Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/disassemble.h>
52 #include <asm/cputable.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74
75 #include "book3s.h"
76
77 #define CREATE_TRACE_POINTS
78 #include "trace_hv.h"
79
80 /* #define EXIT_DEBUG */
81 /* #define EXIT_DEBUG_SIMPLE */
82 /* #define EXIT_DEBUG_INT */
83
84 /* Used to indicate that a guest page fault needs to be handled */
85 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
86 /* Used to indicate that a guest passthrough interrupt needs to be handled */
87 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
88
89 /* Used as a "null" value for timebase values */
90 #define TB_NIL  (~(u64)0)
91
92 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
93
94 static int dynamic_mt_modes = 6;
95 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
96 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
97 static int target_smt_mode;
98 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
100
101 #ifdef CONFIG_KVM_XICS
102 static struct kernel_param_ops module_param_ops = {
103         .set = param_set_int,
104         .get = param_get_int,
105 };
106
107 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
108                                                         S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
110
111 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
112                                                         S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
114 #endif
115
116 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
117 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
118
119 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
120                 int *ip)
121 {
122         int i = *ip;
123         struct kvm_vcpu *vcpu;
124
125         while (++i < MAX_SMT_THREADS) {
126                 vcpu = READ_ONCE(vc->runnable_threads[i]);
127                 if (vcpu) {
128                         *ip = i;
129                         return vcpu;
130                 }
131         }
132         return NULL;
133 }
134
135 /* Used to traverse the list of runnable threads for a given vcore */
136 #define for_each_runnable_thread(i, vcpu, vc) \
137         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
138
139 static bool kvmppc_ipi_thread(int cpu)
140 {
141         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
142
143         /* On POWER9 we can use msgsnd to IPI any cpu */
144         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
145                 msg |= get_hard_smp_processor_id(cpu);
146                 smp_mb();
147                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
148                 return true;
149         }
150
151         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
152         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
153                 preempt_disable();
154                 if (cpu_first_thread_sibling(cpu) ==
155                     cpu_first_thread_sibling(smp_processor_id())) {
156                         msg |= cpu_thread_in_core(cpu);
157                         smp_mb();
158                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
159                         preempt_enable();
160                         return true;
161                 }
162                 preempt_enable();
163         }
164
165 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
166         if (cpu >= 0 && cpu < nr_cpu_ids) {
167                 if (paca[cpu].kvm_hstate.xics_phys) {
168                         xics_wake_cpu(cpu);
169                         return true;
170                 }
171                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
172                 return true;
173         }
174 #endif
175
176         return false;
177 }
178
179 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
180 {
181         int cpu;
182         struct swait_queue_head *wqp;
183
184         wqp = kvm_arch_vcpu_wq(vcpu);
185         if (swq_has_sleeper(wqp)) {
186                 swake_up(wqp);
187                 ++vcpu->stat.halt_wakeup;
188         }
189
190         cpu = READ_ONCE(vcpu->arch.thread_cpu);
191         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
192                 return;
193
194         /* CPU points to the first thread of the core */
195         cpu = vcpu->cpu;
196         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
197                 smp_send_reschedule(cpu);
198 }
199
200 /*
201  * We use the vcpu_load/put functions to measure stolen time.
202  * Stolen time is counted as time when either the vcpu is able to
203  * run as part of a virtual core, but the task running the vcore
204  * is preempted or sleeping, or when the vcpu needs something done
205  * in the kernel by the task running the vcpu, but that task is
206  * preempted or sleeping.  Those two things have to be counted
207  * separately, since one of the vcpu tasks will take on the job
208  * of running the core, and the other vcpu tasks in the vcore will
209  * sleep waiting for it to do that, but that sleep shouldn't count
210  * as stolen time.
211  *
212  * Hence we accumulate stolen time when the vcpu can run as part of
213  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
214  * needs its task to do other things in the kernel (for example,
215  * service a page fault) in busy_stolen.  We don't accumulate
216  * stolen time for a vcore when it is inactive, or for a vcpu
217  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
218  * a misnomer; it means that the vcpu task is not executing in
219  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
220  * the kernel.  We don't have any way of dividing up that time
221  * between time that the vcpu is genuinely stopped, time that
222  * the task is actively working on behalf of the vcpu, and time
223  * that the task is preempted, so we don't count any of it as
224  * stolen.
225  *
226  * Updates to busy_stolen are protected by arch.tbacct_lock;
227  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
228  * lock.  The stolen times are measured in units of timebase ticks.
229  * (Note that the != TB_NIL checks below are purely defensive;
230  * they should never fail.)
231  */
232
233 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
234 {
235         unsigned long flags;
236
237         spin_lock_irqsave(&vc->stoltb_lock, flags);
238         vc->preempt_tb = mftb();
239         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
240 }
241
242 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
243 {
244         unsigned long flags;
245
246         spin_lock_irqsave(&vc->stoltb_lock, flags);
247         if (vc->preempt_tb != TB_NIL) {
248                 vc->stolen_tb += mftb() - vc->preempt_tb;
249                 vc->preempt_tb = TB_NIL;
250         }
251         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
252 }
253
254 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
255 {
256         struct kvmppc_vcore *vc = vcpu->arch.vcore;
257         unsigned long flags;
258
259         /*
260          * We can test vc->runner without taking the vcore lock,
261          * because only this task ever sets vc->runner to this
262          * vcpu, and once it is set to this vcpu, only this task
263          * ever sets it to NULL.
264          */
265         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
266                 kvmppc_core_end_stolen(vc);
267
268         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
269         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
270             vcpu->arch.busy_preempt != TB_NIL) {
271                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
272                 vcpu->arch.busy_preempt = TB_NIL;
273         }
274         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
275 }
276
277 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
278 {
279         struct kvmppc_vcore *vc = vcpu->arch.vcore;
280         unsigned long flags;
281
282         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
283                 kvmppc_core_start_stolen(vc);
284
285         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
286         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
287                 vcpu->arch.busy_preempt = mftb();
288         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
289 }
290
291 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
292 {
293         /*
294          * Check for illegal transactional state bit combination
295          * and if we find it, force the TS field to a safe state.
296          */
297         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
298                 msr &= ~MSR_TS_MASK;
299         vcpu->arch.shregs.msr = msr;
300         kvmppc_end_cede(vcpu);
301 }
302
303 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
304 {
305         vcpu->arch.pvr = pvr;
306 }
307
308 /* Dummy value used in computing PCR value below */
309 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
310
311 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
312 {
313         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
314         struct kvmppc_vcore *vc = vcpu->arch.vcore;
315
316         /* We can (emulate) our own architecture version and anything older */
317         if (cpu_has_feature(CPU_FTR_ARCH_300))
318                 host_pcr_bit = PCR_ARCH_300;
319         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
320                 host_pcr_bit = PCR_ARCH_207;
321         else if (cpu_has_feature(CPU_FTR_ARCH_206))
322                 host_pcr_bit = PCR_ARCH_206;
323         else
324                 host_pcr_bit = PCR_ARCH_205;
325
326         /* Determine lowest PCR bit needed to run guest in given PVR level */
327         guest_pcr_bit = host_pcr_bit;
328         if (arch_compat) {
329                 switch (arch_compat) {
330                 case PVR_ARCH_205:
331                         guest_pcr_bit = PCR_ARCH_205;
332                         break;
333                 case PVR_ARCH_206:
334                 case PVR_ARCH_206p:
335                         guest_pcr_bit = PCR_ARCH_206;
336                         break;
337                 case PVR_ARCH_207:
338                         guest_pcr_bit = PCR_ARCH_207;
339                         break;
340                 case PVR_ARCH_300:
341                         guest_pcr_bit = PCR_ARCH_300;
342                         break;
343                 default:
344                         return -EINVAL;
345                 }
346         }
347
348         /* Check requested PCR bits don't exceed our capabilities */
349         if (guest_pcr_bit > host_pcr_bit)
350                 return -EINVAL;
351
352         spin_lock(&vc->lock);
353         vc->arch_compat = arch_compat;
354         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
355         vc->pcr = host_pcr_bit - guest_pcr_bit;
356         spin_unlock(&vc->lock);
357
358         return 0;
359 }
360
361 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
362 {
363         int r;
364
365         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
366         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
367                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
368         for (r = 0; r < 16; ++r)
369                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
370                        r, kvmppc_get_gpr(vcpu, r),
371                        r+16, kvmppc_get_gpr(vcpu, r+16));
372         pr_err("ctr = %.16lx  lr  = %.16lx\n",
373                vcpu->arch.ctr, vcpu->arch.lr);
374         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
375                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
376         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
377                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
378         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
379                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
380         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
381                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
382         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
383         pr_err("fault dar = %.16lx dsisr = %.8x\n",
384                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
385         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
386         for (r = 0; r < vcpu->arch.slb_max; ++r)
387                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
388                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
389         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
390                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
391                vcpu->arch.last_inst);
392 }
393
394 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
395 {
396         struct kvm_vcpu *ret;
397
398         mutex_lock(&kvm->lock);
399         ret = kvm_get_vcpu_by_id(kvm, id);
400         mutex_unlock(&kvm->lock);
401         return ret;
402 }
403
404 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
405 {
406         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
407         vpa->yield_count = cpu_to_be32(1);
408 }
409
410 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
411                    unsigned long addr, unsigned long len)
412 {
413         /* check address is cacheline aligned */
414         if (addr & (L1_CACHE_BYTES - 1))
415                 return -EINVAL;
416         spin_lock(&vcpu->arch.vpa_update_lock);
417         if (v->next_gpa != addr || v->len != len) {
418                 v->next_gpa = addr;
419                 v->len = addr ? len : 0;
420                 v->update_pending = 1;
421         }
422         spin_unlock(&vcpu->arch.vpa_update_lock);
423         return 0;
424 }
425
426 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
427 struct reg_vpa {
428         u32 dummy;
429         union {
430                 __be16 hword;
431                 __be32 word;
432         } length;
433 };
434
435 static int vpa_is_registered(struct kvmppc_vpa *vpap)
436 {
437         if (vpap->update_pending)
438                 return vpap->next_gpa != 0;
439         return vpap->pinned_addr != NULL;
440 }
441
442 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
443                                        unsigned long flags,
444                                        unsigned long vcpuid, unsigned long vpa)
445 {
446         struct kvm *kvm = vcpu->kvm;
447         unsigned long len, nb;
448         void *va;
449         struct kvm_vcpu *tvcpu;
450         int err;
451         int subfunc;
452         struct kvmppc_vpa *vpap;
453
454         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
455         if (!tvcpu)
456                 return H_PARAMETER;
457
458         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
459         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
460             subfunc == H_VPA_REG_SLB) {
461                 /* Registering new area - address must be cache-line aligned */
462                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
463                         return H_PARAMETER;
464
465                 /* convert logical addr to kernel addr and read length */
466                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
467                 if (va == NULL)
468                         return H_PARAMETER;
469                 if (subfunc == H_VPA_REG_VPA)
470                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
471                 else
472                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
473                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
474
475                 /* Check length */
476                 if (len > nb || len < sizeof(struct reg_vpa))
477                         return H_PARAMETER;
478         } else {
479                 vpa = 0;
480                 len = 0;
481         }
482
483         err = H_PARAMETER;
484         vpap = NULL;
485         spin_lock(&tvcpu->arch.vpa_update_lock);
486
487         switch (subfunc) {
488         case H_VPA_REG_VPA:             /* register VPA */
489                 /*
490                  * The size of our lppaca is 1kB because of the way we align
491                  * it for the guest to avoid crossing a 4kB boundary. We only
492                  * use 640 bytes of the structure though, so we should accept
493                  * clients that set a size of 640.
