KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76
77 #include "book3s.h"
78
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
90
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL  (~(u64)0)
93
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109         .set = param_set_int,
110         .get = param_get_int,
111 };
112
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125
126 /*
127  * RWMR values for POWER8.  These control the rate at which PURR
128  * and SPURR count and should be set according to the number of
129  * online threads in the vcore being run.
130  */
131 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
132 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
133 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
134 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
135 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
136 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
137 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
138 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
139
140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
141         RWMR_RPA_P8_1THREAD,
142         RWMR_RPA_P8_1THREAD,
143         RWMR_RPA_P8_2THREAD,
144         RWMR_RPA_P8_3THREAD,
145         RWMR_RPA_P8_4THREAD,
146         RWMR_RPA_P8_5THREAD,
147         RWMR_RPA_P8_6THREAD,
148         RWMR_RPA_P8_7THREAD,
149         RWMR_RPA_P8_8THREAD,
150 };
151
152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
153                 int *ip)
154 {
155         int i = *ip;
156         struct kvm_vcpu *vcpu;
157
158         while (++i < MAX_SMT_THREADS) {
159                 vcpu = READ_ONCE(vc->runnable_threads[i]);
160                 if (vcpu) {
161                         *ip = i;
162                         return vcpu;
163                 }
164         }
165         return NULL;
166 }
167
168 /* Used to traverse the list of runnable threads for a given vcore */
169 #define for_each_runnable_thread(i, vcpu, vc) \
170         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
171
172 static bool kvmppc_ipi_thread(int cpu)
173 {
174         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
175
176         /* On POWER9 we can use msgsnd to IPI any cpu */
177         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
178                 msg |= get_hard_smp_processor_id(cpu);
179                 smp_mb();
180                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
181                 return true;
182         }
183
184         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
185         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
186                 preempt_disable();
187                 if (cpu_first_thread_sibling(cpu) ==
188                     cpu_first_thread_sibling(smp_processor_id())) {
189                         msg |= cpu_thread_in_core(cpu);
190                         smp_mb();
191                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192                         preempt_enable();
193                         return true;
194                 }
195                 preempt_enable();
196         }
197
198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199         if (cpu >= 0 && cpu < nr_cpu_ids) {
200                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201                         xics_wake_cpu(cpu);
202                         return true;
203                 }
204                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205                 return true;
206         }
207 #endif
208
209         return false;
210 }
211
212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213 {
214         int cpu;
215         struct swait_queue_head *wqp;
216
217         wqp = kvm_arch_vcpu_wq(vcpu);
218         if (swq_has_sleeper(wqp)) {
219                 swake_up_one(wqp);
220                 ++vcpu->stat.halt_wakeup;
221         }
222
223         cpu = READ_ONCE(vcpu->arch.thread_cpu);
224         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225                 return;
226
227         /* CPU points to the first thread of the core */
228         cpu = vcpu->cpu;
229         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
230                 smp_send_reschedule(cpu);
231 }
232
233 /*
234  * We use the vcpu_load/put functions to measure stolen time.
235  * Stolen time is counted as time when either the vcpu is able to
236  * run as part of a virtual core, but the task running the vcore
237  * is preempted or sleeping, or when the vcpu needs something done
238  * in the kernel by the task running the vcpu, but that task is
239  * preempted or sleeping.  Those two things have to be counted
240  * separately, since one of the vcpu tasks will take on the job
241  * of running the core, and the other vcpu tasks in the vcore will
242  * sleep waiting for it to do that, but that sleep shouldn't count
243  * as stolen time.
244  *
245  * Hence we accumulate stolen time when the vcpu can run as part of
246  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
247  * needs its task to do other things in the kernel (for example,
248  * service a page fault) in busy_stolen.  We don't accumulate
249  * stolen time for a vcore when it is inactive, or for a vcpu
250  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
251  * a misnomer; it means that the vcpu task is not executing in
252  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
253  * the kernel.  We don't have any way of dividing up that time
254  * between time that the vcpu is genuinely stopped, time that
255  * the task is actively working on behalf of the vcpu, and time
256  * that the task is preempted, so we don't count any of it as
257  * stolen.
258  *
259  * Updates to busy_stolen are protected by arch.tbacct_lock;
260  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
261  * lock.  The stolen times are measured in units of timebase ticks.
262  * (Note that the != TB_NIL checks below are purely defensive;
263  * they should never fail.)
264  */
265
266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
267 {
268         unsigned long flags;
269
270         spin_lock_irqsave(&vc->stoltb_lock, flags);
271         vc->preempt_tb = mftb();
272         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
273 }
274
275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
276 {
277         unsigned long flags;
278
279         spin_lock_irqsave(&vc->stoltb_lock, flags);
280         if (vc->preempt_tb != TB_NIL) {
281                 vc->stolen_tb += mftb() - vc->preempt_tb;
282                 vc->preempt_tb = TB_NIL;
283         }
284         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286
287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288 {
289         struct kvmppc_vcore *vc = vcpu->arch.vcore;
290         unsigned long flags;
291
292         /*
293          * We can test vc->runner without taking the vcore lock,
294          * because only this task ever sets vc->runner to this
295          * vcpu, and once it is set to this vcpu, only this task
296          * ever sets it to NULL.
297          */
298         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
299                 kvmppc_core_end_stolen(vc);
300
301         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
303             vcpu->arch.busy_preempt != TB_NIL) {
304                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
305                 vcpu->arch.busy_preempt = TB_NIL;
306         }
307         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 }
309
310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311 {
312         struct kvmppc_vcore *vc = vcpu->arch.vcore;
313         unsigned long flags;
314
315         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316                 kvmppc_core_start_stolen(vc);
317
318         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
320                 vcpu->arch.busy_preempt = mftb();
321         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 }
323
324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325 {
326         /*
327          * Check for illegal transactional state bit combination
328          * and if we find it, force the TS field to a safe state.
329          */
330         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
331                 msr &= ~MSR_TS_MASK;
332         vcpu->arch.shregs.msr = msr;
333         kvmppc_end_cede(vcpu);
334 }
335
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338         vcpu->arch.pvr = pvr;
339 }
340
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
343
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347         struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
349         /* We can (emulate) our own architecture version and anything older */
350         if (cpu_has_feature(CPU_FTR_ARCH_300))
351                 host_pcr_bit = PCR_ARCH_300;
352         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
353                 host_pcr_bit = PCR_ARCH_207;
354         else if (cpu_has_feature(CPU_FTR_ARCH_206))
355                 host_pcr_bit = PCR_ARCH_206;
356         else
357                 host_pcr_bit = PCR_ARCH_205;
358
359         /* Determine lowest PCR bit needed to run guest in given PVR level */
360         guest_pcr_bit = host_pcr_bit;
361         if (arch_compat) {
362                 switch (arch_compat) {
363                 case PVR_ARCH_205:
364                         guest_pcr_bit = PCR_ARCH_205;
365                         break;
366                 case PVR_ARCH_206:
367                 case PVR_ARCH_206p:
368                         guest_pcr_bit = PCR_ARCH_206;
369                         break;
370                 case PVR_ARCH_207:
371                         guest_pcr_bit = PCR_ARCH_207;
372                         break;
373                 case PVR_ARCH_300:
374                         guest_pcr_bit = PCR_ARCH_300;
375                         break;
376                 default:
377                         return -EINVAL;
378                 }
379         }
380
381         /* Check requested PCR bits don't exceed our capabilities */
382         if (guest_pcr_bit > host_pcr_bit)
383                 return -EINVAL;
384
385         spin_lock(&vc->lock);
386         vc->arch_compat = arch_compat;
387         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
388         vc->pcr = host_pcr_bit - guest_pcr_bit;
389         spin_unlock(&vc->lock);
390
391         return 0;
392 }
393
394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 {
396         int r;
397
398         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
399         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401         for (r = 0; r < 16; ++r)
402                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
403                        r, kvmppc_get_gpr(vcpu, r),
404                        r+16, kvmppc_get_gpr(vcpu, r+16));
405         pr_err("ctr = %.16lx  lr  = %.16lx\n",
406                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
408                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
409         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
410                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
411         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
412                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
414                vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
416         pr_err("fault dar = %.16lx dsisr = %.8x\n",
417                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
418         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
419         for (r = 0; r < vcpu->arch.slb_max; ++r)
420                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
421                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
422         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424                vcpu->arch.last_inst);
425 }
426
427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428 {
429         struct kvm_vcpu *ret;
430
431         mutex_lock(&kvm->lock);
432         ret = kvm_get_vcpu_by_id(kvm, id);
433         mutex_unlock(&kvm->lock);
434         return ret;
435 }
436
437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440         vpa->yield_count = cpu_to_be32(1);
441 }
442
443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444                    unsigned long addr, unsigned long len)
445 {
446         /* check address is cacheline aligned */
447         if (addr & (L1_CACHE_BYTES - 1))
448                 return -EINVAL;
449         spin_lock(&vcpu->arch.vpa_update_lock);
450         if (v->next_gpa != addr || v->len != len) {
451                 v->next_gpa = addr;
452                 v->len = addr ? len : 0;
453                 v->update_pending = 1;
454         }
455         spin_unlock(&vcpu->arch.vpa_update_lock);
456         return 0;
457 }
458
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461         u32 dummy;
462         union {
463                 __be16 hword;
464                 __be32 word;
465         } length;
466 };
467
468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470         if (vpap->update_pending)
471                 return vpap->next_gpa != 0;
472         return vpap->pinned_addr != NULL;
473 }
474
475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476                                        unsigned long flags,
477                                        unsigned long vcpuid, unsigned long vpa)
478 {
479         struct kvm *kvm = vcpu->kvm;
480         unsigned long len, nb;
481         void *va;
482         struct kvm_vcpu *tvcpu;
483         int err;
484         int subfunc;
485         struct kvmppc_vpa *vpap;
486
487         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488         if (!tvcpu)
489                 return H_PARAMETER;
490
491         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493             subfunc == H_VPA_REG_SLB) {
494                 /* Registering new area - address must be cache-line aligned */
495                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496                         return H_PARAMETER;
497
498                 /* convert logical addr to kernel addr and read length */
499                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500                 if (va == NULL)
501                         return H_PARAMETER;
502                 if (subfunc == H_VPA_REG_VPA)
503                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504                 else
505                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
507
508                 /* Check length */
509                 if (len > nb || len < sizeof(struct reg_vpa))
510                         return H_PARAMETER;
511         } else {
512                 vpa = 0;
513                 len = 0;
514         }
515
516         err = H_PARAMETER;
517         vpap = NULL;
518         spin_lock(&tvcpu->arch.vpa_update_lock);
519
520         switch (subfunc) {
521         case H_VPA_REG_VPA:             /* register VPA */
522                 /*
523                  * The size of our lppaca is 1kB because of the way we align
524                  * it for the guest to avoid crossing a 4kB boundary. We only
525                  * use 640 bytes of the structure though, so we should accept
526                  * clients that set a size of 640.
527                  */
528                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529                 if (len < sizeof(struct lppaca))
530                         break;
531                 vpap = &tvcpu->arch.vpa;
532                 err = 0;
533                 break;
534
535         case H_VPA_REG_DTL:             /* register DTL */
536                 if (len < sizeof(struct dtl_entry))
537                         break;
538                 len -= len % sizeof(struct dtl_entry);
539
540                 /* Check that they have previously registered a VPA */
541                 err = H_RESOURCE;
542                 if (!vpa_is_registered(&tvcpu->arch.vpa))
543                         break;
544
545                 vpap = &tvcpu->arch.dtl;
546                 err = 0;
547                 break;
548
549         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
550                 /* Check that they have previously registered a VPA */
551                 err = H_RESOURCE;
552                 if (!vpa_is_registered(&tvcpu->arch.vpa))
553                         break;
554
555                 vpap = &tvcpu->arch.slb_shadow;
556                 err = 0;
557                 break;
558
559         case H_VPA_DEREG_VPA:           /* deregister VPA */
560                 /* Check they don't still have a DTL or SLB buf registered */
561                 err = H_RESOURCE;
562                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
563                     vpa_is_registered(&tvcpu->arch.slb_shadow))
564                         break;
565
566                 vpap = &tvcpu->arch.vpa;
567                 err = 0;
568                 break;
569
570         case H_VPA_DEREG_DTL:           /* deregister DTL */
571                 vpap = &tvcpu->arch.dtl;
572                 err = 0;
573                 break;
574
575         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
576                 vpap = &tvcpu->arch.slb_shadow;
577                 err = 0;
578                 break;
579         }
580
581         if (vpap) {
582                 vpap->next_gpa = vpa;
583                 vpap->len = len;
584                 vpap->update_pending = 1;
585         }
586
587         spin_unlock(&tvcpu->arch.vpa_update_lock);
588
589         return err;
590 }
591
592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594         struct kvm *kvm = vcpu->kvm;
595         void *va;
596         unsigned long nb;
597         unsigned long gpa;
598
599         /*
600          * We need to pin the page pointed to by vpap->next_gpa,
601          * but we can't call kvmppc_pin_guest_page under the lock
602          * as it does get_user_pages() and down_read().  So we
603          * have to drop the lock, pin the page, then get the lock
604          * again and check that a new area didn't get registered
605          * in the meantime.
606          */
607         for (;;) {
608                 gpa = vpap->next_gpa;
609                 spin_unlock(&vcpu->arch.vpa_update_lock);
610                 va = NULL;
611                 nb = 0;
612                 if (gpa)
613                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614                 spin_lock(&vcpu->arch.vpa_update_lock);
615                 if (gpa == vpap->next_gpa)
616                         break;
617                 /* sigh... unpin that one and try again */
618                 if (va)
619                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
620         }
621
622         vpap->update_pending = 0;
623         if (va && nb < vpap->len) {
624                 /*
625                  * If it's now too short, it must be that userspace
626                  * has changed the mappings underlying guest memory,
627                  * so unregister the region.
628                  */
629                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
630                 va = NULL;
631         }
632         if (vpap->pinned_addr)
633                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634                                         vpap->dirty);
635         vpap->gpa = gpa;
636         vpap->pinned_addr = va;
637         vpap->dirty = false;
638         if (va)
639                 vpap->pinned_end = va + vpap->len;
640 }
641
642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644         if (!(vcpu->arch.vpa.update_pending ||
645               vcpu->arch.slb_shadow.update_pending ||
646               vcpu->arch.dtl.update_pending))
647                 return;
648
649         spin_lock(&vcpu->arch.vpa_update_lock);
650         if (vcpu->arch.vpa.update_pending) {
651                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652                 if (vcpu->arch.vpa.pinned_addr)
653                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654         }
655         if (vcpu->arch.dtl.update_pending) {
656                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658                 vcpu->arch.dtl_index = 0;
659         }
660         if (vcpu->arch.slb_shadow.update_pending)
661                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662         spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664
665 /*
666  * Return the accumulated stolen time for the vcore up until `now'.
667  * The caller should hold the vcore lock.
668  */
669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671         u64 p;
672         unsigned long flags;
673
674         spin_lock_irqsave(&vc->stoltb_lock, flags);
675         p = vc->stolen_tb;
676         if (vc->vcore_state != VCORE_INACTIVE &&
677             vc->preempt_tb != TB_NIL)
678                 p += now - vc->preempt_tb;
679         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680         return p;
681 }
682
683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684                                     struct kvmppc_vcore *vc)
685 {
686         struct dtl_entry *dt;
687         struct lppaca *vpa;
688         unsigned long stolen;
689         unsigned long core_stolen;
690         u64 now;
691         unsigned long flags;
692
693         dt = vcpu->arch.dtl_ptr;
694         vpa = vcpu->arch.vpa.pinned_addr;
695         now = mftb();
696         core_stolen = vcore_stolen_time(vc, now);
697         stolen = core_stolen - vcpu->arch.stolen_logged;
698         vcpu->arch.stolen_logged = core_stolen;
699         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700         stolen += vcpu->arch.busy_stolen;
701         vcpu->arch.busy_stolen = 0;
702         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703         if (!dt || !vpa)
704                 return;
705         memset(dt, 0, sizeof(struct dtl_entry));
706         dt->dispatch_reason = 7;
707         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708         dt->timebase = cpu_to_be64(now + vc->tb_offset);
709         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712         ++dt;
713         if (dt == vcpu->arch.dtl.pinned_end)
714                 dt = vcpu->arch.dtl.pinned_addr;
715         vcpu->arch.dtl_ptr = dt;
716         /* order writing *dt vs. writing vpa->dtl_idx */
717         smp_wmb();
718         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719         vcpu->arch.dtl.dirty = true;
720 }
721
722 /* See if there is a doorbell interrupt pending for a vcpu */
723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725         int thr;
726         struct kvmppc_vcore *vc;
727
728         if (vcpu->arch.doorbell_request)
729                 return true;
730         /*
731          * Ensure that the read of vcore->dpdes comes after the read
732          * of vcpu->doorbell_request.  This barrier matches the
733          * smb_wmb() in kvmppc_guest_entry_inject().
734          */
735         smp_rmb();
736         vc = vcpu->arch.vcore;
737         thr = vcpu->vcpu_id - vc->first_vcpuid;
738         return !!(vc->dpdes & (1 << thr));
739 }
740
741 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
742 {
743         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
744                 return true;
745         if ((!vcpu->arch.vcore->arch_compat) &&
746             cpu_has_feature(CPU_FTR_ARCH_207S))
747                 return true;
748         return false;
749 }
750
751 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
752                              unsigned long resource, unsigned long value1,
753                              unsigned long value2)
754 {
755         switch (resource) {
756         case H_SET_MODE_RESOURCE_SET_CIABR:
757                 if (!kvmppc_power8_compatible(vcpu))
758                         return H_P2;
759                 if (value2)
760                         return H_P4;
761                 if (mflags)
762                         return H_UNSUPPORTED_FLAG_START;
763                 /* Guests can't breakpoint the hypervisor */
764                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
765                         return H_P3;
766                 vcpu->arch.ciabr  = value1;
767                 return H_SUCCESS;
768         case H_SET_MODE_RESOURCE_SET_DAWR:
769                 if (!kvmppc_power8_compatible(vcpu))
770                         return H_P2;
771                 if (!ppc_breakpoint_available())
772                         return H_P2;
773                 if (mflags)
774                         return H_UNSUPPORTED_FLAG_START;
775                 if (value2 & DABRX_HYP)
776                         return H_P4;
777                 vcpu->arch.dawr  = value1;
778                 vcpu->arch.dawrx = value2;
779                 return H_SUCCESS;
780         default:
781                 return H_TOO_HARD;
782         }
783 }
784
785 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
786 {
787         struct kvmppc_vcore *vcore = target->arch.vcore;
788
789         /*
790          * We expect to have been called by the real mode handler
791          * (kvmppc_rm_h_confer()) which would have directly returned
792          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
793          * have useful work to do and should not confer) so we don't
794          * recheck that here.
