
396                 }
397         }
398
399         /* Check requested PCR bits don't exceed our capabilities */
400         if (guest_pcr_bit > host_pcr_bit)
401                 return -EINVAL;
402
403         spin_lock(&vc->lock);
404         vc->arch_compat = arch_compat;
405         /*
406          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
407          * Also set all reserved PCR bits
408          */
409         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
410         spin_unlock(&vc->lock);
411
412         return 0;
413 }
414
415 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
416 {
417         int r;
418
419         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
420         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
421                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
422         for (r = 0; r < 16; ++r)
423                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
424                        r, kvmppc_get_gpr(vcpu, r),
425                        r+16, kvmppc_get_gpr(vcpu, r+16));
426         pr_err("ctr = %.16lx  lr  = %.16lx\n",
427                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
428         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
429                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
430         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
431                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
432         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
433                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
434         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
435                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
436         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
437         pr_err("fault dar = %.16lx dsisr = %.8x\n",
438                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
439         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
440         for (r = 0; r < vcpu->arch.slb_max; ++r)
441                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
442                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
443         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
444                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
445                vcpu->arch.last_inst);
446 }
447
448 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
449 {
450         return kvm_get_vcpu_by_id(kvm, id);
451 }
452
453 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
454 {
455         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
456         vpa->yield_count = cpu_to_be32(1);
457 }
458
459 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
460                    unsigned long addr, unsigned long len)
461 {
462         /* check address is cacheline aligned */
463         if (addr & (L1_CACHE_BYTES - 1))
464                 return -EINVAL;
465         spin_lock(&vcpu->arch.vpa_update_lock);
466         if (v->next_gpa != addr || v->len != len) {
467                 v->next_gpa = addr;
468                 v->len = addr ? len : 0;
469                 v->update_pending = 1;
470         }
471         spin_unlock(&vcpu->arch.vpa_update_lock);
472         return 0;
473 }
474
475 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
476 struct reg_vpa {
477         u32 dummy;
478         union {
479                 __be16 hword;
480                 __be32 word;
481         } length;
482 };
483
484 static int vpa_is_registered(struct kvmppc_vpa *vpap)
485 {
486         if (vpap->update_pending)
487                 return vpap->next_gpa != 0;
488         return vpap->pinned_addr != NULL;
489 }
490
491 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
492                                        unsigned long flags,
493                                        unsigned long vcpuid, unsigned long vpa)
494 {
495         struct kvm *kvm = vcpu->kvm;
496         unsigned long len, nb;
497         void *va;
498         struct kvm_vcpu *tvcpu;
499         int err;
500         int subfunc;
501         struct kvmppc_vpa *vpap;
502
503         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
504         if (!tvcpu)
505                 return H_PARAMETER;
506
507         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
508         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
509             subfunc == H_VPA_REG_SLB) {
510                 /* Registering new area - address must be cache-line aligned */
511                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
512                         return H_PARAMETER;
513
514                 /* convert logical addr to kernel addr and read length */
515                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
516                 if (va == NULL)
517                         return H_PARAMETER;
518                 if (subfunc == H_VPA_REG_VPA)
519                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
520                 else
521                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
522                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
523
524                 /* Check length */
525                 if (len > nb || len < sizeof(struct reg_vpa))
526                         return H_PARAMETER;
527         } else {
528                 vpa = 0;
529                 len = 0;
530         }
531
532         err = H_PARAMETER;
533         vpap = NULL;
534         spin_lock(&tvcpu->arch.vpa_update_lock);
535
536         switch (subfunc) {
537         case H_VPA_REG_VPA:             /* register VPA */
538                 /*
539                  * The size of our lppaca is 1kB because of the way we align
540                  * it for the guest to avoid crossing a 4kB boundary. We only
541                  * use 640 bytes of the structure though, so we should accept
542                  * clients that set a size of 640.
543                  */
544                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
545                 if (len < sizeof(struct lppaca))
546                         break;
547                 vpap = &tvcpu->arch.vpa;
548                 err = 0;
549                 break;
550
551         case H_VPA_REG_DTL:             /* register DTL */
552                 if (len < sizeof(struct dtl_entry))
553                         break;
554                 len -= len % sizeof(struct dtl_entry);
555
556                 /* Check that they have previously registered a VPA */
557                 err = H_RESOURCE;
558                 if (!vpa_is_registered(&tvcpu->arch.vpa))
559                         break;
560
561                 vpap = &tvcpu->arch.dtl;
562                 err = 0;
563                 break;
564
565         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
566                 /* Check that they have previously registered a VPA */
567                 err = H_RESOURCE;
568                 if (!vpa_is_registered(&tvcpu->arch.vpa))
569                         break;
570
571                 vpap = &tvcpu->arch.slb_shadow;
572                 err = 0;
573                 break;
574
575         case H_VPA_DEREG_VPA:           /* deregister VPA */
576                 /* Check they don't still have a DTL or SLB buf registered */
577                 err = H_RESOURCE;
578                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
579                     vpa_is_registered(&tvcpu->arch.slb_shadow))
580                         break;
581
582                 vpap = &tvcpu->arch.vpa;
583                 err = 0;
584                 break;
585
586         case H_VPA_DEREG_DTL:           /* deregister DTL */
587                 vpap = &tvcpu->arch.dtl;
588                 err = 0;
589                 break;
590
591         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
592                 vpap = &tvcpu->arch.slb_shadow;
593                 err = 0;
594                 break;
595         }
596
597         if (vpap) {
598                 vpap->next_gpa = vpa;
599                 vpap->len = len;
600                 vpap->update_pending = 1;
601         }
602
603         spin_unlock(&tvcpu->arch.vpa_update_lock);
604
605         return err;
606 }
607
608 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
609 {
610         struct kvm *kvm = vcpu->kvm;
611         void *va;
612         unsigned long nb;
613         unsigned long gpa;
614
615         /*
616          * We need to pin the page pointed to by vpap->next_gpa,
617          * but we can't call kvmppc_pin_guest_page under the lock
618          * as it does get_user_pages() and down_read().  So we
619          * have to drop the lock, pin the page, then get the lock
620          * again and check that a new area didn't get registered
621          * in the meantime.
622          */
623         for (;;) {
624                 gpa = vpap->next_gpa;
625                 spin_unlock(&vcpu->arch.vpa_update_lock);
626                 va = NULL;
627                 nb = 0;
628                 if (gpa)
629                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
630                 spin_lock(&vcpu->arch.vpa_update_lock);
631                 if (gpa == vpap->next_gpa)
632                         break;
633                 /* sigh... unpin that one and try again */
634                 if (va)
635                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
636         }
637
638         vpap->update_pending = 0;
639         if (va && nb < vpap->len) {
640                 /*
641                  * If it's now too short, it must be that userspace
642                  * has changed the mappings underlying guest memory,
643                  * so unregister the region.
644                  */
645                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
646                 va = NULL;
647         }
648         if (vpap->pinned_addr)
649                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
650                                         vpap->dirty);
651         vpap->gpa = gpa;
652         vpap->pinned_addr = va;
653         vpap->dirty = false;
654         if (va)
655                 vpap->pinned_end = va + vpap->len;
656 }
657
658 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
659 {
660         if (!(vcpu->arch.vpa.update_pending ||
661               vcpu->arch.slb_shadow.update_pending ||
662               vcpu->arch.dtl.update_pending))
663                 return;
664
665         spin_lock(&vcpu->arch.vpa_update_lock);
666         if (vcpu->arch.vpa.update_pending) {
667                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
668                 if (vcpu->arch.vpa.pinned_addr)
669                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
670         }
671         if (vcpu->arch.dtl.update_pending) {
672                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
673                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
674                 vcpu->arch.dtl_index = 0;
675         }
676         if (vcpu->arch.slb_shadow.update_pending)
677                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
678         spin_unlock(&vcpu->arch.vpa_update_lock);
679 }
680
681 /*
682  * Return the accumulated stolen time for the vcore up until `now'.
683  * The caller should hold the vcore lock.
684  */
685 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
686 {
687         u64 p;
688         unsigned long flags;
689
690         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
691
692         spin_lock_irqsave(&vc->stoltb_lock, flags);
693         p = vc->stolen_tb;
694         if (vc->vcore_state != VCORE_INACTIVE &&
695             vc->preempt_tb != TB_NIL)
696                 p += now - vc->preempt_tb;
697         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
698         return p;
699 }
700
701 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
702                                         unsigned int pcpu, u64 now,
703                                         unsigned long stolen)
704 {
705         struct dtl_entry *dt;
706         struct lppaca *vpa;
707
708         dt = vcpu->arch.dtl_ptr;
709         vpa = vcpu->arch.vpa.pinned_addr;
710
711         if (!dt || !vpa)
712                 return;
713
714         dt->dispatch_reason = 7;
715         dt->preempt_reason = 0;
716         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
717         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718         dt->ready_to_enqueue_time = 0;
719         dt->waiting_to_ready_time = 0;
720         dt->timebase = cpu_to_be64(now);
721         dt->fault_addr = 0;
722         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
723         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
724
725         ++dt;
726         if (dt == vcpu->arch.dtl.pinned_end)
727                 dt = vcpu->arch.dtl.pinned_addr;
728         vcpu->arch.dtl_ptr = dt;
729         /* order writing *dt vs. writing vpa->dtl_idx */
730         smp_wmb();
731         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
732         vcpu->arch.dtl.dirty = true;
733 }
734
735 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
736                                     struct kvmppc_vcore *vc)
737 {
738         unsigned long stolen;
739         unsigned long core_stolen;
740         u64 now;
741         unsigned long flags;
742
743         now = mftb();
744
745         core_stolen = vcore_stolen_time(vc, now);
746         stolen = core_stolen - vcpu->arch.stolen_logged;
747         vcpu->arch.stolen_logged = core_stolen;
748         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
749         stolen += vcpu->arch.busy_stolen;
750         vcpu->arch.busy_stolen = 0;
751         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
752
753         __kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
754 }
755
756 /* See if there is a doorbell interrupt pending for a vcpu */
757 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
758 {
759         int thr;
760         struct kvmppc_vcore *vc;
761
762         if (vcpu->arch.doorbell_request)
763                 return true;
764         if (cpu_has_feature(CPU_FTR_ARCH_300))
765                 return false;
766         /*
767          * Ensure that the read of vcore->dpdes comes after the read
768          * of vcpu->doorbell_request.  This barrier matches the
769          * smp_wmb() in kvmppc_guest_entry_inject().
770          */
771         smp_rmb();
772         vc = vcpu->arch.vcore;
773         thr = vcpu->vcpu_id - vc->first_vcpuid;
774         return !!(vc->dpdes & (1 << thr));
775 }
776
777 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
778 {
779         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
780                 return true;
781         if ((!vcpu->arch.vcore->arch_compat) &&
782             cpu_has_feature(CPU_FTR_ARCH_207S))
783                 return true;
784         return false;
785 }
786
787 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
788                              unsigned long resource, unsigned long value1,
789                              unsigned long value2)
790 {
791         switch (resource) {
792         case H_SET_MODE_RESOURCE_SET_CIABR:
793                 if (!kvmppc_power8_compatible(vcpu))
794                         return H_P2;
795                 if (value2)
796                         return H_P4;
797                 if (mflags)
798                         return H_UNSUPPORTED_FLAG_START;
799                 /* Guests can't breakpoint the hypervisor */
800                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
801                         return H_P3;
802                 vcpu->arch.ciabr  = value1;
803                 return H_SUCCESS;
804         case H_SET_MODE_RESOURCE_SET_DAWR0:
805                 if (!kvmppc_power8_compatible(vcpu))
806                         return H_P2;
807                 if (!ppc_breakpoint_available())
808                         return H_P2;
809                 if (mflags)
810                         return H_UNSUPPORTED_FLAG_START;
811                 if (value2 & DABRX_HYP)
812                         return H_P4;
813                 vcpu->arch.dawr0  = value1;
814                 vcpu->arch.dawrx0 = value2;
815                 return H_SUCCESS;
816         case H_SET_MODE_RESOURCE_SET_DAWR1:
817                 if (!kvmppc_power8_compatible(vcpu))
818                         return H_P2;
819                 if (!ppc_breakpoint_available())
820                         return H_P2;
821                 if (!cpu_has_feature(CPU_FTR_DAWR1))
822                         return H_P2;
823                 if (!vcpu->kvm->arch.dawr1_enabled)
824                         return H_FUNCTION;
825                 if (mflags)
826                         return H_UNSUPPORTED_FLAG_START;
827                 if (value2 & DABRX_HYP)
828                         return H_P4;
829                 vcpu->arch.dawr1  = value1;
830                 vcpu->arch.dawrx1 = value2;
831                 return H_SUCCESS;
832         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
833                 /*
834                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
835                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
836                  */
837                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
838                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
839                         return H_UNSUPPORTED_FLAG_START;
840                 return H_TOO_HARD;
841         default:
842                 return H_TOO_HARD;
843         }
844 }
845
846 /* Copy guest memory in place - must reside within a single memslot */
847 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
848                                   unsigned long len)
849 {
850         struct kvm_memory_slot *to_memslot = NULL;
851         struct kvm_memory_slot *from_memslot = NULL;
852         unsigned long to_addr, from_addr;
853         int r;
854
855         /* Get HPA for from address */
856         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
857         if (!from_memslot)
858                 return -EFAULT;
859         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
860                              << PAGE_SHIFT))
861                 return -EINVAL;
862         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
863         if (kvm_is_error_hva(from_addr))
864                 return -EFAULT;
865         from_addr |= (from & (PAGE_SIZE - 1));
866
867         /* Get HPA for to address */
868         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
869         if (!to_memslot)
870                 return -EFAULT;
871         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
872                            << PAGE_SHIFT))
873                 return -EINVAL;
874         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
875         if (kvm_is_error_hva(to_addr))
876                 return -EFAULT;
877         to_addr |= (to & (PAGE_SIZE - 1));
878
879         /* Perform copy */
880         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
881                              len);
882         if (r)
883                 return -EFAULT;
884         mark_page_dirty(kvm, to >> PAGE_SHIFT);
885         return 0;
886 }
887
888 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
889                                unsigned long dest, unsigned long src)
890 {
891         u64 pg_sz = SZ_4K;              /* 4K page size */
892         u64 pg_mask = SZ_4K - 1;
893         int ret;
894
895         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
896         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
897                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
898                 return H_PARAMETER;
899
900         /* dest (and src if copy_page flag set) must be page aligned */
901         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
902                 return H_PARAMETER;
903
904         /* zero and/or copy the page as determined by the flags */
905         if (flags & H_COPY_PAGE) {
906                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
907                 if (ret < 0)
908                         return H_PARAMETER;
909         } else if (flags & H_ZERO_PAGE) {
910                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
911                 if (ret < 0)
912                         return H_PARAMETER;
913         }
914
915         /* We can ignore the remaining flags */
916
917         return H_SUCCESS;
918 }
919
920 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
921 {
922         struct kvmppc_vcore *vcore = target->arch.vcore;
923
924         /*
925          * We expect to have been called by the real mode handler
926          * (kvmppc_rm_h_confer()) which would have directly returned
927          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
928          * have useful work to do and should not confer) so we don't
929          * recheck that here.
930          *
931          * In the case of the P9 single vcpu per vcore case, the real
932          * mode handler is not called but no other threads are in the
933          * source vcore.
934          */
935         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
936                 spin_lock(&vcore->lock);
937                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
938                     vcore->vcore_state != VCORE_INACTIVE &&
939                     vcore->runner)
940                         target = vcore->runner;
941                 spin_unlock(&vcore->lock);
942         }
943
944         return kvm_vcpu_yield_to(target);
945 }
946
947 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
948 {
949         int yield_count = 0;
950         struct lppaca *lppaca;
951
952         spin_lock(&vcpu->arch.vpa_update_lock);
953         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
954         if (lppaca)
955                 yield_count = be32_to_cpu(lppaca->yield_count);
956         spin_unlock(&vcpu->arch.vpa_update_lock);
957         return yield_count;
958 }
959
960 /*
961  * H_RPT_INVALIDATE hcall handler for nested guests.
962  *
963  * Handles only nested process-scoped invalidation requests in L0.
964  */
965 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
966 {
967         unsigned long type = kvmppc_get_gpr(vcpu, 6);
968         unsigned long pid, pg_sizes, start, end;
969
970         /*
971          * The partition-scoped invalidations aren't handled here in L0.
972          */
973         if (type & H_RPTI_TYPE_NESTED)
974                 return RESUME_HOST;
975
976         pid = kvmppc_get_gpr(vcpu, 4);
977         pg_sizes = kvmppc_get_gpr(vcpu, 7);
978         start = kvmppc_get_gpr(vcpu, 8);
979         end = kvmppc_get_gpr(vcpu, 9);
980
981         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
982                                 type, pg_sizes, start, end);
983
984         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
985         return RESUME_GUEST;
986 }
987
988 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
989                                     unsigned long id, unsigned long target,
990                                     unsigned long type, unsigned long pg_sizes,
991                                     unsigned long start, unsigned long end)
992 {
993         if (!kvm_is_radix(vcpu->kvm))
994                 return H_UNSUPPORTED;
995
996         if (end < start)
997                 return H_P5;
998
999         /*
1000          * Partition-scoped invalidation for nested guests.
1001          */
1002         if (type & H_RPTI_TYPE_NESTED) {
1003                 if (!nesting_enabled(vcpu->kvm))
1004                         return H_FUNCTION;
1005
1006                 /* Support only cores as target */
1007                 if (target != H_RPTI_TARGET_CMMU)
1008                         return H_P2;
1009
1010                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1011                                                start, end);
1012         }
1013
1014         /*
1015          * Process-scoped invalidation for L1 guests.