494                  */
495                 if (len < 640)
496                         break;
497                 vpap = &tvcpu->arch.vpa;
498                 err = 0;
499                 break;
500
501         case H_VPA_REG_DTL:             /* register DTL */
502                 if (len < sizeof(struct dtl_entry))
503                         break;
504                 len -= len % sizeof(struct dtl_entry);
505
506                 /* Check that they have previously registered a VPA */
507                 err = H_RESOURCE;
508                 if (!vpa_is_registered(&tvcpu->arch.vpa))
509                         break;
510
511                 vpap = &tvcpu->arch.dtl;
512                 err = 0;
513                 break;
514
515         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
516                 /* Check that they have previously registered a VPA */
517                 err = H_RESOURCE;
518                 if (!vpa_is_registered(&tvcpu->arch.vpa))
519                         break;
520
521                 vpap = &tvcpu->arch.slb_shadow;
522                 err = 0;
523                 break;
524
525         case H_VPA_DEREG_VPA:           /* deregister VPA */
526                 /* Check they don't still have a DTL or SLB buf registered */
527                 err = H_RESOURCE;
528                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
529                     vpa_is_registered(&tvcpu->arch.slb_shadow))
530                         break;
531
532                 vpap = &tvcpu->arch.vpa;
533                 err = 0;
534                 break;
535
536         case H_VPA_DEREG_DTL:           /* deregister DTL */
537                 vpap = &tvcpu->arch.dtl;
538                 err = 0;
539                 break;
540
541         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
542                 vpap = &tvcpu->arch.slb_shadow;
543                 err = 0;
544                 break;
545         }
546
547         if (vpap) {
548                 vpap->next_gpa = vpa;
549                 vpap->len = len;
550                 vpap->update_pending = 1;
551         }
552
553         spin_unlock(&tvcpu->arch.vpa_update_lock);
554
555         return err;
556 }
557
558 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
559 {
560         struct kvm *kvm = vcpu->kvm;
561         void *va;
562         unsigned long nb;
563         unsigned long gpa;
564
565         /*
566          * We need to pin the page pointed to by vpap->next_gpa,
567          * but we can't call kvmppc_pin_guest_page under the lock
568          * as it does get_user_pages() and down_read().  So we
569          * have to drop the lock, pin the page, then get the lock
570          * again and check that a new area didn't get registered
571          * in the meantime.
572          */
573         for (;;) {
574                 gpa = vpap->next_gpa;
575                 spin_unlock(&vcpu->arch.vpa_update_lock);
576                 va = NULL;
577                 nb = 0;
578                 if (gpa)
579                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
580                 spin_lock(&vcpu->arch.vpa_update_lock);
581                 if (gpa == vpap->next_gpa)
582                         break;
583                 /* sigh... unpin that one and try again */
584                 if (va)
585                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
586         }
587
588         vpap->update_pending = 0;
589         if (va && nb < vpap->len) {
590                 /*
591                  * If it's now too short, it must be that userspace
592                  * has changed the mappings underlying guest memory,
593                  * so unregister the region.
594                  */
595                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
596                 va = NULL;
597         }
598         if (vpap->pinned_addr)
599                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
600                                         vpap->dirty);
601         vpap->gpa = gpa;
602         vpap->pinned_addr = va;
603         vpap->dirty = false;
604         if (va)
605                 vpap->pinned_end = va + vpap->len;
606 }
607
608 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
609 {
610         if (!(vcpu->arch.vpa.update_pending ||
611               vcpu->arch.slb_shadow.update_pending ||
612               vcpu->arch.dtl.update_pending))
613                 return;
614
615         spin_lock(&vcpu->arch.vpa_update_lock);
616         if (vcpu->arch.vpa.update_pending) {
617                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
618                 if (vcpu->arch.vpa.pinned_addr)
619                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
620         }
621         if (vcpu->arch.dtl.update_pending) {
622                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
623                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
624                 vcpu->arch.dtl_index = 0;
625         }
626         if (vcpu->arch.slb_shadow.update_pending)
627                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
628         spin_unlock(&vcpu->arch.vpa_update_lock);
629 }
630
631 /*
632  * Return the accumulated stolen time for the vcore up until `now'.
633  * The caller should hold the vcore lock.
634  */
635 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
636 {
637         u64 p;
638         unsigned long flags;
639
640         spin_lock_irqsave(&vc->stoltb_lock, flags);
641         p = vc->stolen_tb;
642         if (vc->vcore_state != VCORE_INACTIVE &&
643             vc->preempt_tb != TB_NIL)
644                 p += now - vc->preempt_tb;
645         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
646         return p;
647 }
648
649 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
650                                     struct kvmppc_vcore *vc)
651 {
652         struct dtl_entry *dt;
653         struct lppaca *vpa;
654         unsigned long stolen;
655         unsigned long core_stolen;
656         u64 now;
657         unsigned long flags;
658
659         dt = vcpu->arch.dtl_ptr;
660         vpa = vcpu->arch.vpa.pinned_addr;
661         now = mftb();
662         core_stolen = vcore_stolen_time(vc, now);
663         stolen = core_stolen - vcpu->arch.stolen_logged;
664         vcpu->arch.stolen_logged = core_stolen;
665         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
666         stolen += vcpu->arch.busy_stolen;
667         vcpu->arch.busy_stolen = 0;
668         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
669         if (!dt || !vpa)
670                 return;
671         memset(dt, 0, sizeof(struct dtl_entry));
672         dt->dispatch_reason = 7;
673         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
674         dt->timebase = cpu_to_be64(now + vc->tb_offset);
675         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
676         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
677         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
678         ++dt;
679         if (dt == vcpu->arch.dtl.pinned_end)
680                 dt = vcpu->arch.dtl.pinned_addr;
681         vcpu->arch.dtl_ptr = dt;
682         /* order writing *dt vs. writing vpa->dtl_idx */
683         smp_wmb();
684         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
685         vcpu->arch.dtl.dirty = true;
686 }
687
688 /* See if there is a doorbell interrupt pending for a vcpu */
689 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
690 {
691         int thr;
692         struct kvmppc_vcore *vc;
693
694         if (vcpu->arch.doorbell_request)
695                 return true;
696         /*
697          * Ensure that the read of vcore->dpdes comes after the read
698          * of vcpu->doorbell_request.  This barrier matches the
699          * lwsync in book3s_hv_rmhandlers.S just before the
700          * fast_guest_return label.
701          */
702         smp_rmb();
703         vc = vcpu->arch.vcore;
704         thr = vcpu->vcpu_id - vc->first_vcpuid;
705         return !!(vc->dpdes & (1 << thr));
706 }
707
708 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
709 {
710         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
711                 return true;
712         if ((!vcpu->arch.vcore->arch_compat) &&
713             cpu_has_feature(CPU_FTR_ARCH_207S))
714                 return true;
715         return false;
716 }
717
718 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
719                              unsigned long resource, unsigned long value1,
720                              unsigned long value2)
721 {
722         switch (resource) {
723         case H_SET_MODE_RESOURCE_SET_CIABR:
724                 if (!kvmppc_power8_compatible(vcpu))
725                         return H_P2;
726                 if (value2)
727                         return H_P4;
728                 if (mflags)
729                         return H_UNSUPPORTED_FLAG_START;
730                 /* Guests can't breakpoint the hypervisor */
731                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
732                         return H_P3;
733                 vcpu->arch.ciabr  = value1;
734                 return H_SUCCESS;
735         case H_SET_MODE_RESOURCE_SET_DAWR:
736                 if (!kvmppc_power8_compatible(vcpu))
737                         return H_P2;
738                 if (mflags)
739                         return H_UNSUPPORTED_FLAG_START;
740                 if (value2 & DABRX_HYP)
741                         return H_P4;
742                 vcpu->arch.dawr  = value1;
743                 vcpu->arch.dawrx = value2;
744                 return H_SUCCESS;
745         default:
746                 return H_TOO_HARD;
747         }
748 }
749
750 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
751 {
752         struct kvmppc_vcore *vcore = target->arch.vcore;
753
754         /*
755          * We expect to have been called by the real mode handler
756          * (kvmppc_rm_h_confer()) which would have directly returned
757          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
758          * have useful work to do and should not confer) so we don't
759          * recheck that here.
760          */
761
762         spin_lock(&vcore->lock);
763         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
764             vcore->vcore_state != VCORE_INACTIVE &&
765             vcore->runner)
766                 target = vcore->runner;
767         spin_unlock(&vcore->lock);
768
769         return kvm_vcpu_yield_to(target);
770 }
771
772 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
773 {
774         int yield_count = 0;
775         struct lppaca *lppaca;
776
777         spin_lock(&vcpu->arch.vpa_update_lock);
778         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
779         if (lppaca)
780                 yield_count = be32_to_cpu(lppaca->yield_count);
781         spin_unlock(&vcpu->arch.vpa_update_lock);
782         return yield_count;
783 }
784
785 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
786 {
787         unsigned long req = kvmppc_get_gpr(vcpu, 3);
788         unsigned long target, ret = H_SUCCESS;
789         int yield_count;
790         struct kvm_vcpu *tvcpu;
791         int idx, rc;
792
793         if (req <= MAX_HCALL_OPCODE &&
794             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
795                 return RESUME_HOST;
796
797         switch (req) {
798         case H_CEDE:
799                 break;
800         case H_PROD:
801                 target = kvmppc_get_gpr(vcpu, 4);
802                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
803                 if (!tvcpu) {
804                         ret = H_PARAMETER;
805                         break;
806                 }
807                 tvcpu->arch.prodded = 1;
808                 smp_mb();
809                 if (tvcpu->arch.ceded)
810                         kvmppc_fast_vcpu_kick_hv(tvcpu);
811                 break;
812         case H_CONFER:
813                 target = kvmppc_get_gpr(vcpu, 4);
814                 if (target == -1)
815                         break;
816                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
817                 if (!tvcpu) {
818                         ret = H_PARAMETER;
819                         break;
820                 }
821                 yield_count = kvmppc_get_gpr(vcpu, 5);
822                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
823                         break;
824                 kvm_arch_vcpu_yield_to(tvcpu);
825                 break;
826         case H_REGISTER_VPA:
827                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
828                                         kvmppc_get_gpr(vcpu, 5),
829                                         kvmppc_get_gpr(vcpu, 6));
830                 break;
831         case H_RTAS:
832                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
833                         return RESUME_HOST;
834
835                 idx = srcu_read_lock(&vcpu->kvm->srcu);
836                 rc = kvmppc_rtas_hcall(vcpu);
837                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
838
839                 if (rc == -ENOENT)
840                         return RESUME_HOST;
841                 else if (rc == 0)
842                         break;
843
844                 /* Send the error out to userspace via KVM_RUN */
845                 return rc;
846         case H_LOGICAL_CI_LOAD:
847                 ret = kvmppc_h_logical_ci_load(vcpu);
848                 if (ret == H_TOO_HARD)
849                         return RESUME_HOST;
850                 break;
851         case H_LOGICAL_CI_STORE:
852                 ret = kvmppc_h_logical_ci_store(vcpu);
853                 if (ret == H_TOO_HARD)
854                         return RESUME_HOST;
855                 break;
856         case H_SET_MODE:
857                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
858                                         kvmppc_get_gpr(vcpu, 5),
859                                         kvmppc_get_gpr(vcpu, 6),
860                                         kvmppc_get_gpr(vcpu, 7));
861                 if (ret == H_TOO_HARD)
862                         return RESUME_HOST;
863                 break;
864         case H_XIRR:
865         case H_CPPR:
866         case H_EOI:
867         case H_IPI:
868         case H_IPOLL:
869         case H_XIRR_X:
870                 if (kvmppc_xics_enabled(vcpu)) {
871                         if (xive_enabled()) {
872                                 ret = H_NOT_AVAILABLE;
873                                 return RESUME_GUEST;
874                         }
875                         ret = kvmppc_xics_hcall(vcpu, req);
876                         break;
877                 }
878                 return RESUME_HOST;
879         case H_PUT_TCE:
880                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
881                                                 kvmppc_get_gpr(vcpu, 5),
882                                                 kvmppc_get_gpr(vcpu, 6));
883                 if (ret == H_TOO_HARD)
884                         return RESUME_HOST;
885                 break;
886         case H_PUT_TCE_INDIRECT:
887                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
888                                                 kvmppc_get_gpr(vcpu, 5),
889                                                 kvmppc_get_gpr(vcpu, 6),
890                                                 kvmppc_get_gpr(vcpu, 7));
891                 if (ret == H_TOO_HARD)
892                         return RESUME_HOST;
893                 break;
894         case H_STUFF_TCE:
895                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
896                                                 kvmppc_get_gpr(vcpu, 5),
897                                                 kvmppc_get_gpr(vcpu, 6),
898                                                 kvmppc_get_gpr(vcpu, 7));
899                 if (ret == H_TOO_HARD)
900                         return RESUME_HOST;
901                 break;
902         default:
903                 return RESUME_HOST;
904         }
905         kvmppc_set_gpr(vcpu, 3, ret);
906         vcpu->arch.hcall_needed = 0;
907         return RESUME_GUEST;
908 }
909
910 static int kvmppc_hcall_impl_hv(unsigned long cmd)
911 {
912         switch (cmd) {
913         case H_CEDE:
914         case H_PROD:
915         case H_CONFER:
916         case H_REGISTER_VPA:
917         case H_SET_MODE:
918         case H_LOGICAL_CI_LOAD:
919         case H_LOGICAL_CI_STORE:
920 #ifdef CONFIG_KVM_XICS
921         case H_XIRR:
922         case H_CPPR:
923         case H_EOI:
924         case H_IPI:
925         case H_IPOLL:
926         case H_XIRR_X:
927 #endif
928                 return 1;
929         }
930
931         /* See if it's in the real-mode table */
932         return kvmppc_hcall_impl_hv_realmode(cmd);
933 }
934
935 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
936                                         struct kvm_vcpu *vcpu)
937 {
938         u32 last_inst;
939
940         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
941                                         EMULATE_DONE) {
942                 /*
943                  * Fetch failed, so return to guest and
944                  * try executing it again.