795          */
796
797         spin_lock(&vcore->lock);
798         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
799             vcore->vcore_state != VCORE_INACTIVE &&
800             vcore->runner)
801                 target = vcore->runner;
802         spin_unlock(&vcore->lock);
803
804         return kvm_vcpu_yield_to(target);
805 }
806
807 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
808 {
809         int yield_count = 0;
810         struct lppaca *lppaca;
811
812         spin_lock(&vcpu->arch.vpa_update_lock);
813         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
814         if (lppaca)
815                 yield_count = be32_to_cpu(lppaca->yield_count);
816         spin_unlock(&vcpu->arch.vpa_update_lock);
817         return yield_count;
818 }
819
820 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
821 {
822         unsigned long req = kvmppc_get_gpr(vcpu, 3);
823         unsigned long target, ret = H_SUCCESS;
824         int yield_count;
825         struct kvm_vcpu *tvcpu;
826         int idx, rc;
827
828         if (req <= MAX_HCALL_OPCODE &&
829             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
830                 return RESUME_HOST;
831
832         switch (req) {
833         case H_CEDE:
834                 break;
835         case H_PROD:
836                 target = kvmppc_get_gpr(vcpu, 4);
837                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
838                 if (!tvcpu) {
839                         ret = H_PARAMETER;
840                         break;
841                 }
842                 tvcpu->arch.prodded = 1;
843                 smp_mb();
844                 if (tvcpu->arch.ceded)
845                         kvmppc_fast_vcpu_kick_hv(tvcpu);
846                 break;
847         case H_CONFER:
848                 target = kvmppc_get_gpr(vcpu, 4);
849                 if (target == -1)
850                         break;
851                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
852                 if (!tvcpu) {
853                         ret = H_PARAMETER;
854                         break;
855                 }
856                 yield_count = kvmppc_get_gpr(vcpu, 5);
857                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
858                         break;
859                 kvm_arch_vcpu_yield_to(tvcpu);
860                 break;
861         case H_REGISTER_VPA:
862                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
863                                         kvmppc_get_gpr(vcpu, 5),
864                                         kvmppc_get_gpr(vcpu, 6));
865                 break;
866         case H_RTAS:
867                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
868                         return RESUME_HOST;
869
870                 idx = srcu_read_lock(&vcpu->kvm->srcu);
871                 rc = kvmppc_rtas_hcall(vcpu);
872                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
873
874                 if (rc == -ENOENT)
875                         return RESUME_HOST;
876                 else if (rc == 0)
877                         break;
878
879                 /* Send the error out to userspace via KVM_RUN */
880                 return rc;
881         case H_LOGICAL_CI_LOAD:
882                 ret = kvmppc_h_logical_ci_load(vcpu);
883                 if (ret == H_TOO_HARD)
884                         return RESUME_HOST;
885                 break;
886         case H_LOGICAL_CI_STORE:
887                 ret = kvmppc_h_logical_ci_store(vcpu);
888                 if (ret == H_TOO_HARD)
889                         return RESUME_HOST;
890                 break;
891         case H_SET_MODE:
892                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
893                                         kvmppc_get_gpr(vcpu, 5),
894                                         kvmppc_get_gpr(vcpu, 6),
895                                         kvmppc_get_gpr(vcpu, 7));
896                 if (ret == H_TOO_HARD)
897                         return RESUME_HOST;
898                 break;
899         case H_XIRR:
900         case H_CPPR:
901         case H_EOI:
902         case H_IPI:
903         case H_IPOLL:
904         case H_XIRR_X:
905                 if (kvmppc_xics_enabled(vcpu)) {
906                         if (xive_enabled()) {
907                                 ret = H_NOT_AVAILABLE;
908                                 return RESUME_GUEST;
909                         }
910                         ret = kvmppc_xics_hcall(vcpu, req);
911                         break;
912                 }
913                 return RESUME_HOST;
914         case H_PUT_TCE:
915                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
916                                                 kvmppc_get_gpr(vcpu, 5),
917                                                 kvmppc_get_gpr(vcpu, 6));
918                 if (ret == H_TOO_HARD)
919                         return RESUME_HOST;
920                 break;
921         case H_PUT_TCE_INDIRECT:
922                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
923                                                 kvmppc_get_gpr(vcpu, 5),
924                                                 kvmppc_get_gpr(vcpu, 6),
925                                                 kvmppc_get_gpr(vcpu, 7));
926                 if (ret == H_TOO_HARD)
927                         return RESUME_HOST;
928                 break;
929         case H_STUFF_TCE:
930                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
931                                                 kvmppc_get_gpr(vcpu, 5),
932                                                 kvmppc_get_gpr(vcpu, 6),
933                                                 kvmppc_get_gpr(vcpu, 7));
934                 if (ret == H_TOO_HARD)
935                         return RESUME_HOST;
936                 break;
937         default:
938                 return RESUME_HOST;
939         }
940         kvmppc_set_gpr(vcpu, 3, ret);
941         vcpu->arch.hcall_needed = 0;
942         return RESUME_GUEST;
943 }
944
945 static int kvmppc_hcall_impl_hv(unsigned long cmd)
946 {
947         switch (cmd) {
948         case H_CEDE:
949         case H_PROD:
950         case H_CONFER:
951         case H_REGISTER_VPA:
952         case H_SET_MODE:
953         case H_LOGICAL_CI_LOAD:
954         case H_LOGICAL_CI_STORE:
955 #ifdef CONFIG_KVM_XICS
956         case H_XIRR:
957         case H_CPPR:
958         case H_EOI:
959         case H_IPI:
960         case H_IPOLL:
961         case H_XIRR_X:
962 #endif
963                 return 1;
964         }
965
966         /* See if it's in the real-mode table */
967         return kvmppc_hcall_impl_hv_realmode(cmd);
968 }
969
970 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
971                                         struct kvm_vcpu *vcpu)
972 {
973         u32 last_inst;
974
975         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
976                                         EMULATE_DONE) {
977                 /*
978                  * Fetch failed, so return to guest and
979                  * try executing it again.
980                  */
981                 return RESUME_GUEST;
982         }
983
984         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
985                 run->exit_reason = KVM_EXIT_DEBUG;
986                 run->debug.arch.address = kvmppc_get_pc(vcpu);
987                 return RESUME_HOST;
988         } else {
989                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
990                 return RESUME_GUEST;
991         }
992 }
993
994 static void do_nothing(void *x)
995 {
996 }
997
998 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
999 {
1000         int thr, cpu, pcpu, nthreads;
1001         struct kvm_vcpu *v;
1002         unsigned long dpdes;
1003
1004         nthreads = vcpu->kvm->arch.emul_smt_mode;
1005         dpdes = 0;
1006         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1007         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1008                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1009                 if (!v)
1010                         continue;
1011                 /*
1012                  * If the vcpu is currently running on a physical cpu thread,
1013                  * interrupt it in order to pull it out of the guest briefly,
1014                  * which will update its vcore->dpdes value.
1015                  */
1016                 pcpu = READ_ONCE(v->cpu);
1017                 if (pcpu >= 0)
1018                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1019                 if (kvmppc_doorbell_pending(v))
1020                         dpdes |= 1 << thr;
1021         }
1022         return dpdes;
1023 }
1024
1025 /*
1026  * On POWER9, emulate doorbell-related instructions in order to
1027  * give the guest the illusion of running on a multi-threaded core.
1028  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1029  * and mfspr DPDES.
1030  */
1031 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1032 {
1033         u32 inst, rb, thr;
1034         unsigned long arg;
1035         struct kvm *kvm = vcpu->kvm;
1036         struct kvm_vcpu *tvcpu;
1037
1038         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1039                 return RESUME_GUEST;
1040         if (get_op(inst) != 31)
1041                 return EMULATE_FAIL;
1042         rb = get_rb(inst);
1043         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1044         switch (get_xop(inst)) {
1045         case OP_31_XOP_MSGSNDP:
1046                 arg = kvmppc_get_gpr(vcpu, rb);
1047                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1048                         break;
1049                 arg &= 0x3f;
1050                 if (arg >= kvm->arch.emul_smt_mode)
1051                         break;
1052                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1053                 if (!tvcpu)
1054                         break;
1055                 if (!tvcpu->arch.doorbell_request) {
1056                         tvcpu->arch.doorbell_request = 1;
1057                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1058                 }
1059                 break;
1060         case OP_31_XOP_MSGCLRP:
1061                 arg = kvmppc_get_gpr(vcpu, rb);
1062                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1063                         break;
1064                 vcpu->arch.vcore->dpdes = 0;
1065                 vcpu->arch.doorbell_request = 0;
1066                 break;
1067         case OP_31_XOP_MFSPR:
1068                 switch (get_sprn(inst)) {
1069                 case SPRN_TIR:
1070                         arg = thr;
1071                         break;
1072                 case SPRN_DPDES:
1073                         arg = kvmppc_read_dpdes(vcpu);
1074                         break;
1075                 default:
1076                         return EMULATE_FAIL;
1077                 }
1078                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1079                 break;
1080         default:
1081                 return EMULATE_FAIL;
1082         }
1083         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1084         return RESUME_GUEST;
1085 }
1086
1087 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1088                                  struct task_struct *tsk)
1089 {
1090         int r = RESUME_HOST;
1091
1092         vcpu->stat.sum_exits++;
1093
1094         /*
1095          * This can happen if an interrupt occurs in the last stages
1096          * of guest entry or the first stages of guest exit (i.e. after
1097          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1098          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1099          * That can happen due to a bug, or due to a machine check
1100          * occurring at just the wrong time.
1101          */
1102         if (vcpu->arch.shregs.msr & MSR_HV) {
1103                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1104                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1105                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1106                         vcpu->arch.shregs.msr);
1107                 kvmppc_dump_regs(vcpu);
1108                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1109                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1110                 return RESUME_HOST;
1111         }
1112         run->exit_reason = KVM_EXIT_UNKNOWN;
1113         run->ready_for_interrupt_injection = 1;
1114         switch (vcpu->arch.trap) {
1115         /* We're good on these - the host merely wanted to get our attention */
1116         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1117                 vcpu->stat.dec_exits++;
1118                 r = RESUME_GUEST;
1119                 break;
1120         case BOOK3S_INTERRUPT_EXTERNAL:
1121         case BOOK3S_INTERRUPT_H_DOORBELL:
1122         case BOOK3S_INTERRUPT_H_VIRT:
1123                 vcpu->stat.ext_intr_exits++;
1124                 r = RESUME_GUEST;
1125                 break;
1126         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1127         case BOOK3S_INTERRUPT_HMI:
1128         case BOOK3S_INTERRUPT_PERFMON:
1129         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1130                 r = RESUME_GUEST;
1131                 break;
1132         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1133                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1134                 run->exit_reason = KVM_EXIT_NMI;
1135                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1136                 /* Clear out the old NMI status from run->flags */
1137                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1138                 /* Now set the NMI status */
1139                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1140                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1141                 else
1142                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1143
1144                 r = RESUME_HOST;
1145                 /* Print the MCE event to host console. */
1146                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1147                 break;
1148         case BOOK3S_INTERRUPT_PROGRAM:
1149         {
1150                 ulong flags;
1151                 /*
1152                  * Normally program interrupts are delivered directly
1153                  * to the guest by the hardware, but we can get here
1154                  * as a result of a hypervisor emulation interrupt
1155                  * (e40) getting turned into a 700 by BML RTAS.
1156                  */
1157                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1158                 kvmppc_core_queue_program(vcpu, flags);
1159                 r = RESUME_GUEST;
1160                 break;
1161         }
1162         case BOOK3S_INTERRUPT_SYSCALL:
1163         {
1164                 /* hcall - punt to userspace */
1165                 int i;
1166
1167                 /* hypercall with MSR_PR has already been handled in rmode,
1168                  * and never reaches here.
1169                  */
1170
1171                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1172                 for (i = 0; i < 9; ++i)
1173                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1174                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1175                 vcpu->arch.hcall_needed = 1;
1176                 r = RESUME_HOST;
1177                 break;
1178         }
1179         /*
1180          * We get these next two if the guest accesses a page which it thinks
1181          * it has mapped but which is not actually present, either because
1182          * it is for an emulated I/O device or because the corresonding
1183          * host page has been paged out.  Any other HDSI/HISI interrupts
1184          * have been handled already.
1185          */
1186         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1187                 r = RESUME_PAGE_FAULT;
1188                 break;
1189         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1190                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1191                 vcpu->arch.fault_dsisr = 0;
1192                 r = RESUME_PAGE_FAULT;
1193                 break;
1194         /*
1195          * This occurs if the guest executes an illegal instruction.
1196          * If the guest debug is disabled, generate a program interrupt
1197          * to the guest. If guest debug is enabled, we need to check
1198          * whether the instruction is a software breakpoint instruction.
1199          * Accordingly return to Guest or Host.
1200          */
1201         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1202                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1203                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1204                                 swab32(vcpu->arch.emul_inst) :
1205                                 vcpu->arch.emul_inst;
1206                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1207                         r = kvmppc_emulate_debug_inst(run, vcpu);
1208                 } else {
1209                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1210                         r = RESUME_GUEST;
1211                 }
1212                 break;
1213         /*
1214          * This occurs if the guest (kernel or userspace), does something that
1215          * is prohibited by HFSCR.
1216          * On POWER9, this could be a doorbell instruction that we need
1217          * to emulate.
1218          * Otherwise, we just generate a program interrupt to the guest.
1219          */
1220         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1221                 r = EMULATE_FAIL;
1222                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1223                     cpu_has_feature(CPU_FTR_ARCH_300))
1224                         r = kvmppc_emulate_doorbell_instr(vcpu);
1225                 if (r == EMULATE_FAIL) {
1226                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1227                         r = RESUME_GUEST;
1228                 }
1229                 break;
1230
1231 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1232         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1233                 /*
1234                  * This occurs for various TM-related instructions that
1235                  * we need to emulate on POWER9 DD2.2.  We have already
1236                  * handled the cases where the guest was in real-suspend
1237                  * mode and was transitioning to transactional state.
1238                  */
1239                 r = kvmhv_p9_tm_emulation(vcpu);
1240                 break;
1241 #endif
1242
1243         case BOOK3S_INTERRUPT_HV_RM_HARD:
1244                 r = RESUME_PASSTHROUGH;
1245                 break;
1246         default:
1247                 kvmppc_dump_regs(vcpu);
1248                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1249                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1250                         vcpu->arch.shregs.msr);
1251                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1252                 r = RESUME_HOST;
1253                 break;
1254         }
1255
1256         return r;
1257 }
1258
1259 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1260                                             struct kvm_sregs *sregs)
1261 {
1262         int i;
1263
1264         memset(sregs, 0, sizeof(struct kvm_sregs));
1265         sregs->pvr = vcpu->arch.pvr;
1266         for (i = 0; i < vcpu->arch.slb_max; i++) {
1267                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1268                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1269         }
1270
1271         return 0;
1272 }
1273
1274 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1275                                             struct kvm_sregs *sregs)
1276 {
1277         int i, j;
1278
1279         /* Only accept the same PVR as the host's, since we can't spoof it */
1280         if (sregs->pvr != vcpu->arch.pvr)
1281                 return -EINVAL;
1282
1283         j = 0;
1284         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1285                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1286                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1287                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1288                         ++j;
1289                 }
1290         }
1291         vcpu->arch.slb_max = j;
1292
1293         return 0;
1294 }
1295
1296 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1297                 bool preserve_top32)
1298 {
1299         struct kvm *kvm = vcpu->kvm;
1300         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1301         u64 mask;
1302
1303         mutex_lock(&kvm->lock);
1304         spin_lock(&vc->lock);
1305         /*
1306          * If ILE (interrupt little-endian) has changed, update the
1307          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1308          */
1309         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1310                 struct kvm_vcpu *vcpu;
1311                 int i;
1312
1313                 kvm_for_each_vcpu(i, vcpu, kvm) {
1314                         if (vcpu->arch.vcore != vc)
1315                                 continue;
1316                         if (new_lpcr & LPCR_ILE)
1317                                 vcpu->arch.intr_msr |= MSR_LE;
1318                         else
1319                                 vcpu->arch.intr_msr &= ~MSR_LE;
1320                 }
1321         }
1322
1323         /*
1324          * Userspace can only modify DPFD (default prefetch depth),
1325          * ILE (interrupt little-endian) and TC (translation control).
1326          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1327          */
1328         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1329         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1330                 mask |= LPCR_AIL;
1331         /*
1332          * On POWER9, allow userspace to enable large decrementer for the
1333          * guest, whether or not the host has it enabled.