1016          */
1017         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1018                                 type, pg_sizes, start, end);
1019         return H_SUCCESS;
1020 }
1021
1022 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1023 {
1024         struct kvm *kvm = vcpu->kvm;
1025         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1026         unsigned long target, ret = H_SUCCESS;
1027         int yield_count;
1028         struct kvm_vcpu *tvcpu;
1029         int idx, rc;
1030
1031         if (req <= MAX_HCALL_OPCODE &&
1032             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1033                 return RESUME_HOST;
1034
1035         switch (req) {
1036         case H_REMOVE:
1037                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1038                                         kvmppc_get_gpr(vcpu, 5),
1039                                         kvmppc_get_gpr(vcpu, 6));
1040                 if (ret == H_TOO_HARD)
1041                         return RESUME_HOST;
1042                 break;
1043         case H_ENTER:
1044                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1045                                         kvmppc_get_gpr(vcpu, 5),
1046                                         kvmppc_get_gpr(vcpu, 6),
1047                                         kvmppc_get_gpr(vcpu, 7));
1048                 if (ret == H_TOO_HARD)
1049                         return RESUME_HOST;
1050                 break;
1051         case H_READ:
1052                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1053                                         kvmppc_get_gpr(vcpu, 5));
1054                 if (ret == H_TOO_HARD)
1055                         return RESUME_HOST;
1056                 break;
1057         case H_CLEAR_MOD:
1058                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1059                                         kvmppc_get_gpr(vcpu, 5));
1060                 if (ret == H_TOO_HARD)
1061                         return RESUME_HOST;
1062                 break;
1063         case H_CLEAR_REF:
1064                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1065                                         kvmppc_get_gpr(vcpu, 5));
1066                 if (ret == H_TOO_HARD)
1067                         return RESUME_HOST;
1068                 break;
1069         case H_PROTECT:
1070                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1071                                         kvmppc_get_gpr(vcpu, 5),
1072                                         kvmppc_get_gpr(vcpu, 6));
1073                 if (ret == H_TOO_HARD)
1074                         return RESUME_HOST;
1075                 break;
1076         case H_BULK_REMOVE:
1077                 ret = kvmppc_h_bulk_remove(vcpu);
1078                 if (ret == H_TOO_HARD)
1079                         return RESUME_HOST;
1080                 break;
1081
1082         case H_CEDE:
1083                 break;
1084         case H_PROD:
1085                 target = kvmppc_get_gpr(vcpu, 4);
1086                 tvcpu = kvmppc_find_vcpu(kvm, target);
1087                 if (!tvcpu) {
1088                         ret = H_PARAMETER;
1089                         break;
1090                 }
1091                 tvcpu->arch.prodded = 1;
1092                 smp_mb();
1093                 if (tvcpu->arch.ceded)
1094                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1095                 break;
1096         case H_CONFER:
1097                 target = kvmppc_get_gpr(vcpu, 4);
1098                 if (target == -1)
1099                         break;
1100                 tvcpu = kvmppc_find_vcpu(kvm, target);
1101                 if (!tvcpu) {
1102                         ret = H_PARAMETER;
1103                         break;
1104                 }
1105                 yield_count = kvmppc_get_gpr(vcpu, 5);
1106                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1107                         break;
1108                 kvm_arch_vcpu_yield_to(tvcpu);
1109                 break;
1110         case H_REGISTER_VPA:
1111                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1112                                         kvmppc_get_gpr(vcpu, 5),
1113                                         kvmppc_get_gpr(vcpu, 6));
1114                 break;
1115         case H_RTAS:
1116                 if (list_empty(&kvm->arch.rtas_tokens))
1117                         return RESUME_HOST;
1118
1119                 idx = srcu_read_lock(&kvm->srcu);
1120                 rc = kvmppc_rtas_hcall(vcpu);
1121                 srcu_read_unlock(&kvm->srcu, idx);
1122
1123                 if (rc == -ENOENT)
1124                         return RESUME_HOST;
1125                 else if (rc == 0)
1126                         break;
1127
1128                 /* Send the error out to userspace via KVM_RUN */
1129                 return rc;
1130         case H_LOGICAL_CI_LOAD:
1131                 ret = kvmppc_h_logical_ci_load(vcpu);
1132                 if (ret == H_TOO_HARD)
1133                         return RESUME_HOST;
1134                 break;
1135         case H_LOGICAL_CI_STORE:
1136                 ret = kvmppc_h_logical_ci_store(vcpu);
1137                 if (ret == H_TOO_HARD)
1138                         return RESUME_HOST;
1139                 break;
1140         case H_SET_MODE:
1141                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1142                                         kvmppc_get_gpr(vcpu, 5),
1143                                         kvmppc_get_gpr(vcpu, 6),
1144                                         kvmppc_get_gpr(vcpu, 7));
1145                 if (ret == H_TOO_HARD)
1146                         return RESUME_HOST;
1147                 break;
1148         case H_XIRR:
1149         case H_CPPR:
1150         case H_EOI:
1151         case H_IPI:
1152         case H_IPOLL:
1153         case H_XIRR_X:
1154                 if (kvmppc_xics_enabled(vcpu)) {
1155                         if (xics_on_xive()) {
1156                                 ret = H_NOT_AVAILABLE;
1157                                 return RESUME_GUEST;
1158                         }
1159                         ret = kvmppc_xics_hcall(vcpu, req);
1160                         break;
1161                 }
1162                 return RESUME_HOST;
1163         case H_SET_DABR:
1164                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1165                 break;
1166         case H_SET_XDABR:
1167                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1168                                                 kvmppc_get_gpr(vcpu, 5));
1169                 break;
1170 #ifdef CONFIG_SPAPR_TCE_IOMMU
1171         case H_GET_TCE:
1172                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1173                                                 kvmppc_get_gpr(vcpu, 5));
1174                 if (ret == H_TOO_HARD)
1175                         return RESUME_HOST;
1176                 break;
1177         case H_PUT_TCE:
1178                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1179                                                 kvmppc_get_gpr(vcpu, 5),
1180                                                 kvmppc_get_gpr(vcpu, 6));
1181                 if (ret == H_TOO_HARD)
1182                         return RESUME_HOST;
1183                 break;
1184         case H_PUT_TCE_INDIRECT:
1185                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1186                                                 kvmppc_get_gpr(vcpu, 5),
1187                                                 kvmppc_get_gpr(vcpu, 6),
1188                                                 kvmppc_get_gpr(vcpu, 7));
1189                 if (ret == H_TOO_HARD)
1190                         return RESUME_HOST;
1191                 break;
1192         case H_STUFF_TCE:
1193                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1194                                                 kvmppc_get_gpr(vcpu, 5),
1195                                                 kvmppc_get_gpr(vcpu, 6),
1196                                                 kvmppc_get_gpr(vcpu, 7));
1197                 if (ret == H_TOO_HARD)
1198                         return RESUME_HOST;
1199                 break;
1200 #endif
1201         case H_RANDOM:
1202                 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1203                         ret = H_HARDWARE;
1204                 break;
1205         case H_RPT_INVALIDATE:
1206                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1207                                               kvmppc_get_gpr(vcpu, 5),
1208                                               kvmppc_get_gpr(vcpu, 6),
1209                                               kvmppc_get_gpr(vcpu, 7),
1210                                               kvmppc_get_gpr(vcpu, 8),
1211                                               kvmppc_get_gpr(vcpu, 9));
1212                 break;
1213
1214         case H_SET_PARTITION_TABLE:
1215                 ret = H_FUNCTION;
1216                 if (nesting_enabled(kvm))
1217                         ret = kvmhv_set_partition_table(vcpu);
1218                 break;
1219         case H_ENTER_NESTED:
1220                 ret = H_FUNCTION;
1221                 if (!nesting_enabled(kvm))
1222                         break;
1223                 ret = kvmhv_enter_nested_guest(vcpu);
1224                 if (ret == H_INTERRUPT) {
1225                         kvmppc_set_gpr(vcpu, 3, 0);
1226                         vcpu->arch.hcall_needed = 0;
1227                         return -EINTR;
1228                 } else if (ret == H_TOO_HARD) {
1229                         kvmppc_set_gpr(vcpu, 3, 0);
1230                         vcpu->arch.hcall_needed = 0;
1231                         return RESUME_HOST;
1232                 }
1233                 break;
1234         case H_TLB_INVALIDATE:
1235                 ret = H_FUNCTION;
1236                 if (nesting_enabled(kvm))
1237                         ret = kvmhv_do_nested_tlbie(vcpu);
1238                 break;
1239         case H_COPY_TOFROM_GUEST:
1240                 ret = H_FUNCTION;
1241                 if (nesting_enabled(kvm))
1242                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1243                 break;
1244         case H_PAGE_INIT:
1245                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1246                                          kvmppc_get_gpr(vcpu, 5),
1247                                          kvmppc_get_gpr(vcpu, 6));
1248                 break;
1249         case H_SVM_PAGE_IN:
1250                 ret = H_UNSUPPORTED;
1251                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1252                         ret = kvmppc_h_svm_page_in(kvm,
1253                                                    kvmppc_get_gpr(vcpu, 4),
1254                                                    kvmppc_get_gpr(vcpu, 5),
1255                                                    kvmppc_get_gpr(vcpu, 6));
1256                 break;
1257         case H_SVM_PAGE_OUT:
1258                 ret = H_UNSUPPORTED;
1259                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1260                         ret = kvmppc_h_svm_page_out(kvm,
1261                                                     kvmppc_get_gpr(vcpu, 4),
1262                                                     kvmppc_get_gpr(vcpu, 5),
1263                                                     kvmppc_get_gpr(vcpu, 6));
1264                 break;
1265         case H_SVM_INIT_START:
1266                 ret = H_UNSUPPORTED;
1267                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1268                         ret = kvmppc_h_svm_init_start(kvm);
1269                 break;
1270         case H_SVM_INIT_DONE:
1271                 ret = H_UNSUPPORTED;
1272                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1273                         ret = kvmppc_h_svm_init_done(kvm);
1274                 break;
1275         case H_SVM_INIT_ABORT:
1276                 /*
1277                  * Even if that call is made by the Ultravisor, the SSR1 value
1278                  * is the guest context one, with the secure bit clear as it has
1279                  * not yet been secured. So we can't check it here.
1280                  * Instead the kvm->arch.secure_guest flag is checked inside
1281                  * kvmppc_h_svm_init_abort().
1282                  */
1283                 ret = kvmppc_h_svm_init_abort(kvm);
1284                 break;
1285
1286         default:
1287                 return RESUME_HOST;
1288         }
1289         WARN_ON_ONCE(ret == H_TOO_HARD);
1290         kvmppc_set_gpr(vcpu, 3, ret);
1291         vcpu->arch.hcall_needed = 0;
1292         return RESUME_GUEST;
1293 }
1294
1295 /*
1296  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1297  * handlers in book3s_hv_rmhandlers.S.
1298  *
1299  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1300  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1301  */
1302 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1303 {
1304         vcpu->arch.shregs.msr |= MSR_EE;
1305         vcpu->arch.ceded = 1;
1306         smp_mb();
1307         if (vcpu->arch.prodded) {
1308                 vcpu->arch.prodded = 0;
1309                 smp_mb();
1310                 vcpu->arch.ceded = 0;
1311         }
1312 }
1313
1314 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1315 {
1316         switch (cmd) {
1317         case H_CEDE:
1318         case H_PROD:
1319         case H_CONFER:
1320         case H_REGISTER_VPA:
1321         case H_SET_MODE:
1322         case H_LOGICAL_CI_LOAD:
1323         case H_LOGICAL_CI_STORE:
1324 #ifdef CONFIG_KVM_XICS
1325         case H_XIRR:
1326         case H_CPPR:
1327         case H_EOI:
1328         case H_IPI:
1329         case H_IPOLL:
1330         case H_XIRR_X:
1331 #endif
1332         case H_PAGE_INIT:
1333         case H_RPT_INVALIDATE:
1334                 return 1;
1335         }
1336
1337         /* See if it's in the real-mode table */
1338         return kvmppc_hcall_impl_hv_realmode(cmd);
1339 }
1340
1341 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1342 {
1343         u32 last_inst;
1344
1345         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1346                                         EMULATE_DONE) {
1347                 /*
1348                  * Fetch failed, so return to guest and
1349                  * try executing it again.
1350                  */
1351                 return RESUME_GUEST;
1352         }
1353
1354         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1355                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1356                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1357                 return RESUME_HOST;
1358         } else {
1359                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1360                 return RESUME_GUEST;
1361         }
1362 }
1363
1364 static void do_nothing(void *x)
1365 {
1366 }
1367
1368 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1369 {
1370         int thr, cpu, pcpu, nthreads;
1371         struct kvm_vcpu *v;
1372         unsigned long dpdes;
1373
1374         nthreads = vcpu->kvm->arch.emul_smt_mode;
1375         dpdes = 0;
1376         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1377         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1378                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1379                 if (!v)
1380                         continue;
1381                 /*
1382                  * If the vcpu is currently running on a physical cpu thread,
1383                  * interrupt it in order to pull it out of the guest briefly,
1384                  * which will update its vcore->dpdes value.
1385                  */
1386                 pcpu = READ_ONCE(v->cpu);
1387                 if (pcpu >= 0)
1388                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1389                 if (kvmppc_doorbell_pending(v))
1390                         dpdes |= 1 << thr;
1391         }
1392         return dpdes;
1393 }
1394
1395 /*
1396  * On POWER9, emulate doorbell-related instructions in order to
1397  * give the guest the illusion of running on a multi-threaded core.
1398  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1399  * and mfspr DPDES.
1400  */
1401 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1402 {
1403         u32 inst, rb, thr;
1404         unsigned long arg;
1405         struct kvm *kvm = vcpu->kvm;
1406         struct kvm_vcpu *tvcpu;
1407
1408         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1409                 return RESUME_GUEST;
1410         if (get_op(inst) != 31)
1411                 return EMULATE_FAIL;
1412         rb = get_rb(inst);
1413         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1414         switch (get_xop(inst)) {
1415         case OP_31_XOP_MSGSNDP:
1416                 arg = kvmppc_get_gpr(vcpu, rb);
1417                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1418                         break;
1419                 arg &= 0x7f;
1420                 if (arg >= kvm->arch.emul_smt_mode)
1421                         break;
1422                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1423                 if (!tvcpu)
1424                         break;
1425                 if (!tvcpu->arch.doorbell_request) {
1426                         tvcpu->arch.doorbell_request = 1;
1427                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1428                 }
1429                 break;
1430         case OP_31_XOP_MSGCLRP:
1431                 arg = kvmppc_get_gpr(vcpu, rb);
1432                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1433                         break;
1434                 vcpu->arch.vcore->dpdes = 0;
1435                 vcpu->arch.doorbell_request = 0;
1436                 break;
1437         case OP_31_XOP_MFSPR:
1438                 switch (get_sprn(inst)) {
1439                 case SPRN_TIR:
1440                         arg = thr;
1441                         break;
1442                 case SPRN_DPDES:
1443                         arg = kvmppc_read_dpdes(vcpu);
1444                         break;
1445                 default:
1446                         return EMULATE_FAIL;
1447                 }
1448                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1449                 break;
1450         default:
1451                 return EMULATE_FAIL;
1452         }
1453         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1454         return RESUME_GUEST;
1455 }
1456
1457 /*
1458  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1459  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1460  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1461  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1462  * allow the guest access to continue.
1463  */
1464 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1465 {
1466         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1467                 return EMULATE_FAIL;
1468
1469         vcpu->arch.hfscr |= HFSCR_PM;
1470
1471         return RESUME_GUEST;
1472 }
1473
1474 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1475 {
1476         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1477                 return EMULATE_FAIL;
1478
1479         vcpu->arch.hfscr |= HFSCR_EBB;
1480
1481         return RESUME_GUEST;
1482 }
1483
1484 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1485 {
1486         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1487                 return EMULATE_FAIL;
1488
1489         vcpu->arch.hfscr |= HFSCR_TM;
1490
1491         return RESUME_GUEST;
1492 }
1493
1494 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1495                                  struct task_struct *tsk)
1496 {
1497         struct kvm_run *run = vcpu->run;
1498         int r = RESUME_HOST;
1499
1500         vcpu->stat.sum_exits++;
1501
1502         /*
1503          * This can happen if an interrupt occurs in the last stages
1504          * of guest entry or the first stages of guest exit (i.e. after
1505          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1506          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1507          * That can happen due to a bug, or due to a machine check
1508          * occurring at just the wrong time.
1509          */
1510         if (vcpu->arch.shregs.msr & MSR_HV) {
1511                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1512                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1513                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1514                         vcpu->arch.shregs.msr);
1515                 kvmppc_dump_regs(vcpu);
1516                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1517                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1518                 return RESUME_HOST;
1519         }
1520         run->exit_reason = KVM_EXIT_UNKNOWN;
1521         run->ready_for_interrupt_injection = 1;
1522         switch (vcpu->arch.trap) {
1523         /* We're good on these - the host merely wanted to get our attention */
1524         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1525                 WARN_ON_ONCE(1); /* Should never happen */
1526                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1527                 fallthrough;
1528         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1529                 vcpu->stat.dec_exits++;
1530                 r = RESUME_GUEST;
1531                 break;
1532         case BOOK3S_INTERRUPT_EXTERNAL:
1533         case BOOK3S_INTERRUPT_H_DOORBELL:
1534         case BOOK3S_INTERRUPT_H_VIRT:
1535                 vcpu->stat.ext_intr_exits++;
1536                 r = RESUME_GUEST;
1537                 break;
1538         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1539         case BOOK3S_INTERRUPT_HMI:
1540         case BOOK3S_INTERRUPT_PERFMON:
1541         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1542                 r = RESUME_GUEST;
1543                 break;
1544         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1545                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1546                                               DEFAULT_RATELIMIT_BURST);
1547                 /*
1548                  * Print the MCE event to host console. Ratelimit so the guest
1549                  * can't flood the host log.
1550                  */
1551                 if (__ratelimit(&rs))
1552                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1553
1554                 /*
1555                  * If the guest can do FWNMI, exit to userspace so it can
1556                  * deliver a FWNMI to the guest.
1557                  * Otherwise we synthesize a machine check for the guest
1558                  * so that it knows that the machine check occurred.
1559                  */
1560                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1561                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1562                         kvmppc_core_queue_machine_check(vcpu, flags);
1563                         r = RESUME_GUEST;
1564                         break;
1565                 }
1566
1567                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1568                 run->exit_reason = KVM_EXIT_NMI;
1569                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1570                 /* Clear out the old NMI status from run->flags */
1571                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1572                 /* Now set the NMI status */
1573                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1574                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1575                 else
1576                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1577
1578                 r = RESUME_HOST;
1579                 break;
1580         }
1581         case BOOK3S_INTERRUPT_PROGRAM:
1582         {
1583                 ulong flags;
1584                 /*
1585                  * Normally program interrupts are delivered directly
1586                  * to the guest by the hardware, but we can get here
1587                  * as a result of a hypervisor emulation interrupt
1588                  * (e40) getting turned into a 700 by BML RTAS.
1589                  */
1590                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1591                 kvmppc_core_queue_program(vcpu, flags);
1592                 r = RESUME_GUEST;
1593                 break;
1594         }
1595         case BOOK3S_INTERRUPT_SYSCALL:
1596         {
1597                 int i;
1598
1599                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1600                         /*
1601                          * Guest userspace executed sc 1. This can only be
1602                          * reached by the P9 path because the old path
1603                          * handles this case in realmode hcall handlers.
1604                          */
1605                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1606                                 /*
1607                                  * A guest could be running PR KVM, so this
1608                                  * may be a PR KVM hcall. It must be reflected
1609                                  * to the guest kernel as a sc interrupt.
1610                                  */
1611                                 kvmppc_core_queue_syscall(vcpu);
1612                         } else {
1613                                 /*
1614                                  * Radix guests can not run PR KVM or nested HV
1615                                  * hash guests which might run PR KVM, so this
1616                                  * is always a privilege fault. Send a program
1617                                  * check to guest kernel.
1618                                  */
1619                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1620                         }
1621                         r = RESUME_GUEST;
1622                         break;
1623                 }
1624
1625                 /*
1626                  * hcall - gather args and set exit_reason. This will next be
1627                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1628                  * with it and resume guest, or may punt to userspace.
1629                  */
1630                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1631                 for (i = 0; i < 9; ++i)
1632                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1633                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1634                 vcpu->arch.hcall_needed = 1;
1635                 r = RESUME_HOST;
1636                 break;
1637         }
1638         /*
1639          * We get these next two if the guest accesses a page which it thinks
1640          * it has mapped but which is not actually present, either because
1641          * it is for an emulated I/O device or because the corresonding
1642          * host page has been paged out.
1643          *
1644          * Any other HDSI/HISI interrupts have been handled already for P7/8
1645          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1646          * fault handling is done here.
1647          */
1648         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1649                 unsigned long vsid;
1650                 long err;
1651
1652                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1653                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1654                         r = RESUME_GUEST; /* Just retry if it's the canary */
1655                         break;
1656                 }
1657
1658                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1659                         /*
1660                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1661                          * already attempted to handle this in rmhandlers. The
1662                          * hash fault handling below is v3 only (it uses ASDR
1663                          * via fault_gpa).
1664                          */
1665                         r = RESUME_PAGE_FAULT;
1666                         break;
1667                 }
1668
1669                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1670                         kvmppc_core_queue_data_storage(vcpu,
1671                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1672                         r = RESUME_GUEST;
1673                         break;
1674                 }
1675
1676                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1677                         vsid = vcpu->kvm->arch.vrma_slb_v;
1678                 else
1679                         vsid = vcpu->arch.fault_gpa;
1680
1681                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1682                                 vsid, vcpu->arch.fault_dsisr, true);
1683                 if (err == 0) {
1684                         r = RESUME_GUEST;
1685                 } else if (err == -1 || err == -2) {
1686                         r = RESUME_PAGE_FAULT;
1687                 } else {
1688                         kvmppc_core_queue_data_storage(vcpu,
1689                                 vcpu->arch.fault_dar, err);
1690                         r = RESUME_GUEST;
1691                 }
1692                 break;
1693         }
1694         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1695                 unsigned long vsid;
1696                 long err;
1697
1698                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1699                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1700                         DSISR_SRR1_MATCH_64S;
1701                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1702                         /*
1703                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1704                          * already attempted to handle this in rmhandlers. The
1705                          * hash fault handling below is v3 only (it uses ASDR
1706                          * via fault_gpa).
1707                          */
1708                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1709                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1710                         r = RESUME_PAGE_FAULT;
1711                         break;
1712                 }
1713
1714                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1715                         kvmppc_core_queue_inst_storage(vcpu,
1716                                 vcpu->arch.fault_dsisr);
1717                         r = RESUME_GUEST;
1718                         break;
1719                 }
1720
1721                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1722                         vsid = vcpu->kvm->arch.vrma_slb_v;
1723                 else
1724                         vsid = vcpu->arch.fault_gpa;
1725
1726                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1727                                 vsid, vcpu->arch.fault_dsisr, false);
1728                 if (err == 0) {
1729                         r = RESUME_GUEST;
1730                 } else if (err == -1) {
1731                         r = RESUME_PAGE_FAULT;
1732                 } else {
1733                         kvmppc_core_queue_inst_storage(vcpu, err);
1734                         r = RESUME_GUEST;
1735                 }
1736                 break;
1737         }
1738
1739         /*
1740          * This occurs if the guest executes an illegal instruction.
1741          * If the guest debug is disabled, generate a program interrupt
1742          * to the guest. If guest debug is enabled, we need to check
1743          * whether the instruction is a software breakpoint instruction.
1744          * Accordingly return to Guest or Host.
1745          */
1746         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1747                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1748                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1749                                 swab32(vcpu->arch.emul_inst) :
1750                                 vcpu->arch.emul_inst;
1751                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1752                         r = kvmppc_emulate_debug_inst(vcpu);
1753                 } else {
1754                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1755                         r = RESUME_GUEST;
1756                 }
1757                 break;
1758
1759 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1760         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1761                 /*
1762                  * This occurs for various TM-related instructions that
1763                  * we need to emulate on POWER9 DD2.2.  We have already
1764                  * handled the cases where the guest was in real-suspend
1765                  * mode and was transitioning to transactional state.
1766                  */
1767                 r = kvmhv_p9_tm_emulation(vcpu);
1768                 if (r != -1)
1769                         break;
1770                 fallthrough; /* go to facility unavailable handler */
1771 #endif
1772
1773         /*
1774          * This occurs if the guest (kernel or userspace), does something that
1775          * is prohibited by HFSCR.
1776          * On POWER9, this could be a doorbell instruction that we need
1777          * to emulate.
1778          * Otherwise, we just generate a program interrupt to the guest.
1779          */
1780         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1781                 u64 cause = vcpu->arch.hfscr >> 56;
1782
1783                 r = EMULATE_FAIL;
1784                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1785                         if (cause == FSCR_MSGP_LG)
1786                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1787                         if (cause == FSCR_PM_LG)
1788                                 r = kvmppc_pmu_unavailable(vcpu);
1789                         if (cause == FSCR_EBB_LG)
1790                                 r = kvmppc_ebb_unavailable(vcpu);
1791                         if (cause == FSCR_TM_LG)
1792                                 r = kvmppc_tm_unavailable(vcpu);
1793                 }
1794                 if (r == EMULATE_FAIL) {
1795                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1796                         r = RESUME_GUEST;
1797                 }
1798                 break;
1799         }
1800
1801         case BOOK3S_INTERRUPT_HV_RM_HARD:
1802                 r = RESUME_PASSTHROUGH;
1803                 break;
1804         default:
1805                 kvmppc_dump_regs(vcpu);
1806                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1807                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1808                         vcpu->arch.shregs.msr);
1809                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1810                 r = RESUME_HOST;
1811                 break;
1812         }
1813
1814         return r;
1815 }
1816
1817 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1818 {
1819         struct kvm_nested_guest *nested = vcpu->arch.nested;
1820         int r;
1821         int srcu_idx;
1822
1823         vcpu->stat.sum_exits++;
1824
1825         /*
1826          * This can happen if an interrupt occurs in the last stages
1827          * of guest entry or the first stages of guest exit (i.e. after
1828          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1829          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1830          * That can happen due to a bug, or due to a machine check
1831          * occurring at just the wrong time.