945                  */
946                 return RESUME_GUEST;
947         }
948
949         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
950                 run->exit_reason = KVM_EXIT_DEBUG;
951                 run->debug.arch.address = kvmppc_get_pc(vcpu);
952                 return RESUME_HOST;
953         } else {
954                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
955                 return RESUME_GUEST;
956         }
957 }
958
959 static void do_nothing(void *x)
960 {
961 }
962
963 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
964 {
965         int thr, cpu, pcpu, nthreads;
966         struct kvm_vcpu *v;
967         unsigned long dpdes;
968
969         nthreads = vcpu->kvm->arch.emul_smt_mode;
970         dpdes = 0;
971         cpu = vcpu->vcpu_id & ~(nthreads - 1);
972         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
973                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
974                 if (!v)
975                         continue;
976                 /*
977                  * If the vcpu is currently running on a physical cpu thread,
978                  * interrupt it in order to pull it out of the guest briefly,
979                  * which will update its vcore->dpdes value.
980                  */
981                 pcpu = READ_ONCE(v->cpu);
982                 if (pcpu >= 0)
983                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
984                 if (kvmppc_doorbell_pending(v))
985                         dpdes |= 1 << thr;
986         }
987         return dpdes;
988 }
989
990 /*
991  * On POWER9, emulate doorbell-related instructions in order to
992  * give the guest the illusion of running on a multi-threaded core.
993  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
994  * and mfspr DPDES.
995  */
996 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
997 {
998         u32 inst, rb, thr;
999         unsigned long arg;
1000         struct kvm *kvm = vcpu->kvm;
1001         struct kvm_vcpu *tvcpu;
1002
1003         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1004                 return EMULATE_FAIL;
1005         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1006                 return RESUME_GUEST;
1007         if (get_op(inst) != 31)
1008                 return EMULATE_FAIL;
1009         rb = get_rb(inst);
1010         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1011         switch (get_xop(inst)) {
1012         case OP_31_XOP_MSGSNDP:
1013                 arg = kvmppc_get_gpr(vcpu, rb);
1014                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1015                         break;
1016                 arg &= 0x3f;
1017                 if (arg >= kvm->arch.emul_smt_mode)
1018                         break;
1019                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1020                 if (!tvcpu)
1021                         break;
1022                 if (!tvcpu->arch.doorbell_request) {
1023                         tvcpu->arch.doorbell_request = 1;
1024                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1025                 }
1026                 break;
1027         case OP_31_XOP_MSGCLRP:
1028                 arg = kvmppc_get_gpr(vcpu, rb);
1029                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1030                         break;
1031                 vcpu->arch.vcore->dpdes = 0;
1032                 vcpu->arch.doorbell_request = 0;
1033                 break;
1034         case OP_31_XOP_MFSPR:
1035                 switch (get_sprn(inst)) {
1036                 case SPRN_TIR:
1037                         arg = thr;
1038                         break;
1039                 case SPRN_DPDES:
1040                         arg = kvmppc_read_dpdes(vcpu);
1041                         break;
1042                 default:
1043                         return EMULATE_FAIL;
1044                 }
1045                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1046                 break;
1047         default:
1048                 return EMULATE_FAIL;
1049         }
1050         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1051         return RESUME_GUEST;
1052 }
1053
1054 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1055                                  struct task_struct *tsk)
1056 {
1057         int r = RESUME_HOST;
1058
1059         vcpu->stat.sum_exits++;
1060
1061         /*
1062          * This can happen if an interrupt occurs in the last stages
1063          * of guest entry or the first stages of guest exit (i.e. after
1064          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1065          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1066          * That can happen due to a bug, or due to a machine check
1067          * occurring at just the wrong time.
1068          */
1069         if (vcpu->arch.shregs.msr & MSR_HV) {
1070                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1071                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1072                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1073                         vcpu->arch.shregs.msr);
1074                 kvmppc_dump_regs(vcpu);
1075                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1076                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1077                 return RESUME_HOST;
1078         }
1079         run->exit_reason = KVM_EXIT_UNKNOWN;
1080         run->ready_for_interrupt_injection = 1;
1081         switch (vcpu->arch.trap) {
1082         /* We're good on these - the host merely wanted to get our attention */
1083         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1084                 vcpu->stat.dec_exits++;
1085                 r = RESUME_GUEST;
1086                 break;
1087         case BOOK3S_INTERRUPT_EXTERNAL:
1088         case BOOK3S_INTERRUPT_H_DOORBELL:
1089         case BOOK3S_INTERRUPT_H_VIRT:
1090                 vcpu->stat.ext_intr_exits++;
1091                 r = RESUME_GUEST;
1092                 break;
1093         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1094         case BOOK3S_INTERRUPT_HMI:
1095         case BOOK3S_INTERRUPT_PERFMON:
1096         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1097                 r = RESUME_GUEST;
1098                 break;
1099         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1100                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1101                 run->exit_reason = KVM_EXIT_NMI;
1102                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1103                 /* Clear out the old NMI status from run->flags */
1104                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1105                 /* Now set the NMI status */
1106                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1107                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1108                 else
1109                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1110
1111                 r = RESUME_HOST;
1112                 /* Print the MCE event to host console. */
1113                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1114                 break;
1115         case BOOK3S_INTERRUPT_PROGRAM:
1116         {
1117                 ulong flags;
1118                 /*
1119                  * Normally program interrupts are delivered directly
1120                  * to the guest by the hardware, but we can get here
1121                  * as a result of a hypervisor emulation interrupt
1122                  * (e40) getting turned into a 700 by BML RTAS.
1123                  */
1124                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1125                 kvmppc_core_queue_program(vcpu, flags);
1126                 r = RESUME_GUEST;
1127                 break;
1128         }
1129         case BOOK3S_INTERRUPT_SYSCALL:
1130         {
1131                 /* hcall - punt to userspace */
1132                 int i;
1133
1134                 /* hypercall with MSR_PR has already been handled in rmode,
1135                  * and never reaches here.
1136                  */
1137
1138                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1139                 for (i = 0; i < 9; ++i)
1140                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1141                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1142                 vcpu->arch.hcall_needed = 1;
1143                 r = RESUME_HOST;
1144                 break;
1145         }
1146         /*
1147          * We get these next two if the guest accesses a page which it thinks
1148          * it has mapped but which is not actually present, either because
1149          * it is for an emulated I/O device or because the corresonding
1150          * host page has been paged out.  Any other HDSI/HISI interrupts
1151          * have been handled already.
1152          */
1153         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1154                 r = RESUME_PAGE_FAULT;
1155                 break;
1156         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1157                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1158                 vcpu->arch.fault_dsisr = 0;
1159                 r = RESUME_PAGE_FAULT;
1160                 break;
1161         /*
1162          * This occurs if the guest executes an illegal instruction.
1163          * If the guest debug is disabled, generate a program interrupt
1164          * to the guest. If guest debug is enabled, we need to check
1165          * whether the instruction is a software breakpoint instruction.
1166          * Accordingly return to Guest or Host.
1167          */
1168         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1169                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1170                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1171                                 swab32(vcpu->arch.emul_inst) :
1172                                 vcpu->arch.emul_inst;
1173                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1174                         r = kvmppc_emulate_debug_inst(run, vcpu);
1175                 } else {
1176                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1177                         r = RESUME_GUEST;
1178                 }
1179                 break;
1180         /*
1181          * This occurs if the guest (kernel or userspace), does something that
1182          * is prohibited by HFSCR.
1183          * On POWER9, this could be a doorbell instruction that we need
1184          * to emulate.
1185          * Otherwise, we just generate a program interrupt to the guest.
1186          */
1187         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1188                 r = EMULATE_FAIL;
1189                 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1190                         r = kvmppc_emulate_doorbell_instr(vcpu);
1191                 if (r == EMULATE_FAIL) {
1192                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1193                         r = RESUME_GUEST;
1194                 }
1195                 break;
1196         case BOOK3S_INTERRUPT_HV_RM_HARD:
1197                 r = RESUME_PASSTHROUGH;
1198                 break;
1199         default:
1200                 kvmppc_dump_regs(vcpu);
1201                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1202                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1203                         vcpu->arch.shregs.msr);
1204                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1205                 r = RESUME_HOST;
1206                 break;
1207         }
1208
1209         return r;
1210 }
1211
1212 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1213                                             struct kvm_sregs *sregs)
1214 {
1215         int i;
1216
1217         memset(sregs, 0, sizeof(struct kvm_sregs));
1218         sregs->pvr = vcpu->arch.pvr;
1219         for (i = 0; i < vcpu->arch.slb_max; i++) {
1220                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1221                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1222         }
1223
1224         return 0;
1225 }
1226
1227 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1228                                             struct kvm_sregs *sregs)
1229 {
1230         int i, j;
1231
1232         /* Only accept the same PVR as the host's, since we can't spoof it */
1233         if (sregs->pvr != vcpu->arch.pvr)
1234                 return -EINVAL;
1235
1236         j = 0;
1237         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1238                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1239                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1240                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1241                         ++j;
1242                 }
1243         }
1244         vcpu->arch.slb_max = j;
1245
1246         return 0;
1247 }
1248
1249 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1250                 bool preserve_top32)
1251 {
1252         struct kvm *kvm = vcpu->kvm;
1253         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1254         u64 mask;
1255
1256         mutex_lock(&kvm->lock);
1257         spin_lock(&vc->lock);
1258         /*
1259          * If ILE (interrupt little-endian) has changed, update the
1260          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1261          */
1262         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1263                 struct kvm_vcpu *vcpu;
1264                 int i;
1265
1266                 kvm_for_each_vcpu(i, vcpu, kvm) {
1267                         if (vcpu->arch.vcore != vc)
1268                                 continue;
1269                         if (new_lpcr & LPCR_ILE)
1270                                 vcpu->arch.intr_msr |= MSR_LE;
1271                         else
1272                                 vcpu->arch.intr_msr &= ~MSR_LE;
1273                 }
1274         }
1275
1276         /*
1277          * Userspace can only modify DPFD (default prefetch depth),
1278          * ILE (interrupt little-endian) and TC (translation control).
1279          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1280          */
1281         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1282         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1283                 mask |= LPCR_AIL;
1284         /*
1285          * On POWER9, allow userspace to enable large decrementer for the
1286          * guest, whether or not the host has it enabled.