1334          */
1335         if (cpu_has_feature(CPU_FTR_ARCH_300))
1336                 mask |= LPCR_LD;
1337
1338         /* Broken 32-bit version of LPCR must not clear top bits */
1339         if (preserve_top32)
1340                 mask &= 0xFFFFFFFF;
1341         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1342         spin_unlock(&vc->lock);
1343         mutex_unlock(&kvm->lock);
1344 }
1345
1346 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1347                                  union kvmppc_one_reg *val)
1348 {
1349         int r = 0;
1350         long int i;
1351
1352         switch (id) {
1353         case KVM_REG_PPC_DEBUG_INST:
1354                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1355                 break;
1356         case KVM_REG_PPC_HIOR:
1357                 *val = get_reg_val(id, 0);
1358                 break;
1359         case KVM_REG_PPC_DABR:
1360                 *val = get_reg_val(id, vcpu->arch.dabr);
1361                 break;
1362         case KVM_REG_PPC_DABRX:
1363                 *val = get_reg_val(id, vcpu->arch.dabrx);
1364                 break;
1365         case KVM_REG_PPC_DSCR:
1366                 *val = get_reg_val(id, vcpu->arch.dscr);
1367                 break;
1368         case KVM_REG_PPC_PURR:
1369                 *val = get_reg_val(id, vcpu->arch.purr);
1370                 break;
1371         case KVM_REG_PPC_SPURR:
1372                 *val = get_reg_val(id, vcpu->arch.spurr);
1373                 break;
1374         case KVM_REG_PPC_AMR:
1375                 *val = get_reg_val(id, vcpu->arch.amr);
1376                 break;
1377         case KVM_REG_PPC_UAMOR:
1378                 *val = get_reg_val(id, vcpu->arch.uamor);
1379                 break;
1380         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1381                 i = id - KVM_REG_PPC_MMCR0;
1382                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1383                 break;
1384         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1385                 i = id - KVM_REG_PPC_PMC1;
1386                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1387                 break;
1388         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1389                 i = id - KVM_REG_PPC_SPMC1;
1390                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1391                 break;
1392         case KVM_REG_PPC_SIAR:
1393                 *val = get_reg_val(id, vcpu->arch.siar);
1394                 break;
1395         case KVM_REG_PPC_SDAR:
1396                 *val = get_reg_val(id, vcpu->arch.sdar);
1397                 break;
1398         case KVM_REG_PPC_SIER:
1399                 *val = get_reg_val(id, vcpu->arch.sier);
1400                 break;
1401         case KVM_REG_PPC_IAMR:
1402                 *val = get_reg_val(id, vcpu->arch.iamr);
1403                 break;
1404         case KVM_REG_PPC_PSPB:
1405                 *val = get_reg_val(id, vcpu->arch.pspb);
1406                 break;
1407         case KVM_REG_PPC_DPDES:
1408                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1409                 break;
1410         case KVM_REG_PPC_VTB:
1411                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1412                 break;
1413         case KVM_REG_PPC_DAWR:
1414                 *val = get_reg_val(id, vcpu->arch.dawr);
1415                 break;
1416         case KVM_REG_PPC_DAWRX:
1417                 *val = get_reg_val(id, vcpu->arch.dawrx);
1418                 break;
1419         case KVM_REG_PPC_CIABR:
1420                 *val = get_reg_val(id, vcpu->arch.ciabr);
1421                 break;
1422         case KVM_REG_PPC_CSIGR:
1423                 *val = get_reg_val(id, vcpu->arch.csigr);
1424                 break;
1425         case KVM_REG_PPC_TACR:
1426                 *val = get_reg_val(id, vcpu->arch.tacr);
1427                 break;
1428         case KVM_REG_PPC_TCSCR:
1429                 *val = get_reg_val(id, vcpu->arch.tcscr);
1430                 break;
1431         case KVM_REG_PPC_PID:
1432                 *val = get_reg_val(id, vcpu->arch.pid);
1433                 break;
1434         case KVM_REG_PPC_ACOP:
1435                 *val = get_reg_val(id, vcpu->arch.acop);
1436                 break;
1437         case KVM_REG_PPC_WORT:
1438                 *val = get_reg_val(id, vcpu->arch.wort);
1439                 break;
1440         case KVM_REG_PPC_TIDR:
1441                 *val = get_reg_val(id, vcpu->arch.tid);
1442                 break;
1443         case KVM_REG_PPC_PSSCR:
1444                 *val = get_reg_val(id, vcpu->arch.psscr);
1445                 break;
1446         case KVM_REG_PPC_VPA_ADDR:
1447                 spin_lock(&vcpu->arch.vpa_update_lock);
1448                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1449                 spin_unlock(&vcpu->arch.vpa_update_lock);
1450                 break;
1451         case KVM_REG_PPC_VPA_SLB:
1452                 spin_lock(&vcpu->arch.vpa_update_lock);
1453                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1454                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1455                 spin_unlock(&vcpu->arch.vpa_update_lock);
1456                 break;
1457         case KVM_REG_PPC_VPA_DTL:
1458                 spin_lock(&vcpu->arch.vpa_update_lock);
1459                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1460                 val->vpaval.length = vcpu->arch.dtl.len;
1461                 spin_unlock(&vcpu->arch.vpa_update_lock);
1462                 break;
1463         case KVM_REG_PPC_TB_OFFSET:
1464                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1465                 break;
1466         case KVM_REG_PPC_LPCR:
1467         case KVM_REG_PPC_LPCR_64:
1468                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1469                 break;
1470         case KVM_REG_PPC_PPR:
1471                 *val = get_reg_val(id, vcpu->arch.ppr);
1472                 break;
1473 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1474         case KVM_REG_PPC_TFHAR:
1475                 *val = get_reg_val(id, vcpu->arch.tfhar);
1476                 break;
1477         case KVM_REG_PPC_TFIAR:
1478                 *val = get_reg_val(id, vcpu->arch.tfiar);
1479                 break;
1480         case KVM_REG_PPC_TEXASR:
1481                 *val = get_reg_val(id, vcpu->arch.texasr);
1482                 break;
1483         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1484                 i = id - KVM_REG_PPC_TM_GPR0;
1485                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1486                 break;
1487         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1488         {
1489                 int j;
1490                 i = id - KVM_REG_PPC_TM_VSR0;
1491                 if (i < 32)
1492                         for (j = 0; j < TS_FPRWIDTH; j++)
1493                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1494                 else {
1495                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1496                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1497                         else
1498                                 r = -ENXIO;
1499                 }
1500                 break;
1501         }
1502         case KVM_REG_PPC_TM_CR:
1503                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1504                 break;
1505         case KVM_REG_PPC_TM_XER:
1506                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1507                 break;
1508         case KVM_REG_PPC_TM_LR:
1509                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1510                 break;
1511         case KVM_REG_PPC_TM_CTR:
1512                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1513                 break;
1514         case KVM_REG_PPC_TM_FPSCR:
1515                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1516                 break;
1517         case KVM_REG_PPC_TM_AMR:
1518                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1519                 break;
1520         case KVM_REG_PPC_TM_PPR:
1521                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1522                 break;
1523         case KVM_REG_PPC_TM_VRSAVE:
1524                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1525                 break;
1526         case KVM_REG_PPC_TM_VSCR:
1527                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1528                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1529                 else
1530                         r = -ENXIO;
1531                 break;
1532         case KVM_REG_PPC_TM_DSCR:
1533                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1534                 break;
1535         case KVM_REG_PPC_TM_TAR:
1536                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1537                 break;
1538 #endif
1539         case KVM_REG_PPC_ARCH_COMPAT:
1540                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1541                 break;
1542         case KVM_REG_PPC_DEC_EXPIRY:
1543                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1544                                    vcpu->arch.vcore->tb_offset);
1545                 break;
1546         case KVM_REG_PPC_ONLINE:
1547                 *val = get_reg_val(id, vcpu->arch.online);
1548                 break;
1549         default:
1550                 r = -EINVAL;
1551                 break;
1552         }
1553
1554         return r;
1555 }
1556
1557 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1558                                  union kvmppc_one_reg *val)
1559 {
1560         int r = 0;
1561         long int i;
1562         unsigned long addr, len;
1563
1564         switch (id) {
1565         case KVM_REG_PPC_HIOR:
1566                 /* Only allow this to be set to zero */
1567                 if (set_reg_val(id, *val))
1568                         r = -EINVAL;
1569                 break;
1570         case KVM_REG_PPC_DABR:
1571                 vcpu->arch.dabr = set_reg_val(id, *val);
1572                 break;
1573         case KVM_REG_PPC_DABRX:
1574                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1575                 break;
1576         case KVM_REG_PPC_DSCR:
1577                 vcpu->arch.dscr = set_reg_val(id, *val);
1578                 break;
1579         case KVM_REG_PPC_PURR:
1580                 vcpu->arch.purr = set_reg_val(id, *val);
1581                 break;
1582         case KVM_REG_PPC_SPURR:
1583                 vcpu->arch.spurr = set_reg_val(id, *val);
1584                 break;
1585         case KVM_REG_PPC_AMR:
1586                 vcpu->arch.amr = set_reg_val(id, *val);
1587                 break;
1588         case KVM_REG_PPC_UAMOR:
1589                 vcpu->arch.uamor = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1592                 i = id - KVM_REG_PPC_MMCR0;
1593                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1594                 break;
1595         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1596                 i = id - KVM_REG_PPC_PMC1;
1597                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1598                 break;
1599         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1600                 i = id - KVM_REG_PPC_SPMC1;
1601                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1602                 break;
1603         case KVM_REG_PPC_SIAR:
1604                 vcpu->arch.siar = set_reg_val(id, *val);
1605                 break;
1606         case KVM_REG_PPC_SDAR:
1607                 vcpu->arch.sdar = set_reg_val(id, *val);
1608                 break;
1609         case KVM_REG_PPC_SIER:
1610                 vcpu->arch.sier = set_reg_val(id, *val);
1611                 break;
1612         case KVM_REG_PPC_IAMR:
1613                 vcpu->arch.iamr = set_reg_val(id, *val);
1614                 break;
1615         case KVM_REG_PPC_PSPB:
1616                 vcpu->arch.pspb = set_reg_val(id, *val);
1617                 break;
1618         case KVM_REG_PPC_DPDES:
1619                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1620                 break;
1621         case KVM_REG_PPC_VTB:
1622                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1623                 break;
1624         case KVM_REG_PPC_DAWR:
1625                 vcpu->arch.dawr = set_reg_val(id, *val);
1626                 break;
1627         case KVM_REG_PPC_DAWRX:
1628                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1629                 break;
1630         case KVM_REG_PPC_CIABR:
1631                 vcpu->arch.ciabr = set_reg_val(id, *val);
1632                 /* Don't allow setting breakpoints in hypervisor code */
1633                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1634                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1635                 break;
1636         case KVM_REG_PPC_CSIGR:
1637                 vcpu->arch.csigr = set_reg_val(id, *val);
1638                 break;
1639         case KVM_REG_PPC_TACR:
1640                 vcpu->arch.tacr = set_reg_val(id, *val);
1641                 break;
1642         case KVM_REG_PPC_TCSCR:
1643                 vcpu->arch.tcscr = set_reg_val(id, *val);
1644                 break;
1645         case KVM_REG_PPC_PID:
1646                 vcpu->arch.pid = set_reg_val(id, *val);
1647                 break;
1648         case KVM_REG_PPC_ACOP:
1649                 vcpu->arch.acop = set_reg_val(id, *val);
1650                 break;
1651         case KVM_REG_PPC_WORT:
1652                 vcpu->arch.wort = set_reg_val(id, *val);
1653                 break;
1654         case KVM_REG_PPC_TIDR:
1655                 vcpu->arch.tid = set_reg_val(id, *val);
1656                 break;
1657         case KVM_REG_PPC_PSSCR:
1658                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1659                 break;
1660         case KVM_REG_PPC_VPA_ADDR:
1661                 addr = set_reg_val(id, *val);
1662                 r = -EINVAL;
1663                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1664                               vcpu->arch.dtl.next_gpa))
1665                         break;
1666                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1667                 break;
1668         case KVM_REG_PPC_VPA_SLB:
1669                 addr = val->vpaval.addr;
1670                 len = val->vpaval.length;
1671                 r = -EINVAL;
1672                 if (addr && !vcpu->arch.vpa.next_gpa)
1673                         break;
1674                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1675                 break;
1676         case KVM_REG_PPC_VPA_DTL:
1677                 addr = val->vpaval.addr;
1678                 len = val->vpaval.length;
1679                 r = -EINVAL;
1680                 if (addr && (len < sizeof(struct dtl_entry) ||
1681                              !vcpu->arch.vpa.next_gpa))
1682                         break;
1683                 len -= len % sizeof(struct dtl_entry);
1684                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1685                 break;
1686         case KVM_REG_PPC_TB_OFFSET:
1687                 /* round up to multiple of 2^24 */
1688                 vcpu->arch.vcore->tb_offset =
1689                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1690                 break;
1691         case KVM_REG_PPC_LPCR:
1692                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1693                 break;
1694         case KVM_REG_PPC_LPCR_64:
1695                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1696                 break;
1697         case KVM_REG_PPC_PPR:
1698                 vcpu->arch.ppr = set_reg_val(id, *val);
1699                 break;
1700 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1701         case KVM_REG_PPC_TFHAR:
1702                 vcpu->arch.tfhar = set_reg_val(id, *val);
1703                 break;
1704         case KVM_REG_PPC_TFIAR:
1705                 vcpu->arch.tfiar = set_reg_val(id, *val);
1706                 break;
1707         case KVM_REG_PPC_TEXASR:
1708                 vcpu->arch.texasr = set_reg_val(id, *val);
1709                 break;
1710         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1711                 i = id - KVM_REG_PPC_TM_GPR0;
1712                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1713                 break;
1714         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1715         {
1716                 int j;
1717                 i = id - KVM_REG_PPC_TM_VSR0;
1718                 if (i < 32)
1719                         for (j = 0; j < TS_FPRWIDTH; j++)
1720                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1721                 else
1722                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1723                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1724                         else
1725                                 r = -ENXIO;
1726                 break;
1727         }
1728         case KVM_REG_PPC_TM_CR:
1729                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1730                 break;
1731         case KVM_REG_PPC_TM_XER:
1732                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1733                 break;
1734         case KVM_REG_PPC_TM_LR:
1735                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1736                 break;
1737         case KVM_REG_PPC_TM_CTR:
1738                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1739                 break;
1740         case KVM_REG_PPC_TM_FPSCR:
1741                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1742                 break;
1743         case KVM_REG_PPC_TM_AMR:
1744                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1745                 break;
1746         case KVM_REG_PPC_TM_PPR:
1747                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1748                 break;
1749         case KVM_REG_PPC_TM_VRSAVE:
1750                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1751                 break;
1752         case KVM_REG_PPC_TM_VSCR:
1753                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1754                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1755                 else
1756                         r = - ENXIO;
1757                 break;
1758         case KVM_REG_PPC_TM_DSCR:
1759                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1760                 break;
1761         case KVM_REG_PPC_TM_TAR:
1762                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1763                 break;
1764 #endif
1765         case KVM_REG_PPC_ARCH_COMPAT:
1766                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1767                 break;
1768         case KVM_REG_PPC_DEC_EXPIRY:
1769                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1770                         vcpu->arch.vcore->tb_offset;
1771                 break;
1772         case KVM_REG_PPC_ONLINE:
1773                 i = set_reg_val(id, *val);
1774                 if (i && !vcpu->arch.online)
1775                         atomic_inc(&vcpu->arch.vcore->online_count);
1776                 else if (!i && vcpu->arch.online)
1777                         atomic_dec(&vcpu->arch.vcore->online_count);
1778                 vcpu->arch.online = i;
1779                 break;
1780         default:
1781                 r = -EINVAL;
1782                 break;
1783         }
1784
1785         return r;
1786 }
1787
1788 /*
1789  * On POWER9, threads are independent and can be in different partitions.
1790  * Therefore we consider each thread to be a subcore.
1791  * There is a restriction that all threads have to be in the same
1792  * MMU mode (radix or HPT), unfortunately, but since we only support
1793  * HPT guests on a HPT host so far, that isn't an impediment yet.
1794  */
1795 static int threads_per_vcore(struct kvm *kvm)
1796 {
1797         if (kvm->arch.threads_indep)
1798                 return 1;
1799         return threads_per_subcore;
1800 }
1801
1802 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1803 {
1804         struct kvmppc_vcore *vcore;
1805
1806         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1807
1808         if (vcore == NULL)
1809                 return NULL;
1810
1811         spin_lock_init(&vcore->lock);
1812         spin_lock_init(&vcore->stoltb_lock);
1813         init_swait_queue_head(&vcore->wq);
1814         vcore->preempt_tb = TB_NIL;
1815         vcore->lpcr = kvm->arch.lpcr;
1816         vcore->first_vcpuid = id;
1817         vcore->kvm = kvm;
1818         INIT_LIST_HEAD(&vcore->preempt_list);
1819
1820         return vcore;
1821 }
1822
1823 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1824 static struct debugfs_timings_element {
1825         const char *name;
1826         size_t offset;
1827 } timings[] = {
1828         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1829         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1830         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1831         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1832         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1833 };
1834
1835 #define N_TIMINGS       (ARRAY_SIZE(timings))
1836
1837 struct debugfs_timings_state {
1838         struct kvm_vcpu *vcpu;
1839         unsigned int    buflen;
1840         char            buf[N_TIMINGS * 100];
1841 };
1842
1843 static int debugfs_timings_open(struct inode *inode, struct file *file)
1844 {
1845         struct kvm_vcpu *vcpu = inode->i_private;
1846         struct debugfs_timings_state *p;
1847
1848         p = kzalloc(sizeof(*p), GFP_KERNEL);
1849         if (!p)
1850                 return -ENOMEM;
1851
1852         kvm_get_kvm(vcpu->kvm);
1853         p->vcpu = vcpu;
1854         file->private_data = p;
1855
1856         return nonseekable_open(inode, file);
1857 }
1858
1859 static int debugfs_timings_release(struct inode *inode, struct file *file)
1860 {
1861         struct debugfs_timings_state *p = file->private_data;
1862
1863         kvm_put_kvm(p->vcpu->kvm);
1864         kfree(p);
1865         return 0;
1866 }
1867
1868 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1869                                     size_t len, loff_t *ppos)
1870 {
1871         struct debugfs_timings_state *p = file->private_data;
1872         struct kvm_vcpu *vcpu = p->vcpu;
1873         char *s, *buf_end;
1874         struct kvmhv_tb_accumulator tb;
1875         u64 count;
1876         loff_t pos;
1877         ssize_t n;
1878         int i, loops;
1879         bool ok;
1880
1881         if (!p->buflen) {
1882                 s = p->buf;
1883                 buf_end = s + sizeof(p->buf);
1884                 for (i = 0; i < N_TIMINGS; ++i) {
1885                         struct kvmhv_tb_accumulator *acc;
1886
1887                         acc = (struct kvmhv_tb_accumulator *)
1888                                 ((unsigned long)vcpu + timings[i].offset);
1889                         ok = false;
1890                         for (loops = 0; loops < 1000; ++loops) {
1891                                 count = acc->seqcount;
1892                                 if (!(count & 1)) {
1893                                         smp_rmb();
1894                                         tb = *acc;
1895                                         smp_rmb();
1896                                         if (count == acc->seqcount) {
1897                                                 ok = true;
1898                                                 break;
1899                                         }
1900                                 }
1901                                 udelay(1);
1902                         }
1903                         if (!ok)
1904                                 snprintf(s, buf_end - s, "%s: stuck\n",
1905                                         timings[i].name);
1906                         else
1907                                 snprintf(s, buf_end - s,
1908                                         "%s: %llu %llu %llu %llu\n",
1909                                         timings[i].name, count / 2,
1910                                         tb_to_ns(tb.tb_total),
1911                                         tb_to_ns(tb.tb_min),
1912                                         tb_to_ns(tb.tb_max));
1913                         s += strlen(s);
1914                 }
1915                 p->buflen = s - p->buf;
1916         }
1917
1918         pos = *ppos;
1919         if (pos >= p->buflen)
1920                 return 0;
1921         if (len > p->buflen - pos)
1922                 len = p->buflen - pos;
1923         n = copy_to_user(buf, p->buf + pos, len);
1924         if (n) {
1925                 if (n == len)
1926                         return -EFAULT;
1927                 len -= n;
1928         }
1929         *ppos = pos + len;
1930         return len;
1931 }
1932
1933 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1934                                      size_t len, loff_t *ppos)
1935 {
1936         return -EACCES;
1937 }
1938
1939 static const struct file_operations debugfs_timings_ops = {
1940         .owner   = THIS_MODULE,
1941         .open    = debugfs_timings_open,
1942         .release = debugfs_timings_release,
1943         .read    = debugfs_timings_read,
1944         .write   = debugfs_timings_write,
1945         .llseek  = generic_file_llseek,
1946 };
1947
1948 /* Create a debugfs directory for the vcpu */
1949 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1950 {
1951         char buf[16];
1952         struct kvm *kvm = vcpu->kvm;
1953
1954         snprintf(buf, sizeof(buf), "vcpu%u", id);
1955         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1956                 return;
1957         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1958         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1959                 return;
1960         vcpu->arch.debugfs_timings =
1961                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1962                                     vcpu, &debugfs_timings_ops);
1963 }
1964
1965 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1966 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1967 {
1968 }
1969 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1970
1971 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1972                                                    unsigned int id)
1973 {
1974         struct kvm_vcpu *vcpu;
1975         int err;
1976         int core;
1977         struct kvmppc_vcore *vcore;
1978
1979         err = -ENOMEM;
1980         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1981         if (!vcpu)
1982                 goto out;
1983
1984         err = kvm_vcpu_init(vcpu, kvm, id);
1985         if (err)
1986                 goto free_vcpu;
1987
1988         vcpu->arch.shared = &vcpu->arch.shregs;
1989 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1990         /*
1991          * The shared struct is never shared on HV,
1992          * so we can always use host endianness
1993          */
1994 #ifdef __BIG_ENDIAN__
1995         vcpu->arch.shared_big_endian = true;
1996 #else
1997         vcpu->arch.shared_big_endian = false;
1998 #endif
1999 #endif
2000         vcpu->arch.mmcr[0] = MMCR0_FC;
2001         vcpu->arch.ctrl = CTRL_RUNLATCH;
2002         /* default to host PVR, since we can't spoof it */
2003         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2004         spin_lock_init(&vcpu->arch.vpa_update_lock);
2005         spin_lock_init(&vcpu->arch.tbacct_lock);
2006         vcpu->arch.busy_preempt = TB_NIL;
2007         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2008
2009         /*
2010          * Set the default HFSCR for the guest from the host value.