1832          */
1833         if (vcpu->arch.shregs.msr & MSR_HV) {
1834                 pr_emerg("KVM trap in HV mode while nested!\n");
1835                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1836                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1837                          vcpu->arch.shregs.msr);
1838                 kvmppc_dump_regs(vcpu);
1839                 return RESUME_HOST;
1840         }
1841         switch (vcpu->arch.trap) {
1842         /* We're good on these - the host merely wanted to get our attention */
1843         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1844                 vcpu->stat.dec_exits++;
1845                 r = RESUME_GUEST;
1846                 break;
1847         case BOOK3S_INTERRUPT_EXTERNAL:
1848                 vcpu->stat.ext_intr_exits++;
1849                 r = RESUME_HOST;
1850                 break;
1851         case BOOK3S_INTERRUPT_H_DOORBELL:
1852         case BOOK3S_INTERRUPT_H_VIRT:
1853                 vcpu->stat.ext_intr_exits++;
1854                 r = RESUME_GUEST;
1855                 break;
1856         /* These need to go to the nested HV */
1857         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1858                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1859                 vcpu->stat.dec_exits++;
1860                 r = RESUME_HOST;
1861                 break;
1862         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1863         case BOOK3S_INTERRUPT_HMI:
1864         case BOOK3S_INTERRUPT_PERFMON:
1865         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1866                 r = RESUME_GUEST;
1867                 break;
1868         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1869         {
1870                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1871                                               DEFAULT_RATELIMIT_BURST);
1872                 /* Pass the machine check to the L1 guest */
1873                 r = RESUME_HOST;
1874                 /* Print the MCE event to host console. */
1875                 if (__ratelimit(&rs))
1876                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1877                 break;
1878         }
1879         /*
1880          * We get these next two if the guest accesses a page which it thinks
1881          * it has mapped but which is not actually present, either because
1882          * it is for an emulated I/O device or because the corresonding
1883          * host page has been paged out.
1884          */
1885         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1886                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1887                 r = kvmhv_nested_page_fault(vcpu);
1888                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1889                 break;
1890         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1891                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1892                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1893                                          DSISR_SRR1_MATCH_64S;
1894                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1895                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1896                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1897                 r = kvmhv_nested_page_fault(vcpu);
1898                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1899                 break;
1900
1901 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1902         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1903                 /*
1904                  * This occurs for various TM-related instructions that
1905                  * we need to emulate on POWER9 DD2.2.  We have already
1906                  * handled the cases where the guest was in real-suspend
1907                  * mode and was transitioning to transactional state.
1908                  */
1909                 r = kvmhv_p9_tm_emulation(vcpu);
1910                 if (r != -1)
1911                         break;
1912                 fallthrough; /* go to facility unavailable handler */
1913 #endif
1914
1915         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1916                 u64 cause = vcpu->arch.hfscr >> 56;
1917
1918                 /*
1919                  * Only pass HFU interrupts to the L1 if the facility is
1920                  * permitted but disabled by the L1's HFSCR, otherwise
1921                  * the interrupt does not make sense to the L1 so turn
1922                  * it into a HEAI.
1923                  */
1924                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1925                                         (nested->hfscr & (1UL << cause))) {
1926                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1927
1928                         /*
1929                          * If the fetch failed, return to guest and
1930                          * try executing it again.
1931                          */
1932                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1933                                                  &vcpu->arch.emul_inst);
1934                         if (r != EMULATE_DONE)
1935                                 r = RESUME_GUEST;
1936                         else
1937                                 r = RESUME_HOST;
1938                 } else {
1939                         r = RESUME_HOST;
1940                 }
1941
1942                 break;
1943         }
1944
1945         case BOOK3S_INTERRUPT_HV_RM_HARD:
1946                 vcpu->arch.trap = 0;
1947                 r = RESUME_GUEST;
1948                 if (!xics_on_xive())
1949                         kvmppc_xics_rm_complete(vcpu, 0);
1950                 break;
1951         case BOOK3S_INTERRUPT_SYSCALL:
1952         {
1953                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1954
1955                 /*
1956                  * The H_RPT_INVALIDATE hcalls issued by nested
1957                  * guests for process-scoped invalidations when
1958                  * GTSE=0, are handled here in L0.
1959                  */
1960                 if (req == H_RPT_INVALIDATE) {
1961                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
1962                         break;
1963                 }
1964
1965                 r = RESUME_HOST;
1966                 break;
1967         }
1968         default:
1969                 r = RESUME_HOST;
1970                 break;
1971         }
1972
1973         return r;
1974 }
1975
1976 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1977                                             struct kvm_sregs *sregs)
1978 {
1979         int i;
1980
1981         memset(sregs, 0, sizeof(struct kvm_sregs));
1982         sregs->pvr = vcpu->arch.pvr;
1983         for (i = 0; i < vcpu->arch.slb_max; i++) {
1984                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1985                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1986         }
1987
1988         return 0;
1989 }
1990
1991 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1992                                             struct kvm_sregs *sregs)
1993 {
1994         int i, j;
1995
1996         /* Only accept the same PVR as the host's, since we can't spoof it */
1997         if (sregs->pvr != vcpu->arch.pvr)
1998                 return -EINVAL;
1999
2000         j = 0;
2001         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2002                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2003                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2004                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2005                         ++j;
2006                 }
2007         }
2008         vcpu->arch.slb_max = j;
2009
2010         return 0;
2011 }
2012
2013 /*
2014  * Enforce limits on guest LPCR values based on hardware availability,
2015  * guest configuration, and possibly hypervisor support and security
2016  * concerns.
2017  */
2018 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2019 {
2020         /* LPCR_TC only applies to HPT guests */
2021         if (kvm_is_radix(kvm))
2022                 lpcr &= ~LPCR_TC;
2023
2024         /* On POWER8 and above, userspace can modify AIL */
2025         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2026                 lpcr &= ~LPCR_AIL;
2027         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2028                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2029         /*
2030          * On some POWER9s we force AIL off for radix guests to prevent
2031          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2032          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2033          * be cached, which the host TLB management does not expect.
2034          */
2035         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2036                 lpcr &= ~LPCR_AIL;
2037
2038         /*
2039          * On POWER9, allow userspace to enable large decrementer for the
2040          * guest, whether or not the host has it enabled.
2041          */
2042         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2043                 lpcr &= ~LPCR_LD;
2044
2045         return lpcr;
2046 }
2047
2048 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2049 {
2050         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2051                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2052                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2053         }
2054 }
2055
2056 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2057                 bool preserve_top32)
2058 {
2059         struct kvm *kvm = vcpu->kvm;
2060         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2061         u64 mask;
2062
2063         spin_lock(&vc->lock);
2064
2065         /*
2066          * Userspace can only modify
2067          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2068          * TC (translation control), AIL (alternate interrupt location),
2069          * LD (large decrementer).
2070          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2071          */
2072         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2073
2074         /* Broken 32-bit version of LPCR must not clear top bits */
2075         if (preserve_top32)
2076                 mask &= 0xFFFFFFFF;
2077
2078         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2079                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2080
2081         /*
2082          * If ILE (interrupt little-endian) has changed, update the
2083          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2084          */
2085         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2086                 struct kvm_vcpu *vcpu;
2087                 unsigned long i;
2088
2089                 kvm_for_each_vcpu(i, vcpu, kvm) {
2090                         if (vcpu->arch.vcore != vc)
2091                                 continue;
2092                         if (new_lpcr & LPCR_ILE)
2093                                 vcpu->arch.intr_msr |= MSR_LE;
2094                         else
2095                                 vcpu->arch.intr_msr &= ~MSR_LE;
2096                 }
2097         }
2098
2099         vc->lpcr = new_lpcr;
2100
2101         spin_unlock(&vc->lock);
2102 }
2103
2104 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2105                                  union kvmppc_one_reg *val)
2106 {
2107         int r = 0;
2108         long int i;
2109
2110         switch (id) {
2111         case KVM_REG_PPC_DEBUG_INST:
2112                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2113                 break;
2114         case KVM_REG_PPC_HIOR:
2115                 *val = get_reg_val(id, 0);
2116                 break;
2117         case KVM_REG_PPC_DABR:
2118                 *val = get_reg_val(id, vcpu->arch.dabr);
2119                 break;
2120         case KVM_REG_PPC_DABRX:
2121                 *val = get_reg_val(id, vcpu->arch.dabrx);
2122                 break;
2123         case KVM_REG_PPC_DSCR:
2124                 *val = get_reg_val(id, vcpu->arch.dscr);
2125                 break;
2126         case KVM_REG_PPC_PURR:
2127                 *val = get_reg_val(id, vcpu->arch.purr);
2128                 break;
2129         case KVM_REG_PPC_SPURR:
2130                 *val = get_reg_val(id, vcpu->arch.spurr);
2131                 break;
2132         case KVM_REG_PPC_AMR:
2133                 *val = get_reg_val(id, vcpu->arch.amr);
2134                 break;
2135         case KVM_REG_PPC_UAMOR:
2136                 *val = get_reg_val(id, vcpu->arch.uamor);
2137                 break;
2138         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2139                 i = id - KVM_REG_PPC_MMCR0;
2140                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2141                 break;
2142         case KVM_REG_PPC_MMCR2:
2143                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2144                 break;
2145         case KVM_REG_PPC_MMCRA:
2146                 *val = get_reg_val(id, vcpu->arch.mmcra);
2147                 break;
2148         case KVM_REG_PPC_MMCRS:
2149                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2150                 break;
2151         case KVM_REG_PPC_MMCR3:
2152                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2153                 break;
2154         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2155                 i = id - KVM_REG_PPC_PMC1;
2156                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2157                 break;
2158         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2159                 i = id - KVM_REG_PPC_SPMC1;
2160                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2161                 break;
2162         case KVM_REG_PPC_SIAR:
2163                 *val = get_reg_val(id, vcpu->arch.siar);
2164                 break;
2165         case KVM_REG_PPC_SDAR:
2166                 *val = get_reg_val(id, vcpu->arch.sdar);
2167                 break;
2168         case KVM_REG_PPC_SIER:
2169                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2170                 break;
2171         case KVM_REG_PPC_SIER2:
2172                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2173                 break;
2174         case KVM_REG_PPC_SIER3:
2175                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2176                 break;
2177         case KVM_REG_PPC_IAMR:
2178                 *val = get_reg_val(id, vcpu->arch.iamr);
2179                 break;
2180         case KVM_REG_PPC_PSPB:
2181                 *val = get_reg_val(id, vcpu->arch.pspb);
2182                 break;
2183         case KVM_REG_PPC_DPDES:
2184                 /*
2185                  * On POWER9, where we are emulating msgsndp etc.,
2186                  * we return 1 bit for each vcpu, which can come from
2187                  * either vcore->dpdes or doorbell_request.
2188                  * On POWER8, doorbell_request is 0.
2189                  */
2190                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2191                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2192                 else
2193                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2194                 break;
2195         case KVM_REG_PPC_VTB:
2196                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2197                 break;
2198         case KVM_REG_PPC_DAWR:
2199                 *val = get_reg_val(id, vcpu->arch.dawr0);
2200                 break;
2201         case KVM_REG_PPC_DAWRX:
2202                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2203                 break;
2204         case KVM_REG_PPC_DAWR1:
2205                 *val = get_reg_val(id, vcpu->arch.dawr1);
2206                 break;
2207         case KVM_REG_PPC_DAWRX1:
2208                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2209                 break;
2210         case KVM_REG_PPC_CIABR:
2211                 *val = get_reg_val(id, vcpu->arch.ciabr);
2212                 break;
2213         case KVM_REG_PPC_CSIGR:
2214                 *val = get_reg_val(id, vcpu->arch.csigr);
2215                 break;
2216         case KVM_REG_PPC_TACR:
2217                 *val = get_reg_val(id, vcpu->arch.tacr);
2218                 break;
2219         case KVM_REG_PPC_TCSCR:
2220                 *val = get_reg_val(id, vcpu->arch.tcscr);
2221                 break;
2222         case KVM_REG_PPC_PID:
2223                 *val = get_reg_val(id, vcpu->arch.pid);
2224                 break;
2225         case KVM_REG_PPC_ACOP:
2226                 *val = get_reg_val(id, vcpu->arch.acop);
2227                 break;
2228         case KVM_REG_PPC_WORT:
2229                 *val = get_reg_val(id, vcpu->arch.wort);
2230                 break;
2231         case KVM_REG_PPC_TIDR:
2232                 *val = get_reg_val(id, vcpu->arch.tid);
2233                 break;
2234         case KVM_REG_PPC_PSSCR:
2235                 *val = get_reg_val(id, vcpu->arch.psscr);
2236                 break;
2237         case KVM_REG_PPC_VPA_ADDR:
2238                 spin_lock(&vcpu->arch.vpa_update_lock);
2239                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2240                 spin_unlock(&vcpu->arch.vpa_update_lock);
2241                 break;
2242         case KVM_REG_PPC_VPA_SLB:
2243                 spin_lock(&vcpu->arch.vpa_update_lock);
2244                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2245                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2246                 spin_unlock(&vcpu->arch.vpa_update_lock);
2247                 break;
2248         case KVM_REG_PPC_VPA_DTL:
2249                 spin_lock(&vcpu->arch.vpa_update_lock);
2250                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2251                 val->vpaval.length = vcpu->arch.dtl.len;
2252                 spin_unlock(&vcpu->arch.vpa_update_lock);
2253                 break;
2254         case KVM_REG_PPC_TB_OFFSET:
2255                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2256                 break;
2257         case KVM_REG_PPC_LPCR:
2258         case KVM_REG_PPC_LPCR_64:
2259                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2260                 break;
2261         case KVM_REG_PPC_PPR:
2262                 *val = get_reg_val(id, vcpu->arch.ppr);
2263                 break;
2264 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2265         case KVM_REG_PPC_TFHAR:
2266                 *val = get_reg_val(id, vcpu->arch.tfhar);
2267                 break;
2268         case KVM_REG_PPC_TFIAR:
2269                 *val = get_reg_val(id, vcpu->arch.tfiar);
2270                 break;
2271         case KVM_REG_PPC_TEXASR:
2272                 *val = get_reg_val(id, vcpu->arch.texasr);
2273                 break;
2274         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2275                 i = id - KVM_REG_PPC_TM_GPR0;
2276                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2277                 break;
2278         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2279         {
2280                 int j;
2281                 i = id - KVM_REG_PPC_TM_VSR0;
2282                 if (i < 32)
2283                         for (j = 0; j < TS_FPRWIDTH; j++)
2284                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2285                 else {
2286                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2287                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2288                         else
2289                                 r = -ENXIO;
2290                 }
2291                 break;
2292         }
2293         case KVM_REG_PPC_TM_CR:
2294                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2295                 break;
2296         case KVM_REG_PPC_TM_XER:
2297                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2298                 break;
2299         case KVM_REG_PPC_TM_LR:
2300                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2301                 break;
2302         case KVM_REG_PPC_TM_CTR:
2303                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2304                 break;
2305         case KVM_REG_PPC_TM_FPSCR:
2306                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2307                 break;
2308         case KVM_REG_PPC_TM_AMR:
2309                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2310                 break;
2311         case KVM_REG_PPC_TM_PPR:
2312                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2313                 break;
2314         case KVM_REG_PPC_TM_VRSAVE:
2315                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2316                 break;
2317         case KVM_REG_PPC_TM_VSCR:
2318                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2319                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2320                 else
2321                         r = -ENXIO;
2322                 break;
2323         case KVM_REG_PPC_TM_DSCR:
2324                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2325                 break;
2326         case KVM_REG_PPC_TM_TAR:
2327                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2328                 break;
2329 #endif
2330         case KVM_REG_PPC_ARCH_COMPAT:
2331                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2332                 break;
2333         case KVM_REG_PPC_DEC_EXPIRY:
2334                 *val = get_reg_val(id, vcpu->arch.dec_expires);
2335                 break;
2336         case KVM_REG_PPC_ONLINE:
2337                 *val = get_reg_val(id, vcpu->arch.online);
2338                 break;
2339         case KVM_REG_PPC_PTCR:
2340                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2341                 break;
2342         default:
2343                 r = -EINVAL;
2344                 break;
2345         }
2346
2347         return r;
2348 }
2349
2350 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2351                                  union kvmppc_one_reg *val)
2352 {
2353         int r = 0;
2354         long int i;
2355         unsigned long addr, len;
2356
2357         switch (id) {
2358         case KVM_REG_PPC_HIOR:
2359                 /* Only allow this to be set to zero */
2360                 if (set_reg_val(id, *val))
2361                         r = -EINVAL;
2362                 break;
2363         case KVM_REG_PPC_DABR:
2364                 vcpu->arch.dabr = set_reg_val(id, *val);
2365                 break;
2366         case KVM_REG_PPC_DABRX:
2367                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2368                 break;
2369         case KVM_REG_PPC_DSCR:
2370                 vcpu->arch.dscr = set_reg_val(id, *val);
2371                 break;
2372         case KVM_REG_PPC_PURR:
2373                 vcpu->arch.purr = set_reg_val(id, *val);
2374                 break;
2375         case KVM_REG_PPC_SPURR:
2376                 vcpu->arch.spurr = set_reg_val(id, *val);
2377                 break;
2378         case KVM_REG_PPC_AMR:
2379                 vcpu->arch.amr = set_reg_val(id, *val);
2380                 break;
2381         case KVM_REG_PPC_UAMOR:
2382                 vcpu->arch.uamor = set_reg_val(id, *val);
2383                 break;
2384         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2385                 i = id - KVM_REG_PPC_MMCR0;
2386                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2387                 break;
2388         case KVM_REG_PPC_MMCR2:
2389                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2390                 break;
2391         case KVM_REG_PPC_MMCRA:
2392                 vcpu->arch.mmcra = set_reg_val(id, *val);
2393                 break;
2394         case KVM_REG_PPC_MMCRS:
2395                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2396                 break;
2397         case KVM_REG_PPC_MMCR3:
2398                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2399                 break;
2400         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2401                 i = id - KVM_REG_PPC_PMC1;
2402                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2403                 break;
2404         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2405                 i = id - KVM_REG_PPC_SPMC1;
2406                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2407                 break;
2408         case KVM_REG_PPC_SIAR:
2409                 vcpu->arch.siar = set_reg_val(id, *val);
2410                 break;
2411         case KVM_REG_PPC_SDAR:
2412                 vcpu->arch.sdar = set_reg_val(id, *val);
2413                 break;
2414         case KVM_REG_PPC_SIER:
2415                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2416                 break;
2417         case KVM_REG_PPC_SIER2:
2418                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2419                 break;
2420         case KVM_REG_PPC_SIER3:
2421                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2422                 break;
2423         case KVM_REG_PPC_IAMR:
2424                 vcpu->arch.iamr = set_reg_val(id, *val);
2425                 break;
2426         case KVM_REG_PPC_PSPB:
2427                 vcpu->arch.pspb = set_reg_val(id, *val);
2428                 break;
2429         case KVM_REG_PPC_DPDES:
2430                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2431                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2432                 else
2433                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2434                 break;
2435         case KVM_REG_PPC_VTB:
2436                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2437                 break;
2438         case KVM_REG_PPC_DAWR:
2439                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2440                 break;
2441         case KVM_REG_PPC_DAWRX:
2442                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2443                 break;
2444         case KVM_REG_PPC_DAWR1:
2445                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2446                 break;
2447         case KVM_REG_PPC_DAWRX1:
2448                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2449                 break;
2450         case KVM_REG_PPC_CIABR:
2451                 vcpu->arch.ciabr = set_reg_val(id, *val);
2452                 /* Don't allow setting breakpoints in hypervisor code */
2453                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2454                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2455                 break;
2456         case KVM_REG_PPC_CSIGR:
2457                 vcpu->arch.csigr = set_reg_val(id, *val);
2458                 break;
2459         case KVM_REG_PPC_TACR:
2460                 vcpu->arch.tacr = set_reg_val(id, *val);
2461                 break;
2462         case KVM_REG_PPC_TCSCR:
2463                 vcpu->arch.tcscr = set_reg_val(id, *val);
2464                 break;
2465         case KVM_REG_PPC_PID:
2466                 vcpu->arch.pid = set_reg_val(id, *val);
2467                 break;
2468         case KVM_REG_PPC_ACOP:
2469                 vcpu->arch.acop = set_reg_val(id, *val);
2470                 break;
2471         case KVM_REG_PPC_WORT:
2472                 vcpu->arch.wort = set_reg_val(id, *val);
2473                 break;
2474         case KVM_REG_PPC_TIDR:
2475                 vcpu->arch.tid = set_reg_val(id, *val);
2476                 break;
2477         case KVM_REG_PPC_PSSCR:
2478                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2479                 break;
2480         case KVM_REG_PPC_VPA_ADDR:
2481                 addr = set_reg_val(id, *val);
2482                 r = -EINVAL;
2483                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2484                               vcpu->arch.dtl.next_gpa))
2485                         break;
2486                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2487                 break;
2488         case KVM_REG_PPC_VPA_SLB:
2489                 addr = val->vpaval.addr;
2490                 len = val->vpaval.length;
2491                 r = -EINVAL;
2492                 if (addr && !vcpu->arch.vpa.next_gpa)
2493                         break;
2494                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2495                 break;
2496         case KVM_REG_PPC_VPA_DTL:
2497                 addr = val->vpaval.addr;
2498                 len = val->vpaval.length;
2499                 r = -EINVAL;
2500                 if (addr && (len < sizeof(struct dtl_entry) ||
2501                              !vcpu->arch.vpa.next_gpa))
2502                         break;
2503                 len -= len % sizeof(struct dtl_entry);
2504                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2505                 break;
2506         case KVM_REG_PPC_TB_OFFSET:
2507                 /* round up to multiple of 2^24 */
2508                 vcpu->arch.vcore->tb_offset =
2509                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2510                 break;
2511         case KVM_REG_PPC_LPCR:
2512                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2513                 break;
2514         case KVM_REG_PPC_LPCR_64:
2515                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2516                 break;
2517         case KVM_REG_PPC_PPR:
2518                 vcpu->arch.ppr = set_reg_val(id, *val);
2519                 break;
2520 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2521         case KVM_REG_PPC_TFHAR:
2522                 vcpu->arch.tfhar = set_reg_val(id, *val);
2523                 break;
2524         case KVM_REG_PPC_TFIAR:
2525                 vcpu->arch.tfiar = set_reg_val(id, *val);
2526                 break;
2527         case KVM_REG_PPC_TEXASR:
2528                 vcpu->arch.texasr = set_reg_val(id, *val);
2529                 break;
2530         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2531                 i = id - KVM_REG_PPC_TM_GPR0;
2532                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2533                 break;
2534         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2535         {
2536                 int j;
2537                 i = id - KVM_REG_PPC_TM_VSR0;
2538                 if (i < 32)
2539                         for (j = 0; j < TS_FPRWIDTH; j++)
2540                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2541                 else
2542                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2543                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2544                         else
2545                                 r = -ENXIO;
2546                 break;
2547         }
2548         case KVM_REG_PPC_TM_CR:
2549                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2550                 break;
2551         case KVM_REG_PPC_TM_XER:
2552                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2553                 break;
2554         case KVM_REG_PPC_TM_LR:
2555                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2556                 break;
2557         case KVM_REG_PPC_TM_CTR:
2558                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2559                 break;
2560         case KVM_REG_PPC_TM_FPSCR:
2561                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2562                 break;
2563         case KVM_REG_PPC_TM_AMR:
2564                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2565                 break;
2566         case KVM_REG_PPC_TM_PPR:
2567                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2568                 break;
2569         case KVM_REG_PPC_TM_VRSAVE:
2570                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2571                 break;
2572         case KVM_REG_PPC_TM_VSCR:
2573                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2574                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2575                 else
2576                         r = - ENXIO;
2577                 break;
2578         case KVM_REG_PPC_TM_DSCR:
2579                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2580                 break;
2581         case KVM_REG_PPC_TM_TAR:
2582                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2583                 break;
2584 #endif
2585         case KVM_REG_PPC_ARCH_COMPAT:
2586                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2587                 break;
2588         case KVM_REG_PPC_DEC_EXPIRY:
2589                 vcpu->arch.dec_expires = set_reg_val(id, *val);
2590                 break;
2591         case KVM_REG_PPC_ONLINE:
2592                 i = set_reg_val(id, *val);
2593                 if (i && !vcpu->arch.online)
2594                         atomic_inc(&vcpu->arch.vcore->online_count);
2595                 else if (!i && vcpu->arch.online)
2596                         atomic_dec(&vcpu->arch.vcore->online_count);
2597                 vcpu->arch.online = i;
2598                 break;
2599         case KVM_REG_PPC_PTCR:
2600                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2601                 break;
2602         default:
2603                 r = -EINVAL;
2604                 break;
2605         }
2606
2607         return r;
2608 }
2609
2610 /*
2611  * On POWER9, threads are independent and can be in different partitions.