1287          */
1288         if (cpu_has_feature(CPU_FTR_ARCH_300))
1289                 mask |= LPCR_LD;
1290
1291         /* Broken 32-bit version of LPCR must not clear top bits */
1292         if (preserve_top32)
1293                 mask &= 0xFFFFFFFF;
1294         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1295         spin_unlock(&vc->lock);
1296         mutex_unlock(&kvm->lock);
1297 }
1298
1299 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1300                                  union kvmppc_one_reg *val)
1301 {
1302         int r = 0;
1303         long int i;
1304
1305         switch (id) {
1306         case KVM_REG_PPC_DEBUG_INST:
1307                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1308                 break;
1309         case KVM_REG_PPC_HIOR:
1310                 *val = get_reg_val(id, 0);
1311                 break;
1312         case KVM_REG_PPC_DABR:
1313                 *val = get_reg_val(id, vcpu->arch.dabr);
1314                 break;
1315         case KVM_REG_PPC_DABRX:
1316                 *val = get_reg_val(id, vcpu->arch.dabrx);
1317                 break;
1318         case KVM_REG_PPC_DSCR:
1319                 *val = get_reg_val(id, vcpu->arch.dscr);
1320                 break;
1321         case KVM_REG_PPC_PURR:
1322                 *val = get_reg_val(id, vcpu->arch.purr);
1323                 break;
1324         case KVM_REG_PPC_SPURR:
1325                 *val = get_reg_val(id, vcpu->arch.spurr);
1326                 break;
1327         case KVM_REG_PPC_AMR:
1328                 *val = get_reg_val(id, vcpu->arch.amr);
1329                 break;
1330         case KVM_REG_PPC_UAMOR:
1331                 *val = get_reg_val(id, vcpu->arch.uamor);
1332                 break;
1333         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1334                 i = id - KVM_REG_PPC_MMCR0;
1335                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1336                 break;
1337         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1338                 i = id - KVM_REG_PPC_PMC1;
1339                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1340                 break;
1341         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1342                 i = id - KVM_REG_PPC_SPMC1;
1343                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1344                 break;
1345         case KVM_REG_PPC_SIAR:
1346                 *val = get_reg_val(id, vcpu->arch.siar);
1347                 break;
1348         case KVM_REG_PPC_SDAR:
1349                 *val = get_reg_val(id, vcpu->arch.sdar);
1350                 break;
1351         case KVM_REG_PPC_SIER:
1352                 *val = get_reg_val(id, vcpu->arch.sier);
1353                 break;
1354         case KVM_REG_PPC_IAMR:
1355                 *val = get_reg_val(id, vcpu->arch.iamr);
1356                 break;
1357         case KVM_REG_PPC_PSPB:
1358                 *val = get_reg_val(id, vcpu->arch.pspb);
1359                 break;
1360         case KVM_REG_PPC_DPDES:
1361                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1362                 break;
1363         case KVM_REG_PPC_VTB:
1364                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1365                 break;
1366         case KVM_REG_PPC_DAWR:
1367                 *val = get_reg_val(id, vcpu->arch.dawr);
1368                 break;
1369         case KVM_REG_PPC_DAWRX:
1370                 *val = get_reg_val(id, vcpu->arch.dawrx);
1371                 break;
1372         case KVM_REG_PPC_CIABR:
1373                 *val = get_reg_val(id, vcpu->arch.ciabr);
1374                 break;
1375         case KVM_REG_PPC_CSIGR:
1376                 *val = get_reg_val(id, vcpu->arch.csigr);
1377                 break;
1378         case KVM_REG_PPC_TACR:
1379                 *val = get_reg_val(id, vcpu->arch.tacr);
1380                 break;
1381         case KVM_REG_PPC_TCSCR:
1382                 *val = get_reg_val(id, vcpu->arch.tcscr);
1383                 break;
1384         case KVM_REG_PPC_PID:
1385                 *val = get_reg_val(id, vcpu->arch.pid);
1386                 break;
1387         case KVM_REG_PPC_ACOP:
1388                 *val = get_reg_val(id, vcpu->arch.acop);
1389                 break;
1390         case KVM_REG_PPC_WORT:
1391                 *val = get_reg_val(id, vcpu->arch.wort);
1392                 break;
1393         case KVM_REG_PPC_TIDR:
1394                 *val = get_reg_val(id, vcpu->arch.tid);
1395                 break;
1396         case KVM_REG_PPC_PSSCR:
1397                 *val = get_reg_val(id, vcpu->arch.psscr);
1398                 break;
1399         case KVM_REG_PPC_VPA_ADDR:
1400                 spin_lock(&vcpu->arch.vpa_update_lock);
1401                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1402                 spin_unlock(&vcpu->arch.vpa_update_lock);
1403                 break;
1404         case KVM_REG_PPC_VPA_SLB:
1405                 spin_lock(&vcpu->arch.vpa_update_lock);
1406                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1407                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1408                 spin_unlock(&vcpu->arch.vpa_update_lock);
1409                 break;
1410         case KVM_REG_PPC_VPA_DTL:
1411                 spin_lock(&vcpu->arch.vpa_update_lock);
1412                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1413                 val->vpaval.length = vcpu->arch.dtl.len;
1414                 spin_unlock(&vcpu->arch.vpa_update_lock);
1415                 break;
1416         case KVM_REG_PPC_TB_OFFSET:
1417                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1418                 break;
1419         case KVM_REG_PPC_LPCR:
1420         case KVM_REG_PPC_LPCR_64:
1421                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1422                 break;
1423         case KVM_REG_PPC_PPR:
1424                 *val = get_reg_val(id, vcpu->arch.ppr);
1425                 break;
1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1427         case KVM_REG_PPC_TFHAR:
1428                 *val = get_reg_val(id, vcpu->arch.tfhar);
1429                 break;
1430         case KVM_REG_PPC_TFIAR:
1431                 *val = get_reg_val(id, vcpu->arch.tfiar);
1432                 break;
1433         case KVM_REG_PPC_TEXASR:
1434                 *val = get_reg_val(id, vcpu->arch.texasr);
1435                 break;
1436         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1437                 i = id - KVM_REG_PPC_TM_GPR0;
1438                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1439                 break;
1440         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1441         {
1442                 int j;
1443                 i = id - KVM_REG_PPC_TM_VSR0;
1444                 if (i < 32)
1445                         for (j = 0; j < TS_FPRWIDTH; j++)
1446                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1447                 else {
1448                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1449                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1450                         else
1451                                 r = -ENXIO;
1452                 }
1453                 break;
1454         }
1455         case KVM_REG_PPC_TM_CR:
1456                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1457                 break;
1458         case KVM_REG_PPC_TM_XER:
1459                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1460                 break;
1461         case KVM_REG_PPC_TM_LR:
1462                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1463                 break;
1464         case KVM_REG_PPC_TM_CTR:
1465                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1466                 break;
1467         case KVM_REG_PPC_TM_FPSCR:
1468                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1469                 break;
1470         case KVM_REG_PPC_TM_AMR:
1471                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1472                 break;
1473         case KVM_REG_PPC_TM_PPR:
1474                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1475                 break;
1476         case KVM_REG_PPC_TM_VRSAVE:
1477                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1478                 break;
1479         case KVM_REG_PPC_TM_VSCR:
1480                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1481                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1482                 else
1483                         r = -ENXIO;
1484                 break;
1485         case KVM_REG_PPC_TM_DSCR:
1486                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1487                 break;
1488         case KVM_REG_PPC_TM_TAR:
1489                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1490                 break;
1491 #endif
1492         case KVM_REG_PPC_ARCH_COMPAT:
1493                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1494                 break;
1495         default:
1496                 r = -EINVAL;
1497                 break;
1498         }
1499
1500         return r;
1501 }
1502
1503 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1504                                  union kvmppc_one_reg *val)
1505 {
1506         int r = 0;
1507         long int i;
1508         unsigned long addr, len;
1509
1510         switch (id) {
1511         case KVM_REG_PPC_HIOR:
1512                 /* Only allow this to be set to zero */
1513                 if (set_reg_val(id, *val))
1514                         r = -EINVAL;
1515                 break;
1516         case KVM_REG_PPC_DABR:
1517                 vcpu->arch.dabr = set_reg_val(id, *val);
1518                 break;
1519         case KVM_REG_PPC_DABRX:
1520                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1521                 break;
1522         case KVM_REG_PPC_DSCR:
1523                 vcpu->arch.dscr = set_reg_val(id, *val);
1524                 break;
1525         case KVM_REG_PPC_PURR:
1526                 vcpu->arch.purr = set_reg_val(id, *val);
1527                 break;
1528         case KVM_REG_PPC_SPURR:
1529                 vcpu->arch.spurr = set_reg_val(id, *val);
1530                 break;
1531         case KVM_REG_PPC_AMR:
1532                 vcpu->arch.amr = set_reg_val(id, *val);
1533                 break;
1534         case KVM_REG_PPC_UAMOR:
1535                 vcpu->arch.uamor = set_reg_val(id, *val);
1536                 break;
1537         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1538                 i = id - KVM_REG_PPC_MMCR0;
1539                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1540                 break;
1541         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1542                 i = id - KVM_REG_PPC_PMC1;
1543                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1544                 break;
1545         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1546                 i = id - KVM_REG_PPC_SPMC1;
1547                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1548                 break;
1549         case KVM_REG_PPC_SIAR:
1550                 vcpu->arch.siar = set_reg_val(id, *val);
1551                 break;
1552         case KVM_REG_PPC_SDAR:
1553                 vcpu->arch.sdar = set_reg_val(id, *val);
1554                 break;
1555         case KVM_REG_PPC_SIER:
1556                 vcpu->arch.sier = set_reg_val(id, *val);
1557                 break;
1558         case KVM_REG_PPC_IAMR:
1559                 vcpu->arch.iamr = set_reg_val(id, *val);
1560                 break;
1561         case KVM_REG_PPC_PSPB:
1562                 vcpu->arch.pspb = set_reg_val(id, *val);
1563                 break;
1564         case KVM_REG_PPC_DPDES:
1565                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1566                 break;
1567         case KVM_REG_PPC_VTB:
1568                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1569                 break;
1570         case KVM_REG_PPC_DAWR:
1571                 vcpu->arch.dawr = set_reg_val(id, *val);
1572                 break;
1573         case KVM_REG_PPC_DAWRX:
1574                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1575                 break;
1576         case KVM_REG_PPC_CIABR:
1577                 vcpu->arch.ciabr = set_reg_val(id, *val);
1578                 /* Don't allow setting breakpoints in hypervisor code */
1579                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1580                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1581                 break;
1582         case KVM_REG_PPC_CSIGR:
1583                 vcpu->arch.csigr = set_reg_val(id, *val);
1584                 break;
1585         case KVM_REG_PPC_TACR:
1586                 vcpu->arch.tacr = set_reg_val(id, *val);
1587                 break;
1588         case KVM_REG_PPC_TCSCR:
1589                 vcpu->arch.tcscr = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_PID:
1592                 vcpu->arch.pid = set_reg_val(id, *val);
1593                 break;
1594         case KVM_REG_PPC_ACOP:
1595                 vcpu->arch.acop = set_reg_val(id, *val);
1596                 break;
1597         case KVM_REG_PPC_WORT:
1598                 vcpu->arch.wort = set_reg_val(id, *val);
1599                 break;
1600         case KVM_REG_PPC_TIDR:
1601                 vcpu->arch.tid = set_reg_val(id, *val);
1602                 break;
1603         case KVM_REG_PPC_PSSCR:
1604                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1605                 break;
1606         case KVM_REG_PPC_VPA_ADDR:
1607                 addr = set_reg_val(id, *val);
1608                 r = -EINVAL;
1609                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1610                               vcpu->arch.dtl.next_gpa))
1611                         break;
1612                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1613                 break;
1614         case KVM_REG_PPC_VPA_SLB:
1615                 addr = val->vpaval.addr;
1616                 len = val->vpaval.length;
1617                 r = -EINVAL;
1618                 if (addr && !vcpu->arch.vpa.next_gpa)
1619                         break;
1620                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1621                 break;
1622         case KVM_REG_PPC_VPA_DTL:
1623                 addr = val->vpaval.addr;
1624                 len = val->vpaval.length;
1625                 r = -EINVAL;
1626                 if (addr && (len < sizeof(struct dtl_entry) ||
1627                              !vcpu->arch.vpa.next_gpa))
1628                         break;
1629                 len -= len % sizeof(struct dtl_entry);
1630                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1631                 break;
1632         case KVM_REG_PPC_TB_OFFSET:
1633                 /*
1634                  * POWER9 DD1 has an erratum where writing TBU40 causes
1635                  * the timebase to lose ticks.  So we don't let the
1636                  * timebase offset be changed on P9 DD1.  (It is
1637                  * initialized to zero.)
1638                  */
1639                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1640                         break;
1641                 /* round up to multiple of 2^24 */
1642                 vcpu->arch.vcore->tb_offset =
1643                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1644                 break;
1645         case KVM_REG_PPC_LPCR:
1646                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1647                 break;
1648         case KVM_REG_PPC_LPCR_64:
1649                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1650                 break;
1651         case KVM_REG_PPC_PPR:
1652                 vcpu->arch.ppr = set_reg_val(id, *val);
1653                 break;
1654 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1655         case KVM_REG_PPC_TFHAR:
1656                 vcpu->arch.tfhar = set_reg_val(id, *val);
1657                 break;
1658         case KVM_REG_PPC_TFIAR:
1659                 vcpu->arch.tfiar = set_reg_val(id, *val);
1660                 break;
1661         case KVM_REG_PPC_TEXASR:
1662                 vcpu->arch.texasr = set_reg_val(id, *val);
1663                 break;
1664         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1665                 i = id - KVM_REG_PPC_TM_GPR0;
1666                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1667                 break;
1668         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1669         {
1670                 int j;
1671                 i = id - KVM_REG_PPC_TM_VSR0;
1672                 if (i < 32)
1673                         for (j = 0; j < TS_FPRWIDTH; j++)
1674                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1675                 else
1676                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1677                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1678                         else
1679                                 r = -ENXIO;
1680                 break;
1681         }
1682         case KVM_REG_PPC_TM_CR:
1683                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1684                 break;
1685         case KVM_REG_PPC_TM_XER:
1686                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1687                 break;
1688         case KVM_REG_PPC_TM_LR:
1689                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1690                 break;
1691         case KVM_REG_PPC_TM_CTR:
1692                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1693                 break;
1694         case KVM_REG_PPC_TM_FPSCR:
1695                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1696                 break;
1697         case KVM_REG_PPC_TM_AMR:
1698                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1699                 break;
1700         case KVM_REG_PPC_TM_PPR:
1701                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1702                 break;
1703         case KVM_REG_PPC_TM_VRSAVE:
1704                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1705                 break;
1706         case KVM_REG_PPC_TM_VSCR:
1707                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1708                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1709                 else
1710                         r = - ENXIO;
1711                 break;
1712         case KVM_REG_PPC_TM_DSCR:
1713                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1714                 break;
1715         case KVM_REG_PPC_TM_TAR:
1716                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1717                 break;
1718 #endif
1719         case KVM_REG_PPC_ARCH_COMPAT:
1720                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1721                 break;
1722         default:
1723                 r = -EINVAL;
1724                 break;
1725         }
1726
1727         return r;
1728 }
1729
1730 /*
1731  * On POWER9, threads are independent and can be in different partitions.