2011          * This value is only used on POWER9.
2012          * On POWER9, we want to virtualize the doorbell facility, so we
2013          * turn off the HFSCR bit, which causes those instructions to trap.
2014          */
2015         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2016         if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2017                 vcpu->arch.hfscr |= HFSCR_TM;
2018         else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2019                 vcpu->arch.hfscr &= ~HFSCR_TM;
2020         if (cpu_has_feature(CPU_FTR_ARCH_300))
2021                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2022
2023         kvmppc_mmu_book3s_hv_init(vcpu);
2024
2025         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2026
2027         init_waitqueue_head(&vcpu->arch.cpu_run);
2028
2029         mutex_lock(&kvm->lock);
2030         vcore = NULL;
2031         err = -EINVAL;
2032         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2033                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2034                         pr_devel("KVM: VCPU ID too high\n");
2035                         core = KVM_MAX_VCORES;
2036                 } else {
2037                         BUG_ON(kvm->arch.smt_mode != 1);
2038                         core = kvmppc_pack_vcpu_id(kvm, id);
2039                 }
2040         } else {
2041                 core = id / kvm->arch.smt_mode;
2042         }
2043         if (core < KVM_MAX_VCORES) {
2044                 vcore = kvm->arch.vcores[core];
2045                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2046                         pr_devel("KVM: collision on id %u", id);
2047                         vcore = NULL;
2048                 } else if (!vcore) {
2049                         err = -ENOMEM;
2050                         vcore = kvmppc_vcore_create(kvm,
2051                                         id & ~(kvm->arch.smt_mode - 1));
2052                         kvm->arch.vcores[core] = vcore;
2053                         kvm->arch.online_vcores++;
2054                 }
2055         }
2056         mutex_unlock(&kvm->lock);
2057
2058         if (!vcore)
2059                 goto free_vcpu;
2060
2061         spin_lock(&vcore->lock);
2062         ++vcore->num_threads;
2063         spin_unlock(&vcore->lock);
2064         vcpu->arch.vcore = vcore;
2065         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2066         vcpu->arch.thread_cpu = -1;
2067         vcpu->arch.prev_cpu = -1;
2068
2069         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2070         kvmppc_sanity_check(vcpu);
2071
2072         debugfs_vcpu_init(vcpu, id);
2073
2074         return vcpu;
2075
2076 free_vcpu:
2077         kmem_cache_free(kvm_vcpu_cache, vcpu);
2078 out:
2079         return ERR_PTR(err);
2080 }
2081
2082 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2083                               unsigned long flags)
2084 {
2085         int err;
2086         int esmt = 0;
2087
2088         if (flags)
2089                 return -EINVAL;
2090         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2091                 return -EINVAL;
2092         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2093                 /*
2094                  * On POWER8 (or POWER7), the threading mode is "strict",
2095                  * so we pack smt_mode vcpus per vcore.
2096                  */
2097                 if (smt_mode > threads_per_subcore)
2098                         return -EINVAL;
2099         } else {
2100                 /*
2101                  * On POWER9, the threading mode is "loose",
2102                  * so each vcpu gets its own vcore.
2103                  */
2104                 esmt = smt_mode;
2105                 smt_mode = 1;
2106         }
2107         mutex_lock(&kvm->lock);
2108         err = -EBUSY;
2109         if (!kvm->arch.online_vcores) {
2110                 kvm->arch.smt_mode = smt_mode;
2111                 kvm->arch.emul_smt_mode = esmt;
2112                 err = 0;
2113         }
2114         mutex_unlock(&kvm->lock);
2115
2116         return err;
2117 }
2118
2119 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2120 {
2121         if (vpa->pinned_addr)
2122                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2123                                         vpa->dirty);
2124 }
2125
2126 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2127 {
2128         spin_lock(&vcpu->arch.vpa_update_lock);
2129         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2130         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2131         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2132         spin_unlock(&vcpu->arch.vpa_update_lock);
2133         kvm_vcpu_uninit(vcpu);
2134         kmem_cache_free(kvm_vcpu_cache, vcpu);
2135 }
2136
2137 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2138 {
2139         /* Indicate we want to get back into the guest */
2140         return 1;
2141 }
2142
2143 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2144 {
2145         unsigned long dec_nsec, now;
2146
2147         now = get_tb();
2148         if (now > vcpu->arch.dec_expires) {
2149                 /* decrementer has already gone negative */
2150                 kvmppc_core_queue_dec(vcpu);
2151                 kvmppc_core_prepare_to_enter(vcpu);
2152                 return;
2153         }
2154         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2155                    / tb_ticks_per_sec;
2156         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2157         vcpu->arch.timer_running = 1;
2158 }
2159
2160 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2161 {
2162         vcpu->arch.ceded = 0;
2163         if (vcpu->arch.timer_running) {
2164                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2165                 vcpu->arch.timer_running = 0;
2166         }
2167 }
2168
2169 extern int __kvmppc_vcore_entry(void);
2170
2171 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2172                                    struct kvm_vcpu *vcpu)
2173 {
2174         u64 now;
2175
2176         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2177                 return;
2178         spin_lock_irq(&vcpu->arch.tbacct_lock);
2179         now = mftb();
2180         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2181                 vcpu->arch.stolen_logged;
2182         vcpu->arch.busy_preempt = now;
2183         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2184         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2185         --vc->n_runnable;
2186         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2187 }
2188
2189 static int kvmppc_grab_hwthread(int cpu)
2190 {
2191         struct paca_struct *tpaca;
2192         long timeout = 10000;
2193
2194         tpaca = paca_ptrs[cpu];
2195
2196         /* Ensure the thread won't go into the kernel if it wakes */
2197         tpaca->kvm_hstate.kvm_vcpu = NULL;
2198         tpaca->kvm_hstate.kvm_vcore = NULL;
2199         tpaca->kvm_hstate.napping = 0;
2200         smp_wmb();
2201         tpaca->kvm_hstate.hwthread_req = 1;
2202
2203         /*
2204          * If the thread is already executing in the kernel (e.g. handling
2205          * a stray interrupt), wait for it to get back to nap mode.
2206          * The smp_mb() is to ensure that our setting of hwthread_req
2207          * is visible before we look at hwthread_state, so if this
2208          * races with the code at system_reset_pSeries and the thread
2209          * misses our setting of hwthread_req, we are sure to see its
2210          * setting of hwthread_state, and vice versa.
2211          */
2212         smp_mb();
2213         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2214                 if (--timeout <= 0) {
2215                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2216                         return -EBUSY;
2217                 }
2218                 udelay(1);
2219         }
2220         return 0;
2221 }
2222
2223 static void kvmppc_release_hwthread(int cpu)
2224 {
2225         struct paca_struct *tpaca;
2226
2227         tpaca = paca_ptrs[cpu];
2228         tpaca->kvm_hstate.hwthread_req = 0;
2229         tpaca->kvm_hstate.kvm_vcpu = NULL;
2230         tpaca->kvm_hstate.kvm_vcore = NULL;
2231         tpaca->kvm_hstate.kvm_split_mode = NULL;
2232 }
2233
2234 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2235 {
2236         int i;
2237
2238         cpu = cpu_first_thread_sibling(cpu);
2239         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2240         /*
2241          * Make sure setting of bit in need_tlb_flush precedes
2242          * testing of cpu_in_guest bits.  The matching barrier on
2243          * the other side is the first smp_mb() in kvmppc_run_core().
2244          */
2245         smp_mb();
2246         for (i = 0; i < threads_per_core; ++i)
2247                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2248                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2249 }
2250
2251 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2252 {
2253         struct kvm *kvm = vcpu->kvm;
2254
2255         /*
2256          * With radix, the guest can do TLB invalidations itself,
2257          * and it could choose to use the local form (tlbiel) if
2258          * it is invalidating a translation that has only ever been
2259          * used on one vcpu.  However, that doesn't mean it has
2260          * only ever been used on one physical cpu, since vcpus
2261          * can move around between pcpus.  To cope with this, when
2262          * a vcpu moves from one pcpu to another, we need to tell
2263          * any vcpus running on the same core as this vcpu previously
2264          * ran to flush the TLB.  The TLB is shared between threads,
2265          * so we use a single bit in .need_tlb_flush for all 4 threads.
2266          */
2267         if (vcpu->arch.prev_cpu != pcpu) {
2268                 if (vcpu->arch.prev_cpu >= 0 &&
2269                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2270                     cpu_first_thread_sibling(pcpu))
2271                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2272                 vcpu->arch.prev_cpu = pcpu;
2273         }
2274 }
2275
2276 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2277 {
2278         int cpu;
2279         struct paca_struct *tpaca;
2280         struct kvm *kvm = vc->kvm;
2281
2282         cpu = vc->pcpu;
2283         if (vcpu) {
2284                 if (vcpu->arch.timer_running) {
2285                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2286                         vcpu->arch.timer_running = 0;
2287                 }
2288                 cpu += vcpu->arch.ptid;
2289                 vcpu->cpu = vc->pcpu;
2290                 vcpu->arch.thread_cpu = cpu;
2291                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2292         }
2293         tpaca = paca_ptrs[cpu];
2294         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2295         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2296         tpaca->kvm_hstate.fake_suspend = 0;
2297         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2298         smp_wmb();
2299         tpaca->kvm_hstate.kvm_vcore = vc;
2300         if (cpu != smp_processor_id())
2301                 kvmppc_ipi_thread(cpu);
2302 }
2303
2304 static void kvmppc_wait_for_nap(int n_threads)
2305 {
2306         int cpu = smp_processor_id();
2307         int i, loops;
2308
2309         if (n_threads <= 1)
2310                 return;
2311         for (loops = 0; loops < 1000000; ++loops) {
2312                 /*
2313                  * Check if all threads are finished.
2314                  * We set the vcore pointer when starting a thread
2315                  * and the thread clears it when finished, so we look
2316                  * for any threads that still have a non-NULL vcore ptr.
2317                  */
2318                 for (i = 1; i < n_threads; ++i)
2319                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2320                                 break;
2321                 if (i == n_threads) {
2322                         HMT_medium();
2323                         return;
2324                 }
2325                 HMT_low();
2326         }
2327         HMT_medium();
2328         for (i = 1; i < n_threads; ++i)
2329                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2330                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2331 }
2332
2333 /*
2334  * Check that we are on thread 0 and that any other threads in
2335  * this core are off-line.  Then grab the threads so they can't
2336  * enter the kernel.
2337  */
2338 static int on_primary_thread(void)
2339 {
2340         int cpu = smp_processor_id();
2341         int thr;
2342
2343         /* Are we on a primary subcore? */
2344         if (cpu_thread_in_subcore(cpu))
2345                 return 0;
2346
2347         thr = 0;
2348         while (++thr < threads_per_subcore)
2349                 if (cpu_online(cpu + thr))
2350                         return 0;
2351
2352         /* Grab all hw threads so they can't go into the kernel */
2353         for (thr = 1; thr < threads_per_subcore; ++thr) {
2354                 if (kvmppc_grab_hwthread(cpu + thr)) {
2355                         /* Couldn't grab one; let the others go */
2356                         do {
2357                                 kvmppc_release_hwthread(cpu + thr);
2358                         } while (--thr > 0);
2359                         return 0;
2360                 }
2361         }
2362         return 1;
2363 }
2364
2365 /*
2366  * A list of virtual cores for each physical CPU.
2367  * These are vcores that could run but their runner VCPU tasks are
2368  * (or may be) preempted.
2369  */
2370 struct preempted_vcore_list {
2371         struct list_head        list;
2372         spinlock_t              lock;
2373 };
2374
2375 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2376
2377 static void init_vcore_lists(void)
2378 {
2379         int cpu;
2380
2381         for_each_possible_cpu(cpu) {
2382                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2383                 spin_lock_init(&lp->lock);
2384                 INIT_LIST_HEAD(&lp->list);
2385         }
2386 }
2387
2388 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2389 {
2390         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2391
2392         vc->vcore_state = VCORE_PREEMPT;
2393         vc->pcpu = smp_processor_id();
2394         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2395                 spin_lock(&lp->lock);
2396                 list_add_tail(&vc->preempt_list, &lp->list);
2397                 spin_unlock(&lp->lock);
2398         }
2399
2400         /* Start accumulating stolen time */
2401         kvmppc_core_start_stolen(vc);
2402 }
2403
2404 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2405 {
2406         struct preempted_vcore_list *lp;
2407
2408         kvmppc_core_end_stolen(vc);
2409         if (!list_empty(&vc->preempt_list)) {
2410                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2411                 spin_lock(&lp->lock);
2412                 list_del_init(&vc->preempt_list);
2413                 spin_unlock(&lp->lock);
2414         }
2415         vc->vcore_state = VCORE_INACTIVE;
2416 }
2417
2418 /*
2419  * This stores information about the virtual cores currently
2420  * assigned to a physical core.
2421  */
2422 struct core_info {
2423         int             n_subcores;
2424         int             max_subcore_threads;
2425         int             total_threads;
2426         int             subcore_threads[MAX_SUBCORES];
2427         struct kvmppc_vcore *vc[MAX_SUBCORES];
2428 };
2429
2430 /*
2431  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2432  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2433  */
2434 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2435
2436 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2437 {
2438         memset(cip, 0, sizeof(*cip));
2439         cip->n_subcores = 1;
2440         cip->max_subcore_threads = vc->num_threads;
2441         cip->total_threads = vc->num_threads;
2442         cip->subcore_threads[0] = vc->num_threads;
2443         cip->vc[0] = vc;
2444 }
2445
2446 static bool subcore_config_ok(int n_subcores, int n_threads)
2447 {
2448         /*
2449          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2450          * split-core mode, with one thread per subcore.
2451          */
2452         if (cpu_has_feature(CPU_FTR_ARCH_300))
2453                 return n_subcores <= 4 && n_threads == 1;
2454
2455         /* On POWER8, can only dynamically split if unsplit to begin with */
2456         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2457                 return false;
2458         if (n_subcores > MAX_SUBCORES)
2459                 return false;
2460         if (n_subcores > 1) {
2461                 if (!(dynamic_mt_modes & 2))
2462                         n_subcores = 4;
2463                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2464                         return false;
2465         }
2466
2467         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2468 }
2469
2470 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2471 {
2472         vc->entry_exit_map = 0;
2473         vc->in_guest = 0;
2474         vc->napping_threads = 0;
2475         vc->conferring_threads = 0;
2476         vc->tb_offset_applied = 0;
2477 }
2478
2479 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2480 {
2481         int n_threads = vc->num_threads;
2482         int sub;
2483
2484         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2485                 return false;
2486
2487         /* Some POWER9 chips require all threads to be in the same MMU mode */
2488         if (no_mixing_hpt_and_radix &&
2489             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2490                 return false;
2491
2492         if (n_threads < cip->max_subcore_threads)
2493                 n_threads = cip->max_subcore_threads;
2494         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2495                 return false;
2496         cip->max_subcore_threads = n_threads;
2497
2498         sub = cip->n_subcores;
2499         ++cip->n_subcores;
2500         cip->total_threads += vc->num_threads;
2501         cip->subcore_threads[sub] = vc->num_threads;
2502         cip->vc[sub] = vc;
2503         init_vcore_to_run(vc);
2504         list_del_init(&vc->preempt_list);
2505
2506         return true;
2507 }
2508
2509 /*
2510  * Work out whether it is possible to piggyback the execution of
2511  * vcore *pvc onto the execution of the other vcores described in *cip.
2512  */
2513 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2514                           int target_threads)
2515 {
2516         if (cip->total_threads + pvc->num_threads > target_threads)
2517                 return false;
2518
2519         return can_dynamic_split(pvc, cip);
2520 }
2521
2522 static void prepare_threads(struct kvmppc_vcore *vc)
2523 {
2524         int i;
2525         struct kvm_vcpu *vcpu;
2526
2527         for_each_runnable_thread(i, vcpu, vc) {
2528                 if (signal_pending(vcpu->arch.run_task))
2529                         vcpu->arch.ret = -EINTR;
2530                 else if (vcpu->arch.vpa.update_pending ||
2531                          vcpu->arch.slb_shadow.update_pending ||
2532                          vcpu->arch.dtl.update_pending)
2533                         vcpu->arch.ret = RESUME_GUEST;
2534                 else
2535                         continue;
2536                 kvmppc_remove_runnable(vc, vcpu);
2537                 wake_up(&vcpu->arch.cpu_run);
2538         }
2539 }
2540
2541 static void collect_piggybacks(struct core_info *cip, int target_threads)
2542 {
2543         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2544         struct kvmppc_vcore *pvc, *vcnext;
2545
2546         spin_lock(&lp->lock);
2547         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2548                 if (!spin_trylock(&pvc->lock))
2549                         continue;
2550                 prepare_threads(pvc);
2551                 if (!pvc->n_runnable) {
2552                         list_del_init(&pvc->preempt_list);
2553                         if (pvc->runner == NULL) {
2554                                 pvc->vcore_state = VCORE_INACTIVE;
2555                                 kvmppc_core_end_stolen(pvc);
2556                         }
2557                         spin_unlock(&pvc->lock);
2558                         continue;
2559                 }
2560                 if (!can_piggyback(pvc, cip, target_threads)) {
2561                         spin_unlock(&pvc->lock);
2562                         continue;
2563                 }
2564                 kvmppc_core_end_stolen(pvc);
2565                 pvc->vcore_state = VCORE_PIGGYBACK;
2566                 if (cip->total_threads >= target_threads)
2567                         break;
2568         }
2569         spin_unlock(&lp->lock);
2570 }
2571
2572 static bool recheck_signals(struct core_info *cip)
2573 {
2574         int sub, i;
2575         struct kvm_vcpu *vcpu;
2576
2577         for (sub = 0; sub < cip->n_subcores; ++sub)
2578                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2579                         if (signal_pending(vcpu->arch.run_task))
2580                                 return true;
2581         return false;
2582 }
2583
2584 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2585 {
2586         int still_running = 0, i;
2587         u64 now;
2588         long ret;
2589         struct kvm_vcpu *vcpu;
2590
2591         spin_lock(&vc->lock);
2592         now = get_tb();
2593         for_each_runnable_thread(i, vcpu, vc) {
2594                 /*
2595                  * It's safe to unlock the vcore in the loop here, because
2596                  * for_each_runnable_thread() is safe against removal of
2597                  * the vcpu, and the vcore state is VCORE_EXITING here,
2598                  * so any vcpus becoming runnable will have their arch.trap
2599                  * set to zero and can't actually run in the guest.