2612  * Therefore we consider each thread to be a subcore.
2613  * There is a restriction that all threads have to be in the same
2614  * MMU mode (radix or HPT), unfortunately, but since we only support
2615  * HPT guests on a HPT host so far, that isn't an impediment yet.
2616  */
2617 static int threads_per_vcore(struct kvm *kvm)
2618 {
2619         if (cpu_has_feature(CPU_FTR_ARCH_300))
2620                 return 1;
2621         return threads_per_subcore;
2622 }
2623
2624 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2625 {
2626         struct kvmppc_vcore *vcore;
2627
2628         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2629
2630         if (vcore == NULL)
2631                 return NULL;
2632
2633         spin_lock_init(&vcore->lock);
2634         spin_lock_init(&vcore->stoltb_lock);
2635         rcuwait_init(&vcore->wait);
2636         vcore->preempt_tb = TB_NIL;
2637         vcore->lpcr = kvm->arch.lpcr;
2638         vcore->first_vcpuid = id;
2639         vcore->kvm = kvm;
2640         INIT_LIST_HEAD(&vcore->preempt_list);
2641
2642         return vcore;
2643 }
2644
2645 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2646 static struct debugfs_timings_element {
2647         const char *name;
2648         size_t offset;
2649 } timings[] = {
2650         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2651         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2652         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2653         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2654         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2655 };
2656
2657 #define N_TIMINGS       (ARRAY_SIZE(timings))
2658
2659 struct debugfs_timings_state {
2660         struct kvm_vcpu *vcpu;
2661         unsigned int    buflen;
2662         char            buf[N_TIMINGS * 100];
2663 };
2664
2665 static int debugfs_timings_open(struct inode *inode, struct file *file)
2666 {
2667         struct kvm_vcpu *vcpu = inode->i_private;
2668         struct debugfs_timings_state *p;
2669
2670         p = kzalloc(sizeof(*p), GFP_KERNEL);
2671         if (!p)
2672                 return -ENOMEM;
2673
2674         kvm_get_kvm(vcpu->kvm);
2675         p->vcpu = vcpu;
2676         file->private_data = p;
2677
2678         return nonseekable_open(inode, file);
2679 }
2680
2681 static int debugfs_timings_release(struct inode *inode, struct file *file)
2682 {
2683         struct debugfs_timings_state *p = file->private_data;
2684
2685         kvm_put_kvm(p->vcpu->kvm);
2686         kfree(p);
2687         return 0;
2688 }
2689
2690 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2691                                     size_t len, loff_t *ppos)
2692 {
2693         struct debugfs_timings_state *p = file->private_data;
2694         struct kvm_vcpu *vcpu = p->vcpu;
2695         char *s, *buf_end;
2696         struct kvmhv_tb_accumulator tb;
2697         u64 count;
2698         loff_t pos;
2699         ssize_t n;
2700         int i, loops;
2701         bool ok;
2702
2703         if (!p->buflen) {
2704                 s = p->buf;
2705                 buf_end = s + sizeof(p->buf);
2706                 for (i = 0; i < N_TIMINGS; ++i) {
2707                         struct kvmhv_tb_accumulator *acc;
2708
2709                         acc = (struct kvmhv_tb_accumulator *)
2710                                 ((unsigned long)vcpu + timings[i].offset);
2711                         ok = false;
2712                         for (loops = 0; loops < 1000; ++loops) {
2713                                 count = acc->seqcount;
2714                                 if (!(count & 1)) {
2715                                         smp_rmb();
2716                                         tb = *acc;
2717                                         smp_rmb();
2718                                         if (count == acc->seqcount) {
2719                                                 ok = true;
2720                                                 break;
2721                                         }
2722                                 }
2723                                 udelay(1);
2724                         }
2725                         if (!ok)
2726                                 snprintf(s, buf_end - s, "%s: stuck\n",
2727                                         timings[i].name);
2728                         else
2729                                 snprintf(s, buf_end - s,
2730                                         "%s: %llu %llu %llu %llu\n",
2731                                         timings[i].name, count / 2,
2732                                         tb_to_ns(tb.tb_total),
2733                                         tb_to_ns(tb.tb_min),
2734                                         tb_to_ns(tb.tb_max));
2735                         s += strlen(s);
2736                 }
2737                 p->buflen = s - p->buf;
2738         }
2739
2740         pos = *ppos;
2741         if (pos >= p->buflen)
2742                 return 0;
2743         if (len > p->buflen - pos)
2744                 len = p->buflen - pos;
2745         n = copy_to_user(buf, p->buf + pos, len);
2746         if (n) {
2747                 if (n == len)
2748                         return -EFAULT;
2749                 len -= n;
2750         }
2751         *ppos = pos + len;
2752         return len;
2753 }
2754
2755 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2756                                      size_t len, loff_t *ppos)
2757 {
2758         return -EACCES;
2759 }
2760
2761 static const struct file_operations debugfs_timings_ops = {
2762         .owner   = THIS_MODULE,
2763         .open    = debugfs_timings_open,
2764         .release = debugfs_timings_release,
2765         .read    = debugfs_timings_read,
2766         .write   = debugfs_timings_write,
2767         .llseek  = generic_file_llseek,
2768 };
2769
2770 /* Create a debugfs directory for the vcpu */
2771 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2772 {
2773         char buf[16];
2774         struct kvm *kvm = vcpu->kvm;
2775
2776         snprintf(buf, sizeof(buf), "vcpu%u", id);
2777         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2778         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2779                             &debugfs_timings_ops);
2780 }
2781
2782 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2783 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2784 {
2785 }
2786 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2787
2788 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2789 {
2790         int err;
2791         int core;
2792         struct kvmppc_vcore *vcore;
2793         struct kvm *kvm;
2794         unsigned int id;
2795
2796         kvm = vcpu->kvm;
2797         id = vcpu->vcpu_id;
2798
2799         vcpu->arch.shared = &vcpu->arch.shregs;
2800 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2801         /*
2802          * The shared struct is never shared on HV,
2803          * so we can always use host endianness
2804          */
2805 #ifdef __BIG_ENDIAN__
2806         vcpu->arch.shared_big_endian = true;
2807 #else
2808         vcpu->arch.shared_big_endian = false;
2809 #endif
2810 #endif
2811         vcpu->arch.mmcr[0] = MMCR0_FC;
2812         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2813                 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2814                 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2815         }
2816
2817         vcpu->arch.ctrl = CTRL_RUNLATCH;
2818         /* default to host PVR, since we can't spoof it */
2819         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2820         spin_lock_init(&vcpu->arch.vpa_update_lock);
2821         spin_lock_init(&vcpu->arch.tbacct_lock);
2822         vcpu->arch.busy_preempt = TB_NIL;
2823         vcpu->arch.shregs.msr = MSR_ME;
2824         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2825
2826         /*
2827          * Set the default HFSCR for the guest from the host value.
2828          * This value is only used on POWER9.
2829          * On POWER9, we want to virtualize the doorbell facility, so we
2830          * don't set the HFSCR_MSGP bit, and that causes those instructions
2831          * to trap and then we emulate them.
2832          */
2833         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2834                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2835         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2836                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2837 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2838                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2839                         vcpu->arch.hfscr |= HFSCR_TM;
2840 #endif
2841         }
2842         if (cpu_has_feature(CPU_FTR_TM_COMP))
2843                 vcpu->arch.hfscr |= HFSCR_TM;
2844
2845         vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2846
2847         /*
2848          * PM, EBB, TM are demand-faulted so start with it clear.
2849          */
2850         vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2851
2852         kvmppc_mmu_book3s_hv_init(vcpu);
2853
2854         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2855
2856         init_waitqueue_head(&vcpu->arch.cpu_run);
2857
2858         mutex_lock(&kvm->lock);
2859         vcore = NULL;
2860         err = -EINVAL;
2861         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2862                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2863                         pr_devel("KVM: VCPU ID too high\n");
2864                         core = KVM_MAX_VCORES;
2865                 } else {
2866                         BUG_ON(kvm->arch.smt_mode != 1);
2867                         core = kvmppc_pack_vcpu_id(kvm, id);
2868                 }
2869         } else {
2870                 core = id / kvm->arch.smt_mode;
2871         }
2872         if (core < KVM_MAX_VCORES) {
2873                 vcore = kvm->arch.vcores[core];
2874                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2875                         pr_devel("KVM: collision on id %u", id);
2876                         vcore = NULL;
2877                 } else if (!vcore) {
2878                         /*
2879                          * Take mmu_setup_lock for mutual exclusion
2880                          * with kvmppc_update_lpcr().
2881                          */
2882                         err = -ENOMEM;
2883                         vcore = kvmppc_vcore_create(kvm,
2884                                         id & ~(kvm->arch.smt_mode - 1));
2885                         mutex_lock(&kvm->arch.mmu_setup_lock);
2886                         kvm->arch.vcores[core] = vcore;
2887                         kvm->arch.online_vcores++;
2888                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2889                 }
2890         }
2891         mutex_unlock(&kvm->lock);
2892
2893         if (!vcore)
2894                 return err;
2895
2896         spin_lock(&vcore->lock);
2897         ++vcore->num_threads;
2898         spin_unlock(&vcore->lock);
2899         vcpu->arch.vcore = vcore;
2900         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2901         vcpu->arch.thread_cpu = -1;
2902         vcpu->arch.prev_cpu = -1;
2903
2904         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2905         kvmppc_sanity_check(vcpu);
2906
2907         debugfs_vcpu_init(vcpu, id);
2908
2909         return 0;
2910 }
2911
2912 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2913                               unsigned long flags)
2914 {
2915         int err;
2916         int esmt = 0;
2917
2918         if (flags)
2919                 return -EINVAL;
2920         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2921                 return -EINVAL;
2922         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2923                 /*
2924                  * On POWER8 (or POWER7), the threading mode is "strict",
2925                  * so we pack smt_mode vcpus per vcore.
2926                  */
2927                 if (smt_mode > threads_per_subcore)
2928                         return -EINVAL;
2929         } else {
2930                 /*
2931                  * On POWER9, the threading mode is "loose",
2932                  * so each vcpu gets its own vcore.
2933                  */
2934                 esmt = smt_mode;
2935                 smt_mode = 1;
2936         }
2937         mutex_lock(&kvm->lock);
2938         err = -EBUSY;
2939         if (!kvm->arch.online_vcores) {
2940                 kvm->arch.smt_mode = smt_mode;
2941                 kvm->arch.emul_smt_mode = esmt;
2942                 err = 0;
2943         }
2944         mutex_unlock(&kvm->lock);
2945
2946         return err;
2947 }
2948
2949 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2950 {
2951         if (vpa->pinned_addr)
2952                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2953                                         vpa->dirty);
2954 }
2955
2956 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2957 {
2958         spin_lock(&vcpu->arch.vpa_update_lock);
2959         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2960         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2961         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2962         spin_unlock(&vcpu->arch.vpa_update_lock);
2963 }
2964
2965 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2966 {
2967         /* Indicate we want to get back into the guest */
2968         return 1;
2969 }
2970
2971 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2972 {
2973         unsigned long dec_nsec, now;
2974
2975         now = get_tb();
2976         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2977                 /* decrementer has already gone negative */
2978                 kvmppc_core_queue_dec(vcpu);
2979                 kvmppc_core_prepare_to_enter(vcpu);
2980                 return;
2981         }
2982         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
2983         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2984         vcpu->arch.timer_running = 1;
2985 }
2986
2987 extern int __kvmppc_vcore_entry(void);
2988
2989 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2990                                    struct kvm_vcpu *vcpu, u64 tb)
2991 {
2992         u64 now;
2993
2994         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2995                 return;
2996         spin_lock_irq(&vcpu->arch.tbacct_lock);
2997         now = tb;
2998         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2999                 vcpu->arch.stolen_logged;
3000         vcpu->arch.busy_preempt = now;
3001         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3002         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3003         --vc->n_runnable;
3004         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3005 }
3006
3007 static int kvmppc_grab_hwthread(int cpu)
3008 {
3009         struct paca_struct *tpaca;
3010         long timeout = 10000;
3011
3012         tpaca = paca_ptrs[cpu];
3013
3014         /* Ensure the thread won't go into the kernel if it wakes */
3015         tpaca->kvm_hstate.kvm_vcpu = NULL;
3016         tpaca->kvm_hstate.kvm_vcore = NULL;
3017         tpaca->kvm_hstate.napping = 0;
3018         smp_wmb();
3019         tpaca->kvm_hstate.hwthread_req = 1;
3020
3021         /*
3022          * If the thread is already executing in the kernel (e.g. handling
3023          * a stray interrupt), wait for it to get back to nap mode.
3024          * The smp_mb() is to ensure that our setting of hwthread_req
3025          * is visible before we look at hwthread_state, so if this
3026          * races with the code at system_reset_pSeries and the thread
3027          * misses our setting of hwthread_req, we are sure to see its
3028          * setting of hwthread_state, and vice versa.
3029          */
3030         smp_mb();
3031         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3032                 if (--timeout <= 0) {
3033                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3034                         return -EBUSY;
3035                 }
3036                 udelay(1);
3037         }
3038         return 0;
3039 }
3040
3041 static void kvmppc_release_hwthread(int cpu)
3042 {
3043         struct paca_struct *tpaca;
3044
3045         tpaca = paca_ptrs[cpu];
3046         tpaca->kvm_hstate.hwthread_req = 0;
3047         tpaca->kvm_hstate.kvm_vcpu = NULL;
3048         tpaca->kvm_hstate.kvm_vcore = NULL;
3049         tpaca->kvm_hstate.kvm_split_mode = NULL;
3050 }
3051
3052 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3053
3054 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3055 {
3056         struct kvm_nested_guest *nested = vcpu->arch.nested;
3057         cpumask_t *need_tlb_flush;
3058         int i;
3059
3060         if (nested)
3061                 need_tlb_flush = &nested->need_tlb_flush;
3062         else
3063                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3064
3065         cpu = cpu_first_tlb_thread_sibling(cpu);
3066         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3067                                         i += cpu_tlb_thread_sibling_step())
3068                 cpumask_set_cpu(i, need_tlb_flush);
3069
3070         /*
3071          * Make sure setting of bit in need_tlb_flush precedes testing of
3072          * cpu_in_guest. The matching barrier on the other side is hwsync
3073          * when switching to guest MMU mode, which happens between
3074          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3075          * being tested.
3076          */
3077         smp_mb();
3078
3079         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3080                                         i += cpu_tlb_thread_sibling_step()) {
3081                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3082
3083                 if (running == kvm)
3084                         smp_call_function_single(i, do_nothing, NULL, 1);
3085         }
3086 }
3087
3088 static void do_migrate_away_vcpu(void *arg)
3089 {
3090         struct kvm_vcpu *vcpu = arg;
3091         struct kvm *kvm = vcpu->kvm;
3092
3093         /*
3094          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3095          * ptesync sequence on the old CPU before migrating to a new one, in
3096          * case we interrupted the guest between a tlbie ; eieio ;
3097          * tlbsync; ptesync sequence.
3098          *
3099          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3100          */
3101         if (kvm->arch.lpcr & LPCR_GTSE)
3102                 asm volatile("eieio; tlbsync; ptesync");
3103         else
3104                 asm volatile("ptesync");
3105 }
3106
3107 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3108 {
3109         struct kvm_nested_guest *nested = vcpu->arch.nested;
3110         struct kvm *kvm = vcpu->kvm;
3111         int prev_cpu;
3112
3113         if (!cpu_has_feature(CPU_FTR_HVMODE))
3114                 return;
3115
3116         if (nested)
3117                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3118         else
3119                 prev_cpu = vcpu->arch.prev_cpu;
3120
3121         /*
3122          * With radix, the guest can do TLB invalidations itself,
3123          * and it could choose to use the local form (tlbiel) if
3124          * it is invalidating a translation that has only ever been
3125          * used on one vcpu.  However, that doesn't mean it has
3126          * only ever been used on one physical cpu, since vcpus
3127          * can move around between pcpus.  To cope with this, when
3128          * a vcpu moves from one pcpu to another, we need to tell
3129          * any vcpus running on the same core as this vcpu previously
3130          * ran to flush the TLB.
3131          */
3132         if (prev_cpu != pcpu) {
3133                 if (prev_cpu >= 0) {
3134                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3135                             cpu_first_tlb_thread_sibling(pcpu))
3136                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3137
3138                         smp_call_function_single(prev_cpu,
3139                                         do_migrate_away_vcpu, vcpu, 1);
3140                 }
3141                 if (nested)
3142                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3143                 else
3144                         vcpu->arch.prev_cpu = pcpu;
3145         }
3146 }
3147
3148 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3149 {
3150         int cpu;
3151         struct paca_struct *tpaca;
3152
3153         cpu = vc->pcpu;
3154         if (vcpu) {
3155                 if (vcpu->arch.timer_running) {
3156                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3157                         vcpu->arch.timer_running = 0;
3158                 }
3159                 cpu += vcpu->arch.ptid;
3160                 vcpu->cpu = vc->pcpu;
3161                 vcpu->arch.thread_cpu = cpu;
3162         }
3163         tpaca = paca_ptrs[cpu];
3164         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3165         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3166         tpaca->kvm_hstate.fake_suspend = 0;
3167         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3168         smp_wmb();
3169         tpaca->kvm_hstate.kvm_vcore = vc;
3170         if (cpu != smp_processor_id())
3171                 kvmppc_ipi_thread(cpu);
3172 }
3173
3174 static void kvmppc_wait_for_nap(int n_threads)
3175 {
3176         int cpu = smp_processor_id();
3177         int i, loops;
3178
3179         if (n_threads <= 1)
3180                 return;
3181         for (loops = 0; loops < 1000000; ++loops) {
3182                 /*
3183                  * Check if all threads are finished.
3184                  * We set the vcore pointer when starting a thread
3185                  * and the thread clears it when finished, so we look
3186                  * for any threads that still have a non-NULL vcore ptr.
3187                  */
3188                 for (i = 1; i < n_threads; ++i)
3189                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3190                                 break;
3191                 if (i == n_threads) {
3192                         HMT_medium();
3193                         return;
3194                 }
3195                 HMT_low();
3196         }
3197         HMT_medium();
3198         for (i = 1; i < n_threads; ++i)
3199                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3200                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3201 }
3202
3203 /*
3204  * Check that we are on thread 0 and that any other threads in
3205  * this core are off-line.  Then grab the threads so they can't
3206  * enter the kernel.
3207  */
3208 static int on_primary_thread(void)
3209 {
3210         int cpu = smp_processor_id();
3211         int thr;
3212
3213         /* Are we on a primary subcore? */
3214         if (cpu_thread_in_subcore(cpu))
3215                 return 0;
3216
3217         thr = 0;
3218         while (++thr < threads_per_subcore)
3219                 if (cpu_online(cpu + thr))
3220                         return 0;
3221
3222         /* Grab all hw threads so they can't go into the kernel */
3223         for (thr = 1; thr < threads_per_subcore; ++thr) {
3224                 if (kvmppc_grab_hwthread(cpu + thr)) {
3225                         /* Couldn't grab one; let the others go */
3226                         do {
3227                                 kvmppc_release_hwthread(cpu + thr);
3228                         } while (--thr > 0);
3229                         return 0;
3230                 }
3231         }
3232         return 1;
3233 }
3234
3235 /*
3236  * A list of virtual cores for each physical CPU.
3237  * These are vcores that could run but their runner VCPU tasks are
3238  * (or may be) preempted.
3239  */
3240 struct preempted_vcore_list {
3241         struct list_head        list;
3242         spinlock_t              lock;
3243 };
3244
3245 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3246
3247 static void init_vcore_lists(void)
3248 {
3249         int cpu;
3250
3251         for_each_possible_cpu(cpu) {
3252                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3253                 spin_lock_init(&lp->lock);
3254                 INIT_LIST_HEAD(&lp->list);
3255         }
3256 }
3257
3258 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3259 {
3260         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3261
3262         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3263
3264         vc->vcore_state = VCORE_PREEMPT;
3265         vc->pcpu = smp_processor_id();
3266         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3267                 spin_lock(&lp->lock);
3268                 list_add_tail(&vc->preempt_list, &lp->list);
3269                 spin_unlock(&lp->lock);
3270         }
3271
3272         /* Start accumulating stolen time */
3273         kvmppc_core_start_stolen(vc, mftb());
3274 }
3275
3276 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3277 {
3278         struct preempted_vcore_list *lp;
3279
3280         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3281
3282         kvmppc_core_end_stolen(vc, mftb());
3283         if (!list_empty(&vc->preempt_list)) {
3284                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3285                 spin_lock(&lp->lock);
3286                 list_del_init(&vc->preempt_list);
3287                 spin_unlock(&lp->lock);
3288         }
3289         vc->vcore_state = VCORE_INACTIVE;
3290 }
3291
3292 /*
3293  * This stores information about the virtual cores currently
3294  * assigned to a physical core.