1732  * Therefore we consider each thread to be a subcore.
1733  * There is a restriction that all threads have to be in the same
1734  * MMU mode (radix or HPT), unfortunately, but since we only support
1735  * HPT guests on a HPT host so far, that isn't an impediment yet.
1736  */
1737 static int threads_per_vcore(void)
1738 {
1739         if (cpu_has_feature(CPU_FTR_ARCH_300))
1740                 return 1;
1741         return threads_per_subcore;
1742 }
1743
1744 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1745 {
1746         struct kvmppc_vcore *vcore;
1747
1748         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1749
1750         if (vcore == NULL)
1751                 return NULL;
1752
1753         spin_lock_init(&vcore->lock);
1754         spin_lock_init(&vcore->stoltb_lock);
1755         init_swait_queue_head(&vcore->wq);
1756         vcore->preempt_tb = TB_NIL;
1757         vcore->lpcr = kvm->arch.lpcr;
1758         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1759         vcore->kvm = kvm;
1760         INIT_LIST_HEAD(&vcore->preempt_list);
1761
1762         return vcore;
1763 }
1764
1765 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1766 static struct debugfs_timings_element {
1767         const char *name;
1768         size_t offset;
1769 } timings[] = {
1770         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1771         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1772         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1773         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1774         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1775 };
1776
1777 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1778
1779 struct debugfs_timings_state {
1780         struct kvm_vcpu *vcpu;
1781         unsigned int    buflen;
1782         char            buf[N_TIMINGS * 100];
1783 };
1784
1785 static int debugfs_timings_open(struct inode *inode, struct file *file)
1786 {
1787         struct kvm_vcpu *vcpu = inode->i_private;
1788         struct debugfs_timings_state *p;
1789
1790         p = kzalloc(sizeof(*p), GFP_KERNEL);
1791         if (!p)
1792                 return -ENOMEM;
1793
1794         kvm_get_kvm(vcpu->kvm);
1795         p->vcpu = vcpu;
1796         file->private_data = p;
1797
1798         return nonseekable_open(inode, file);
1799 }
1800
1801 static int debugfs_timings_release(struct inode *inode, struct file *file)
1802 {
1803         struct debugfs_timings_state *p = file->private_data;
1804
1805         kvm_put_kvm(p->vcpu->kvm);
1806         kfree(p);
1807         return 0;
1808 }
1809
1810 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1811                                     size_t len, loff_t *ppos)
1812 {
1813         struct debugfs_timings_state *p = file->private_data;
1814         struct kvm_vcpu *vcpu = p->vcpu;
1815         char *s, *buf_end;
1816         struct kvmhv_tb_accumulator tb;
1817         u64 count;
1818         loff_t pos;
1819         ssize_t n;
1820         int i, loops;
1821         bool ok;
1822
1823         if (!p->buflen) {
1824                 s = p->buf;
1825                 buf_end = s + sizeof(p->buf);
1826                 for (i = 0; i < N_TIMINGS; ++i) {
1827                         struct kvmhv_tb_accumulator *acc;
1828
1829                         acc = (struct kvmhv_tb_accumulator *)
1830                                 ((unsigned long)vcpu + timings[i].offset);
1831                         ok = false;
1832                         for (loops = 0; loops < 1000; ++loops) {
1833                                 count = acc->seqcount;
1834                                 if (!(count & 1)) {
1835                                         smp_rmb();
1836                                         tb = *acc;
1837                                         smp_rmb();
1838                                         if (count == acc->seqcount) {
1839                                                 ok = true;
1840                                                 break;
1841                                         }
1842                                 }
1843                                 udelay(1);
1844                         }
1845                         if (!ok)
1846                                 snprintf(s, buf_end - s, "%s: stuck\n",
1847                                         timings[i].name);
1848                         else
1849                                 snprintf(s, buf_end - s,
1850                                         "%s: %llu %llu %llu %llu\n",
1851                                         timings[i].name, count / 2,
1852                                         tb_to_ns(tb.tb_total),
1853                                         tb_to_ns(tb.tb_min),
1854                                         tb_to_ns(tb.tb_max));
1855                         s += strlen(s);
1856                 }
1857                 p->buflen = s - p->buf;
1858         }
1859
1860         pos = *ppos;
1861         if (pos >= p->buflen)
1862                 return 0;
1863         if (len > p->buflen - pos)
1864                 len = p->buflen - pos;
1865         n = copy_to_user(buf, p->buf + pos, len);
1866         if (n) {
1867                 if (n == len)
1868                         return -EFAULT;
1869                 len -= n;
1870         }
1871         *ppos = pos + len;
1872         return len;
1873 }
1874
1875 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1876                                      size_t len, loff_t *ppos)
1877 {
1878         return -EACCES;
1879 }
1880
1881 static const struct file_operations debugfs_timings_ops = {
1882         .owner   = THIS_MODULE,
1883         .open    = debugfs_timings_open,
1884         .release = debugfs_timings_release,
1885         .read    = debugfs_timings_read,
1886         .write   = debugfs_timings_write,
1887         .llseek  = generic_file_llseek,
1888 };
1889
1890 /* Create a debugfs directory for the vcpu */
1891 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1892 {
1893         char buf[16];
1894         struct kvm *kvm = vcpu->kvm;
1895
1896         snprintf(buf, sizeof(buf), "vcpu%u", id);
1897         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1898                 return;
1899         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1900         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1901                 return;
1902         vcpu->arch.debugfs_timings =
1903                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1904                                     vcpu, &debugfs_timings_ops);
1905 }
1906
1907 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1908 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1909 {
1910 }
1911 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1912
1913 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1914                                                    unsigned int id)
1915 {
1916         struct kvm_vcpu *vcpu;
1917         int err;
1918         int core;
1919         struct kvmppc_vcore *vcore;
1920
1921         err = -ENOMEM;
1922         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1923         if (!vcpu)
1924                 goto out;
1925
1926         err = kvm_vcpu_init(vcpu, kvm, id);
1927         if (err)
1928                 goto free_vcpu;
1929
1930         vcpu->arch.shared = &vcpu->arch.shregs;
1931 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1932         /*
1933          * The shared struct is never shared on HV,
1934          * so we can always use host endianness
1935          */
1936 #ifdef __BIG_ENDIAN__
1937         vcpu->arch.shared_big_endian = true;
1938 #else
1939         vcpu->arch.shared_big_endian = false;
1940 #endif
1941 #endif
1942         vcpu->arch.mmcr[0] = MMCR0_FC;
1943         vcpu->arch.ctrl = CTRL_RUNLATCH;
1944         /* default to host PVR, since we can't spoof it */
1945         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1946         spin_lock_init(&vcpu->arch.vpa_update_lock);
1947         spin_lock_init(&vcpu->arch.tbacct_lock);
1948         vcpu->arch.busy_preempt = TB_NIL;
1949         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1950
1951         /*
1952          * Set the default HFSCR for the guest from the host value.
1953          * This value is only used on POWER9.
1954          * On POWER9 DD1, TM doesn't work, so we make sure to
1955          * prevent the guest from using it.
1956          * On POWER9, we want to virtualize the doorbell facility, so we
1957          * turn off the HFSCR bit, which causes those instructions to trap.
1958          */
1959         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1960         if (!cpu_has_feature(CPU_FTR_TM))
1961                 vcpu->arch.hfscr &= ~HFSCR_TM;
1962         if (cpu_has_feature(CPU_FTR_ARCH_300))
1963                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1964
1965         kvmppc_mmu_book3s_hv_init(vcpu);
1966
1967         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1968
1969         init_waitqueue_head(&vcpu->arch.cpu_run);
1970
1971         mutex_lock(&kvm->lock);
1972         vcore = NULL;
1973         err = -EINVAL;
1974         core = id / kvm->arch.smt_mode;
1975         if (core < KVM_MAX_VCORES) {
1976                 vcore = kvm->arch.vcores[core];
1977                 if (!vcore) {
1978                         err = -ENOMEM;
1979                         vcore = kvmppc_vcore_create(kvm, core);
1980                         kvm->arch.vcores[core] = vcore;
1981                         kvm->arch.online_vcores++;
1982                 }
1983         }
1984         mutex_unlock(&kvm->lock);
1985
1986         if (!vcore)
1987                 goto free_vcpu;
1988
1989         spin_lock(&vcore->lock);
1990         ++vcore->num_threads;
1991         spin_unlock(&vcore->lock);
1992         vcpu->arch.vcore = vcore;
1993         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1994         vcpu->arch.thread_cpu = -1;
1995         vcpu->arch.prev_cpu = -1;
1996
1997         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1998         kvmppc_sanity_check(vcpu);
1999
2000         debugfs_vcpu_init(vcpu, id);
2001
2002         return vcpu;
2003
2004 free_vcpu:
2005         kmem_cache_free(kvm_vcpu_cache, vcpu);
2006 out:
2007         return ERR_PTR(err);
2008 }
2009
2010 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2011                               unsigned long flags)
2012 {
2013         int err;
2014         int esmt = 0;
2015
2016         if (flags)
2017                 return -EINVAL;
2018         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2019                 return -EINVAL;
2020         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2021                 /*
2022                  * On POWER8 (or POWER7), the threading mode is "strict",
2023                  * so we pack smt_mode vcpus per vcore.
2024                  */
2025                 if (smt_mode > threads_per_subcore)
2026                         return -EINVAL;
2027         } else {
2028                 /*
2029                  * On POWER9, the threading mode is "loose",
2030                  * so each vcpu gets its own vcore.
2031                  */
2032                 esmt = smt_mode;
2033                 smt_mode = 1;
2034         }
2035         mutex_lock(&kvm->lock);
2036         err = -EBUSY;
2037         if (!kvm->arch.online_vcores) {
2038                 kvm->arch.smt_mode = smt_mode;
2039                 kvm->arch.emul_smt_mode = esmt;
2040                 err = 0;
2041         }
2042         mutex_unlock(&kvm->lock);
2043
2044         return err;
2045 }
2046
2047 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2048 {
2049         if (vpa->pinned_addr)
2050                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2051                                         vpa->dirty);
2052 }
2053
2054 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2055 {
2056         spin_lock(&vcpu->arch.vpa_update_lock);
2057         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2058         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2059         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2060         spin_unlock(&vcpu->arch.vpa_update_lock);
2061         kvm_vcpu_uninit(vcpu);
2062         kmem_cache_free(kvm_vcpu_cache, vcpu);
2063 }
2064
2065 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2066 {
2067         /* Indicate we want to get back into the guest */
2068         return 1;
2069 }
2070
2071 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2072 {
2073         unsigned long dec_nsec, now;
2074
2075         now = get_tb();
2076         if (now > vcpu->arch.dec_expires) {
2077                 /* decrementer has already gone negative */
2078                 kvmppc_core_queue_dec(vcpu);
2079                 kvmppc_core_prepare_to_enter(vcpu);
2080                 return;
2081         }
2082         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2083                    / tb_ticks_per_sec;
2084         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2085         vcpu->arch.timer_running = 1;
2086 }
2087
2088 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.ceded = 0;
2091         if (vcpu->arch.timer_running) {
2092                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2093                 vcpu->arch.timer_running = 0;
2094         }
2095 }
2096
2097 extern int __kvmppc_vcore_entry(void);
2098
2099 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2100                                    struct kvm_vcpu *vcpu)
2101 {
2102         u64 now;
2103
2104         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2105                 return;
2106         spin_lock_irq(&vcpu->arch.tbacct_lock);
2107         now = mftb();
2108         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2109                 vcpu->arch.stolen_logged;
2110         vcpu->arch.busy_preempt = now;
2111         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2112         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2113         --vc->n_runnable;
2114         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2115 }
2116
2117 static int kvmppc_grab_hwthread(int cpu)
2118 {
2119         struct paca_struct *tpaca;
2120         long timeout = 10000;
2121
2122         tpaca = &paca[cpu];
2123
2124         /* Ensure the thread won't go into the kernel if it wakes */
2125         tpaca->kvm_hstate.kvm_vcpu = NULL;
2126         tpaca->kvm_hstate.kvm_vcore = NULL;
2127         tpaca->kvm_hstate.napping = 0;
2128         smp_wmb();
2129         tpaca->kvm_hstate.hwthread_req = 1;
2130
2131         /*
2132          * If the thread is already executing in the kernel (e.g. handling
2133          * a stray interrupt), wait for it to get back to nap mode.