2600                  */
2601                 spin_unlock(&vc->lock);
2602                 /* cancel pending dec exception if dec is positive */
2603                 if (now < vcpu->arch.dec_expires &&
2604                     kvmppc_core_pending_dec(vcpu))
2605                         kvmppc_core_dequeue_dec(vcpu);
2606
2607                 trace_kvm_guest_exit(vcpu);
2608
2609                 ret = RESUME_GUEST;
2610                 if (vcpu->arch.trap)
2611                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2612                                                     vcpu->arch.run_task);
2613
2614                 vcpu->arch.ret = ret;
2615                 vcpu->arch.trap = 0;
2616
2617                 spin_lock(&vc->lock);
2618                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2619                         if (vcpu->arch.pending_exceptions)
2620                                 kvmppc_core_prepare_to_enter(vcpu);
2621                         if (vcpu->arch.ceded)
2622                                 kvmppc_set_timer(vcpu);
2623                         else
2624                                 ++still_running;
2625                 } else {
2626                         kvmppc_remove_runnable(vc, vcpu);
2627                         wake_up(&vcpu->arch.cpu_run);
2628                 }
2629         }
2630         if (!is_master) {
2631                 if (still_running > 0) {
2632                         kvmppc_vcore_preempt(vc);
2633                 } else if (vc->runner) {
2634                         vc->vcore_state = VCORE_PREEMPT;
2635                         kvmppc_core_start_stolen(vc);
2636                 } else {
2637                         vc->vcore_state = VCORE_INACTIVE;
2638                 }
2639                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2640                         /* make sure there's a candidate runner awake */
2641                         i = -1;
2642                         vcpu = next_runnable_thread(vc, &i);
2643                         wake_up(&vcpu->arch.cpu_run);
2644                 }
2645         }
2646         spin_unlock(&vc->lock);
2647 }
2648
2649 /*
2650  * Clear core from the list of active host cores as we are about to
2651  * enter the guest. Only do this if it is the primary thread of the
2652  * core (not if a subcore) that is entering the guest.
2653  */
2654 static inline int kvmppc_clear_host_core(unsigned int cpu)
2655 {
2656         int core;
2657
2658         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2659                 return 0;
2660         /*
2661          * Memory barrier can be omitted here as we will do a smp_wmb()
2662          * later in kvmppc_start_thread and we need ensure that state is
2663          * visible to other CPUs only after we enter guest.
2664          */
2665         core = cpu >> threads_shift;
2666         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2667         return 0;
2668 }
2669
2670 /*
2671  * Advertise this core as an active host core since we exited the guest
2672  * Only need to do this if it is the primary thread of the core that is
2673  * exiting.
2674  */
2675 static inline int kvmppc_set_host_core(unsigned int cpu)
2676 {
2677         int core;
2678
2679         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2680                 return 0;
2681
2682         /*
2683          * Memory barrier can be omitted here because we do a spin_unlock
2684          * immediately after this which provides the memory barrier.
2685          */
2686         core = cpu >> threads_shift;
2687         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2688         return 0;
2689 }
2690
2691 static void set_irq_happened(int trap)
2692 {
2693         switch (trap) {
2694         case BOOK3S_INTERRUPT_EXTERNAL:
2695                 local_paca->irq_happened |= PACA_IRQ_EE;
2696                 break;
2697         case BOOK3S_INTERRUPT_H_DOORBELL:
2698                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2699                 break;
2700         case BOOK3S_INTERRUPT_HMI:
2701                 local_paca->irq_happened |= PACA_IRQ_HMI;
2702                 break;
2703         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2704                 replay_system_reset();
2705                 break;
2706         }
2707 }
2708
2709 /*
2710  * Run a set of guest threads on a physical core.
2711  * Called with vc->lock held.
2712  */
2713 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2714 {
2715         struct kvm_vcpu *vcpu;
2716         int i;
2717         int srcu_idx;
2718         struct core_info core_info;
2719         struct kvmppc_vcore *pvc;
2720         struct kvm_split_mode split_info, *sip;
2721         int split, subcore_size, active;
2722         int sub;
2723         bool thr0_done;
2724         unsigned long cmd_bit, stat_bit;
2725         int pcpu, thr;
2726         int target_threads;
2727         int controlled_threads;
2728         int trap;
2729         bool is_power8;
2730         bool hpt_on_radix;
2731
2732         /*
2733          * Remove from the list any threads that have a signal pending
2734          * or need a VPA update done
2735          */
2736         prepare_threads(vc);
2737
2738         /* if the runner is no longer runnable, let the caller pick a new one */
2739         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2740                 return;
2741
2742         /*
2743          * Initialize *vc.
2744          */
2745         init_vcore_to_run(vc);
2746         vc->preempt_tb = TB_NIL;
2747
2748         /*
2749          * Number of threads that we will be controlling: the same as
2750          * the number of threads per subcore, except on POWER9,
2751          * where it's 1 because the threads are (mostly) independent.
2752          */
2753         controlled_threads = threads_per_vcore(vc->kvm);
2754
2755         /*
2756          * Make sure we are running on primary threads, and that secondary
2757          * threads are offline.  Also check if the number of threads in this
2758          * guest are greater than the current system threads per guest.
2759          * On POWER9, we need to be not in independent-threads mode if
2760          * this is a HPT guest on a radix host machine where the
2761          * CPU threads may not be in different MMU modes.
2762          */
2763         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2764                 !kvm_is_radix(vc->kvm);
2765         if (((controlled_threads > 1) &&
2766              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2767             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2768                 for_each_runnable_thread(i, vcpu, vc) {
2769                         vcpu->arch.ret = -EBUSY;
2770                         kvmppc_remove_runnable(vc, vcpu);
2771                         wake_up(&vcpu->arch.cpu_run);
2772                 }
2773                 goto out;
2774         }
2775
2776         /*
2777          * See if we could run any other vcores on the physical core
2778          * along with this one.
2779          */
2780         init_core_info(&core_info, vc);
2781         pcpu = smp_processor_id();
2782         target_threads = controlled_threads;
2783         if (target_smt_mode && target_smt_mode < target_threads)
2784                 target_threads = target_smt_mode;
2785         if (vc->num_threads < target_threads)
2786                 collect_piggybacks(&core_info, target_threads);
2787
2788         /*
2789          * On radix, arrange for TLB flushing if necessary.
2790          * This has to be done before disabling interrupts since
2791          * it uses smp_call_function().
2792          */
2793         pcpu = smp_processor_id();
2794         if (kvm_is_radix(vc->kvm)) {
2795                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2796                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2797                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2798         }
2799
2800         /*
2801          * Hard-disable interrupts, and check resched flag and signals.
2802          * If we need to reschedule or deliver a signal, clean up
2803          * and return without going into the guest(s).
2804          * If the mmu_ready flag has been cleared, don't go into the
2805          * guest because that means a HPT resize operation is in progress.
2806          */
2807         local_irq_disable();
2808         hard_irq_disable();
2809         if (lazy_irq_pending() || need_resched() ||
2810             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2811                 local_irq_enable();
2812                 vc->vcore_state = VCORE_INACTIVE;
2813                 /* Unlock all except the primary vcore */
2814                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2815                         pvc = core_info.vc[sub];
2816                         /* Put back on to the preempted vcores list */
2817                         kvmppc_vcore_preempt(pvc);
2818                         spin_unlock(&pvc->lock);
2819                 }
2820                 for (i = 0; i < controlled_threads; ++i)
2821                         kvmppc_release_hwthread(pcpu + i);
2822                 return;
2823         }
2824
2825         kvmppc_clear_host_core(pcpu);
2826
2827         /* Decide on micro-threading (split-core) mode */
2828         subcore_size = threads_per_subcore;
2829         cmd_bit = stat_bit = 0;
2830         split = core_info.n_subcores;
2831         sip = NULL;
2832         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2833                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2834
2835         if (split > 1 || hpt_on_radix) {
2836                 sip = &split_info;
2837                 memset(&split_info, 0, sizeof(split_info));
2838                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2839                         split_info.vc[sub] = core_info.vc[sub];
2840
2841                 if (is_power8) {
2842                         if (split == 2 && (dynamic_mt_modes & 2)) {
2843                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2844                                 stat_bit = HID0_POWER8_2LPARMODE;
2845                         } else {
2846                                 split = 4;
2847                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2848                                 stat_bit = HID0_POWER8_4LPARMODE;
2849                         }
2850                         subcore_size = MAX_SMT_THREADS / split;
2851                         split_info.rpr = mfspr(SPRN_RPR);
2852                         split_info.pmmar = mfspr(SPRN_PMMAR);
2853                         split_info.ldbar = mfspr(SPRN_LDBAR);
2854                         split_info.subcore_size = subcore_size;
2855                 } else {
2856                         split_info.subcore_size = 1;
2857                         if (hpt_on_radix) {
2858                                 /* Use the split_info for LPCR/LPIDR changes */
2859                                 split_info.lpcr_req = vc->lpcr;
2860                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2861                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2862                                 split_info.do_set = 1;
2863                         }
2864                 }
2865
2866                 /* order writes to split_info before kvm_split_mode pointer */
2867                 smp_wmb();
2868         }
2869
2870         for (thr = 0; thr < controlled_threads; ++thr) {
2871                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2872
2873                 paca->kvm_hstate.tid = thr;
2874                 paca->kvm_hstate.napping = 0;
2875                 paca->kvm_hstate.kvm_split_mode = sip;
2876         }
2877
2878         /* Initiate micro-threading (split-core) on POWER8 if required */
2879         if (cmd_bit) {
2880                 unsigned long hid0 = mfspr(SPRN_HID0);
2881
2882                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2883                 mb();
2884                 mtspr(SPRN_HID0, hid0);
2885                 isync();
2886                 for (;;) {
2887                         hid0 = mfspr(SPRN_HID0);
2888                         if (hid0 & stat_bit)
2889                                 break;
2890                         cpu_relax();
2891                 }
2892         }
2893
2894         /*
2895          * On POWER8, set RWMR register.
2896          * Since it only affects PURR and SPURR, it doesn't affect
2897          * the host, so we don't save/restore the host value.
2898          */
2899         if (is_power8) {
2900                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2901                 int n_online = atomic_read(&vc->online_count);
2902
2903                 /*
2904                  * Use the 8-thread value if we're doing split-core
2905                  * or if the vcore's online count looks bogus.
2906                  */
2907                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2908                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
2909                         rwmr_val = p8_rwmr_values[n_online];
2910                 mtspr(SPRN_RWMR, rwmr_val);
2911         }
2912
2913         /* Start all the threads */
2914         active = 0;
2915         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2916                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2917                 thr0_done = false;
2918                 active |= 1 << thr;
2919                 pvc = core_info.vc[sub];
2920                 pvc->pcpu = pcpu + thr;
2921                 for_each_runnable_thread(i, vcpu, pvc) {
2922                         kvmppc_start_thread(vcpu, pvc);
2923                         kvmppc_create_dtl_entry(vcpu, pvc);
2924                         trace_kvm_guest_enter(vcpu);
2925                         if (!vcpu->arch.ptid)
2926                                 thr0_done = true;
2927                         active |= 1 << (thr + vcpu->arch.ptid);
2928                 }
2929                 /*
2930                  * We need to start the first thread of each subcore
2931                  * even if it doesn't have a vcpu.
2932                  */
2933                 if (!thr0_done)
2934                         kvmppc_start_thread(NULL, pvc);
2935         }
2936
2937         /*
2938          * Ensure that split_info.do_nap is set after setting
2939          * the vcore pointer in the PACA of the secondaries.
2940          */
2941         smp_mb();
2942
2943         /*
2944          * When doing micro-threading, poke the inactive threads as well.
2945          * This gets them to the nap instruction after kvm_do_nap,
2946          * which reduces the time taken to unsplit later.
2947          * For POWER9 HPT guest on radix host, we need all the secondary
2948          * threads woken up so they can do the LPCR/LPIDR change.
2949          */
2950         if (cmd_bit || hpt_on_radix) {
2951                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2952                 for (thr = 1; thr < threads_per_subcore; ++thr)
2953                         if (!(active & (1 << thr)))
2954                                 kvmppc_ipi_thread(pcpu + thr);
2955         }
2956
2957         vc->vcore_state = VCORE_RUNNING;
2958         preempt_disable();
2959
2960         trace_kvmppc_run_core(vc, 0);
2961
2962         for (sub = 0; sub < core_info.n_subcores; ++sub)
2963                 spin_unlock(&core_info.vc[sub]->lock);
2964
2965         if (kvm_is_radix(vc->kvm)) {
2966                 int tmp = pcpu;
2967
2968                 /*
2969                  * Do we need to flush the process scoped TLB for the LPAR?
2970                  *
2971                  * On POWER9, individual threads can come in here, but the
2972                  * TLB is shared between the 4 threads in a core, hence
2973                  * invalidating on one thread invalidates for all.
2974                  * Thus we make all 4 threads use the same bit here.
2975                  *
2976                  * Hash must be flushed in realmode in order to use tlbiel.
2977                  */
2978                 mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2979                 isync();
2980
2981                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2982                         tmp &= ~0x3UL;
2983
2984                 if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2985                         radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2986                         /* Clear the bit after the TLB flush */
2987                         cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2988                 }
2989         }
2990
2991         /*
2992          * Interrupts will be enabled once we get into the guest,
2993          * so tell lockdep that we're about to enable interrupts.
2994          */
2995         trace_hardirqs_on();
2996
2997         guest_enter_irqoff();
2998
2999         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3000
3001         this_cpu_disable_ftrace();
3002
3003         trap = __kvmppc_vcore_entry();
3004
3005         this_cpu_enable_ftrace();
3006
3007         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3008
3009         trace_hardirqs_off();
3010         set_irq_happened(trap);
3011
3012         spin_lock(&vc->lock);
3013         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3014         vc->vcore_state = VCORE_EXITING;
3015
3016         /* wait for secondary threads to finish writing their state to memory */
3017         kvmppc_wait_for_nap(controlled_threads);
3018
3019         /* Return to whole-core mode if we split the core earlier */
3020         if (cmd_bit) {
3021                 unsigned long hid0 = mfspr(SPRN_HID0);
3022                 unsigned long loops = 0;
3023
3024                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3025                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3026                 mb();
3027                 mtspr(SPRN_HID0, hid0);
3028                 isync();
3029                 for (;;) {
3030                         hid0 = mfspr(SPRN_HID0);
3031                         if (!(hid0 & stat_bit))
3032                                 break;
3033                         cpu_relax();
3034                         ++loops;
3035                 }
3036         } else if (hpt_on_radix) {
3037                 /* Wait for all threads to have seen final sync */
3038                 for (thr = 1; thr < controlled_threads; ++thr) {
3039                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3040
3041                         while (paca->kvm_hstate.kvm_split_mode) {
3042                                 HMT_low();
3043                                 barrier();
3044                         }
3045                         HMT_medium();
3046                 }
3047         }
3048         split_info.do_nap = 0;
3049
3050         kvmppc_set_host_core(pcpu);
3051
3052         local_irq_enable();
3053         guest_exit();
3054
3055         /* Let secondaries go back to the offline loop */
3056         for (i = 0; i < controlled_threads; ++i) {
3057                 kvmppc_release_hwthread(pcpu + i);
3058                 if (sip && sip->napped[i])
3059                         kvmppc_ipi_thread(pcpu + i);
3060                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3061         }
3062
3063         spin_unlock(&vc->lock);
3064
3065         /* make sure updates to secondary vcpu structs are visible now */
3066         smp_mb();
3067
3068         preempt_enable();
3069
3070         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3071                 pvc = core_info.vc[sub];
3072                 post_guest_process(pvc, pvc == vc);
3073         }
3074
3075         spin_lock(&vc->lock);
3076
3077  out:
3078         vc->vcore_state = VCORE_INACTIVE;
3079         trace_kvmppc_run_core(vc, 1);
3080 }
3081
3082 /*
3083  * Load up hypervisor-mode registers on P9.
3084  */
3085 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit)
3086 {
3087         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3088         s64 hdec;
3089         u64 tb, purr, spurr;
3090         int trap;
3091         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3092         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3093         unsigned long host_dawr = mfspr(SPRN_DAWR);
3094         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3095         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3096         unsigned long host_pidr = mfspr(SPRN_PID);
3097
3098         hdec = time_limit - mftb();
3099         if (hdec < 0)
3100                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3101         mtspr(SPRN_HDEC, hdec);
3102
3103         if (vc->tb_offset) {
3104                 u64 new_tb = mftb() + vc->tb_offset;
3105                 mtspr(SPRN_TBU40, new_tb);
3106                 tb = mftb();
3107                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3108                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3109                 vc->tb_offset_applied = vc->tb_offset;
3110         }
3111
3112         if (vc->pcr)
3113                 mtspr(SPRN_PCR, vc->pcr);
3114         mtspr(SPRN_DPDES, vc->dpdes);
3115         mtspr(SPRN_VTB, vc->vtb);
3116
3117         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3118         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3119         mtspr(SPRN_PURR, vcpu->arch.purr);
3120         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3121
3122         if (cpu_has_feature(CPU_FTR_DAWR)) {
3123                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3124                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3125         }
3126         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3127         mtspr(SPRN_IC, vcpu->arch.ic);
3128         mtspr(SPRN_PID, vcpu->arch.pid);
3129
3130         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3131               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3132
3133         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3134
3135         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3136         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3137         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3138         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3139
3140         mtspr(SPRN_AMOR, ~0UL);
3141
3142         mtspr(SPRN_LPCR, vc->lpcr);
3143         isync();
3144
3145         kvmppc_xive_push_vcpu(vcpu);
3146
3147         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3148         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3149
3150         trap = __kvmhv_vcpu_entry_p9(vcpu);
3151
3152         /* Advance host PURR/SPURR by the amount used by guest */
3153         purr = mfspr(SPRN_PURR);
3154         spurr = mfspr(SPRN_SPURR);
3155         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3156               purr - vcpu->arch.purr);
3157         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3158               spurr - vcpu->arch.spurr);
3159         vcpu->arch.purr = purr;
3160         vcpu->arch.spurr = spurr;
3161
3162         vcpu->arch.ic = mfspr(SPRN_IC);
3163         vcpu->arch.pid = mfspr(SPRN_PID);
3164         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3165
3166         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3167         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3168         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3169         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3170
3171         mtspr(SPRN_PSSCR, host_psscr);
3172         mtspr(SPRN_HFSCR, host_hfscr);
3173         mtspr(SPRN_CIABR, host_ciabr);
3174         mtspr(SPRN_DAWR, host_dawr);
3175         mtspr(SPRN_DAWRX, host_dawrx);
3176         mtspr(SPRN_PID, host_pidr);
3177
3178         /*
3179          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3180          * case we interrupted the guest between a tlbie and a ptesync.