3295  */
3296 struct core_info {
3297         int             n_subcores;
3298         int             max_subcore_threads;
3299         int             total_threads;
3300         int             subcore_threads[MAX_SUBCORES];
3301         struct kvmppc_vcore *vc[MAX_SUBCORES];
3302 };
3303
3304 /*
3305  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3306  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3307  */
3308 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3309
3310 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3311 {
3312         memset(cip, 0, sizeof(*cip));
3313         cip->n_subcores = 1;
3314         cip->max_subcore_threads = vc->num_threads;
3315         cip->total_threads = vc->num_threads;
3316         cip->subcore_threads[0] = vc->num_threads;
3317         cip->vc[0] = vc;
3318 }
3319
3320 static bool subcore_config_ok(int n_subcores, int n_threads)
3321 {
3322         /*
3323          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3324          * split-core mode, with one thread per subcore.
3325          */
3326         if (cpu_has_feature(CPU_FTR_ARCH_300))
3327                 return n_subcores <= 4 && n_threads == 1;
3328
3329         /* On POWER8, can only dynamically split if unsplit to begin with */
3330         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3331                 return false;
3332         if (n_subcores > MAX_SUBCORES)
3333                 return false;
3334         if (n_subcores > 1) {
3335                 if (!(dynamic_mt_modes & 2))
3336                         n_subcores = 4;
3337                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3338                         return false;
3339         }
3340
3341         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3342 }
3343
3344 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3345 {
3346         vc->entry_exit_map = 0;
3347         vc->in_guest = 0;
3348         vc->napping_threads = 0;
3349         vc->conferring_threads = 0;
3350         vc->tb_offset_applied = 0;
3351 }
3352
3353 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3354 {
3355         int n_threads = vc->num_threads;
3356         int sub;
3357
3358         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3359                 return false;
3360
3361         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3362         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3363                 return false;
3364
3365         if (n_threads < cip->max_subcore_threads)
3366                 n_threads = cip->max_subcore_threads;
3367         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3368                 return false;
3369         cip->max_subcore_threads = n_threads;
3370
3371         sub = cip->n_subcores;
3372         ++cip->n_subcores;
3373         cip->total_threads += vc->num_threads;
3374         cip->subcore_threads[sub] = vc->num_threads;
3375         cip->vc[sub] = vc;
3376         init_vcore_to_run(vc);
3377         list_del_init(&vc->preempt_list);
3378
3379         return true;
3380 }
3381
3382 /*
3383  * Work out whether it is possible to piggyback the execution of
3384  * vcore *pvc onto the execution of the other vcores described in *cip.
3385  */
3386 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3387                           int target_threads)
3388 {
3389         if (cip->total_threads + pvc->num_threads > target_threads)
3390                 return false;
3391
3392         return can_dynamic_split(pvc, cip);
3393 }
3394
3395 static void prepare_threads(struct kvmppc_vcore *vc)
3396 {
3397         int i;
3398         struct kvm_vcpu *vcpu;
3399
3400         for_each_runnable_thread(i, vcpu, vc) {
3401                 if (signal_pending(vcpu->arch.run_task))
3402                         vcpu->arch.ret = -EINTR;
3403                 else if (vcpu->arch.vpa.update_pending ||
3404                          vcpu->arch.slb_shadow.update_pending ||
3405                          vcpu->arch.dtl.update_pending)
3406                         vcpu->arch.ret = RESUME_GUEST;
3407                 else
3408                         continue;
3409                 kvmppc_remove_runnable(vc, vcpu, mftb());
3410                 wake_up(&vcpu->arch.cpu_run);
3411         }
3412 }
3413
3414 static void collect_piggybacks(struct core_info *cip, int target_threads)
3415 {
3416         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3417         struct kvmppc_vcore *pvc, *vcnext;
3418
3419         spin_lock(&lp->lock);
3420         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3421                 if (!spin_trylock(&pvc->lock))
3422                         continue;
3423                 prepare_threads(pvc);
3424                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3425                         list_del_init(&pvc->preempt_list);
3426                         if (pvc->runner == NULL) {
3427                                 pvc->vcore_state = VCORE_INACTIVE;
3428                                 kvmppc_core_end_stolen(pvc, mftb());
3429                         }
3430                         spin_unlock(&pvc->lock);
3431                         continue;
3432                 }
3433                 if (!can_piggyback(pvc, cip, target_threads)) {
3434                         spin_unlock(&pvc->lock);
3435                         continue;
3436                 }
3437                 kvmppc_core_end_stolen(pvc, mftb());
3438                 pvc->vcore_state = VCORE_PIGGYBACK;
3439                 if (cip->total_threads >= target_threads)
3440                         break;
3441         }
3442         spin_unlock(&lp->lock);
3443 }
3444
3445 static bool recheck_signals_and_mmu(struct core_info *cip)
3446 {
3447         int sub, i;
3448         struct kvm_vcpu *vcpu;
3449         struct kvmppc_vcore *vc;
3450
3451         for (sub = 0; sub < cip->n_subcores; ++sub) {
3452                 vc = cip->vc[sub];
3453                 if (!vc->kvm->arch.mmu_ready)
3454                         return true;
3455                 for_each_runnable_thread(i, vcpu, vc)
3456                         if (signal_pending(vcpu->arch.run_task))
3457                                 return true;
3458         }
3459         return false;
3460 }
3461
3462 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3463 {
3464         int still_running = 0, i;
3465         u64 now;
3466         long ret;
3467         struct kvm_vcpu *vcpu;
3468
3469         spin_lock(&vc->lock);
3470         now = get_tb();
3471         for_each_runnable_thread(i, vcpu, vc) {
3472                 /*
3473                  * It's safe to unlock the vcore in the loop here, because
3474                  * for_each_runnable_thread() is safe against removal of
3475                  * the vcpu, and the vcore state is VCORE_EXITING here,
3476                  * so any vcpus becoming runnable will have their arch.trap
3477                  * set to zero and can't actually run in the guest.
3478                  */
3479                 spin_unlock(&vc->lock);
3480                 /* cancel pending dec exception if dec is positive */
3481                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3482                     kvmppc_core_pending_dec(vcpu))
3483                         kvmppc_core_dequeue_dec(vcpu);
3484
3485                 trace_kvm_guest_exit(vcpu);
3486
3487                 ret = RESUME_GUEST;
3488                 if (vcpu->arch.trap)
3489                         ret = kvmppc_handle_exit_hv(vcpu,
3490                                                     vcpu->arch.run_task);
3491
3492                 vcpu->arch.ret = ret;
3493                 vcpu->arch.trap = 0;
3494
3495                 spin_lock(&vc->lock);
3496                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3497                         if (vcpu->arch.pending_exceptions)
3498                                 kvmppc_core_prepare_to_enter(vcpu);
3499                         if (vcpu->arch.ceded)
3500                                 kvmppc_set_timer(vcpu);
3501                         else
3502                                 ++still_running;
3503                 } else {
3504                         kvmppc_remove_runnable(vc, vcpu, mftb());
3505                         wake_up(&vcpu->arch.cpu_run);
3506                 }
3507         }
3508         if (!is_master) {
3509                 if (still_running > 0) {
3510                         kvmppc_vcore_preempt(vc);
3511                 } else if (vc->runner) {
3512                         vc->vcore_state = VCORE_PREEMPT;
3513                         kvmppc_core_start_stolen(vc, mftb());
3514                 } else {
3515                         vc->vcore_state = VCORE_INACTIVE;
3516                 }
3517                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3518                         /* make sure there's a candidate runner awake */
3519                         i = -1;
3520                         vcpu = next_runnable_thread(vc, &i);
3521                         wake_up(&vcpu->arch.cpu_run);
3522                 }
3523         }
3524         spin_unlock(&vc->lock);
3525 }
3526
3527 /*
3528  * Clear core from the list of active host cores as we are about to
3529  * enter the guest. Only do this if it is the primary thread of the
3530  * core (not if a subcore) that is entering the guest.
3531  */
3532 static inline int kvmppc_clear_host_core(unsigned int cpu)
3533 {
3534         int core;
3535
3536         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3537                 return 0;
3538         /*
3539          * Memory barrier can be omitted here as we will do a smp_wmb()
3540          * later in kvmppc_start_thread and we need ensure that state is
3541          * visible to other CPUs only after we enter guest.
3542          */
3543         core = cpu >> threads_shift;
3544         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3545         return 0;
3546 }
3547
3548 /*
3549  * Advertise this core as an active host core since we exited the guest
3550  * Only need to do this if it is the primary thread of the core that is
3551  * exiting.
3552  */
3553 static inline int kvmppc_set_host_core(unsigned int cpu)
3554 {
3555         int core;
3556
3557         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3558                 return 0;
3559
3560         /*
3561          * Memory barrier can be omitted here because we do a spin_unlock
3562          * immediately after this which provides the memory barrier.
3563          */
3564         core = cpu >> threads_shift;
3565         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3566         return 0;
3567 }
3568
3569 static void set_irq_happened(int trap)
3570 {
3571         switch (trap) {
3572         case BOOK3S_INTERRUPT_EXTERNAL:
3573                 local_paca->irq_happened |= PACA_IRQ_EE;
3574                 break;
3575         case BOOK3S_INTERRUPT_H_DOORBELL:
3576                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3577                 break;
3578         case BOOK3S_INTERRUPT_HMI:
3579                 local_paca->irq_happened |= PACA_IRQ_HMI;
3580                 break;
3581         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3582                 replay_system_reset();
3583                 break;
3584         }
3585 }
3586
3587 /*
3588  * Run a set of guest threads on a physical core.
3589  * Called with vc->lock held.
3590  */
3591 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3592 {
3593         struct kvm_vcpu *vcpu;
3594         int i;
3595         int srcu_idx;
3596         struct core_info core_info;
3597         struct kvmppc_vcore *pvc;
3598         struct kvm_split_mode split_info, *sip;
3599         int split, subcore_size, active;
3600         int sub;
3601         bool thr0_done;
3602         unsigned long cmd_bit, stat_bit;
3603         int pcpu, thr;
3604         int target_threads;
3605         int controlled_threads;
3606         int trap;
3607         bool is_power8;
3608
3609         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3610                 return;
3611
3612         /*
3613          * Remove from the list any threads that have a signal pending
3614          * or need a VPA update done
3615          */
3616         prepare_threads(vc);
3617
3618         /* if the runner is no longer runnable, let the caller pick a new one */
3619         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3620                 return;
3621
3622         /*
3623          * Initialize *vc.
3624          */
3625         init_vcore_to_run(vc);
3626         vc->preempt_tb = TB_NIL;
3627
3628         /*
3629          * Number of threads that we will be controlling: the same as
3630          * the number of threads per subcore, except on POWER9,
3631          * where it's 1 because the threads are (mostly) independent.
3632          */
3633         controlled_threads = threads_per_vcore(vc->kvm);
3634
3635         /*
3636          * Make sure we are running on primary threads, and that secondary
3637          * threads are offline.  Also check if the number of threads in this
3638          * guest are greater than the current system threads per guest.
3639          */
3640         if ((controlled_threads > 1) &&
3641             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3642                 for_each_runnable_thread(i, vcpu, vc) {
3643                         vcpu->arch.ret = -EBUSY;
3644                         kvmppc_remove_runnable(vc, vcpu, mftb());
3645                         wake_up(&vcpu->arch.cpu_run);
3646                 }
3647                 goto out;
3648         }
3649
3650         /*
3651          * See if we could run any other vcores on the physical core
3652          * along with this one.
3653          */
3654         init_core_info(&core_info, vc);
3655         pcpu = smp_processor_id();
3656         target_threads = controlled_threads;
3657         if (target_smt_mode && target_smt_mode < target_threads)
3658                 target_threads = target_smt_mode;
3659         if (vc->num_threads < target_threads)
3660                 collect_piggybacks(&core_info, target_threads);
3661
3662         /*
3663          * Hard-disable interrupts, and check resched flag and signals.
3664          * If we need to reschedule or deliver a signal, clean up
3665          * and return without going into the guest(s).
3666          * If the mmu_ready flag has been cleared, don't go into the
3667          * guest because that means a HPT resize operation is in progress.
3668          */
3669         local_irq_disable();
3670         hard_irq_disable();
3671         if (lazy_irq_pending() || need_resched() ||
3672             recheck_signals_and_mmu(&core_info)) {
3673                 local_irq_enable();
3674                 vc->vcore_state = VCORE_INACTIVE;
3675                 /* Unlock all except the primary vcore */
3676                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3677                         pvc = core_info.vc[sub];
3678                         /* Put back on to the preempted vcores list */
3679                         kvmppc_vcore_preempt(pvc);
3680                         spin_unlock(&pvc->lock);
3681                 }
3682                 for (i = 0; i < controlled_threads; ++i)
3683                         kvmppc_release_hwthread(pcpu + i);
3684                 return;
3685         }
3686
3687         kvmppc_clear_host_core(pcpu);
3688
3689         /* Decide on micro-threading (split-core) mode */
3690         subcore_size = threads_per_subcore;
3691         cmd_bit = stat_bit = 0;
3692         split = core_info.n_subcores;
3693         sip = NULL;
3694         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3695
3696         if (split > 1) {
3697                 sip = &split_info;
3698                 memset(&split_info, 0, sizeof(split_info));
3699                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3700                         split_info.vc[sub] = core_info.vc[sub];
3701
3702                 if (is_power8) {
3703                         if (split == 2 && (dynamic_mt_modes & 2)) {
3704                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3705                                 stat_bit = HID0_POWER8_2LPARMODE;
3706                         } else {
3707                                 split = 4;
3708                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3709                                 stat_bit = HID0_POWER8_4LPARMODE;
3710                         }
3711                         subcore_size = MAX_SMT_THREADS / split;
3712                         split_info.rpr = mfspr(SPRN_RPR);
3713                         split_info.pmmar = mfspr(SPRN_PMMAR);
3714                         split_info.ldbar = mfspr(SPRN_LDBAR);
3715                         split_info.subcore_size = subcore_size;
3716                 } else {
3717                         split_info.subcore_size = 1;
3718                 }
3719
3720                 /* order writes to split_info before kvm_split_mode pointer */
3721                 smp_wmb();
3722         }
3723
3724         for (thr = 0; thr < controlled_threads; ++thr) {
3725                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3726
3727                 paca->kvm_hstate.napping = 0;
3728                 paca->kvm_hstate.kvm_split_mode = sip;
3729         }
3730
3731         /* Initiate micro-threading (split-core) on POWER8 if required */
3732         if (cmd_bit) {
3733                 unsigned long hid0 = mfspr(SPRN_HID0);
3734
3735                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3736                 mb();
3737                 mtspr(SPRN_HID0, hid0);
3738                 isync();
3739                 for (;;) {
3740                         hid0 = mfspr(SPRN_HID0);
3741                         if (hid0 & stat_bit)
3742                                 break;
3743                         cpu_relax();
3744                 }
3745         }
3746
3747         /*
3748          * On POWER8, set RWMR register.
3749          * Since it only affects PURR and SPURR, it doesn't affect
3750          * the host, so we don't save/restore the host value.
3751          */
3752         if (is_power8) {
3753                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3754                 int n_online = atomic_read(&vc->online_count);
3755
3756                 /*
3757                  * Use the 8-thread value if we're doing split-core
3758                  * or if the vcore's online count looks bogus.
3759                  */
3760                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3761                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3762                         rwmr_val = p8_rwmr_values[n_online];
3763                 mtspr(SPRN_RWMR, rwmr_val);
3764         }
3765
3766         /* Start all the threads */
3767         active = 0;
3768         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3769                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3770                 thr0_done = false;
3771                 active |= 1 << thr;
3772                 pvc = core_info.vc[sub];
3773                 pvc->pcpu = pcpu + thr;
3774                 for_each_runnable_thread(i, vcpu, pvc) {
3775                         kvmppc_start_thread(vcpu, pvc);
3776                         kvmppc_create_dtl_entry(vcpu, pvc);
3777                         trace_kvm_guest_enter(vcpu);
3778                         if (!vcpu->arch.ptid)
3779                                 thr0_done = true;
3780                         active |= 1 << (thr + vcpu->arch.ptid);
3781                 }
3782                 /*
3783                  * We need to start the first thread of each subcore
3784                  * even if it doesn't have a vcpu.
3785                  */
3786                 if (!thr0_done)
3787                         kvmppc_start_thread(NULL, pvc);
3788         }
3789
3790         /*
3791          * Ensure that split_info.do_nap is set after setting
3792          * the vcore pointer in the PACA of the secondaries.
3793          */
3794         smp_mb();
3795
3796         /*
3797          * When doing micro-threading, poke the inactive threads as well.
3798          * This gets them to the nap instruction after kvm_do_nap,
3799          * which reduces the time taken to unsplit later.
3800          */
3801         if (cmd_bit) {
3802                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3803                 for (thr = 1; thr < threads_per_subcore; ++thr)
3804                         if (!(active & (1 << thr)))
3805                                 kvmppc_ipi_thread(pcpu + thr);
3806         }
3807
3808         vc->vcore_state = VCORE_RUNNING;
3809         preempt_disable();
3810
3811         trace_kvmppc_run_core(vc, 0);
3812
3813         for (sub = 0; sub < core_info.n_subcores; ++sub)
3814                 spin_unlock(&core_info.vc[sub]->lock);
3815
3816         guest_enter_irqoff();
3817
3818         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3819
3820         this_cpu_disable_ftrace();
3821
3822         /*
3823          * Interrupts will be enabled once we get into the guest,
3824          * so tell lockdep that we're about to enable interrupts.
3825          */
3826         trace_hardirqs_on();
3827
3828         trap = __kvmppc_vcore_entry();
3829
3830         trace_hardirqs_off();
3831
3832         this_cpu_enable_ftrace();
3833
3834         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3835
3836         set_irq_happened(trap);
3837
3838         spin_lock(&vc->lock);
3839         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3840         vc->vcore_state = VCORE_EXITING;
3841
3842         /* wait for secondary threads to finish writing their state to memory */
3843         kvmppc_wait_for_nap(controlled_threads);
3844
3845         /* Return to whole-core mode if we split the core earlier */
3846         if (cmd_bit) {
3847                 unsigned long hid0 = mfspr(SPRN_HID0);
3848                 unsigned long loops = 0;
3849
3850                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3851                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3852                 mb();
3853                 mtspr(SPRN_HID0, hid0);
3854                 isync();
3855                 for (;;) {
3856                         hid0 = mfspr(SPRN_HID0);
3857                         if (!(hid0 & stat_bit))
3858                                 break;
3859                         cpu_relax();
3860                         ++loops;
3861                 }
3862                 split_info.do_nap = 0;
3863         }
3864
3865         kvmppc_set_host_core(pcpu);
3866
3867         context_tracking_guest_exit();
3868         if (!vtime_accounting_enabled_this_cpu()) {
3869                 local_irq_enable();
3870                 /*
3871                  * Service IRQs here before vtime_account_guest_exit() so any
3872                  * ticks that occurred while running the guest are accounted to
3873                  * the guest. If vtime accounting is enabled, accounting uses
3874                  * TB rather than ticks, so it can be done without enabling
3875                  * interrupts here, which has the problem that it accounts
3876                  * interrupt processing overhead to the host.
3877                  */
3878                 local_irq_disable();
3879         }
3880         vtime_account_guest_exit();
3881
3882         local_irq_enable();
3883
3884         /* Let secondaries go back to the offline loop */
3885         for (i = 0; i < controlled_threads; ++i) {
3886                 kvmppc_release_hwthread(pcpu + i);
3887                 if (sip && sip->napped[i])
3888                         kvmppc_ipi_thread(pcpu + i);
3889         }
3890
3891         spin_unlock(&vc->lock);
3892
3893         /* make sure updates to secondary vcpu structs are visible now */
3894         smp_mb();
3895
3896         preempt_enable();
3897
3898         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3899                 pvc = core_info.vc[sub];
3900                 post_guest_process(pvc, pvc == vc);
3901         }
3902
3903         spin_lock(&vc->lock);
3904
3905  out:
3906         vc->vcore_state = VCORE_INACTIVE;
3907         trace_kvmppc_run_core(vc, 1);
3908 }
3909
3910 static inline bool hcall_is_xics(unsigned long req)
3911 {
3912         return req == H_EOI || req == H_CPPR || req == H_IPI ||
3913                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3914 }
3915
3916 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3917 {
3918         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3919         if (lp) {
3920                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3921                 lp->yield_count = cpu_to_be32(yield_count);
3922                 vcpu->arch.vpa.dirty = 1;
3923         }
3924 }
3925
3926 /* call our hypervisor to load up HV regs and go */
3927 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3928 {
3929         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3930         unsigned long host_psscr;
3931         unsigned long msr;
3932         struct hv_guest_state hvregs;
3933         struct p9_host_os_sprs host_os_sprs;
3934         s64 dec;
3935         int trap;
3936
3937         msr = mfmsr();
3938
3939         save_p9_host_os_sprs(&host_os_sprs);
3940
3941         /*
3942          * We need to save and restore the guest visible part of the
3943          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3944          * doesn't do this for us. Note only required if pseries since
3945          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3946          */
3947         host_psscr = mfspr(SPRN_PSSCR_PR);
3948
3949         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3950         if (lazy_irq_pending())
3951                 return 0;
3952
3953         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3954                 msr = mfmsr(); /* TM restore can update msr */
3955
3956         if (vcpu->arch.psscr != host_psscr)
3957                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3958
3959         kvmhv_save_hv_regs(vcpu, &hvregs);
3960         hvregs.lpcr = lpcr;
3961         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3962         hvregs.version = HV_GUEST_STATE_VERSION;
3963         if (vcpu->arch.nested) {
3964                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3965                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3966         } else {
3967                 hvregs.lpid = vcpu->kvm->arch.lpid;
3968                 hvregs.vcpu_token = vcpu->vcpu_id;
3969         }
3970         hvregs.hdec_expiry = time_limit;
3971
3972         /*
3973          * When setting DEC, we must always deal with irq_work_raise
3974          * via NMI vs setting DEC. The problem occurs right as we
3975          * switch into guest mode if a NMI hits and sets pending work
3976          * and sets DEC, then that will apply to the guest and not
3977          * bring us back to the host.