2134          * The smp_mb() is to ensure that our setting of hwthread_req
2135          * is visible before we look at hwthread_state, so if this
2136          * races with the code at system_reset_pSeries and the thread
2137          * misses our setting of hwthread_req, we are sure to see its
2138          * setting of hwthread_state, and vice versa.
2139          */
2140         smp_mb();
2141         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2142                 if (--timeout <= 0) {
2143                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2144                         return -EBUSY;
2145                 }
2146                 udelay(1);
2147         }
2148         return 0;
2149 }
2150
2151 static void kvmppc_release_hwthread(int cpu)
2152 {
2153         struct paca_struct *tpaca;
2154
2155         tpaca = &paca[cpu];
2156         tpaca->kvm_hstate.hwthread_req = 0;
2157         tpaca->kvm_hstate.kvm_vcpu = NULL;
2158         tpaca->kvm_hstate.kvm_vcore = NULL;
2159         tpaca->kvm_hstate.kvm_split_mode = NULL;
2160 }
2161
2162 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2163 {
2164         int i;
2165
2166         cpu = cpu_first_thread_sibling(cpu);
2167         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2168         /*
2169          * Make sure setting of bit in need_tlb_flush precedes
2170          * testing of cpu_in_guest bits.  The matching barrier on
2171          * the other side is the first smp_mb() in kvmppc_run_core().
2172          */
2173         smp_mb();
2174         for (i = 0; i < threads_per_core; ++i)
2175                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2176                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2177 }
2178
2179 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2180 {
2181         struct kvm *kvm = vcpu->kvm;
2182
2183         /*
2184          * With radix, the guest can do TLB invalidations itself,
2185          * and it could choose to use the local form (tlbiel) if
2186          * it is invalidating a translation that has only ever been
2187          * used on one vcpu.  However, that doesn't mean it has
2188          * only ever been used on one physical cpu, since vcpus
2189          * can move around between pcpus.  To cope with this, when
2190          * a vcpu moves from one pcpu to another, we need to tell
2191          * any vcpus running on the same core as this vcpu previously
2192          * ran to flush the TLB.  The TLB is shared between threads,
2193          * so we use a single bit in .need_tlb_flush for all 4 threads.
2194          */
2195         if (vcpu->arch.prev_cpu != pcpu) {
2196                 if (vcpu->arch.prev_cpu >= 0 &&
2197                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2198                     cpu_first_thread_sibling(pcpu))
2199                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2200                 vcpu->arch.prev_cpu = pcpu;
2201         }
2202 }
2203
2204 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2205 {
2206         int cpu;
2207         struct paca_struct *tpaca;
2208         struct kvm *kvm = vc->kvm;
2209
2210         cpu = vc->pcpu;
2211         if (vcpu) {
2212                 if (vcpu->arch.timer_running) {
2213                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2214                         vcpu->arch.timer_running = 0;
2215                 }
2216                 cpu += vcpu->arch.ptid;
2217                 vcpu->cpu = vc->pcpu;
2218                 vcpu->arch.thread_cpu = cpu;
2219                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2220         }
2221         tpaca = &paca[cpu];
2222         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2223         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2224         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2225         smp_wmb();
2226         tpaca->kvm_hstate.kvm_vcore = vc;
2227         if (cpu != smp_processor_id())
2228                 kvmppc_ipi_thread(cpu);
2229 }
2230
2231 static void kvmppc_wait_for_nap(void)
2232 {
2233         int cpu = smp_processor_id();
2234         int i, loops;
2235         int n_threads = threads_per_vcore();
2236
2237         if (n_threads <= 1)
2238                 return;
2239         for (loops = 0; loops < 1000000; ++loops) {
2240                 /*
2241                  * Check if all threads are finished.
2242                  * We set the vcore pointer when starting a thread
2243                  * and the thread clears it when finished, so we look
2244                  * for any threads that still have a non-NULL vcore ptr.
2245                  */
2246                 for (i = 1; i < n_threads; ++i)
2247                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2248                                 break;
2249                 if (i == n_threads) {
2250                         HMT_medium();
2251                         return;
2252                 }
2253                 HMT_low();
2254         }
2255         HMT_medium();
2256         for (i = 1; i < n_threads; ++i)
2257                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2258                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2259 }
2260
2261 /*
2262  * Check that we are on thread 0 and that any other threads in
2263  * this core are off-line.  Then grab the threads so they can't
2264  * enter the kernel.
2265  */
2266 static int on_primary_thread(void)
2267 {
2268         int cpu = smp_processor_id();
2269         int thr;
2270
2271         /* Are we on a primary subcore? */
2272         if (cpu_thread_in_subcore(cpu))
2273                 return 0;
2274
2275         thr = 0;
2276         while (++thr < threads_per_subcore)
2277                 if (cpu_online(cpu + thr))
2278                         return 0;
2279
2280         /* Grab all hw threads so they can't go into the kernel */
2281         for (thr = 1; thr < threads_per_subcore; ++thr) {
2282                 if (kvmppc_grab_hwthread(cpu + thr)) {
2283                         /* Couldn't grab one; let the others go */
2284                         do {
2285                                 kvmppc_release_hwthread(cpu + thr);
2286                         } while (--thr > 0);
2287                         return 0;
2288                 }
2289         }
2290         return 1;
2291 }
2292
2293 /*
2294  * A list of virtual cores for each physical CPU.
2295  * These are vcores that could run but their runner VCPU tasks are
2296  * (or may be) preempted.
2297  */
2298 struct preempted_vcore_list {
2299         struct list_head        list;
2300         spinlock_t              lock;
2301 };
2302
2303 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2304
2305 static void init_vcore_lists(void)
2306 {
2307         int cpu;
2308
2309         for_each_possible_cpu(cpu) {
2310                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2311                 spin_lock_init(&lp->lock);
2312                 INIT_LIST_HEAD(&lp->list);
2313         }
2314 }
2315
2316 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2317 {
2318         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2319
2320         vc->vcore_state = VCORE_PREEMPT;
2321         vc->pcpu = smp_processor_id();
2322         if (vc->num_threads < threads_per_vcore()) {
2323                 spin_lock(&lp->lock);
2324                 list_add_tail(&vc->preempt_list, &lp->list);
2325                 spin_unlock(&lp->lock);
2326         }
2327
2328         /* Start accumulating stolen time */
2329         kvmppc_core_start_stolen(vc);
2330 }
2331
2332 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2333 {
2334         struct preempted_vcore_list *lp;
2335
2336         kvmppc_core_end_stolen(vc);
2337         if (!list_empty(&vc->preempt_list)) {
2338                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2339                 spin_lock(&lp->lock);
2340                 list_del_init(&vc->preempt_list);
2341                 spin_unlock(&lp->lock);
2342         }
2343         vc->vcore_state = VCORE_INACTIVE;
2344 }
2345
2346 /*
2347  * This stores information about the virtual cores currently
2348  * assigned to a physical core.
2349  */
2350 struct core_info {
2351         int             n_subcores;
2352         int             max_subcore_threads;
2353         int             total_threads;
2354         int             subcore_threads[MAX_SUBCORES];
2355         struct kvmppc_vcore *vc[MAX_SUBCORES];
2356 };
2357
2358 /*
2359  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2360  * respectively in 2-way micro-threading (split-core) mode.
2361  */
2362 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2363
2364 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2365 {
2366         memset(cip, 0, sizeof(*cip));
2367         cip->n_subcores = 1;
2368         cip->max_subcore_threads = vc->num_threads;
2369         cip->total_threads = vc->num_threads;
2370         cip->subcore_threads[0] = vc->num_threads;
2371         cip->vc[0] = vc;
2372 }
2373
2374 static bool subcore_config_ok(int n_subcores, int n_threads)
2375 {
2376         /* Can only dynamically split if unsplit to begin with */
2377         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2378                 return false;
2379         if (n_subcores > MAX_SUBCORES)
2380                 return false;
2381         if (n_subcores > 1) {
2382                 if (!(dynamic_mt_modes & 2))
2383                         n_subcores = 4;
2384                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2385                         return false;
2386         }
2387
2388         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2389 }
2390
2391 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2392 {
2393         vc->entry_exit_map = 0;
2394         vc->in_guest = 0;
2395         vc->napping_threads = 0;
2396         vc->conferring_threads = 0;
2397 }
2398
2399 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2400 {
2401         int n_threads = vc->num_threads;
2402         int sub;
2403
2404         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2405                 return false;
2406
2407         if (n_threads < cip->max_subcore_threads)
2408                 n_threads = cip->max_subcore_threads;
2409         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2410                 return false;
2411         cip->max_subcore_threads = n_threads;
2412
2413         sub = cip->n_subcores;
2414         ++cip->n_subcores;
2415         cip->total_threads += vc->num_threads;
2416         cip->subcore_threads[sub] = vc->num_threads;
2417         cip->vc[sub] = vc;
2418         init_vcore_to_run(vc);
2419         list_del_init(&vc->preempt_list);
2420
2421         return true;
2422 }
2423
2424 /*
2425  * Work out whether it is possible to piggyback the execution of
2426  * vcore *pvc onto the execution of the other vcores described in *cip.
2427  */
2428 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2429                           int target_threads)
2430 {
2431         if (cip->total_threads + pvc->num_threads > target_threads)
2432                 return false;
2433
2434         return can_dynamic_split(pvc, cip);
2435 }
2436
2437 static void prepare_threads(struct kvmppc_vcore *vc)
2438 {
2439         int i;
2440         struct kvm_vcpu *vcpu;
2441
2442         for_each_runnable_thread(i, vcpu, vc) {
2443                 if (signal_pending(vcpu->arch.run_task))
2444                         vcpu->arch.ret = -EINTR;
2445                 else if (vcpu->arch.vpa.update_pending ||
2446                          vcpu->arch.slb_shadow.update_pending ||
2447                          vcpu->arch.dtl.update_pending)
2448                         vcpu->arch.ret = RESUME_GUEST;
2449                 else
2450                         continue;
2451                 kvmppc_remove_runnable(vc, vcpu);
2452                 wake_up(&vcpu->arch.cpu_run);
2453         }
2454 }
2455
2456 static void collect_piggybacks(struct core_info *cip, int target_threads)
2457 {
2458         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2459         struct kvmppc_vcore *pvc, *vcnext;
2460
2461         spin_lock(&lp->lock);
2462         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2463                 if (!spin_trylock(&pvc->lock))
2464                         continue;
2465                 prepare_threads(pvc);
2466                 if (!pvc->n_runnable) {
2467                         list_del_init(&pvc->preempt_list);
2468                         if (pvc->runner == NULL) {
2469                                 pvc->vcore_state = VCORE_INACTIVE;
2470                                 kvmppc_core_end_stolen(pvc);
2471                         }
2472                         spin_unlock(&pvc->lock);
2473                         continue;
2474                 }
2475                 if (!can_piggyback(pvc, cip, target_threads)) {
2476                         spin_unlock(&pvc->lock);
2477                         continue;
2478                 }
2479                 kvmppc_core_end_stolen(pvc);
2480                 pvc->vcore_state = VCORE_PIGGYBACK;
2481                 if (cip->total_threads >= target_threads)
2482                         break;
2483         }
2484         spin_unlock(&lp->lock);
2485 }
2486
2487 static bool recheck_signals(struct core_info *cip)
2488 {
2489         int sub, i;
2490         struct kvm_vcpu *vcpu;
2491
2492         for (sub = 0; sub < cip->n_subcores; ++sub)
2493                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2494                         if (signal_pending(vcpu->arch.run_task))
2495                                 return true;
2496         return false;
2497 }
2498
2499 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2500 {
2501         int still_running = 0, i;
2502         u64 now;
2503         long ret;
2504         struct kvm_vcpu *vcpu;
2505
2506         spin_lock(&vc->lock);
2507         now = get_tb();
2508         for_each_runnable_thread(i, vcpu, vc) {
2509                 /* cancel pending dec exception if dec is positive */
2510                 if (now < vcpu->arch.dec_expires &&
2511                     kvmppc_core_pending_dec(vcpu))
2512                         kvmppc_core_dequeue_dec(vcpu);
2513
2514                 trace_kvm_guest_exit(vcpu);
2515
2516                 ret = RESUME_GUEST;
2517                 if (vcpu->arch.trap)
2518                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2519                                                     vcpu->arch.run_task);
2520
2521                 vcpu->arch.ret = ret;
2522                 vcpu->arch.trap = 0;
2523
2524                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2525                         if (vcpu->arch.pending_exceptions)
2526                                 kvmppc_core_prepare_to_enter(vcpu);
2527                         if (vcpu->arch.ceded)
2528                                 kvmppc_set_timer(vcpu);
2529                         else
2530                                 ++still_running;
2531                 } else {
2532                         kvmppc_remove_runnable(vc, vcpu);
2533                         wake_up(&vcpu->arch.cpu_run);
2534                 }
2535         }
2536         if (!is_master) {
2537                 if (still_running > 0) {
2538                         kvmppc_vcore_preempt(vc);
2539                 } else if (vc->runner) {
2540                         vc->vcore_state = VCORE_PREEMPT;
2541                         kvmppc_core_start_stolen(vc);
2542                 } else {
2543                         vc->vcore_state = VCORE_INACTIVE;
2544                 }
2545                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2546                         /* make sure there's a candidate runner awake */
2547                         i = -1;
2548                         vcpu = next_runnable_thread(vc, &i);
2549                         wake_up(&vcpu->arch.cpu_run);
2550                 }
2551         }
2552         spin_unlock(&vc->lock);
2553 }
2554
2555 /*
2556  * Clear core from the list of active host cores as we are about to
2557  * enter the guest. Only do this if it is the primary thread of the
2558  * core (not if a subcore) that is entering the guest.