3181          */
3182         asm volatile("eieio; tlbsync; ptesync");
3183
3184         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3185         isync();
3186
3187         vc->dpdes = mfspr(SPRN_DPDES);
3188         vc->vtb = mfspr(SPRN_VTB);
3189         mtspr(SPRN_DPDES, 0);
3190         if (vc->pcr)
3191                 mtspr(SPRN_PCR, 0);
3192
3193         if (vc->tb_offset_applied) {
3194                 u64 new_tb = mftb() - vc->tb_offset_applied;
3195                 mtspr(SPRN_TBU40, new_tb);
3196                 tb = mftb();
3197                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3198                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3199                 vc->tb_offset_applied = 0;
3200         }
3201
3202         mtspr(SPRN_HDEC, 0x7fffffff);
3203         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3204
3205         return trap;
3206 }
3207
3208 /*
3209  * Virtual-mode guest entry for POWER9 and later when the host and
3210  * guest are both using the radix MMU.  The LPIDR has already been set.
3211  */
3212 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit)
3213 {
3214         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3215         unsigned long host_dscr = mfspr(SPRN_DSCR);
3216         unsigned long host_tidr = mfspr(SPRN_TIDR);
3217         unsigned long host_iamr = mfspr(SPRN_IAMR);
3218         s64 dec;
3219         u64 tb;
3220         int trap, save_pmu;
3221
3222         dec = mfspr(SPRN_DEC);
3223         tb = mftb();
3224         if (dec < 512)
3225                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3226         local_paca->kvm_hstate.dec_expires = dec + tb;
3227         if (local_paca->kvm_hstate.dec_expires < time_limit)
3228                 time_limit = local_paca->kvm_hstate.dec_expires;
3229
3230         vcpu->arch.ceded = 0;
3231
3232         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3233
3234         kvmppc_subcore_enter_guest();
3235
3236         vc->entry_exit_map = 1;
3237         vc->in_guest = 1;
3238
3239         if (vcpu->arch.vpa.pinned_addr) {
3240                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3241                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3242                 lp->yield_count = cpu_to_be32(yield_count);
3243                 vcpu->arch.vpa.dirty = 1;
3244         }
3245
3246         if (cpu_has_feature(CPU_FTR_TM) ||
3247             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3248                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3249
3250         kvmhv_load_guest_pmu(vcpu);
3251
3252         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3253         load_fp_state(&vcpu->arch.fp);
3254 #ifdef CONFIG_ALTIVEC
3255         load_vr_state(&vcpu->arch.vr);
3256 #endif
3257
3258         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3259         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3260         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3261         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3262         mtspr(SPRN_TAR, vcpu->arch.tar);
3263         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3264         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3265         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3266         mtspr(SPRN_WORT, vcpu->arch.wort);
3267         mtspr(SPRN_TIDR, vcpu->arch.tid);
3268         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3269         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3270         mtspr(SPRN_AMR, vcpu->arch.amr);
3271         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3272
3273         if (!(vcpu->arch.ctrl & 1))
3274                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3275
3276         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3277
3278         if (vcpu->arch.doorbell_request) {
3279                 vc->dpdes = 1;
3280                 smp_wmb();
3281                 vcpu->arch.doorbell_request = 0;
3282         }
3283
3284         trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit);
3285
3286         vcpu->arch.slb_max = 0;
3287         dec = mfspr(SPRN_DEC);
3288         tb = mftb();
3289         vcpu->arch.dec_expires = dec + tb;
3290         vcpu->cpu = -1;
3291         vcpu->arch.thread_cpu = -1;
3292         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3293
3294         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3295         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3296         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3297         vcpu->arch.tar = mfspr(SPRN_TAR);
3298         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3299         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3300         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3301         vcpu->arch.wort = mfspr(SPRN_WORT);
3302         vcpu->arch.tid = mfspr(SPRN_TIDR);
3303         vcpu->arch.amr = mfspr(SPRN_AMR);
3304         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3305         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3306
3307         mtspr(SPRN_PSPB, 0);
3308         mtspr(SPRN_WORT, 0);
3309         mtspr(SPRN_AMR, 0);
3310         mtspr(SPRN_UAMOR, 0);
3311         mtspr(SPRN_DSCR, host_dscr);
3312         mtspr(SPRN_TIDR, host_tidr);
3313         mtspr(SPRN_IAMR, host_iamr);
3314         mtspr(SPRN_PSPB, 0);
3315
3316         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3317         store_fp_state(&vcpu->arch.fp);
3318 #ifdef CONFIG_ALTIVEC
3319         store_vr_state(&vcpu->arch.vr);
3320 #endif
3321
3322         if (cpu_has_feature(CPU_FTR_TM) ||
3323             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3324                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3325
3326         save_pmu = 1;
3327         if (vcpu->arch.vpa.pinned_addr) {
3328                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3329                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3330                 lp->yield_count = cpu_to_be32(yield_count);
3331                 vcpu->arch.vpa.dirty = 1;
3332                 save_pmu = lp->pmcregs_in_use;
3333         }
3334
3335         kvmhv_save_guest_pmu(vcpu, save_pmu);
3336
3337         vc->entry_exit_map = 0x101;
3338         vc->in_guest = 0;
3339
3340         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3341
3342         kvmhv_load_host_pmu();
3343
3344         kvmppc_subcore_exit_guest();
3345
3346         return trap;
3347 }
3348
3349 /*
3350  * Wait for some other vcpu thread to execute us, and
3351  * wake us up when we need to handle something in the host.
3352  */
3353 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3354                                  struct kvm_vcpu *vcpu, int wait_state)
3355 {
3356         DEFINE_WAIT(wait);
3357
3358         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3359         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3360                 spin_unlock(&vc->lock);
3361                 schedule();
3362                 spin_lock(&vc->lock);
3363         }
3364         finish_wait(&vcpu->arch.cpu_run, &wait);
3365 }
3366
3367 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3368 {
3369         /* 10us base */
3370         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3371                 vc->halt_poll_ns = 10000;
3372         else
3373                 vc->halt_poll_ns *= halt_poll_ns_grow;
3374 }
3375
3376 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3377 {
3378         if (halt_poll_ns_shrink == 0)
3379                 vc->halt_poll_ns = 0;
3380         else
3381                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3382 }
3383
3384 #ifdef CONFIG_KVM_XICS
3385 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3386 {
3387         if (!xive_enabled())
3388                 return false;
3389         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3390                 vcpu->arch.xive_saved_state.cppr;
3391 }
3392 #else
3393 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3394 {
3395         return false;
3396 }
3397 #endif /* CONFIG_KVM_XICS */
3398
3399 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3400 {
3401         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3402             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3403                 return true;
3404
3405         return false;
3406 }
3407
3408 /*
3409  * Check to see if any of the runnable vcpus on the vcore have pending
3410  * exceptions or are no longer ceded
3411  */
3412 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3413 {
3414         struct kvm_vcpu *vcpu;
3415         int i;
3416
3417         for_each_runnable_thread(i, vcpu, vc) {
3418                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3419                         return 1;
3420         }
3421
3422         return 0;
3423 }
3424
3425 /*
3426  * All the vcpus in this vcore are idle, so wait for a decrementer
3427  * or external interrupt to one of the vcpus.  vc->lock is held.
3428  */
3429 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3430 {
3431         ktime_t cur, start_poll, start_wait;
3432         int do_sleep = 1;
3433         u64 block_ns;
3434         DECLARE_SWAITQUEUE(wait);
3435
3436         /* Poll for pending exceptions and ceded state */
3437         cur = start_poll = ktime_get();
3438         if (vc->halt_poll_ns) {
3439                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3440                 ++vc->runner->stat.halt_attempted_poll;
3441
3442                 vc->vcore_state = VCORE_POLLING;
3443                 spin_unlock(&vc->lock);
3444
3445                 do {
3446                         if (kvmppc_vcore_check_block(vc)) {
3447                                 do_sleep = 0;
3448                                 break;
3449                         }
3450                         cur = ktime_get();
3451                 } while (single_task_running() && ktime_before(cur, stop));
3452
3453                 spin_lock(&vc->lock);
3454                 vc->vcore_state = VCORE_INACTIVE;
3455
3456                 if (!do_sleep) {
3457                         ++vc->runner->stat.halt_successful_poll;
3458                         goto out;
3459                 }
3460         }
3461
3462         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3463
3464         if (kvmppc_vcore_check_block(vc)) {
3465                 finish_swait(&vc->wq, &wait);
3466                 do_sleep = 0;
3467                 /* If we polled, count this as a successful poll */
3468                 if (vc->halt_poll_ns)
3469                         ++vc->runner->stat.halt_successful_poll;
3470                 goto out;
3471         }
3472
3473         start_wait = ktime_get();
3474
3475         vc->vcore_state = VCORE_SLEEPING;
3476         trace_kvmppc_vcore_blocked(vc, 0);
3477         spin_unlock(&vc->lock);
3478         schedule();
3479         finish_swait(&vc->wq, &wait);
3480         spin_lock(&vc->lock);
3481         vc->vcore_state = VCORE_INACTIVE;
3482         trace_kvmppc_vcore_blocked(vc, 1);
3483         ++vc->runner->stat.halt_successful_wait;
3484
3485         cur = ktime_get();
3486
3487 out:
3488         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3489
3490         /* Attribute wait time */
3491         if (do_sleep) {
3492                 vc->runner->stat.halt_wait_ns +=
3493                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3494                 /* Attribute failed poll time */
3495                 if (vc->halt_poll_ns)
3496                         vc->runner->stat.halt_poll_fail_ns +=
3497                                 ktime_to_ns(start_wait) -
3498                                 ktime_to_ns(start_poll);
3499         } else {
3500                 /* Attribute successful poll time */
3501                 if (vc->halt_poll_ns)
3502                         vc->runner->stat.halt_poll_success_ns +=
3503                                 ktime_to_ns(cur) -
3504                                 ktime_to_ns(start_poll);
3505         }
3506
3507         /* Adjust poll time */
3508         if (halt_poll_ns) {
3509                 if (block_ns <= vc->halt_poll_ns)
3510                         ;
3511                 /* We slept and blocked for longer than the max halt time */
3512                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3513                         shrink_halt_poll_ns(vc);
3514                 /* We slept and our poll time is too small */
3515                 else if (vc->halt_poll_ns < halt_poll_ns &&
3516                                 block_ns < halt_poll_ns)
3517                         grow_halt_poll_ns(vc);
3518                 if (vc->halt_poll_ns > halt_poll_ns)
3519                         vc->halt_poll_ns = halt_poll_ns;
3520         } else
3521                 vc->halt_poll_ns = 0;
3522
3523         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3524 }
3525
3526 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3527 {
3528         int r = 0;
3529         struct kvm *kvm = vcpu->kvm;
3530
3531         mutex_lock(&kvm->lock);
3532         if (!kvm->arch.mmu_ready) {
3533                 if (!kvm_is_radix(kvm))
3534                         r = kvmppc_hv_setup_htab_rma(vcpu);
3535                 if (!r) {
3536                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3537                                 kvmppc_setup_partition_table(kvm);
3538                         kvm->arch.mmu_ready = 1;
3539                 }
3540         }
3541         mutex_unlock(&kvm->lock);
3542         return r;
3543 }
3544
3545 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3546 {
3547         int n_ceded, i, r;
3548         struct kvmppc_vcore *vc;
3549         struct kvm_vcpu *v;
3550
3551         trace_kvmppc_run_vcpu_enter(vcpu);
3552
3553         kvm_run->exit_reason = 0;
3554         vcpu->arch.ret = RESUME_GUEST;
3555         vcpu->arch.trap = 0;
3556         kvmppc_update_vpas(vcpu);
3557
3558         /*
3559          * Synchronize with other threads in this virtual core
3560          */
3561         vc = vcpu->arch.vcore;
3562         spin_lock(&vc->lock);
3563         vcpu->arch.ceded = 0;
3564         vcpu->arch.run_task = current;
3565         vcpu->arch.kvm_run = kvm_run;
3566         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3567         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3568         vcpu->arch.busy_preempt = TB_NIL;
3569         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3570         ++vc->n_runnable;
3571
3572         /*
3573          * This happens the first time this is called for a vcpu.
3574          * If the vcore is already running, we may be able to start
3575          * this thread straight away and have it join in.
3576          */
3577         if (!signal_pending(current)) {
3578                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3579                      vc->vcore_state == VCORE_RUNNING) &&
3580                            !VCORE_IS_EXITING(vc)) {
3581                         kvmppc_create_dtl_entry(vcpu, vc);
3582                         kvmppc_start_thread(vcpu, vc);
3583                         trace_kvm_guest_enter(vcpu);
3584                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3585                         swake_up_one(&vc->wq);
3586                 }
3587
3588         }
3589
3590         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3591                !signal_pending(current)) {
3592                 /* See if the MMU is ready to go */
3593                 if (!vcpu->kvm->arch.mmu_ready) {
3594                         spin_unlock(&vc->lock);
3595                         r = kvmhv_setup_mmu(vcpu);
3596                         spin_lock(&vc->lock);
3597                         if (r) {
3598                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3599                                 kvm_run->fail_entry.
3600                                         hardware_entry_failure_reason = 0;
3601                                 vcpu->arch.ret = r;
3602                                 break;
3603                         }
3604                 }
3605
3606                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3607                         kvmppc_vcore_end_preempt(vc);
3608
3609                 if (vc->vcore_state != VCORE_INACTIVE) {
3610                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3611                         continue;
3612                 }
3613                 for_each_runnable_thread(i, v, vc) {
3614                         kvmppc_core_prepare_to_enter(v);
3615                         if (signal_pending(v->arch.run_task)) {
3616                                 kvmppc_remove_runnable(vc, v);
3617                                 v->stat.signal_exits++;
3618                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3619                                 v->arch.ret = -EINTR;
3620                                 wake_up(&v->arch.cpu_run);
3621                         }
3622                 }
3623                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3624                         break;
3625                 n_ceded = 0;
3626                 for_each_runnable_thread(i, v, vc) {
3627                         if (!kvmppc_vcpu_woken(v))
3628                                 n_ceded += v->arch.ceded;
3629                         else
3630                                 v->arch.ceded = 0;
3631                 }
3632                 vc->runner = vcpu;
3633                 if (n_ceded == vc->n_runnable) {
3634                         kvmppc_vcore_blocked(vc);
3635                 } else if (need_resched()) {
3636                         kvmppc_vcore_preempt(vc);
3637                         /* Let something else run */
3638                         cond_resched_lock(&vc->lock);
3639                         if (vc->vcore_state == VCORE_PREEMPT)
3640                                 kvmppc_vcore_end_preempt(vc);
3641                 } else {
3642                         kvmppc_run_core(vc);
3643                 }
3644                 vc->runner = NULL;
3645         }
3646
3647         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3648                (vc->vcore_state == VCORE_RUNNING ||
3649                 vc->vcore_state == VCORE_EXITING ||
3650                 vc->vcore_state == VCORE_PIGGYBACK))
3651                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3652
3653         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3654                 kvmppc_vcore_end_preempt(vc);
3655
3656         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3657                 kvmppc_remove_runnable(vc, vcpu);
3658                 vcpu->stat.signal_exits++;
3659                 kvm_run->exit_reason = KVM_EXIT_INTR;
3660                 vcpu->arch.ret = -EINTR;
3661         }
3662
3663         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3664                 /* Wake up some vcpu to run the core */
3665                 i = -1;
3666                 v = next_runnable_thread(vc, &i);
3667                 wake_up(&v->arch.cpu_run);
3668         }
3669
3670         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3671         spin_unlock(&vc->lock);
3672         return vcpu->arch.ret;
3673 }
3674
3675 static int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
3676                                  struct kvm_vcpu *vcpu, u64 time_limit)
3677 {
3678         int trap, r, pcpu, pcpu0;
3679         int srcu_idx;
3680         struct kvmppc_vcore *vc;
3681         struct kvm *kvm = vcpu->kvm;
3682
3683         trace_kvmppc_run_vcpu_enter(vcpu);
3684
3685         kvm_run->exit_reason = 0;
3686         vcpu->arch.ret = RESUME_GUEST;
3687         vcpu->arch.trap = 0;
3688
3689         vc = vcpu->arch.vcore;
3690         vcpu->arch.ceded = 0;
3691         vcpu->arch.run_task = current;
3692         vcpu->arch.kvm_run = kvm_run;
3693         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3694         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3695         vcpu->arch.busy_preempt = TB_NIL;
3696         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
3697         vc->runnable_threads[0] = vcpu;
3698         vc->n_runnable = 1;
3699         vc->runner = vcpu;
3700
3701         /* See if the MMU is ready to go */
3702         if (!kvm->arch.mmu_ready) {
3703                 r = kvmhv_setup_mmu(vcpu);
3704                 if (r) {
3705                         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3706                         kvm_run->fail_entry.