3978          *
3979          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
3980          * for example) and set HDEC to 1? That wouldn't solve the
3981          * nested hv case which needs to abort the hcall or zero the
3982          * time limit.
3983          *
3984          * XXX: Another day's problem.
3985          */
3986         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
3987
3988         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3989         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3990         switch_pmu_to_guest(vcpu, &host_os_sprs);
3991         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3992                                   __pa(&vcpu->arch.regs));
3993         kvmhv_restore_hv_return_state(vcpu, &hvregs);
3994         switch_pmu_to_host(vcpu, &host_os_sprs);
3995         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3996         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3997         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3998         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3999
4000         store_vcpu_state(vcpu);
4001
4002         dec = mfspr(SPRN_DEC);
4003         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4004                 dec = (s32) dec;
4005         *tb = mftb();
4006         vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4007
4008         timer_rearm_host_dec(*tb);
4009
4010         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4011         if (vcpu->arch.psscr != host_psscr)
4012                 mtspr(SPRN_PSSCR_PR, host_psscr);
4013
4014         return trap;
4015 }
4016
4017 /*
4018  * Guest entry for POWER9 and later CPUs.
4019  */
4020 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4021                          unsigned long lpcr, u64 *tb)
4022 {
4023         u64 next_timer;
4024         int trap;
4025
4026         next_timer = timer_get_next_tb();
4027         if (*tb >= next_timer)
4028                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4029         if (next_timer < time_limit)
4030                 time_limit = next_timer;
4031         else if (*tb >= time_limit) /* nested time limit */
4032                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4033
4034         vcpu->arch.ceded = 0;
4035
4036         vcpu_vpa_increment_dispatch(vcpu);
4037
4038         if (kvmhv_on_pseries()) {
4039                 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4040
4041                 /* H_CEDE has to be handled now, not later */
4042                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4043                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4044                         kvmppc_cede(vcpu);
4045                         kvmppc_set_gpr(vcpu, 3, 0);
4046                         trap = 0;
4047                 }
4048
4049         } else {
4050                 struct kvm *kvm = vcpu->kvm;
4051
4052                 kvmppc_xive_push_vcpu(vcpu);
4053
4054                 __this_cpu_write(cpu_in_guest, kvm);
4055                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4056                 __this_cpu_write(cpu_in_guest, NULL);
4057
4058                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4059                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4060                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4061
4062                         /* H_CEDE has to be handled now, not later */
4063                         if (req == H_CEDE) {
4064                                 kvmppc_cede(vcpu);
4065                                 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
4066                                 kvmppc_set_gpr(vcpu, 3, 0);
4067                                 trap = 0;
4068
4069                         /* XICS hcalls must be handled before xive is pulled */
4070                         } else if (hcall_is_xics(req)) {
4071                                 int ret;
4072
4073                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4074                                 if (ret != H_TOO_HARD) {
4075                                         kvmppc_set_gpr(vcpu, 3, ret);
4076                                         trap = 0;
4077                                 }
4078                         }
4079                 }
4080                 kvmppc_xive_pull_vcpu(vcpu);
4081
4082                 if (kvm_is_radix(kvm))
4083                         vcpu->arch.slb_max = 0;
4084         }
4085
4086         vcpu_vpa_increment_dispatch(vcpu);
4087
4088         return trap;
4089 }
4090
4091 /*
4092  * Wait for some other vcpu thread to execute us, and
4093  * wake us up when we need to handle something in the host.
4094  */
4095 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4096                                  struct kvm_vcpu *vcpu, int wait_state)
4097 {
4098         DEFINE_WAIT(wait);
4099
4100         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4101         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4102                 spin_unlock(&vc->lock);
4103                 schedule();
4104                 spin_lock(&vc->lock);
4105         }
4106         finish_wait(&vcpu->arch.cpu_run, &wait);
4107 }
4108
4109 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4110 {
4111         if (!halt_poll_ns_grow)
4112                 return;
4113
4114         vc->halt_poll_ns *= halt_poll_ns_grow;
4115         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4116                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4117 }
4118
4119 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4120 {
4121         if (halt_poll_ns_shrink == 0)
4122                 vc->halt_poll_ns = 0;
4123         else
4124                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4125 }
4126
4127 #ifdef CONFIG_KVM_XICS
4128 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4129 {
4130         if (!xics_on_xive())
4131                 return false;
4132         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4133                 vcpu->arch.xive_saved_state.cppr;
4134 }
4135 #else
4136 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4137 {
4138         return false;
4139 }
4140 #endif /* CONFIG_KVM_XICS */
4141
4142 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4143 {
4144         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4145             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4146                 return true;
4147
4148         return false;
4149 }
4150
4151 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4152 {
4153         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4154                 return true;
4155         return false;
4156 }
4157
4158 /*
4159  * Check to see if any of the runnable vcpus on the vcore have pending
4160  * exceptions or are no longer ceded
4161  */
4162 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4163 {
4164         struct kvm_vcpu *vcpu;
4165         int i;
4166
4167         for_each_runnable_thread(i, vcpu, vc) {
4168                 if (kvmppc_vcpu_check_block(vcpu))
4169                         return 1;
4170         }
4171
4172         return 0;
4173 }
4174
4175 /*
4176  * All the vcpus in this vcore are idle, so wait for a decrementer
4177  * or external interrupt to one of the vcpus.  vc->lock is held.
4178  */
4179 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4180 {
4181         ktime_t cur, start_poll, start_wait;
4182         int do_sleep = 1;
4183         u64 block_ns;
4184
4185         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4186
4187         /* Poll for pending exceptions and ceded state */
4188         cur = start_poll = ktime_get();
4189         if (vc->halt_poll_ns) {
4190                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4191                 ++vc->runner->stat.generic.halt_attempted_poll;
4192
4193                 vc->vcore_state = VCORE_POLLING;
4194                 spin_unlock(&vc->lock);
4195
4196                 do {
4197                         if (kvmppc_vcore_check_block(vc)) {
4198                                 do_sleep = 0;
4199                                 break;
4200                         }
4201                         cur = ktime_get();
4202                 } while (kvm_vcpu_can_poll(cur, stop));
4203
4204                 spin_lock(&vc->lock);
4205                 vc->vcore_state = VCORE_INACTIVE;
4206
4207                 if (!do_sleep) {
4208                         ++vc->runner->stat.generic.halt_successful_poll;
4209                         goto out;
4210                 }
4211         }
4212
4213         prepare_to_rcuwait(&vc->wait);
4214         set_current_state(TASK_INTERRUPTIBLE);
4215         if (kvmppc_vcore_check_block(vc)) {
4216                 finish_rcuwait(&vc->wait);
4217                 do_sleep = 0;
4218                 /* If we polled, count this as a successful poll */
4219                 if (vc->halt_poll_ns)
4220                         ++vc->runner->stat.generic.halt_successful_poll;
4221                 goto out;
4222         }
4223
4224         start_wait = ktime_get();
4225
4226         vc->vcore_state = VCORE_SLEEPING;
4227         trace_kvmppc_vcore_blocked(vc, 0);
4228         spin_unlock(&vc->lock);
4229         schedule();
4230         finish_rcuwait(&vc->wait);
4231         spin_lock(&vc->lock);
4232         vc->vcore_state = VCORE_INACTIVE;
4233         trace_kvmppc_vcore_blocked(vc, 1);
4234         ++vc->runner->stat.halt_successful_wait;
4235
4236         cur = ktime_get();
4237
4238 out:
4239         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4240
4241         /* Attribute wait time */
4242         if (do_sleep) {
4243                 vc->runner->stat.generic.halt_wait_ns +=
4244                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4245                 KVM_STATS_LOG_HIST_UPDATE(
4246                                 vc->runner->stat.generic.halt_wait_hist,
4247                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4248                 /* Attribute failed poll time */
4249                 if (vc->halt_poll_ns) {
4250                         vc->runner->stat.generic.halt_poll_fail_ns +=
4251                                 ktime_to_ns(start_wait) -
4252                                 ktime_to_ns(start_poll);
4253                         KVM_STATS_LOG_HIST_UPDATE(
4254                                 vc->runner->stat.generic.halt_poll_fail_hist,
4255                                 ktime_to_ns(start_wait) -
4256                                 ktime_to_ns(start_poll));
4257                 }
4258         } else {
4259                 /* Attribute successful poll time */
4260                 if (vc->halt_poll_ns) {
4261                         vc->runner->stat.generic.halt_poll_success_ns +=
4262                                 ktime_to_ns(cur) -
4263                                 ktime_to_ns(start_poll);
4264                         KVM_STATS_LOG_HIST_UPDATE(
4265                                 vc->runner->stat.generic.halt_poll_success_hist,
4266                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4267                 }
4268         }
4269
4270         /* Adjust poll time */
4271         if (halt_poll_ns) {
4272                 if (block_ns <= vc->halt_poll_ns)
4273                         ;
4274                 /* We slept and blocked for longer than the max halt time */
4275                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4276                         shrink_halt_poll_ns(vc);
4277                 /* We slept and our poll time is too small */
4278                 else if (vc->halt_poll_ns < halt_poll_ns &&
4279                                 block_ns < halt_poll_ns)
4280                         grow_halt_poll_ns(vc);
4281                 if (vc->halt_poll_ns > halt_poll_ns)
4282                         vc->halt_poll_ns = halt_poll_ns;
4283         } else
4284                 vc->halt_poll_ns = 0;
4285
4286         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4287 }
4288
4289 /*
4290  * This never fails for a radix guest, as none of the operations it does
4291  * for a radix guest can fail or have a way to report failure.
4292  */
4293 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4294 {
4295         int r = 0;
4296         struct kvm *kvm = vcpu->kvm;
4297
4298         mutex_lock(&kvm->arch.mmu_setup_lock);
4299         if (!kvm->arch.mmu_ready) {
4300                 if (!kvm_is_radix(kvm))
4301                         r = kvmppc_hv_setup_htab_rma(vcpu);
4302                 if (!r) {
4303                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4304                                 kvmppc_setup_partition_table(kvm);
4305                         kvm->arch.mmu_ready = 1;
4306                 }
4307         }
4308         mutex_unlock(&kvm->arch.mmu_setup_lock);
4309         return r;
4310 }
4311
4312 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4313 {
4314         struct kvm_run *run = vcpu->run;
4315         int n_ceded, i, r;
4316         struct kvmppc_vcore *vc;
4317         struct kvm_vcpu *v;
4318
4319         trace_kvmppc_run_vcpu_enter(vcpu);
4320
4321         run->exit_reason = 0;
4322         vcpu->arch.ret = RESUME_GUEST;
4323         vcpu->arch.trap = 0;
4324         kvmppc_update_vpas(vcpu);
4325
4326         /*
4327          * Synchronize with other threads in this virtual core
4328          */
4329         vc = vcpu->arch.vcore;
4330         spin_lock(&vc->lock);
4331         vcpu->arch.ceded = 0;
4332         vcpu->arch.run_task = current;
4333         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4334         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4335         vcpu->arch.busy_preempt = TB_NIL;
4336         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4337         ++vc->n_runnable;
4338
4339         /*
4340          * This happens the first time this is called for a vcpu.
4341          * If the vcore is already running, we may be able to start
4342          * this thread straight away and have it join in.
4343          */
4344         if (!signal_pending(current)) {
4345                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4346                      vc->vcore_state == VCORE_RUNNING) &&
4347                            !VCORE_IS_EXITING(vc)) {
4348                         kvmppc_create_dtl_entry(vcpu, vc);
4349                         kvmppc_start_thread(vcpu, vc);
4350                         trace_kvm_guest_enter(vcpu);
4351                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4352                         rcuwait_wake_up(&vc->wait);
4353                 }
4354
4355         }
4356
4357         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4358                !signal_pending(current)) {
4359                 /* See if the MMU is ready to go */
4360                 if (!vcpu->kvm->arch.mmu_ready) {
4361                         spin_unlock(&vc->lock);
4362                         r = kvmhv_setup_mmu(vcpu);
4363                         spin_lock(&vc->lock);
4364                         if (r) {
4365                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4366                                 run->fail_entry.
4367                                         hardware_entry_failure_reason = 0;
4368                                 vcpu->arch.ret = r;
4369                                 break;
4370                         }
4371                 }
4372
4373                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4374                         kvmppc_vcore_end_preempt(vc);
4375
4376                 if (vc->vcore_state != VCORE_INACTIVE) {
4377                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4378                         continue;
4379                 }
4380                 for_each_runnable_thread(i, v, vc) {
4381                         kvmppc_core_prepare_to_enter(v);
4382                         if (signal_pending(v->arch.run_task)) {
4383                                 kvmppc_remove_runnable(vc, v, mftb());
4384                                 v->stat.signal_exits++;
4385                                 v->run->exit_reason = KVM_EXIT_INTR;
4386                                 v->arch.ret = -EINTR;
4387                                 wake_up(&v->arch.cpu_run);
4388                         }
4389                 }
4390                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4391                         break;
4392                 n_ceded = 0;
4393                 for_each_runnable_thread(i, v, vc) {
4394                         if (!kvmppc_vcpu_woken(v))
4395                                 n_ceded += v->arch.ceded;
4396                         else
4397                                 v->arch.ceded = 0;
4398                 }
4399                 vc->runner = vcpu;
4400                 if (n_ceded == vc->n_runnable) {
4401                         kvmppc_vcore_blocked(vc);
4402                 } else if (need_resched()) {
4403                         kvmppc_vcore_preempt(vc);
4404                         /* Let something else run */
4405                         cond_resched_lock(&vc->lock);
4406                         if (vc->vcore_state == VCORE_PREEMPT)
4407                                 kvmppc_vcore_end_preempt(vc);
4408                 } else {
4409                         kvmppc_run_core(vc);
4410                 }
4411                 vc->runner = NULL;
4412         }
4413
4414         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4415                (vc->vcore_state == VCORE_RUNNING ||
4416                 vc->vcore_state == VCORE_EXITING ||
4417                 vc->vcore_state == VCORE_PIGGYBACK))
4418                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4419
4420         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4421                 kvmppc_vcore_end_preempt(vc);
4422
4423         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4424                 kvmppc_remove_runnable(vc, vcpu, mftb());
4425                 vcpu->stat.signal_exits++;
4426                 run->exit_reason = KVM_EXIT_INTR;
4427                 vcpu->arch.ret = -EINTR;
4428         }
4429
4430         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4431                 /* Wake up some vcpu to run the core */
4432                 i = -1;
4433                 v = next_runnable_thread(vc, &i);
4434                 wake_up(&v->arch.cpu_run);
4435         }
4436
4437         trace_kvmppc_run_vcpu_exit(vcpu);
4438         spin_unlock(&vc->lock);
4439         return vcpu->arch.ret;
4440 }
4441
4442 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4443                           unsigned long lpcr)
4444 {
4445         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4446         struct kvm_run *run = vcpu->run;
4447         int trap, r, pcpu;
4448         int srcu_idx;
4449         struct kvmppc_vcore *vc;
4450         struct kvm *kvm = vcpu->kvm;
4451         struct kvm_nested_guest *nested = vcpu->arch.nested;
4452         unsigned long flags;
4453         u64 tb;
4454
4455         trace_kvmppc_run_vcpu_enter(vcpu);
4456
4457         run->exit_reason = 0;
4458         vcpu->arch.ret = RESUME_GUEST;
4459         vcpu->arch.trap = 0;
4460
4461         vc = vcpu->arch.vcore;
4462         vcpu->arch.ceded = 0;
4463         vcpu->arch.run_task = current;
4464         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4465         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4466
4467         /* See if the MMU is ready to go */
4468         if (unlikely(!kvm->arch.mmu_ready)) {
4469                 r = kvmhv_setup_mmu(vcpu);
4470                 if (r) {
4471                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4472                         run->fail_entry.hardware_entry_failure_reason = 0;
4473                         vcpu->arch.ret = r;
4474                         return r;
4475                 }
4476         }
4477
4478         if (need_resched())
4479                 cond_resched();
4480
4481         kvmppc_update_vpas(vcpu);
4482
4483         preempt_disable();
4484         pcpu = smp_processor_id();
4485         if (kvm_is_radix(kvm))
4486                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4487
4488         /* flags save not required, but irq_pmu has no disable/enable API */
4489         powerpc_local_irq_pmu_save(flags);
4490
4491         if (signal_pending(current))
4492                 goto sigpend;
4493         if (need_resched() || !kvm->arch.mmu_ready)
4494                 goto out;
4495
4496         if (!nested) {
4497                 kvmppc_core_prepare_to_enter(vcpu);
4498                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4499                              &vcpu->arch.pending_exceptions))
4500                         lpcr |= LPCR_MER;
4501         } else if (vcpu->arch.pending_exceptions ||
4502                    vcpu->arch.doorbell_request ||
4503                    xive_interrupt_pending(vcpu)) {
4504                 vcpu->arch.ret = RESUME_HOST;
4505                 goto out;
4506         }
4507
4508         if (vcpu->arch.timer_running) {
4509                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4510                 vcpu->arch.timer_running = 0;
4511         }
4512
4513         tb = mftb();
4514
4515         vcpu->cpu = pcpu;
4516         vcpu->arch.thread_cpu = pcpu;
4517         vc->pcpu = pcpu;
4518         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4519         local_paca->kvm_hstate.ptid = 0;
4520         local_paca->kvm_hstate.fake_suspend = 0;
4521
4522         __kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4523
4524         trace_kvm_guest_enter(vcpu);
4525
4526         guest_enter_irqoff();
4527
4528         srcu_idx = srcu_read_lock(&kvm->srcu);
4529
4530         this_cpu_disable_ftrace();
4531
4532         /* Tell lockdep that we're about to enable interrupts */
4533         trace_hardirqs_on();
4534
4535         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4536         vcpu->arch.trap = trap;
4537
4538         trace_hardirqs_off();
4539
4540         this_cpu_enable_ftrace();
4541
4542         srcu_read_unlock(&kvm->srcu, srcu_idx);
4543
4544         set_irq_happened(trap);
4545
4546         context_tracking_guest_exit();
4547         if (!vtime_accounting_enabled_this_cpu()) {
4548                 local_irq_enable();
4549                 /*
4550                  * Service IRQs here before vtime_account_guest_exit() so any
4551                  * ticks that occurred while running the guest are accounted to
4552                  * the guest. If vtime accounting is enabled, accounting uses
4553                  * TB rather than ticks, so it can be done without enabling
4554                  * interrupts here, which has the problem that it accounts
4555                  * interrupt processing overhead to the host.
4556                  */
4557                 local_irq_disable();
4558         }
4559         vtime_account_guest_exit();
4560
4561         vcpu->cpu = -1;
4562         vcpu->arch.thread_cpu = -1;
4563
4564         powerpc_local_irq_pmu_restore(flags);
4565
4566         preempt_enable();
4567
4568         /*
4569          * cancel pending decrementer exception if DEC is now positive, or if
4570          * entering a nested guest in which case the decrementer is now owned
4571          * by L2 and the L1 decrementer is provided in hdec_expires
4572          */
4573         if (kvmppc_core_pending_dec(vcpu) &&
4574                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4575                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4576                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4577                 kvmppc_core_dequeue_dec(vcpu);
4578
4579         trace_kvm_guest_exit(vcpu);
4580         r = RESUME_GUEST;
4581         if (trap) {
4582                 if (!nested)
4583                         r = kvmppc_handle_exit_hv(vcpu, current);
4584                 else
4585                         r = kvmppc_handle_nested_exit(vcpu);
4586         }
4587         vcpu->arch.ret = r;
4588
4589         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4590                 kvmppc_set_timer(vcpu);
4591
4592                 prepare_to_rcuwait(wait);
4593                 for (;;) {
4594                         set_current_state(TASK_INTERRUPTIBLE);
4595                         if (signal_pending(current)) {
4596                                 vcpu->stat.signal_exits++;
4597                                 run->exit_reason = KVM_EXIT_INTR;
4598                                 vcpu->arch.ret = -EINTR;
4599                                 break;
4600                         }
4601
4602                         if (kvmppc_vcpu_check_block(vcpu))
4603                                 break;
4604
4605                         trace_kvmppc_vcore_blocked(vc, 0);
4606                         schedule();
4607                         trace_kvmppc_vcore_blocked(vc, 1);
4608                 }
4609                 finish_rcuwait(wait);
4610         }
4611         vcpu->arch.ceded = 0;
4612
4613  done:
4614         trace_kvmppc_run_vcpu_exit(vcpu);
4615
4616         return vcpu->arch.ret;
4617
4618  sigpend:
4619         vcpu->stat.signal_exits++;
4620         run->exit_reason = KVM_EXIT_INTR;
4621         vcpu->arch.ret = -EINTR;
4622  out:
4623         powerpc_local_irq_pmu_restore(flags);
4624         preempt_enable();
4625         goto done;
4626 }
4627
4628 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4629 {
4630         struct kvm_run *run = vcpu->run;
4631         int r;
4632         int srcu_idx;
4633         struct kvm *kvm;
4634         unsigned long msr;
4635
4636         if (!vcpu->arch.sane) {
4637                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4638                 return -EINVAL;
4639         }
4640
4641         /* No need to go into the guest when all we'll do is come back out */
4642         if (signal_pending(current)) {
4643                 run->exit_reason = KVM_EXIT_INTR;
4644                 return -EINTR;
4645         }
4646
4647 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4648         /*
4649          * Don't allow entry with a suspended transaction, because
4650          * the guest entry/exit code will lose it.
4651          */
4652         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4653             (current->thread.regs->msr & MSR_TM)) {
4654                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4655                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4656                         run->fail_entry.hardware_entry_failure_reason = 0;
4657                         return -EINVAL;
4658                 }
4659         }
4660 #endif
4661
4662         /*
4663          * Force online to 1 for the sake of old userspace which doesn't
4664          * set it.