2559  */
2560 static inline int kvmppc_clear_host_core(unsigned int cpu)
2561 {
2562         int core;
2563
2564         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2565                 return 0;
2566         /*
2567          * Memory barrier can be omitted here as we will do a smp_wmb()
2568          * later in kvmppc_start_thread and we need ensure that state is
2569          * visible to other CPUs only after we enter guest.
2570          */
2571         core = cpu >> threads_shift;
2572         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2573         return 0;
2574 }
2575
2576 /*
2577  * Advertise this core as an active host core since we exited the guest
2578  * Only need to do this if it is the primary thread of the core that is
2579  * exiting.
2580  */
2581 static inline int kvmppc_set_host_core(unsigned int cpu)
2582 {
2583         int core;
2584
2585         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2586                 return 0;
2587
2588         /*
2589          * Memory barrier can be omitted here because we do a spin_unlock
2590          * immediately after this which provides the memory barrier.
2591          */
2592         core = cpu >> threads_shift;
2593         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2594         return 0;
2595 }
2596
2597 static void set_irq_happened(int trap)
2598 {
2599         switch (trap) {
2600         case BOOK3S_INTERRUPT_EXTERNAL:
2601                 local_paca->irq_happened |= PACA_IRQ_EE;
2602                 break;
2603         case BOOK3S_INTERRUPT_H_DOORBELL:
2604                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2605                 break;
2606         case BOOK3S_INTERRUPT_HMI:
2607                 local_paca->irq_happened |= PACA_IRQ_HMI;
2608                 break;
2609         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2610                 replay_system_reset();
2611                 break;
2612         }
2613 }
2614
2615 /*
2616  * Run a set of guest threads on a physical core.
2617  * Called with vc->lock held.
2618  */
2619 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2620 {
2621         struct kvm_vcpu *vcpu;
2622         int i;
2623         int srcu_idx;
2624         struct core_info core_info;
2625         struct kvmppc_vcore *pvc;
2626         struct kvm_split_mode split_info, *sip;
2627         int split, subcore_size, active;
2628         int sub;
2629         bool thr0_done;
2630         unsigned long cmd_bit, stat_bit;
2631         int pcpu, thr;
2632         int target_threads;
2633         int controlled_threads;
2634         int trap;
2635
2636         /*
2637          * Remove from the list any threads that have a signal pending
2638          * or need a VPA update done
2639          */
2640         prepare_threads(vc);
2641
2642         /* if the runner is no longer runnable, let the caller pick a new one */
2643         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2644                 return;
2645
2646         /*
2647          * Initialize *vc.
2648          */
2649         init_vcore_to_run(vc);
2650         vc->preempt_tb = TB_NIL;
2651
2652         /*
2653          * Number of threads that we will be controlling: the same as
2654          * the number of threads per subcore, except on POWER9,
2655          * where it's 1 because the threads are (mostly) independent.
2656          */
2657         controlled_threads = threads_per_vcore();
2658
2659         /*
2660          * Make sure we are running on primary threads, and that secondary
2661          * threads are offline.  Also check if the number of threads in this
2662          * guest are greater than the current system threads per guest.
2663          */
2664         if ((controlled_threads > 1) &&
2665             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2666                 for_each_runnable_thread(i, vcpu, vc) {
2667                         vcpu->arch.ret = -EBUSY;
2668                         kvmppc_remove_runnable(vc, vcpu);
2669                         wake_up(&vcpu->arch.cpu_run);
2670                 }
2671                 goto out;
2672         }
2673
2674         /*
2675          * See if we could run any other vcores on the physical core
2676          * along with this one.
2677          */
2678         init_core_info(&core_info, vc);
2679         pcpu = smp_processor_id();
2680         target_threads = controlled_threads;
2681         if (target_smt_mode && target_smt_mode < target_threads)
2682                 target_threads = target_smt_mode;
2683         if (vc->num_threads < target_threads)
2684                 collect_piggybacks(&core_info, target_threads);
2685
2686         /*
2687          * On radix, arrange for TLB flushing if necessary.
2688          * This has to be done before disabling interrupts since
2689          * it uses smp_call_function().
2690          */
2691         pcpu = smp_processor_id();
2692         if (kvm_is_radix(vc->kvm)) {
2693                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2694                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2695                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2696         }
2697
2698         /*
2699          * Hard-disable interrupts, and check resched flag and signals.
2700          * If we need to reschedule or deliver a signal, clean up
2701          * and return without going into the guest(s).
2702          * If the hpte_setup_done flag has been cleared, don't go into the
2703          * guest because that means a HPT resize operation is in progress.
2704          */
2705         local_irq_disable();
2706         hard_irq_disable();
2707         if (lazy_irq_pending() || need_resched() ||
2708             recheck_signals(&core_info) ||
2709             (!kvm_is_radix(vc->kvm) && !vc->kvm->arch.hpte_setup_done)) {
2710                 local_irq_enable();
2711                 vc->vcore_state = VCORE_INACTIVE;
2712                 /* Unlock all except the primary vcore */
2713                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2714                         pvc = core_info.vc[sub];
2715                         /* Put back on to the preempted vcores list */
2716                         kvmppc_vcore_preempt(pvc);
2717                         spin_unlock(&pvc->lock);
2718                 }
2719                 for (i = 0; i < controlled_threads; ++i)
2720                         kvmppc_release_hwthread(pcpu + i);
2721                 return;
2722         }
2723
2724         kvmppc_clear_host_core(pcpu);
2725
2726         /* Decide on micro-threading (split-core) mode */
2727         subcore_size = threads_per_subcore;
2728         cmd_bit = stat_bit = 0;
2729         split = core_info.n_subcores;
2730         sip = NULL;
2731         if (split > 1) {
2732                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2733                 if (split == 2 && (dynamic_mt_modes & 2)) {
2734                         cmd_bit = HID0_POWER8_1TO2LPAR;
2735                         stat_bit = HID0_POWER8_2LPARMODE;
2736                 } else {
2737                         split = 4;
2738                         cmd_bit = HID0_POWER8_1TO4LPAR;
2739                         stat_bit = HID0_POWER8_4LPARMODE;
2740                 }
2741                 subcore_size = MAX_SMT_THREADS / split;
2742                 sip = &split_info;
2743                 memset(&split_info, 0, sizeof(split_info));
2744                 split_info.rpr = mfspr(SPRN_RPR);
2745                 split_info.pmmar = mfspr(SPRN_PMMAR);
2746                 split_info.ldbar = mfspr(SPRN_LDBAR);
2747                 split_info.subcore_size = subcore_size;
2748                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2749                         split_info.vc[sub] = core_info.vc[sub];
2750                 /* order writes to split_info before kvm_split_mode pointer */
2751                 smp_wmb();
2752         }
2753         for (thr = 0; thr < controlled_threads; ++thr)
2754                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2755
2756         /* Initiate micro-threading (split-core) if required */
2757         if (cmd_bit) {
2758                 unsigned long hid0 = mfspr(SPRN_HID0);
2759
2760                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2761                 mb();
2762                 mtspr(SPRN_HID0, hid0);
2763                 isync();
2764                 for (;;) {
2765                         hid0 = mfspr(SPRN_HID0);
2766                         if (hid0 & stat_bit)
2767                                 break;
2768                         cpu_relax();
2769                 }
2770         }
2771
2772         /* Start all the threads */
2773         active = 0;
2774         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2775                 thr = subcore_thread_map[sub];
2776                 thr0_done = false;
2777                 active |= 1 << thr;
2778                 pvc = core_info.vc[sub];
2779                 pvc->pcpu = pcpu + thr;
2780                 for_each_runnable_thread(i, vcpu, pvc) {
2781                         kvmppc_start_thread(vcpu, pvc);
2782                         kvmppc_create_dtl_entry(vcpu, pvc);
2783                         trace_kvm_guest_enter(vcpu);
2784                         if (!vcpu->arch.ptid)
2785                                 thr0_done = true;
2786                         active |= 1 << (thr + vcpu->arch.ptid);
2787                 }
2788                 /*
2789                  * We need to start the first thread of each subcore
2790                  * even if it doesn't have a vcpu.
2791                  */
2792                 if (!thr0_done)
2793                         kvmppc_start_thread(NULL, pvc);
2794                 thr += pvc->num_threads;
2795         }
2796
2797         /*
2798          * Ensure that split_info.do_nap is set after setting
2799          * the vcore pointer in the PACA of the secondaries.
2800          */
2801         smp_mb();
2802         if (cmd_bit)
2803                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2804
2805         /*
2806          * When doing micro-threading, poke the inactive threads as well.
2807          * This gets them to the nap instruction after kvm_do_nap,
2808          * which reduces the time taken to unsplit later.
2809          */
2810         if (split > 1)
2811                 for (thr = 1; thr < threads_per_subcore; ++thr)
2812                         if (!(active & (1 << thr)))
2813                                 kvmppc_ipi_thread(pcpu + thr);
2814
2815         vc->vcore_state = VCORE_RUNNING;
2816         preempt_disable();
2817
2818         trace_kvmppc_run_core(vc, 0);
2819
2820         for (sub = 0; sub < core_info.n_subcores; ++sub)
2821                 spin_unlock(&core_info.vc[sub]->lock);
2822
2823         /*
2824          * Interrupts will be enabled once we get into the guest,
2825          * so tell lockdep that we're about to enable interrupts.
2826          */
2827         trace_hardirqs_on();
2828
2829         guest_enter();
2830
2831         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2832
2833         trap = __kvmppc_vcore_entry();
2834
2835         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2836
2837         guest_exit();
2838
2839         trace_hardirqs_off();
2840         set_irq_happened(trap);
2841
2842         spin_lock(&vc->lock);
2843         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2844         vc->vcore_state = VCORE_EXITING;
2845
2846         /* wait for secondary threads to finish writing their state to memory */
2847         kvmppc_wait_for_nap();
2848
2849         /* Return to whole-core mode if we split the core earlier */
2850         if (split > 1) {
2851                 unsigned long hid0 = mfspr(SPRN_HID0);
2852                 unsigned long loops = 0;
2853
2854                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2855                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2856                 mb();
2857                 mtspr(SPRN_HID0, hid0);
2858                 isync();
2859                 for (;;) {
2860                         hid0 = mfspr(SPRN_HID0);
2861                         if (!(hid0 & stat_bit))
2862                                 break;
2863                         cpu_relax();
2864                         ++loops;
2865                 }
2866                 split_info.do_nap = 0;
2867         }
2868
2869         kvmppc_set_host_core(pcpu);
2870
2871         local_irq_enable();
2872
2873         /* Let secondaries go back to the offline loop */
2874         for (i = 0; i < controlled_threads; ++i) {
2875                 kvmppc_release_hwthread(pcpu + i);
2876                 if (sip && sip->napped[i])
2877                         kvmppc_ipi_thread(pcpu + i);
2878                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2879         }
2880
2881         spin_unlock(&vc->lock);
2882
2883         /* make sure updates to secondary vcpu structs are visible now */
2884         smp_mb();
2885
2886         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2887                 pvc = core_info.vc[sub];
2888                 post_guest_process(pvc, pvc == vc);
2889         }
2890
2891         spin_lock(&vc->lock);
2892         preempt_enable();
2893
2894  out:
2895         vc->vcore_state = VCORE_INACTIVE;
2896         trace_kvmppc_run_core(vc, 1);
2897 }
2898
2899 /*
2900  * Wait for some other vcpu thread to execute us, and
2901  * wake us up when we need to handle something in the host.