3707                                 hardware_entry_failure_reason = 0;
3708                         vcpu->arch.ret = r;
3709                         goto out;
3710                 }
3711         }
3712
3713         if (need_resched())
3714                 cond_resched();
3715
3716         kvmppc_update_vpas(vcpu);
3717
3718         init_vcore_to_run(vc);
3719         vc->preempt_tb = TB_NIL;
3720
3721         preempt_disable();
3722         pcpu = smp_processor_id();
3723         vc->pcpu = pcpu;
3724         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3725
3726         local_irq_disable();
3727         hard_irq_disable();
3728         if (signal_pending(current))
3729                 goto sigpend;
3730         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
3731                 goto out;
3732
3733         kvmppc_core_prepare_to_enter(vcpu);
3734
3735         kvmppc_clear_host_core(pcpu);
3736
3737         local_paca->kvm_hstate.tid = 0;
3738         local_paca->kvm_hstate.napping = 0;
3739         local_paca->kvm_hstate.kvm_split_mode = NULL;
3740         kvmppc_start_thread(vcpu, vc);
3741         kvmppc_create_dtl_entry(vcpu, vc);
3742         trace_kvm_guest_enter(vcpu);
3743
3744         vc->vcore_state = VCORE_RUNNING;
3745         trace_kvmppc_run_core(vc, 0);
3746
3747         mtspr(SPRN_LPID, vc->kvm->arch.lpid);
3748         isync();
3749
3750         /* See comment above in kvmppc_run_core() about this */
3751         pcpu0 = pcpu;
3752         if (cpu_has_feature(CPU_FTR_ARCH_300))
3753                 pcpu0 &= ~0x3UL;
3754
3755         if (cpumask_test_cpu(pcpu0, &kvm->arch.need_tlb_flush)) {
3756                 radix__local_flush_tlb_lpid_guest(kvm->arch.lpid);
3757                 /* Clear the bit after the TLB flush */
3758                 cpumask_clear_cpu(pcpu0, &kvm->arch.need_tlb_flush);
3759         }
3760
3761         trace_hardirqs_on();
3762         guest_enter_irqoff();
3763
3764         srcu_idx = srcu_read_lock(&kvm->srcu);
3765
3766         this_cpu_disable_ftrace();
3767
3768         trap = kvmhv_p9_guest_entry(vcpu, time_limit);
3769         vcpu->arch.trap = trap;
3770
3771         this_cpu_enable_ftrace();
3772
3773         srcu_read_unlock(&kvm->srcu, srcu_idx);
3774
3775         mtspr(SPRN_LPID, kvm->arch.host_lpid);
3776         isync();
3777
3778         trace_hardirqs_off();
3779         set_irq_happened(trap);
3780
3781         kvmppc_set_host_core(pcpu);
3782
3783         local_irq_enable();
3784         guest_exit();
3785
3786         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
3787
3788         preempt_enable();
3789
3790         /* cancel pending decrementer exception if DEC is now positive */
3791         if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
3792                 kvmppc_core_dequeue_dec(vcpu);
3793
3794         trace_kvm_guest_exit(vcpu);
3795         r = RESUME_GUEST;
3796         if (trap)
3797                 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
3798         vcpu->arch.ret = r;
3799
3800         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
3801             !kvmppc_vcpu_woken(vcpu)) {
3802                 kvmppc_set_timer(vcpu);
3803                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
3804                         if (signal_pending(current)) {
3805                                 vcpu->stat.signal_exits++;
3806                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3807                                 vcpu->arch.ret = -EINTR;
3808                                 break;
3809                         }
3810                         spin_lock(&vc->lock);
3811                         kvmppc_vcore_blocked(vc);
3812                         spin_unlock(&vc->lock);
3813                 }
3814         }
3815         vcpu->arch.ceded = 0;
3816
3817         vc->vcore_state = VCORE_INACTIVE;
3818         trace_kvmppc_run_core(vc, 1);
3819
3820  done:
3821         kvmppc_remove_runnable(vc, vcpu);
3822         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3823
3824         return vcpu->arch.ret;
3825
3826  sigpend:
3827         vcpu->stat.signal_exits++;
3828         kvm_run->exit_reason = KVM_EXIT_INTR;
3829         vcpu->arch.ret = -EINTR;
3830  out:
3831         local_irq_enable();
3832         preempt_enable();
3833         goto done;
3834 }
3835
3836 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3837 {
3838         int r;
3839         int srcu_idx;
3840         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3841         unsigned long user_tar = 0;
3842         unsigned int user_vrsave;
3843         struct kvm *kvm;
3844
3845         if (!vcpu->arch.sane) {
3846                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3847                 return -EINVAL;
3848         }
3849
3850         /*
3851          * Don't allow entry with a suspended transaction, because
3852          * the guest entry/exit code will lose it.
3853          * If the guest has TM enabled, save away their TM-related SPRs
3854          * (they will get restored by the TM unavailable interrupt).
3855          */
3856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3857         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3858             (current->thread.regs->msr & MSR_TM)) {
3859                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3860                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3861                         run->fail_entry.hardware_entry_failure_reason = 0;
3862                         return -EINVAL;
3863                 }
3864                 /* Enable TM so we can read the TM SPRs */
3865                 mtmsr(mfmsr() | MSR_TM);
3866                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3867                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3868                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3869                 current->thread.regs->msr &= ~MSR_TM;
3870         }
3871 #endif
3872
3873         /*
3874          * Force online to 1 for the sake of old userspace which doesn't
3875          * set it.
3876          */
3877         if (!vcpu->arch.online) {
3878                 atomic_inc(&vcpu->arch.vcore->online_count);
3879                 vcpu->arch.online = 1;
3880         }
3881
3882         kvmppc_core_prepare_to_enter(vcpu);
3883
3884         /* No need to go into the guest when all we'll do is come back out */
3885         if (signal_pending(current)) {
3886                 run->exit_reason = KVM_EXIT_INTR;
3887                 return -EINTR;
3888         }
3889
3890         kvm = vcpu->kvm;
3891         atomic_inc(&kvm->arch.vcpus_running);
3892         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3893         smp_mb();
3894
3895         flush_all_to_thread(current);
3896
3897         /* Save userspace EBB and other register values */
3898         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3899                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3900                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3901                 ebb_regs[2] = mfspr(SPRN_BESCR);
3902                 user_tar = mfspr(SPRN_TAR);
3903         }
3904         user_vrsave = mfspr(SPRN_VRSAVE);
3905
3906         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3907         vcpu->arch.pgdir = current->mm->pgd;
3908         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3909
3910         do {
3911                 if (kvm->arch.threads_indep && kvm_is_radix(kvm))
3912                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0);
3913                 else
3914                         r = kvmppc_run_vcpu(run, vcpu);
3915
3916                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3917                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3918                         trace_kvm_hcall_enter(vcpu);
3919                         r = kvmppc_pseries_do_hcall(vcpu);
3920                         trace_kvm_hcall_exit(vcpu, r);
3921                         kvmppc_core_prepare_to_enter(vcpu);
3922                 } else if (r == RESUME_PAGE_FAULT) {
3923                         srcu_idx = srcu_read_lock(&kvm->srcu);
3924                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3925                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3926                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3927                 } else if (r == RESUME_PASSTHROUGH) {
3928                         if (WARN_ON(xive_enabled()))
3929                                 r = H_SUCCESS;
3930                         else
3931                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3932                 }
3933         } while (is_kvmppc_resume_guest(r));
3934
3935         /* Restore userspace EBB and other register values */
3936         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3937                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3938                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3939                 mtspr(SPRN_BESCR, ebb_regs[2]);
3940                 mtspr(SPRN_TAR, user_tar);
3941                 mtspr(SPRN_FSCR, current->thread.fscr);
3942         }
3943         mtspr(SPRN_VRSAVE, user_vrsave);
3944
3945         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3946         atomic_dec(&kvm->arch.vcpus_running);
3947         return r;
3948 }
3949
3950 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3951                                      int shift, int sllp)
3952 {
3953         (*sps)->page_shift = shift;
3954         (*sps)->slb_enc = sllp;
3955         (*sps)->enc[0].page_shift = shift;
3956         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3957         /*
3958          * Add 16MB MPSS support (may get filtered out by userspace)
3959          */
3960         if (shift != 24) {
3961                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3962                 if (penc != -1) {
3963                         (*sps)->enc[1].page_shift = 24;
3964                         (*sps)->enc[1].pte_enc = penc;
3965                 }
3966         }
3967         (*sps)++;
3968 }
3969
3970 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3971                                          struct kvm_ppc_smmu_info *info)
3972 {
3973         struct kvm_ppc_one_seg_page_size *sps;
3974
3975         /*
3976          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3977          * POWER7 doesn't support keys for instruction accesses,
3978          * POWER8 and POWER9 do.
3979          */
3980         info->data_keys = 32;
3981         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3982
3983         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3984         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3985         info->slb_size = 32;
3986
3987         /* We only support these sizes for now, and no muti-size segments */
3988         sps = &info->sps[0];
3989         kvmppc_add_seg_page_size(&sps, 12, 0);
3990         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3991         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3992
3993         return 0;
3994 }
3995
3996 /*
3997  * Get (and clear) the dirty memory log for a memory slot.
3998  */
3999 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4000                                          struct kvm_dirty_log *log)
4001 {
4002         struct kvm_memslots *slots;
4003         struct kvm_memory_slot *memslot;
4004         int i, r;
4005         unsigned long n;
4006         unsigned long *buf, *p;
4007         struct kvm_vcpu *vcpu;
4008
4009         mutex_lock(&kvm->slots_lock);
4010
4011         r = -EINVAL;
4012         if (log->slot >= KVM_USER_MEM_SLOTS)
4013                 goto out;
4014
4015         slots = kvm_memslots(kvm);
4016         memslot = id_to_memslot(slots, log->slot);
4017         r = -ENOENT;
4018         if (!memslot->dirty_bitmap)
4019                 goto out;
4020
4021         /*
4022          * Use second half of bitmap area because both HPT and radix
4023          * accumulate bits in the first half.
4024          */
4025         n = kvm_dirty_bitmap_bytes(memslot);
4026         buf = memslot->dirty_bitmap + n / sizeof(long);
4027         memset(buf, 0, n);
4028
4029         if (kvm_is_radix(kvm))
4030                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4031         else
4032                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4033         if (r)
4034                 goto out;
4035
4036         /*
4037          * We accumulate dirty bits in the first half of the
4038          * memslot's dirty_bitmap area, for when pages are paged
4039          * out or modified by the host directly.  Pick up these
4040          * bits and add them to the map.
4041          */
4042         p = memslot->dirty_bitmap;
4043         for (i = 0; i < n / sizeof(long); ++i)
4044                 buf[i] |= xchg(&p[i], 0);
4045
4046         /* Harvest dirty bits from VPA and DTL updates */
4047         /* Note: we never modify the SLB shadow buffer areas */
4048         kvm_for_each_vcpu(i, vcpu, kvm) {
4049                 spin_lock(&vcpu->arch.vpa_update_lock);
4050                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4051                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4052                 spin_unlock(&vcpu->arch.vpa_update_lock);
4053         }
4054
4055         r = -EFAULT;
4056         if (copy_to_user(log->dirty_bitmap, buf, n))
4057                 goto out;
4058
4059         r = 0;
4060 out:
4061         mutex_unlock(&kvm->slots_lock);
4062         return r;
4063 }
4064
4065 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4066                                         struct kvm_memory_slot *dont)
4067 {
4068         if (!dont || free->arch.rmap != dont->arch.rmap) {
4069                 vfree(free->arch.rmap);
4070                 free->arch.rmap = NULL;
4071         }
4072 }
4073
4074 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4075                                          unsigned long npages)
4076 {
4077         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4078         if (!slot->arch.rmap)
4079                 return -ENOMEM;
4080
4081         return 0;
4082 }
4083
4084 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4085                                         struct kvm_memory_slot *memslot,
4086                                         const struct kvm_userspace_memory_region *mem)
4087 {
4088         return 0;
4089 }
4090
4091 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4092                                 const struct kvm_userspace_memory_region *mem,
4093                                 const struct kvm_memory_slot *old,
4094                                 const struct kvm_memory_slot *new)
4095 {
4096         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4097
4098         /*
4099          * If we are making a new memslot, it might make
4100          * some address that was previously cached as emulated
4101          * MMIO be no longer emulated MMIO, so invalidate
4102          * all the caches of emulated MMIO translations.
4103          */
4104         if (npages)
4105                 atomic64_inc(&kvm->arch.mmio_update);
4106 }
4107
4108 /*
4109  * Update LPCR values in kvm->arch and in vcores.
4110  * Caller must hold kvm->lock.
4111  */
4112 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4113 {
4114         long int i;
4115         u32 cores_done = 0;
4116
4117         if ((kvm->arch.lpcr & mask) == lpcr)
4118                 return;
4119
4120         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4121
4122         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4123                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4124                 if (!vc)
4125                         continue;
4126                 spin_lock(&vc->lock);
4127                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4128                 spin_unlock(&vc->lock);
4129                 if (++cores_done >= kvm->arch.online_vcores)
4130                         break;
4131         }
4132 }
4133
4134 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4135 {
4136         return;
4137 }
4138
4139 void kvmppc_setup_partition_table(struct kvm *kvm)
4140 {
4141         unsigned long dw0, dw1;
4142
4143         if (!kvm_is_radix(kvm)) {
4144                 /* PS field - page size for VRMA */
4145                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4146                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4147                 /* HTABSIZE and HTABORG fields */
4148                 dw0 |= kvm->arch.sdr1;
4149
4150                 /* Second dword as set by userspace */
4151                 dw1 = kvm->arch.process_table;
4152         } else {
4153                 dw0 = PATB_HR | radix__get_tree_size() |
4154                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4155                 dw1 = PATB_GR | kvm->arch.process_table;
4156         }
4157
4158         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
4159 }
4160
4161 /*
4162  * Set up HPT (hashed page table) and RMA (real-mode area).
4163  * Must be called with kvm->lock held.
4164  */
4165 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4166 {
4167         int err = 0;
4168         struct kvm *kvm = vcpu->kvm;
4169         unsigned long hva;
4170         struct kvm_memory_slot *memslot;
4171         struct vm_area_struct *vma;
4172         unsigned long lpcr = 0, senc;
4173         unsigned long psize, porder;
4174         int srcu_idx;
4175
4176         /* Allocate hashed page table (if not done already) and reset it */
4177         if (!kvm->arch.hpt.virt) {
4178                 int order = KVM_DEFAULT_HPT_ORDER;
4179                 struct kvm_hpt_info info;
4180
4181                 err = kvmppc_allocate_hpt(&info, order);
4182                 /* If we get here, it means userspace didn't specify a
4183                  * size explicitly.  So, try successively smaller
4184                  * sizes if the default failed. */
4185                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4186                         err  = kvmppc_allocate_hpt(&info, order);
4187
4188                 if (err < 0) {
4189                         pr_err("KVM: Couldn't alloc HPT\n");
4190                         goto out;
4191                 }
4192
4193                 kvmppc_set_hpt(kvm, &info);
4194         }
4195
4196         /* Look up the memslot for guest physical address 0 */
4197         srcu_idx = srcu_read_lock(&kvm->srcu);
4198         memslot = gfn_to_memslot(kvm, 0);
4199
4200         /* We must have some memory at 0 by now */
4201         err = -EINVAL;
4202         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4203                 goto out_srcu;
4204
4205         /* Look up the VMA for the start of this memory slot */
4206         hva = memslot->userspace_addr;
4207         down_read(&current->mm->mmap_sem);
4208         vma = find_vma(current->mm, hva);
4209         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4210                 goto up_out;
4211
4212         psize = vma_kernel_pagesize(vma);
4213
4214         up_read(&current->mm->mmap_sem);
4215
4216         /* We can handle 4k, 64k or 16M pages in the VRMA */
4217         if (psize >= 0x1000000)
4218                 psize = 0x1000000;
4219         else if (psize >= 0x10000)
4220                 psize = 0x10000;
4221         else
4222                 psize = 0x1000;
4223         porder = __ilog2(psize);
4224
4225         senc = slb_pgsize_encoding(psize);
4226         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4227                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4228         /* Create HPTEs in the hash page table for the VRMA */
4229         kvmppc_map_vrma(vcpu, memslot, porder);
4230
4231         /* Update VRMASD field in the LPCR */
4232         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4233                 /* the -4 is to account for senc values starting at 0x10 */
4234                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4235                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4236         }
4237
4238         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4239         smp_wmb();
4240         err = 0;
4241  out_srcu:
4242         srcu_read_unlock(&kvm->srcu, srcu_idx);
4243  out:
4244         return err;
4245
4246  up_out:
4247         up_read(&current->mm->mmap_sem);
4248         goto out_srcu;
4249 }
4250
4251 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4252 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4253 {
4254         kvmppc_free_radix(kvm);
4255         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4256                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4257         kvmppc_rmap_reset(kvm);
4258         kvm->arch.radix = 0;
4259         kvm->arch.process_table = 0;
4260         return 0;
4261 }
4262
4263 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4264 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4265 {
4266         int err;
4267
4268         err = kvmppc_init_vm_radix(kvm);
4269         if (err)
4270                 return err;
4271
4272         kvmppc_free_hpt(&kvm->arch.hpt);
4273         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4274                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4275         kvm->arch.radix = 1;
4276         return 0;
4277 }
4278
4279 #ifdef CONFIG_KVM_XICS
4280 /*
4281  * Allocate a per-core structure for managing state about which cores are
4282  * running in the host versus the guest and for exchanging data between
4283  * real mode KVM and CPU running in the host.
4284  * This is only done for the first VM.
4285  * The allocated structure stays even if all VMs have stopped.
4286  * It is only freed when the kvm-hv module is unloaded.
4287  * It's OK for this routine to fail, we just don't support host
4288  * core operations like redirecting H_IPI wakeups.
4289  */
4290 void kvmppc_alloc_host_rm_ops(void)
4291 {
4292         struct kvmppc_host_rm_ops *ops;
4293         unsigned long l_ops;
4294         int cpu, core;
4295         int size;
4296
4297         /* Not the first time here ? */
4298         if (kvmppc_host_rm_ops_hv != NULL)
4299                 return;
4300
4301         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4302         if (!ops)
4303                 return;
4304
4305         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4306         ops->rm_core = kzalloc(size, GFP_KERNEL);
4307
4308         if (!ops->rm_core) {
4309                 kfree(ops);
4310                 return;
4311         }
4312
4313         cpus_read_lock();
4314
4315         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4316                 if (!cpu_online(cpu))
4317                         continue;
4318
4319                 core = cpu >> threads_shift;
4320                 ops->rm_core[core].rm_state.in_host = 1;
4321         }
4322
4323         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4324
4325         /*
4326          * Make the contents of the kvmppc_host_rm_ops structure visible
4327          * to other CPUs before we assign it to the global variable.
4328          * Do an atomic assignment (no locks used here), but if someone
4329          * beats us to it, just free our copy and return.
4330          */
4331         smp_wmb();
4332         l_ops = (unsigned long) ops;
4333
4334         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4335                 cpus_read_unlock();
4336                 kfree(ops->rm_core);
4337                 kfree(ops);
4338                 return;
4339         }
4340
4341         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4342                                              "ppc/kvm_book3s:prepare",
4343                                              kvmppc_set_host_core,
4344                                              kvmppc_clear_host_core);
4345         cpus_read_unlock();
4346 }
4347
4348 void kvmppc_free_host_rm_ops(void)
4349 {
4350         if (kvmppc_host_rm_ops_hv) {
4351                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4352                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4353                 kfree(kvmppc_host_rm_ops_hv);
4354                 kvmppc_host_rm_ops_hv = NULL;
4355         }
4356 }
4357 #endif
4358
4359 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4360 {
4361         unsigned long lpcr, lpid;
4362         char buf[32];
4363         int ret;
4364
4365         /* Allocate the guest's logical partition ID */
4366
4367         lpid = kvmppc_alloc_lpid();
4368         if ((long)lpid < 0)
4369                 return -ENOMEM;
4370         kvm->arch.lpid = lpid;
4371
4372         kvmppc_alloc_host_rm_ops();
4373
4374         /*
4375          * Since we don't flush the TLB when tearing down a VM,
4376          * and this lpid might have previously been used,
4377          * make sure we flush on each core before running the new VM.
4378          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4379          * does this flush for us.
4380          */
4381         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4382                 cpumask_setall(&kvm->arch.need_tlb_flush);
4383
4384         /* Start out with the default set of hcalls enabled */
4385         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4386                sizeof(kvm->arch.enabled_hcalls));
4387
4388         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4389                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4390
4391         /* Init LPCR for virtual RMA mode */
4392         kvm->arch.host_lpid = mfspr(SPRN_LPID);
4393         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4394         lpcr &= LPCR_PECE | LPCR_LPES;
4395         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4396                 LPCR_VPM0 | LPCR_VPM1;
4397         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4398                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4399         /* On POWER8 turn on online bit to enable PURR/SPURR */
4400         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4401                 lpcr |= LPCR_ONL;
4402         /*
4403          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4404          * Set HVICE bit to enable hypervisor virtualization interrupts.