4665          */
4666         if (!vcpu->arch.online) {
4667                 atomic_inc(&vcpu->arch.vcore->online_count);
4668                 vcpu->arch.online = 1;
4669         }
4670
4671         kvmppc_core_prepare_to_enter(vcpu);
4672
4673         kvm = vcpu->kvm;
4674         atomic_inc(&kvm->arch.vcpus_running);
4675         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4676         smp_mb();
4677
4678         msr = 0;
4679         if (IS_ENABLED(CONFIG_PPC_FPU))
4680                 msr |= MSR_FP;
4681         if (cpu_has_feature(CPU_FTR_ALTIVEC))
4682                 msr |= MSR_VEC;
4683         if (cpu_has_feature(CPU_FTR_VSX))
4684                 msr |= MSR_VSX;
4685         if ((cpu_has_feature(CPU_FTR_TM) ||
4686             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4687                         (vcpu->arch.hfscr & HFSCR_TM))
4688                 msr |= MSR_TM;
4689         msr = msr_check_and_set(msr);
4690
4691         kvmppc_save_user_regs();
4692
4693         kvmppc_save_current_sprs();
4694
4695         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4696                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4697         vcpu->arch.pgdir = kvm->mm->pgd;
4698         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4699
4700         do {
4701                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4702                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4703                                                   vcpu->arch.vcore->lpcr);
4704                 else
4705                         r = kvmppc_run_vcpu(vcpu);
4706
4707                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4708                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4709                                 /*
4710                                  * These should have been caught reflected
4711                                  * into the guest by now. Final sanity check:
4712                                  * don't allow userspace to execute hcalls in
4713                                  * the hypervisor.
4714                                  */
4715                                 r = RESUME_GUEST;
4716                                 continue;
4717                         }
4718                         trace_kvm_hcall_enter(vcpu);
4719                         r = kvmppc_pseries_do_hcall(vcpu);
4720                         trace_kvm_hcall_exit(vcpu, r);
4721                         kvmppc_core_prepare_to_enter(vcpu);
4722                 } else if (r == RESUME_PAGE_FAULT) {
4723                         srcu_idx = srcu_read_lock(&kvm->srcu);
4724                         r = kvmppc_book3s_hv_page_fault(vcpu,
4725                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4726                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4727                 } else if (r == RESUME_PASSTHROUGH) {
4728                         if (WARN_ON(xics_on_xive()))
4729                                 r = H_SUCCESS;
4730                         else
4731                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4732                 }
4733         } while (is_kvmppc_resume_guest(r));
4734
4735         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4736         atomic_dec(&kvm->arch.vcpus_running);
4737
4738         srr_regs_clobbered();
4739
4740         return r;
4741 }
4742
4743 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4744                                      int shift, int sllp)
4745 {
4746         (*sps)->page_shift = shift;
4747         (*sps)->slb_enc = sllp;
4748         (*sps)->enc[0].page_shift = shift;
4749         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4750         /*
4751          * Add 16MB MPSS support (may get filtered out by userspace)
4752          */
4753         if (shift != 24) {
4754                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4755                 if (penc != -1) {
4756                         (*sps)->enc[1].page_shift = 24;
4757                         (*sps)->enc[1].pte_enc = penc;
4758                 }
4759         }
4760         (*sps)++;
4761 }
4762
4763 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4764                                          struct kvm_ppc_smmu_info *info)
4765 {
4766         struct kvm_ppc_one_seg_page_size *sps;
4767
4768         /*
4769          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4770          * POWER7 doesn't support keys for instruction accesses,
4771          * POWER8 and POWER9 do.
4772          */
4773         info->data_keys = 32;
4774         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4775
4776         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4777         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4778         info->slb_size = 32;
4779
4780         /* We only support these sizes for now, and no muti-size segments */
4781         sps = &info->sps[0];
4782         kvmppc_add_seg_page_size(&sps, 12, 0);
4783         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4784         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4785
4786         /* If running as a nested hypervisor, we don't support HPT guests */
4787         if (kvmhv_on_pseries())
4788                 info->flags |= KVM_PPC_NO_HASH;
4789
4790         return 0;
4791 }
4792
4793 /*
4794  * Get (and clear) the dirty memory log for a memory slot.
4795  */
4796 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4797                                          struct kvm_dirty_log *log)
4798 {
4799         struct kvm_memslots *slots;
4800         struct kvm_memory_slot *memslot;
4801         int r;
4802         unsigned long n, i;
4803         unsigned long *buf, *p;
4804         struct kvm_vcpu *vcpu;
4805
4806         mutex_lock(&kvm->slots_lock);
4807
4808         r = -EINVAL;
4809         if (log->slot >= KVM_USER_MEM_SLOTS)
4810                 goto out;
4811
4812         slots = kvm_memslots(kvm);
4813         memslot = id_to_memslot(slots, log->slot);
4814         r = -ENOENT;
4815         if (!memslot || !memslot->dirty_bitmap)
4816                 goto out;
4817
4818         /*
4819          * Use second half of bitmap area because both HPT and radix
4820          * accumulate bits in the first half.
4821          */
4822         n = kvm_dirty_bitmap_bytes(memslot);
4823         buf = memslot->dirty_bitmap + n / sizeof(long);
4824         memset(buf, 0, n);
4825
4826         if (kvm_is_radix(kvm))
4827                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4828         else
4829                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4830         if (r)
4831                 goto out;
4832
4833         /*
4834          * We accumulate dirty bits in the first half of the
4835          * memslot's dirty_bitmap area, for when pages are paged
4836          * out or modified by the host directly.  Pick up these
4837          * bits and add them to the map.
4838          */
4839         p = memslot->dirty_bitmap;
4840         for (i = 0; i < n / sizeof(long); ++i)
4841                 buf[i] |= xchg(&p[i], 0);
4842
4843         /* Harvest dirty bits from VPA and DTL updates */
4844         /* Note: we never modify the SLB shadow buffer areas */
4845         kvm_for_each_vcpu(i, vcpu, kvm) {
4846                 spin_lock(&vcpu->arch.vpa_update_lock);
4847                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4848                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4849                 spin_unlock(&vcpu->arch.vpa_update_lock);
4850         }
4851
4852         r = -EFAULT;
4853         if (copy_to_user(log->dirty_bitmap, buf, n))
4854                 goto out;
4855
4856         r = 0;
4857 out:
4858         mutex_unlock(&kvm->slots_lock);
4859         return r;
4860 }
4861
4862 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4863 {
4864         vfree(slot->arch.rmap);
4865         slot->arch.rmap = NULL;
4866 }
4867
4868 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4869                                 const struct kvm_memory_slot *old,
4870                                 struct kvm_memory_slot *new,
4871                                 enum kvm_mr_change change)
4872 {
4873         if (change == KVM_MR_CREATE) {
4874                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
4875
4876                 if ((size >> PAGE_SHIFT) > totalram_pages())
4877                         return -ENOMEM;
4878
4879                 new->arch.rmap = vzalloc(size);
4880                 if (!new->arch.rmap)
4881                         return -ENOMEM;
4882         } else if (change != KVM_MR_DELETE) {
4883                 new->arch.rmap = old->arch.rmap;
4884         }
4885
4886         return 0;
4887 }
4888
4889 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4890                                 struct kvm_memory_slot *old,
4891                                 const struct kvm_memory_slot *new,
4892                                 enum kvm_mr_change change)
4893 {
4894         /*
4895          * If we are creating or modifying a memslot, it might make
4896          * some address that was previously cached as emulated
4897          * MMIO be no longer emulated MMIO, so invalidate
4898          * all the caches of emulated MMIO translations.
4899          */
4900         if (change != KVM_MR_DELETE)
4901                 atomic64_inc(&kvm->arch.mmio_update);
4902
4903         /*
4904          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4905          * have already called kvm_arch_flush_shadow_memslot() to
4906          * flush shadow mappings.  For KVM_MR_CREATE we have no
4907          * previous mappings.  So the only case to handle is
4908          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4909          * has been changed.
4910          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4911          * to get rid of any THP PTEs in the partition-scoped page tables
4912          * so we can track dirtiness at the page level; we flush when
4913          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4914          * using THP PTEs.
4915          */
4916         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4917             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4918                 kvmppc_radix_flush_memslot(kvm, old);
4919         /*
4920          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4921          */
4922         if (!kvm->arch.secure_guest)
4923                 return;
4924
4925         switch (change) {
4926         case KVM_MR_CREATE:
4927                 /*
4928                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4929                  * return error. Fix this.
4930                  */
4931                 kvmppc_uvmem_memslot_create(kvm, new);
4932                 break;
4933         case KVM_MR_DELETE:
4934                 kvmppc_uvmem_memslot_delete(kvm, old);
4935                 break;
4936         default:
4937                 /* TODO: Handle KVM_MR_MOVE */
4938                 break;
4939         }
4940 }
4941
4942 /*
4943  * Update LPCR values in kvm->arch and in vcores.
4944  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4945  * of kvm->arch.lpcr update).
4946  */
4947 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4948 {
4949         long int i;
4950         u32 cores_done = 0;
4951
4952         if ((kvm->arch.lpcr & mask) == lpcr)
4953                 return;
4954
4955         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4956
4957         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4958                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4959                 if (!vc)
4960                         continue;
4961
4962                 spin_lock(&vc->lock);
4963                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4964                 verify_lpcr(kvm, vc->lpcr);
4965                 spin_unlock(&vc->lock);
4966                 if (++cores_done >= kvm->arch.online_vcores)
4967                         break;
4968         }
4969 }
4970
4971 void kvmppc_setup_partition_table(struct kvm *kvm)
4972 {
4973         unsigned long dw0, dw1;
4974
4975         if (!kvm_is_radix(kvm)) {
4976                 /* PS field - page size for VRMA */
4977                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4978                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4979                 /* HTABSIZE and HTABORG fields */
4980                 dw0 |= kvm->arch.sdr1;
4981
4982                 /* Second dword as set by userspace */
4983                 dw1 = kvm->arch.process_table;
4984         } else {
4985                 dw0 = PATB_HR | radix__get_tree_size() |
4986                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4987                 dw1 = PATB_GR | kvm->arch.process_table;
4988         }
4989         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4990 }
4991
4992 /*
4993  * Set up HPT (hashed page table) and RMA (real-mode area).
4994  * Must be called with kvm->arch.mmu_setup_lock held.
4995  */
4996 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4997 {
4998         int err = 0;
4999         struct kvm *kvm = vcpu->kvm;
5000         unsigned long hva;
5001         struct kvm_memory_slot *memslot;
5002         struct vm_area_struct *vma;
5003         unsigned long lpcr = 0, senc;
5004         unsigned long psize, porder;
5005         int srcu_idx;
5006
5007         /* Allocate hashed page table (if not done already) and reset it */
5008         if (!kvm->arch.hpt.virt) {
5009                 int order = KVM_DEFAULT_HPT_ORDER;
5010                 struct kvm_hpt_info info;
5011
5012                 err = kvmppc_allocate_hpt(&info, order);
5013                 /* If we get here, it means userspace didn't specify a
5014                  * size explicitly.  So, try successively smaller
5015                  * sizes if the default failed. */
5016                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5017                         err  = kvmppc_allocate_hpt(&info, order);
5018
5019                 if (err < 0) {
5020                         pr_err("KVM: Couldn't alloc HPT\n");
5021                         goto out;
5022                 }
5023
5024                 kvmppc_set_hpt(kvm, &info);
5025         }
5026
5027         /* Look up the memslot for guest physical address 0 */
5028         srcu_idx = srcu_read_lock(&kvm->srcu);
5029         memslot = gfn_to_memslot(kvm, 0);
5030
5031         /* We must have some memory at 0 by now */
5032         err = -EINVAL;
5033         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5034                 goto out_srcu;
5035
5036         /* Look up the VMA for the start of this memory slot */
5037         hva = memslot->userspace_addr;
5038         mmap_read_lock(kvm->mm);
5039         vma = vma_lookup(kvm->mm, hva);
5040         if (!vma || (vma->vm_flags & VM_IO))
5041                 goto up_out;
5042
5043         psize = vma_kernel_pagesize(vma);
5044
5045         mmap_read_unlock(kvm->mm);
5046
5047         /* We can handle 4k, 64k or 16M pages in the VRMA */
5048         if (psize >= 0x1000000)
5049                 psize = 0x1000000;
5050         else if (psize >= 0x10000)
5051                 psize = 0x10000;
5052         else
5053                 psize = 0x1000;
5054         porder = __ilog2(psize);
5055
5056         senc = slb_pgsize_encoding(psize);
5057         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5058                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5059         /* Create HPTEs in the hash page table for the VRMA */
5060         kvmppc_map_vrma(vcpu, memslot, porder);
5061
5062         /* Update VRMASD field in the LPCR */
5063         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5064                 /* the -4 is to account for senc values starting at 0x10 */
5065                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5066                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5067         }
5068
5069         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5070         smp_wmb();
5071         err = 0;
5072  out_srcu:
5073         srcu_read_unlock(&kvm->srcu, srcu_idx);
5074  out:
5075         return err;
5076
5077  up_out:
5078         mmap_read_unlock(kvm->mm);
5079         goto out_srcu;
5080 }
5081
5082 /*
5083  * Must be called with kvm->arch.mmu_setup_lock held and
5084  * mmu_ready = 0 and no vcpus running.
5085  */
5086 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5087 {
5088         unsigned long lpcr, lpcr_mask;
5089
5090         if (nesting_enabled(kvm))
5091                 kvmhv_release_all_nested(kvm);
5092         kvmppc_rmap_reset(kvm);
5093         kvm->arch.process_table = 0;
5094         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5095         spin_lock(&kvm->mmu_lock);
5096         kvm->arch.radix = 0;
5097         spin_unlock(&kvm->mmu_lock);
5098         kvmppc_free_radix(kvm);
5099
5100         lpcr = LPCR_VPM1;
5101         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5102         if (cpu_has_feature(CPU_FTR_ARCH_31))
5103                 lpcr_mask |= LPCR_HAIL;
5104         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5105
5106         return 0;
5107 }
5108
5109 /*
5110  * Must be called with kvm->arch.mmu_setup_lock held and
5111  * mmu_ready = 0 and no vcpus running.
5112  */
5113 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5114 {
5115         unsigned long lpcr, lpcr_mask;
5116         int err;
5117
5118         err = kvmppc_init_vm_radix(kvm);
5119         if (err)
5120                 return err;
5121         kvmppc_rmap_reset(kvm);
5122         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5123         spin_lock(&kvm->mmu_lock);
5124         kvm->arch.radix = 1;
5125         spin_unlock(&kvm->mmu_lock);
5126         kvmppc_free_hpt(&kvm->arch.hpt);
5127
5128         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5129         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5130         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5131                 lpcr_mask |= LPCR_HAIL;
5132                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5133                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5134                         lpcr |= LPCR_HAIL;
5135         }
5136         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5137
5138         return 0;
5139 }
5140
5141 #ifdef CONFIG_KVM_XICS
5142 /*
5143  * Allocate a per-core structure for managing state about which cores are
5144  * running in the host versus the guest and for exchanging data between
5145  * real mode KVM and CPU running in the host.
5146  * This is only done for the first VM.
5147  * The allocated structure stays even if all VMs have stopped.
5148  * It is only freed when the kvm-hv module is unloaded.
5149  * It's OK for this routine to fail, we just don't support host
5150  * core operations like redirecting H_IPI wakeups.
5151  */
5152 void kvmppc_alloc_host_rm_ops(void)
5153 {
5154         struct kvmppc_host_rm_ops *ops;
5155         unsigned long l_ops;
5156         int cpu, core;
5157         int size;
5158
5159         if (cpu_has_feature(CPU_FTR_ARCH_300))
5160                 return;
5161
5162         /* Not the first time here ? */
5163         if (kvmppc_host_rm_ops_hv != NULL)
5164                 return;
5165
5166         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5167         if (!ops)
5168                 return;
5169
5170         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5171         ops->rm_core = kzalloc(size, GFP_KERNEL);
5172
5173         if (!ops->rm_core) {
5174                 kfree(ops);
5175                 return;
5176         }
5177
5178         cpus_read_lock();
5179
5180         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5181                 if (!cpu_online(cpu))
5182                         continue;
5183
5184                 core = cpu >> threads_shift;
5185                 ops->rm_core[core].rm_state.in_host = 1;
5186         }
5187
5188         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5189
5190         /*
5191          * Make the contents of the kvmppc_host_rm_ops structure visible
5192          * to other CPUs before we assign it to the global variable.
5193          * Do an atomic assignment (no locks used here), but if someone
5194          * beats us to it, just free our copy and return.
5195          */
5196         smp_wmb();
5197         l_ops = (unsigned long) ops;
5198
5199         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5200                 cpus_read_unlock();
5201                 kfree(ops->rm_core);
5202                 kfree(ops);
5203                 return;
5204         }
5205
5206         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5207                                              "ppc/kvm_book3s:prepare",
5208                                              kvmppc_set_host_core,
5209                                              kvmppc_clear_host_core);
5210         cpus_read_unlock();
5211 }
5212
5213 void kvmppc_free_host_rm_ops(void)
5214 {
5215         if (kvmppc_host_rm_ops_hv) {
5216                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5217                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5218                 kfree(kvmppc_host_rm_ops_hv);
5219                 kvmppc_host_rm_ops_hv = NULL;
5220         }
5221 }
5222 #endif
5223
5224 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5225 {
5226         unsigned long lpcr, lpid;
5227         char buf[32];
5228         int ret;
5229
5230         mutex_init(&kvm->arch.uvmem_lock);
5231         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5232         mutex_init(&kvm->arch.mmu_setup_lock);
5233
5234         /* Allocate the guest's logical partition ID */
5235
5236         lpid = kvmppc_alloc_lpid();
5237         if ((long)lpid < 0)
5238                 return -ENOMEM;
5239         kvm->arch.lpid = lpid;
5240
5241         kvmppc_alloc_host_rm_ops();
5242
5243         kvmhv_vm_nested_init(kvm);
5244
5245         /*
5246          * Since we don't flush the TLB when tearing down a VM,
5247          * and this lpid might have previously been used,
5248          * make sure we flush on each core before running the new VM.
5249          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5250          * does this flush for us.
5251          */
5252         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5253                 cpumask_setall(&kvm->arch.need_tlb_flush);
5254
5255         /* Start out with the default set of hcalls enabled */
5256         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5257                sizeof(kvm->arch.enabled_hcalls));
5258
5259         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5260                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5261
5262         /* Init LPCR for virtual RMA mode */
5263         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5264                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5265                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5266                 lpcr &= LPCR_PECE | LPCR_LPES;
5267         } else {
5268                 lpcr = 0;
5269         }
5270         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5271                 LPCR_VPM0 | LPCR_VPM1;
5272         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5273                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5274         /* On POWER8 turn on online bit to enable PURR/SPURR */
5275         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5276                 lpcr |= LPCR_ONL;
5277         /*
5278          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5279          * Set HVICE bit to enable hypervisor virtualization interrupts.
5280          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5281          * be unnecessary but better safe than sorry in case we re-enable
5282          * EE in HV mode with this LPCR still set)
5283          */
5284         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5285                 lpcr &= ~LPCR_VPM0;
5286                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5287
5288                 /*
5289                  * If xive is enabled, we route 0x500 interrupts directly
5290                  * to the guest.
5291                  */
5292                 if (xics_on_xive())
5293                         lpcr |= LPCR_LPES;
5294         }
5295
5296         /*
5297          * If the host uses radix, the guest starts out as radix.
5298          */
5299         if (radix_enabled()) {
5300                 kvm->arch.radix = 1;
5301                 kvm->arch.mmu_ready = 1;
5302                 lpcr &= ~LPCR_VPM1;
5303                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5304                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5305                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5306                     (kvm->arch.host_lpcr & LPCR_HAIL))
5307                         lpcr |= LPCR_HAIL;
5308                 ret = kvmppc_init_vm_radix(kvm);
5309                 if (ret) {
5310                         kvmppc_free_lpid(kvm->arch.lpid);
5311                         return ret;
5312                 }
5313                 kvmppc_setup_partition_table(kvm);
5314         }
5315
5316         verify_lpcr(kvm, lpcr);
5317         kvm->arch.lpcr = lpcr;
5318
5319         /* Initialization for future HPT resizes */
5320         kvm->arch.resize_hpt = NULL;
5321
5322         /*
5323          * Work out how many sets the TLB has, for the use of
5324          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5325          */
5326         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5327                 /*
5328                  * P10 will flush all the congruence class with a single tlbiel
5329                  */
5330                 kvm->arch.tlb_sets = 1;
5331         } else if (radix_enabled())
5332                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5333         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5334                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5335         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5336                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5337         else
5338                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5339
5340         /*
5341          * Track that we now have a HV mode VM active. This blocks secondary
5342          * CPU threads from coming online.
5343          */
5344         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5345                 kvm_hv_vm_activated();
5346
5347         /*
5348          * Initialize smt_mode depending on processor.
5349          * POWER8 and earlier have to use "strict" threading, where
5350          * all vCPUs in a vcore have to run on the same (sub)core,
5351          * whereas on POWER9 the threads can each run a different
5352          * guest.