4405          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4406          * be unnecessary but better safe than sorry in case we re-enable
4407          * EE in HV mode with this LPCR still set)
4408          */
4409         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4410                 lpcr &= ~LPCR_VPM0;
4411                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4412
4413                 /*
4414                  * If xive is enabled, we route 0x500 interrupts directly
4415                  * to the guest.
4416                  */
4417                 if (xive_enabled())
4418                         lpcr |= LPCR_LPES;
4419         }
4420
4421         /*
4422          * If the host uses radix, the guest starts out as radix.
4423          */
4424         if (radix_enabled()) {
4425                 kvm->arch.radix = 1;
4426                 kvm->arch.mmu_ready = 1;
4427                 lpcr &= ~LPCR_VPM1;
4428                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4429                 ret = kvmppc_init_vm_radix(kvm);
4430                 if (ret) {
4431                         kvmppc_free_lpid(kvm->arch.lpid);
4432                         return ret;
4433                 }
4434                 kvmppc_setup_partition_table(kvm);
4435         }
4436
4437         kvm->arch.lpcr = lpcr;
4438
4439         /* Initialization for future HPT resizes */
4440         kvm->arch.resize_hpt = NULL;
4441
4442         /*
4443          * Work out how many sets the TLB has, for the use of
4444          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4445          */
4446         if (radix_enabled())
4447                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4448         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4449                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4450         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4451                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4452         else
4453                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4454
4455         /*
4456          * Track that we now have a HV mode VM active. This blocks secondary
4457          * CPU threads from coming online.
4458          * On POWER9, we only need to do this if the "indep_threads_mode"
4459          * module parameter has been set to N.
4460          */
4461         if (cpu_has_feature(CPU_FTR_ARCH_300))
4462                 kvm->arch.threads_indep = indep_threads_mode;
4463         if (!kvm->arch.threads_indep)
4464                 kvm_hv_vm_activated();
4465
4466         /*
4467          * Initialize smt_mode depending on processor.
4468          * POWER8 and earlier have to use "strict" threading, where
4469          * all vCPUs in a vcore have to run on the same (sub)core,
4470          * whereas on POWER9 the threads can each run a different
4471          * guest.
4472          */
4473         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4474                 kvm->arch.smt_mode = threads_per_subcore;
4475         else
4476                 kvm->arch.smt_mode = 1;
4477         kvm->arch.emul_smt_mode = 1;
4478
4479         /*
4480          * Create a debugfs directory for the VM
4481          */
4482         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4483         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4484         kvmppc_mmu_debugfs_init(kvm);
4485
4486         return 0;
4487 }
4488
4489 static void kvmppc_free_vcores(struct kvm *kvm)
4490 {
4491         long int i;
4492
4493         for (i = 0; i < KVM_MAX_VCORES; ++i)
4494                 kfree(kvm->arch.vcores[i]);
4495         kvm->arch.online_vcores = 0;
4496 }
4497
4498 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4499 {
4500         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4501
4502         if (!kvm->arch.threads_indep)
4503                 kvm_hv_vm_deactivated();
4504
4505         kvmppc_free_vcores(kvm);
4506
4507         kvmppc_free_lpid(kvm->arch.lpid);
4508
4509         if (kvm_is_radix(kvm))
4510                 kvmppc_free_radix(kvm);
4511         else
4512                 kvmppc_free_hpt(&kvm->arch.hpt);
4513
4514         kvmppc_free_pimap(kvm);
4515 }
4516
4517 /* We don't need to emulate any privileged instructions or dcbz */
4518 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4519                                      unsigned int inst, int *advance)
4520 {
4521         return EMULATE_FAIL;
4522 }
4523
4524 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4525                                         ulong spr_val)
4526 {
4527         return EMULATE_FAIL;
4528 }
4529
4530 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4531                                         ulong *spr_val)
4532 {
4533         return EMULATE_FAIL;
4534 }
4535
4536 static int kvmppc_core_check_processor_compat_hv(void)
4537 {
4538         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4539             !cpu_has_feature(CPU_FTR_ARCH_206))
4540                 return -EIO;
4541
4542         return 0;
4543 }
4544
4545 #ifdef CONFIG_KVM_XICS
4546
4547 void kvmppc_free_pimap(struct kvm *kvm)
4548 {
4549         kfree(kvm->arch.pimap);
4550 }
4551
4552 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4553 {
4554         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4555 }
4556
4557 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4558 {
4559         struct irq_desc *desc;
4560         struct kvmppc_irq_map *irq_map;
4561         struct kvmppc_passthru_irqmap *pimap;
4562         struct irq_chip *chip;
4563         int i, rc = 0;
4564
4565         if (!kvm_irq_bypass)
4566                 return 1;
4567
4568         desc = irq_to_desc(host_irq);
4569         if (!desc)
4570                 return -EIO;
4571
4572         mutex_lock(&kvm->lock);
4573
4574         pimap = kvm->arch.pimap;
4575         if (pimap == NULL) {
4576                 /* First call, allocate structure to hold IRQ map */
4577                 pimap = kvmppc_alloc_pimap();
4578                 if (pimap == NULL) {
4579                         mutex_unlock(&kvm->lock);
4580                         return -ENOMEM;
4581                 }
4582                 kvm->arch.pimap = pimap;
4583         }
4584
4585         /*
4586          * For now, we only support interrupts for which the EOI operation
4587          * is an OPAL call followed by a write to XIRR, since that's
4588          * what our real-mode EOI code does, or a XIVE interrupt
4589          */
4590         chip = irq_data_get_irq_chip(&desc->irq_data);
4591         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4592                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4593                         host_irq, guest_gsi);
4594                 mutex_unlock(&kvm->lock);
4595                 return -ENOENT;
4596         }
4597
4598         /*
4599          * See if we already have an entry for this guest IRQ number.
4600          * If it's mapped to a hardware IRQ number, that's an error,
4601          * otherwise re-use this entry.
4602          */
4603         for (i = 0; i < pimap->n_mapped; i++) {
4604                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4605                         if (pimap->mapped[i].r_hwirq) {
4606                                 mutex_unlock(&kvm->lock);
4607                                 return -EINVAL;
4608                         }
4609                         break;
4610                 }
4611         }
4612
4613         if (i == KVMPPC_PIRQ_MAPPED) {
4614                 mutex_unlock(&kvm->lock);
4615                 return -EAGAIN;         /* table is full */
4616         }
4617
4618         irq_map = &pimap->mapped[i];
4619
4620         irq_map->v_hwirq = guest_gsi;
4621         irq_map->desc = desc;
4622
4623         /*
4624          * Order the above two stores before the next to serialize with
4625          * the KVM real mode handler.
4626          */
4627         smp_wmb();
4628         irq_map->r_hwirq = desc->irq_data.hwirq;
4629
4630         if (i == pimap->n_mapped)
4631                 pimap->n_mapped++;
4632
4633         if (xive_enabled())
4634                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4635         else
4636                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4637         if (rc)
4638                 irq_map->r_hwirq = 0;
4639
4640         mutex_unlock(&kvm->lock);
4641
4642         return 0;
4643 }
4644
4645 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4646 {
4647         struct irq_desc *desc;
4648         struct kvmppc_passthru_irqmap *pimap;
4649         int i, rc = 0;
4650
4651         if (!kvm_irq_bypass)
4652                 return 0;
4653
4654         desc = irq_to_desc(host_irq);
4655         if (!desc)
4656                 return -EIO;
4657
4658         mutex_lock(&kvm->lock);
4659         if (!kvm->arch.pimap)
4660                 goto unlock;
4661
4662         pimap = kvm->arch.pimap;
4663
4664         for (i = 0; i < pimap->n_mapped; i++) {
4665                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4666                         break;
4667         }
4668
4669         if (i == pimap->n_mapped) {
4670                 mutex_unlock(&kvm->lock);
4671                 return -ENODEV;
4672         }
4673
4674         if (xive_enabled())
4675                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4676         else
4677                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4678
4679         /* invalidate the entry (what do do on error from the above ?) */
4680         pimap->mapped[i].r_hwirq = 0;
4681
4682         /*
4683          * We don't free this structure even when the count goes to
4684          * zero. The structure is freed when we destroy the VM.
4685          */
4686  unlock:
4687         mutex_unlock(&kvm->lock);
4688         return rc;
4689 }
4690
4691 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4692                                              struct irq_bypass_producer *prod)
4693 {
4694         int ret = 0;
4695         struct kvm_kernel_irqfd *irqfd =
4696                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4697
4698         irqfd->producer = prod;
4699
4700         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4701         if (ret)
4702                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4703                         prod->irq, irqfd->gsi, ret);
4704
4705         return ret;
4706 }
4707
4708 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4709                                               struct irq_bypass_producer *prod)
4710 {
4711         int ret;
4712         struct kvm_kernel_irqfd *irqfd =
4713                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4714
4715         irqfd->producer = NULL;
4716
4717         /*
4718          * When producer of consumer is unregistered, we change back to
4719          * default external interrupt handling mode - KVM real mode
4720          * will switch back to host.
4721          */
4722         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4723         if (ret)
4724                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4725                         prod->irq, irqfd->gsi, ret);
4726 }
4727 #endif
4728
4729 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4730                                  unsigned int ioctl, unsigned long arg)
4731 {
4732         struct kvm *kvm __maybe_unused = filp->private_data;
4733         void __user *argp = (void __user *)arg;
4734         long r;
4735
4736         switch (ioctl) {
4737
4738         case KVM_PPC_ALLOCATE_HTAB: {
4739                 u32 htab_order;
4740
4741                 r = -EFAULT;
4742                 if (get_user(htab_order, (u32 __user *)argp))
4743                         break;
4744                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4745                 if (r)
4746                         break;
4747                 r = 0;
4748                 break;
4749         }
4750
4751         case KVM_PPC_GET_HTAB_FD: {
4752                 struct kvm_get_htab_fd ghf;
4753
4754                 r = -EFAULT;
4755                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4756                         break;
4757                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4758                 break;
4759         }
4760
4761         case KVM_PPC_RESIZE_HPT_PREPARE: {
4762                 struct kvm_ppc_resize_hpt rhpt;
4763
4764                 r = -EFAULT;
4765                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4766                         break;
4767
4768                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4769                 break;
4770         }
4771
4772         case KVM_PPC_RESIZE_HPT_COMMIT: {
4773                 struct kvm_ppc_resize_hpt rhpt;
4774
4775                 r = -EFAULT;
4776                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4777                         break;
4778
4779                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4780                 break;
4781         }
4782
4783         default:
4784                 r = -ENOTTY;
4785         }
4786
4787         return r;
4788 }
4789
4790 /*
4791  * List of hcall numbers to enable by default.
4792  * For compatibility with old userspace, we enable by default
4793  * all hcalls that were implemented before the hcall-enabling
4794  * facility was added.  Note this list should not include H_RTAS.
4795  */
4796 static unsigned int default_hcall_list[] = {
4797         H_REMOVE,
4798         H_ENTER,
4799         H_READ,
4800         H_PROTECT,
4801         H_BULK_REMOVE,
4802         H_GET_TCE,
4803         H_PUT_TCE,
4804         H_SET_DABR,
4805         H_SET_XDABR,
4806         H_CEDE,
4807         H_PROD,
4808         H_CONFER,
4809         H_REGISTER_VPA,
4810 #ifdef CONFIG_KVM_XICS
4811         H_EOI,
4812         H_CPPR,
4813         H_IPI,
4814         H_IPOLL,
4815         H_XIRR,
4816         H_XIRR_X,
4817 #endif
4818         0
4819 };
4820
4821 static void init_default_hcalls(void)
4822 {
4823         int i;
4824         unsigned int hcall;
4825
4826         for (i = 0; default_hcall_list[i]; ++i) {
4827                 hcall = default_hcall_list[i];
4828                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4829                 __set_bit(hcall / 4, default_enabled_hcalls);
4830         }
4831 }
4832
4833 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4834 {
4835         unsigned long lpcr;
4836         int radix;
4837         int err;
4838
4839         /* If not on a POWER9, reject it */
4840         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4841                 return -ENODEV;
4842
4843         /* If any unknown flags set, reject it */
4844         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4845                 return -EINVAL;
4846
4847         /* GR (guest radix) bit in process_table field must match */
4848         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4849         if (!!(cfg->process_table & PATB_GR) != radix)
4850                 return -EINVAL;
4851
4852         /* Process table size field must be reasonable, i.e. <= 24 */
4853         if ((cfg->process_table & PRTS_MASK) > 24)
4854                 return -EINVAL;
4855
4856         /* We can change a guest to/from radix now, if the host is radix */
4857         if (radix && !radix_enabled())
4858                 return -EINVAL;
4859
4860         mutex_lock(&kvm->lock);
4861         if (radix != kvm_is_radix(kvm)) {
4862                 if (kvm->arch.mmu_ready) {
4863                         kvm->arch.mmu_ready = 0;
4864                         /* order mmu_ready vs. vcpus_running */
4865                         smp_mb();
4866                         if (atomic_read(&kvm->arch.vcpus_running)) {
4867                                 kvm->arch.mmu_ready = 1;
4868                                 err = -EBUSY;
4869                                 goto out_unlock;
4870                         }
4871                 }
4872                 if (radix)
4873                         err = kvmppc_switch_mmu_to_radix(kvm);
4874                 else
4875                         err = kvmppc_switch_mmu_to_hpt(kvm);
4876                 if (err)
4877                         goto out_unlock;
4878         }
4879
4880         kvm->arch.process_table = cfg->process_table;
4881         kvmppc_setup_partition_table(kvm);
4882
4883         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4884         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4885         err = 0;
4886
4887  out_unlock:
4888         mutex_unlock(&kvm->lock);
4889         return err;
4890 }
4891
4892 static struct kvmppc_ops kvm_ops_hv = {
4893         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4894         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4895         .get_one_reg = kvmppc_get_one_reg_hv,
4896         .set_one_reg = kvmppc_set_one_reg_hv,
4897         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4898         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4899         .set_msr     = kvmppc_set_msr_hv,
4900         .vcpu_run    = kvmppc_vcpu_run_hv,
4901         .vcpu_create = kvmppc_core_vcpu_create_hv,
4902         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4903         .check_requests = kvmppc_core_check_requests_hv,
4904         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4905         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4906         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4907         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4908         .unmap_hva_range = kvm_unmap_hva_range_hv,
4909         .age_hva  = kvm_age_hva_hv,
4910         .test_age_hva = kvm_test_age_hva_hv,
4911         .set_spte_hva = kvm_set_spte_hva_hv,
4912         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4913         .free_memslot = kvmppc_core_free_memslot_hv,
4914         .create_memslot = kvmppc_core_create_memslot_hv,
4915         .init_vm =  kvmppc_core_init_vm_hv,
4916         .destroy_vm = kvmppc_core_destroy_vm_hv,
4917         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4918         .emulate_op = kvmppc_core_emulate_op_hv,
4919         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4920         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4921         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4922         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4923         .hcall_implemented = kvmppc_hcall_impl_hv,
4924 #ifdef CONFIG_KVM_XICS
4925         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4926         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4927 #endif
4928         .configure_mmu = kvmhv_configure_mmu,
4929         .get_rmmu_info = kvmhv_get_rmmu_info,
4930         .set_smt_mode = kvmhv_set_smt_mode,
4931 };
4932
4933 static int kvm_init_subcore_bitmap(void)
4934 {
4935         int i, j;
4936         int nr_cores = cpu_nr_cores();
4937         struct sibling_subcore_state *sibling_subcore_state;
4938
4939         for (i = 0; i < nr_cores; i++) {
4940                 int first_cpu = i * threads_per_core;
4941                 int node = cpu_to_node(first_cpu);
4942
4943                 /* Ignore if it is already allocated. */
4944                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4945                         continue;
4946
4947                 sibling_subcore_state =
4948                         kmalloc_node(sizeof(struct sibling_subcore_state),
4949                                                         GFP_KERNEL, node);
4950                 if (!sibling_subcore_state)
4951                         return -ENOMEM;
4952
4953                 memset(sibling_subcore_state, 0,
4954                                 sizeof(struct sibling_subcore_state));
4955
4956                 for (j = 0; j < threads_per_core; j++) {
4957                         int cpu = first_cpu + j;
4958
4959                         paca_ptrs[cpu]->sibling_subcore_state =
4960                                                 sibling_subcore_state;
4961                 }
4962         }
4963         return 0;
4964 }
4965
4966 static int kvmppc_radix_possible(void)
4967 {
4968         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4969 }
4970
4971 static int kvmppc_book3s_init_hv(void)
4972 {
4973         int r;
4974         /*
4975          * FIXME!! Do we need to check on all cpus ?
4976          */
4977         r = kvmppc_core_check_processor_compat_hv();
4978         if (r < 0)
4979                 return -ENODEV;
4980
4981         r = kvm_init_subcore_bitmap();
4982         if (r)
4983                 return r;
4984
4985         /*
4986          * We need a way of accessing the XICS interrupt controller,
4987          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4988          * indirectly, via OPAL.
4989          */
4990 #ifdef CONFIG_SMP
4991         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4992                 struct device_node *np;
4993
4994                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4995                 if (!np) {
4996                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4997                         return -ENODEV;
4998                 }
4999                 /* presence of intc confirmed - node can be dropped again */
5000                 of_node_put(np);
5001         }
5002 #endif
5003
5004         kvm_ops_hv.owner = THIS_MODULE;
5005         kvmppc_hv_ops = &kvm_ops_hv;
5006
5007         init_default_hcalls();
5008
5009         init_vcore_lists();
5010
5011         r = kvmppc_mmu_hv_init();
5012         if (r)
5013                 return r;
5014
5015         if (kvmppc_radix_possible())
5016                 r = kvmppc_radix_init();
5017
5018         /*
5019          * POWER9 chips before version 2.02 can't have some threads in
5020          * HPT mode and some in radix mode on the same core.
5021          */
5022         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5023                 unsigned int pvr = mfspr(SPRN_PVR);
5024                 if ((pvr >> 16) == PVR_POWER9 &&
5025                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5026                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5027                         no_mixing_hpt_and_radix = true;
5028         }
5029
5030         return r;
5031 }
5032
5033 static void kvmppc_book3s_exit_hv(void)
5034 {
5035         kvmppc_free_host_rm_ops();
5036         if (kvmppc_radix_possible())
5037                 kvmppc_radix_exit();
5038         kvmppc_hv_ops = NULL;
5039 }
5040
5041 module_init(kvmppc_book3s_init_hv);
5042 module_exit(kvmppc_book3s_exit_hv);
5043 MODULE_LICENSE("GPL");
5044 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5045 MODULE_ALIAS("devname:kvm");