5353          */
5354         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5355                 kvm->arch.smt_mode = threads_per_subcore;
5356         else
5357                 kvm->arch.smt_mode = 1;
5358         kvm->arch.emul_smt_mode = 1;
5359
5360         /*
5361          * Create a debugfs directory for the VM
5362          */
5363         snprintf(buf, sizeof(buf), "vm%d", current->pid);
5364         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5365         kvmppc_mmu_debugfs_init(kvm);
5366         if (radix_enabled())
5367                 kvmhv_radix_debugfs_init(kvm);
5368
5369         return 0;
5370 }
5371
5372 static void kvmppc_free_vcores(struct kvm *kvm)
5373 {
5374         long int i;
5375
5376         for (i = 0; i < KVM_MAX_VCORES; ++i)
5377                 kfree(kvm->arch.vcores[i]);
5378         kvm->arch.online_vcores = 0;
5379 }
5380
5381 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5382 {
5383         debugfs_remove_recursive(kvm->arch.debugfs_dir);
5384
5385         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5386                 kvm_hv_vm_deactivated();
5387
5388         kvmppc_free_vcores(kvm);
5389
5390
5391         if (kvm_is_radix(kvm))
5392                 kvmppc_free_radix(kvm);
5393         else
5394                 kvmppc_free_hpt(&kvm->arch.hpt);
5395
5396         /* Perform global invalidation and return lpid to the pool */
5397         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5398                 if (nesting_enabled(kvm))
5399                         kvmhv_release_all_nested(kvm);
5400                 kvm->arch.process_table = 0;
5401                 if (kvm->arch.secure_guest)
5402                         uv_svm_terminate(kvm->arch.lpid);
5403                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5404         }
5405
5406         kvmppc_free_lpid(kvm->arch.lpid);
5407
5408         kvmppc_free_pimap(kvm);
5409 }
5410
5411 /* We don't need to emulate any privileged instructions or dcbz */
5412 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5413                                      unsigned int inst, int *advance)
5414 {
5415         return EMULATE_FAIL;
5416 }
5417
5418 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5419                                         ulong spr_val)
5420 {
5421         return EMULATE_FAIL;
5422 }
5423
5424 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5425                                         ulong *spr_val)
5426 {
5427         return EMULATE_FAIL;
5428 }
5429
5430 static int kvmppc_core_check_processor_compat_hv(void)
5431 {
5432         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5433             cpu_has_feature(CPU_FTR_ARCH_206))
5434                 return 0;
5435
5436         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5437         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5438                 return 0;
5439
5440         return -EIO;
5441 }
5442
5443 #ifdef CONFIG_KVM_XICS
5444
5445 void kvmppc_free_pimap(struct kvm *kvm)
5446 {
5447         kfree(kvm->arch.pimap);
5448 }
5449
5450 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5451 {
5452         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5453 }
5454
5455 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5456 {
5457         struct irq_desc *desc;
5458         struct kvmppc_irq_map *irq_map;
5459         struct kvmppc_passthru_irqmap *pimap;
5460         struct irq_chip *chip;
5461         int i, rc = 0;
5462         struct irq_data *host_data;
5463
5464         if (!kvm_irq_bypass)
5465                 return 1;
5466
5467         desc = irq_to_desc(host_irq);
5468         if (!desc)
5469                 return -EIO;
5470
5471         mutex_lock(&kvm->lock);
5472
5473         pimap = kvm->arch.pimap;
5474         if (pimap == NULL) {
5475                 /* First call, allocate structure to hold IRQ map */
5476                 pimap = kvmppc_alloc_pimap();
5477                 if (pimap == NULL) {
5478                         mutex_unlock(&kvm->lock);
5479                         return -ENOMEM;
5480                 }
5481                 kvm->arch.pimap = pimap;
5482         }
5483
5484         /*
5485          * For now, we only support interrupts for which the EOI operation
5486          * is an OPAL call followed by a write to XIRR, since that's
5487          * what our real-mode EOI code does, or a XIVE interrupt
5488          */
5489         chip = irq_data_get_irq_chip(&desc->irq_data);
5490         if (!chip || !is_pnv_opal_msi(chip)) {
5491                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5492                         host_irq, guest_gsi);
5493                 mutex_unlock(&kvm->lock);
5494                 return -ENOENT;
5495         }
5496
5497         /*
5498          * See if we already have an entry for this guest IRQ number.
5499          * If it's mapped to a hardware IRQ number, that's an error,
5500          * otherwise re-use this entry.
5501          */
5502         for (i = 0; i < pimap->n_mapped; i++) {
5503                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5504                         if (pimap->mapped[i].r_hwirq) {
5505                                 mutex_unlock(&kvm->lock);
5506                                 return -EINVAL;
5507                         }
5508                         break;
5509                 }
5510         }
5511
5512         if (i == KVMPPC_PIRQ_MAPPED) {
5513                 mutex_unlock(&kvm->lock);
5514                 return -EAGAIN;         /* table is full */
5515         }
5516
5517         irq_map = &pimap->mapped[i];
5518
5519         irq_map->v_hwirq = guest_gsi;
5520         irq_map->desc = desc;
5521
5522         /*
5523          * Order the above two stores before the next to serialize with
5524          * the KVM real mode handler.
5525          */
5526         smp_wmb();
5527
5528         /*
5529          * The 'host_irq' number is mapped in the PCI-MSI domain but
5530          * the underlying calls, which will EOI the interrupt in real
5531          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5532          */
5533         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5534         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5535
5536         if (i == pimap->n_mapped)
5537                 pimap->n_mapped++;
5538
5539         if (xics_on_xive())
5540                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5541         else
5542                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5543         if (rc)
5544                 irq_map->r_hwirq = 0;
5545
5546         mutex_unlock(&kvm->lock);
5547
5548         return 0;
5549 }
5550
5551 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5552 {
5553         struct irq_desc *desc;
5554         struct kvmppc_passthru_irqmap *pimap;
5555         int i, rc = 0;
5556
5557         if (!kvm_irq_bypass)
5558                 return 0;
5559
5560         desc = irq_to_desc(host_irq);
5561         if (!desc)
5562                 return -EIO;
5563
5564         mutex_lock(&kvm->lock);
5565         if (!kvm->arch.pimap)
5566                 goto unlock;
5567
5568         pimap = kvm->arch.pimap;
5569
5570         for (i = 0; i < pimap->n_mapped; i++) {
5571                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5572                         break;
5573         }
5574
5575         if (i == pimap->n_mapped) {
5576                 mutex_unlock(&kvm->lock);
5577                 return -ENODEV;
5578         }
5579
5580         if (xics_on_xive())
5581                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5582         else
5583                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5584
5585         /* invalidate the entry (what do do on error from the above ?) */
5586         pimap->mapped[i].r_hwirq = 0;
5587
5588         /*
5589          * We don't free this structure even when the count goes to
5590          * zero. The structure is freed when we destroy the VM.
5591          */
5592  unlock:
5593         mutex_unlock(&kvm->lock);
5594         return rc;
5595 }
5596
5597 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5598                                              struct irq_bypass_producer *prod)
5599 {
5600         int ret = 0;
5601         struct kvm_kernel_irqfd *irqfd =
5602                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5603
5604         irqfd->producer = prod;
5605
5606         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5607         if (ret)
5608                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5609                         prod->irq, irqfd->gsi, ret);
5610
5611         return ret;
5612 }
5613
5614 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5615                                               struct irq_bypass_producer *prod)
5616 {
5617         int ret;
5618         struct kvm_kernel_irqfd *irqfd =
5619                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5620
5621         irqfd->producer = NULL;
5622
5623         /*
5624          * When producer of consumer is unregistered, we change back to
5625          * default external interrupt handling mode - KVM real mode
5626          * will switch back to host.
5627          */
5628         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5629         if (ret)
5630                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5631                         prod->irq, irqfd->gsi, ret);
5632 }
5633 #endif
5634
5635 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5636                                  unsigned int ioctl, unsigned long arg)
5637 {
5638         struct kvm *kvm __maybe_unused = filp->private_data;
5639         void __user *argp = (void __user *)arg;
5640         long r;
5641
5642         switch (ioctl) {
5643
5644         case KVM_PPC_ALLOCATE_HTAB: {
5645                 u32 htab_order;
5646
5647                 /* If we're a nested hypervisor, we currently only support radix */
5648                 if (kvmhv_on_pseries()) {
5649                         r = -EOPNOTSUPP;
5650                         break;
5651                 }
5652
5653                 r = -EFAULT;
5654                 if (get_user(htab_order, (u32 __user *)argp))
5655                         break;
5656                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5657                 if (r)
5658                         break;
5659                 r = 0;
5660                 break;
5661         }
5662
5663         case KVM_PPC_GET_HTAB_FD: {
5664                 struct kvm_get_htab_fd ghf;
5665
5666                 r = -EFAULT;
5667                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5668                         break;
5669                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5670                 break;
5671         }
5672
5673         case KVM_PPC_RESIZE_HPT_PREPARE: {
5674                 struct kvm_ppc_resize_hpt rhpt;
5675
5676                 r = -EFAULT;
5677                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5678                         break;
5679
5680                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5681                 break;
5682         }
5683
5684         case KVM_PPC_RESIZE_HPT_COMMIT: {
5685                 struct kvm_ppc_resize_hpt rhpt;
5686
5687                 r = -EFAULT;
5688                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5689                         break;
5690
5691                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5692                 break;
5693         }
5694
5695         default:
5696                 r = -ENOTTY;
5697         }
5698
5699         return r;
5700 }
5701
5702 /*
5703  * List of hcall numbers to enable by default.
5704  * For compatibility with old userspace, we enable by default
5705  * all hcalls that were implemented before the hcall-enabling
5706  * facility was added.  Note this list should not include H_RTAS.
5707  */
5708 static unsigned int default_hcall_list[] = {
5709         H_REMOVE,
5710         H_ENTER,
5711         H_READ,
5712         H_PROTECT,
5713         H_BULK_REMOVE,
5714 #ifdef CONFIG_SPAPR_TCE_IOMMU
5715         H_GET_TCE,
5716         H_PUT_TCE,
5717 #endif
5718         H_SET_DABR,
5719         H_SET_XDABR,
5720         H_CEDE,
5721         H_PROD,
5722         H_CONFER,
5723         H_REGISTER_VPA,
5724 #ifdef CONFIG_KVM_XICS
5725         H_EOI,
5726         H_CPPR,
5727         H_IPI,
5728         H_IPOLL,
5729         H_XIRR,
5730         H_XIRR_X,
5731 #endif
5732         0
5733 };
5734
5735 static void init_default_hcalls(void)
5736 {
5737         int i;
5738         unsigned int hcall;
5739
5740         for (i = 0; default_hcall_list[i]; ++i) {
5741                 hcall = default_hcall_list[i];
5742                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5743                 __set_bit(hcall / 4, default_enabled_hcalls);
5744         }
5745 }
5746
5747 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5748 {
5749         unsigned long lpcr;
5750         int radix;
5751         int err;
5752
5753         /* If not on a POWER9, reject it */
5754         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5755                 return -ENODEV;
5756
5757         /* If any unknown flags set, reject it */
5758         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5759                 return -EINVAL;
5760
5761         /* GR (guest radix) bit in process_table field must match */
5762         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5763         if (!!(cfg->process_table & PATB_GR) != radix)
5764                 return -EINVAL;
5765
5766         /* Process table size field must be reasonable, i.e. <= 24 */
5767         if ((cfg->process_table & PRTS_MASK) > 24)
5768                 return -EINVAL;
5769
5770         /* We can change a guest to/from radix now, if the host is radix */
5771         if (radix && !radix_enabled())
5772                 return -EINVAL;
5773
5774         /* If we're a nested hypervisor, we currently only support radix */
5775         if (kvmhv_on_pseries() && !radix)
5776                 return -EINVAL;
5777
5778         mutex_lock(&kvm->arch.mmu_setup_lock);
5779         if (radix != kvm_is_radix(kvm)) {
5780                 if (kvm->arch.mmu_ready) {
5781                         kvm->arch.mmu_ready = 0;
5782                         /* order mmu_ready vs. vcpus_running */
5783                         smp_mb();
5784                         if (atomic_read(&kvm->arch.vcpus_running)) {
5785                                 kvm->arch.mmu_ready = 1;
5786                                 err = -EBUSY;
5787                                 goto out_unlock;
5788                         }
5789                 }
5790                 if (radix)
5791                         err = kvmppc_switch_mmu_to_radix(kvm);
5792                 else
5793                         err = kvmppc_switch_mmu_to_hpt(kvm);
5794                 if (err)
5795                         goto out_unlock;
5796         }
5797
5798         kvm->arch.process_table = cfg->process_table;
5799         kvmppc_setup_partition_table(kvm);
5800
5801         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5802         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5803         err = 0;
5804
5805  out_unlock:
5806         mutex_unlock(&kvm->arch.mmu_setup_lock);
5807         return err;
5808 }
5809
5810 static int kvmhv_enable_nested(struct kvm *kvm)
5811 {
5812         if (!nested)
5813                 return -EPERM;
5814         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5815                 return -ENODEV;
5816         if (!radix_enabled())
5817                 return -ENODEV;
5818
5819         /* kvm == NULL means the caller is testing if the capability exists */
5820         if (kvm)
5821                 kvm->arch.nested_enable = true;
5822         return 0;
5823 }
5824
5825 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5826                                  int size)
5827 {
5828         int rc = -EINVAL;
5829
5830         if (kvmhv_vcpu_is_radix(vcpu)) {
5831                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5832
5833                 if (rc > 0)
5834                         rc = -EINVAL;
5835         }
5836
5837         /* For now quadrants are the only way to access nested guest memory */
5838         if (rc && vcpu->arch.nested)
5839                 rc = -EAGAIN;
5840
5841         return rc;
5842 }
5843
5844 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5845                                 int size)
5846 {
5847         int rc = -EINVAL;
5848
5849         if (kvmhv_vcpu_is_radix(vcpu)) {
5850                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5851
5852                 if (rc > 0)
5853                         rc = -EINVAL;
5854         }
5855
5856         /* For now quadrants are the only way to access nested guest memory */
5857         if (rc && vcpu->arch.nested)
5858                 rc = -EAGAIN;
5859
5860         return rc;
5861 }
5862
5863 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5864 {
5865         unpin_vpa(kvm, vpa);
5866         vpa->gpa = 0;
5867         vpa->pinned_addr = NULL;
5868         vpa->dirty = false;
5869         vpa->update_pending = 0;
5870 }
5871
5872 /*
5873  * Enable a guest to become a secure VM, or test whether
5874  * that could be enabled.
5875  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5876  * tested (kvm == NULL) or enabled (kvm != NULL).
5877  */
5878 static int kvmhv_enable_svm(struct kvm *kvm)
5879 {
5880         if (!kvmppc_uvmem_available())
5881                 return -EINVAL;
5882         if (kvm)
5883                 kvm->arch.svm_enabled = 1;
5884         return 0;
5885 }
5886
5887 /*
5888  *  IOCTL handler to turn off secure mode of guest
5889  *
5890  * - Release all device pages
5891  * - Issue ucall to terminate the guest on the UV side
5892  * - Unpin the VPA pages.
5893  * - Reinit the partition scoped page tables
5894  */
5895 static int kvmhv_svm_off(struct kvm *kvm)
5896 {
5897         struct kvm_vcpu *vcpu;
5898         int mmu_was_ready;
5899         int srcu_idx;
5900         int ret = 0;
5901         unsigned long i;
5902
5903         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5904                 return ret;
5905
5906         mutex_lock(&kvm->arch.mmu_setup_lock);
5907         mmu_was_ready = kvm->arch.mmu_ready;
5908         if (kvm->arch.mmu_ready) {
5909                 kvm->arch.mmu_ready = 0;
5910                 /* order mmu_ready vs. vcpus_running */
5911                 smp_mb();
5912                 if (atomic_read(&kvm->arch.vcpus_running)) {
5913                         kvm->arch.mmu_ready = 1;
5914                         ret = -EBUSY;
5915                         goto out;
5916                 }
5917         }
5918
5919         srcu_idx = srcu_read_lock(&kvm->srcu);
5920         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5921                 struct kvm_memory_slot *memslot;
5922                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5923                 int bkt;
5924
5925                 if (!slots)
5926                         continue;
5927
5928                 kvm_for_each_memslot(memslot, bkt, slots) {
5929                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5930                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5931                 }
5932         }
5933         srcu_read_unlock(&kvm->srcu, srcu_idx);
5934
5935         ret = uv_svm_terminate(kvm->arch.lpid);
5936         if (ret != U_SUCCESS) {
5937                 ret = -EINVAL;
5938                 goto out;
5939         }
5940
5941         /*
5942          * When secure guest is reset, all the guest pages are sent
5943          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5944          * chance to run and unpin their VPA pages. Unpinning of all
5945          * VPA pages is done here explicitly so that VPA pages
5946          * can be migrated to the secure side.
5947          *
5948          * This is required to for the secure SMP guest to reboot
5949          * correctly.
5950          */
5951         kvm_for_each_vcpu(i, vcpu, kvm) {
5952                 spin_lock(&vcpu->arch.vpa_update_lock);
5953                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5954                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5955                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5956                 spin_unlock(&vcpu->arch.vpa_update_lock);
5957         }
5958
5959         kvmppc_setup_partition_table(kvm);
5960         kvm->arch.secure_guest = 0;
5961         kvm->arch.mmu_ready = mmu_was_ready;
5962 out:
5963         mutex_unlock(&kvm->arch.mmu_setup_lock);
5964         return ret;
5965 }
5966
5967 static int kvmhv_enable_dawr1(struct kvm *kvm)
5968 {
5969         if (!cpu_has_feature(CPU_FTR_DAWR1))
5970                 return -ENODEV;
5971
5972         /* kvm == NULL means the caller is testing if the capability exists */
5973         if (kvm)
5974                 kvm->arch.dawr1_enabled = true;
5975         return 0;
5976 }
5977
5978 static bool kvmppc_hash_v3_possible(void)
5979 {
5980         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5981                 return false;
5982
5983         if (!cpu_has_feature(CPU_FTR_HVMODE))
5984                 return false;
5985
5986         /*
5987          * POWER9 chips before version 2.02 can't have some threads in
5988          * HPT mode and some in radix mode on the same core.
5989          */
5990         if (radix_enabled()) {
5991                 unsigned int pvr = mfspr(SPRN_PVR);
5992                 if ((pvr >> 16) == PVR_POWER9 &&
5993                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5994                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5995                         return false;
5996         }
5997
5998         return true;
5999 }
6000
6001 static struct kvmppc_ops kvm_ops_hv = {
6002         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6003         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6004         .get_one_reg = kvmppc_get_one_reg_hv,
6005         .set_one_reg = kvmppc_set_one_reg_hv,
6006         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6007         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6008         .inject_interrupt = kvmppc_inject_interrupt_hv,
6009         .set_msr     = kvmppc_set_msr_hv,
6010         .vcpu_run    = kvmppc_vcpu_run_hv,
6011         .vcpu_create = kvmppc_core_vcpu_create_hv,
6012         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6013         .check_requests = kvmppc_core_check_requests_hv,
6014         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6015         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6016         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6017         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6018         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6019         .age_gfn = kvm_age_gfn_hv,
6020         .test_age_gfn = kvm_test_age_gfn_hv,
6021         .set_spte_gfn = kvm_set_spte_gfn_hv,
6022         .free_memslot = kvmppc_core_free_memslot_hv,
6023         .init_vm =  kvmppc_core_init_vm_hv,
6024         .destroy_vm = kvmppc_core_destroy_vm_hv,
6025         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6026         .emulate_op = kvmppc_core_emulate_op_hv,
6027         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6028         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6029         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6030         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6031         .hcall_implemented = kvmppc_hcall_impl_hv,
6032 #ifdef CONFIG_KVM_XICS
6033         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6034         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6035 #endif
6036         .configure_mmu = kvmhv_configure_mmu,
6037         .get_rmmu_info = kvmhv_get_rmmu_info,
6038         .set_smt_mode = kvmhv_set_smt_mode,
6039         .enable_nested = kvmhv_enable_nested,
6040         .load_from_eaddr = kvmhv_load_from_eaddr,
6041         .store_to_eaddr = kvmhv_store_to_eaddr,
6042         .enable_svm = kvmhv_enable_svm,
6043         .svm_off = kvmhv_svm_off,
6044         .enable_dawr1 = kvmhv_enable_dawr1,
6045         .hash_v3_possible = kvmppc_hash_v3_possible,
6046 };
6047
6048 static int kvm_init_subcore_bitmap(void)
6049 {
6050         int i, j;
6051         int nr_cores = cpu_nr_cores();
6052         struct sibling_subcore_state *sibling_subcore_state;
6053
6054         for (i = 0; i < nr_cores; i++) {
6055                 int first_cpu = i * threads_per_core;
6056                 int node = cpu_to_node(first_cpu);
6057
6058                 /* Ignore if it is already allocated. */
6059                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6060                         continue;
6061
6062                 sibling_subcore_state =
6063                         kzalloc_node(sizeof(struct sibling_subcore_state),
6064                                                         GFP_KERNEL, node);
6065                 if (!sibling_subcore_state)
6066                         return -ENOMEM;
6067
6068
6069                 for (j = 0; j < threads_per_core; j++) {
6070                         int cpu = first_cpu + j;
6071
6072                         paca_ptrs[cpu]->sibling_subcore_state =
6073                                                 sibling_subcore_state;
6074                 }
6075         }
6076         return 0;
6077 }
6078
6079 static int kvmppc_radix_possible(void)
6080 {
6081         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6082 }
6083
6084 static int kvmppc_book3s_init_hv(void)
6085 {
6086         int r;
6087
6088         if (!tlbie_capable) {
6089                 pr_err("KVM-HV: Host does not support TLBIE\n");
6090                 return -ENODEV;
6091         }
6092
6093         /*
6094          * FIXME!! Do we need to check on all cpus ?
6095          */
6096         r = kvmppc_core_check_processor_compat_hv();
6097         if (r < 0)
6098                 return -ENODEV;
6099
6100         r = kvmhv_nested_init();
6101         if (r)
6102                 return r;
6103
6104         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6105                 r = kvm_init_subcore_bitmap();
6106                 if (r)
6107                         return r;
6108         }
6109
6110         /*
6111          * We need a way of accessing the XICS interrupt controller,
6112          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6113          * indirectly, via OPAL.
6114          */
6115 #ifdef CONFIG_SMP
6116         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6117             !local_paca->kvm_hstate.xics_phys) {
6118                 struct device_node *np;
6119
6120                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6121                 if (!np) {
6122                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6123                         return -ENODEV;
6124                 }
6125                 /* presence of intc confirmed - node can be dropped again */
6126                 of_node_put(np);
6127         }
6128 #endif
6129
6130         kvm_ops_hv.owner = THIS_MODULE;
6131         kvmppc_hv_ops = &kvm_ops_hv;
6132
6133         init_default_hcalls();
6134
6135         init_vcore_lists();
6136
6137         r = kvmppc_mmu_hv_init();
6138         if (r)
6139                 return r;
6140
6141         if (kvmppc_radix_possible())
6142                 r = kvmppc_radix_init();
6143
6144         r = kvmppc_uvmem_init();
6145         if (r < 0)
6146                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6147
6148         return r;
6149 }
6150
6151 static void kvmppc_book3s_exit_hv(void)
6152 {
6153         kvmppc_uvmem_free();
6154         kvmppc_free_host_rm_ops();
6155         if (kvmppc_radix_possible())
6156                 kvmppc_radix_exit();
6157         kvmppc_hv_ops = NULL;
6158         kvmhv_nested_exit();
6159 }
6160
6161 module_init(kvmppc_book3s_init_hv);
6162 module_exit(kvmppc_book3s_exit_hv);
6163 MODULE_LICENSE("GPL");
6164 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6165 MODULE_ALIAS("devname:kvm");