2902  */
2903 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2904                                  struct kvm_vcpu *vcpu, int wait_state)
2905 {
2906         DEFINE_WAIT(wait);
2907
2908         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2909         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2910                 spin_unlock(&vc->lock);
2911                 schedule();
2912                 spin_lock(&vc->lock);
2913         }
2914         finish_wait(&vcpu->arch.cpu_run, &wait);
2915 }
2916
2917 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2918 {
2919         /* 10us base */
2920         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2921                 vc->halt_poll_ns = 10000;
2922         else
2923                 vc->halt_poll_ns *= halt_poll_ns_grow;
2924 }
2925
2926 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2927 {
2928         if (halt_poll_ns_shrink == 0)
2929                 vc->halt_poll_ns = 0;
2930         else
2931                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2932 }
2933
2934 #ifdef CONFIG_KVM_XICS
2935 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2936 {
2937         if (!xive_enabled())
2938                 return false;
2939         return vcpu->arch.xive_saved_state.pipr <
2940                 vcpu->arch.xive_saved_state.cppr;
2941 }
2942 #else
2943 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2944 {
2945         return false;
2946 }
2947 #endif /* CONFIG_KVM_XICS */
2948
2949 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2950 {
2951         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2952             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2953                 return true;
2954
2955         return false;
2956 }
2957
2958 /*
2959  * Check to see if any of the runnable vcpus on the vcore have pending
2960  * exceptions or are no longer ceded
2961  */
2962 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2963 {
2964         struct kvm_vcpu *vcpu;
2965         int i;
2966
2967         for_each_runnable_thread(i, vcpu, vc) {
2968                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2969                         return 1;
2970         }
2971
2972         return 0;
2973 }
2974
2975 /*
2976  * All the vcpus in this vcore are idle, so wait for a decrementer
2977  * or external interrupt to one of the vcpus.  vc->lock is held.
2978  */
2979 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2980 {
2981         ktime_t cur, start_poll, start_wait;
2982         int do_sleep = 1;
2983         u64 block_ns;
2984         DECLARE_SWAITQUEUE(wait);
2985
2986         /* Poll for pending exceptions and ceded state */
2987         cur = start_poll = ktime_get();
2988         if (vc->halt_poll_ns) {
2989                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2990                 ++vc->runner->stat.halt_attempted_poll;
2991
2992                 vc->vcore_state = VCORE_POLLING;
2993                 spin_unlock(&vc->lock);
2994
2995                 do {
2996                         if (kvmppc_vcore_check_block(vc)) {
2997                                 do_sleep = 0;
2998                                 break;
2999                         }
3000                         cur = ktime_get();
3001                 } while (single_task_running() && ktime_before(cur, stop));
3002
3003                 spin_lock(&vc->lock);
3004                 vc->vcore_state = VCORE_INACTIVE;
3005
3006                 if (!do_sleep) {
3007                         ++vc->runner->stat.halt_successful_poll;
3008                         goto out;
3009                 }
3010         }
3011
3012         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3013
3014         if (kvmppc_vcore_check_block(vc)) {
3015                 finish_swait(&vc->wq, &wait);
3016                 do_sleep = 0;
3017                 /* If we polled, count this as a successful poll */
3018                 if (vc->halt_poll_ns)
3019                         ++vc->runner->stat.halt_successful_poll;
3020                 goto out;
3021         }
3022
3023         start_wait = ktime_get();
3024
3025         vc->vcore_state = VCORE_SLEEPING;
3026         trace_kvmppc_vcore_blocked(vc, 0);
3027         spin_unlock(&vc->lock);
3028         schedule();
3029         finish_swait(&vc->wq, &wait);
3030         spin_lock(&vc->lock);
3031         vc->vcore_state = VCORE_INACTIVE;
3032         trace_kvmppc_vcore_blocked(vc, 1);
3033         ++vc->runner->stat.halt_successful_wait;
3034
3035         cur = ktime_get();
3036
3037 out:
3038         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3039
3040         /* Attribute wait time */
3041         if (do_sleep) {
3042                 vc->runner->stat.halt_wait_ns +=
3043                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3044                 /* Attribute failed poll time */
3045                 if (vc->halt_poll_ns)
3046                         vc->runner->stat.halt_poll_fail_ns +=
3047                                 ktime_to_ns(start_wait) -
3048                                 ktime_to_ns(start_poll);
3049         } else {
3050                 /* Attribute successful poll time */
3051                 if (vc->halt_poll_ns)
3052                         vc->runner->stat.halt_poll_success_ns +=
3053                                 ktime_to_ns(cur) -
3054                                 ktime_to_ns(start_poll);
3055         }
3056
3057         /* Adjust poll time */
3058         if (halt_poll_ns) {
3059                 if (block_ns <= vc->halt_poll_ns)
3060                         ;
3061                 /* We slept and blocked for longer than the max halt time */
3062                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3063                         shrink_halt_poll_ns(vc);
3064                 /* We slept and our poll time is too small */
3065                 else if (vc->halt_poll_ns < halt_poll_ns &&
3066                                 block_ns < halt_poll_ns)
3067                         grow_halt_poll_ns(vc);
3068                 if (vc->halt_poll_ns > halt_poll_ns)
3069                         vc->halt_poll_ns = halt_poll_ns;
3070         } else
3071                 vc->halt_poll_ns = 0;
3072
3073         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3074 }
3075
3076 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3077 {
3078         int n_ceded, i, r;
3079         struct kvmppc_vcore *vc;
3080         struct kvm_vcpu *v;
3081
3082         trace_kvmppc_run_vcpu_enter(vcpu);
3083
3084         kvm_run->exit_reason = 0;
3085         vcpu->arch.ret = RESUME_GUEST;
3086         vcpu->arch.trap = 0;
3087         kvmppc_update_vpas(vcpu);
3088
3089         /*
3090          * Synchronize with other threads in this virtual core
3091          */
3092         vc = vcpu->arch.vcore;
3093         spin_lock(&vc->lock);
3094         vcpu->arch.ceded = 0;
3095         vcpu->arch.run_task = current;
3096         vcpu->arch.kvm_run = kvm_run;
3097         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3098         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3099         vcpu->arch.busy_preempt = TB_NIL;
3100         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3101         ++vc->n_runnable;
3102
3103         /*
3104          * This happens the first time this is called for a vcpu.
3105          * If the vcore is already running, we may be able to start
3106          * this thread straight away and have it join in.
3107          */
3108         if (!signal_pending(current)) {
3109                 if (vc->vcore_state == VCORE_PIGGYBACK) {
3110                         if (spin_trylock(&vc->lock)) {
3111                                 if (vc->vcore_state == VCORE_RUNNING &&
3112                                     !VCORE_IS_EXITING(vc)) {
3113                                         kvmppc_create_dtl_entry(vcpu, vc);
3114                                         kvmppc_start_thread(vcpu, vc);
3115                                         trace_kvm_guest_enter(vcpu);
3116                                 }
3117                                 spin_unlock(&vc->lock);
3118                         }
3119                 } else if (vc->vcore_state == VCORE_RUNNING &&
3120                            !VCORE_IS_EXITING(vc)) {
3121                         kvmppc_create_dtl_entry(vcpu, vc);
3122                         kvmppc_start_thread(vcpu, vc);
3123                         trace_kvm_guest_enter(vcpu);
3124                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3125                         swake_up(&vc->wq);
3126                 }
3127
3128         }
3129
3130         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3131                !signal_pending(current)) {
3132                 /* See if the HPT and VRMA are ready to go */
3133                 if (!kvm_is_radix(vcpu->kvm) &&
3134                     !vcpu->kvm->arch.hpte_setup_done) {
3135                         spin_unlock(&vc->lock);
3136                         r = kvmppc_hv_setup_htab_rma(vcpu);
3137                         spin_lock(&vc->lock);
3138                         if (r) {
3139                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3140                                 kvm_run->fail_entry.hardware_entry_failure_reason = 0;
3141                                 vcpu->arch.ret = r;
3142                                 break;
3143                         }
3144                 }
3145
3146                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3147                         kvmppc_vcore_end_preempt(vc);
3148
3149                 if (vc->vcore_state != VCORE_INACTIVE) {
3150                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3151                         continue;
3152                 }
3153                 for_each_runnable_thread(i, v, vc) {
3154                         kvmppc_core_prepare_to_enter(v);
3155                         if (signal_pending(v->arch.run_task)) {
3156                                 kvmppc_remove_runnable(vc, v);
3157                                 v->stat.signal_exits++;
3158                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3159                                 v->arch.ret = -EINTR;
3160                                 wake_up(&v->arch.cpu_run);
3161                         }
3162                 }
3163                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3164                         break;
3165                 n_ceded = 0;
3166                 for_each_runnable_thread(i, v, vc) {
3167                         if (!kvmppc_vcpu_woken(v))
3168                                 n_ceded += v->arch.ceded;
3169                         else
3170                                 v->arch.ceded = 0;
3171                 }
3172                 vc->runner = vcpu;
3173                 if (n_ceded == vc->n_runnable) {
3174                         kvmppc_vcore_blocked(vc);
3175                 } else if (need_resched()) {
3176                         kvmppc_vcore_preempt(vc);
3177                         /* Let something else run */
3178                         cond_resched_lock(&vc->lock);
3179                         if (vc->vcore_state == VCORE_PREEMPT)
3180                                 kvmppc_vcore_end_preempt(vc);
3181                 } else {
3182                         kvmppc_run_core(vc);
3183                 }
3184                 vc->runner = NULL;
3185         }
3186
3187         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3188                (vc->vcore_state == VCORE_RUNNING ||
3189                 vc->vcore_state == VCORE_EXITING ||
3190                 vc->vcore_state == VCORE_PIGGYBACK))
3191                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3192
3193         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3194                 kvmppc_vcore_end_preempt(vc);
3195
3196         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3197                 kvmppc_remove_runnable(vc, vcpu);
3198                 vcpu->stat.signal_exits++;
3199                 kvm_run->exit_reason = KVM_EXIT_INTR;
3200                 vcpu->arch.ret = -EINTR;
3201         }
3202
3203         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3204                 /* Wake up some vcpu to run the core */
3205                 i = -1;
3206                 v = next_runnable_thread(vc, &i);
3207                 wake_up(&v->arch.cpu_run);
3208         }
3209
3210         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3211         spin_unlock(&vc->lock);
3212         return vcpu->arch.ret;
3213 }
3214
3215 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3216 {
3217         int r;
3218         int srcu_idx;
3219         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3220         unsigned long user_tar = 0;
3221         unsigned int user_vrsave;
3222
3223         if (!vcpu->arch.sane) {
3224                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3225                 return -EINVAL;
3226         }
3227
3228         /*
3229          * Don't allow entry with a suspended transaction, because
3230          * the guest entry/exit code will lose it.
3231          * If the guest has TM enabled, save away their TM-related SPRs
3232          * (they will get restored by the TM unavailable interrupt).
3233          */
3234 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3235         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3236             (current->thread.regs->msr & MSR_TM)) {
3237                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3238                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3239                         run->fail_entry.hardware_entry_failure_reason = 0;
3240                         return -EINVAL;
3241                 }
3242                 /* Enable TM so we can read the TM SPRs */
3243                 mtmsr(mfmsr() | MSR_TM);
3244                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3245                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3246                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3247                 current->thread.regs->msr &= ~MSR_TM;
3248         }
3249 #endif
3250
3251         kvmppc_core_prepare_to_enter(vcpu);
3252
3253         /* No need to go into the guest when all we'll do is come back out */
3254         if (signal_pending(current)) {
3255                 run->exit_reason = KVM_EXIT_INTR;
3256                 return -EINTR;
3257         }
3258
3259         atomic_inc(&vcpu->kvm->arch.vcpus_running);
3260         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3261         smp_mb();
3262
3263         flush_all_to_thread(current);
3264
3265         /* Save userspace EBB and other register values */
3266         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3267                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3268                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3269                 ebb_regs[2] = mfspr(SPRN_BESCR);
3270                 user_tar = mfspr(SPRN_TAR);
3271         }
3272         user_vrsave = mfspr(SPRN_VRSAVE);
3273
3274         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3275         vcpu->arch.pgdir = current->mm->pgd;
3276         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3277
3278         do {
3279                 r = kvmppc_run_vcpu(run, vcpu);
3280
3281                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3282                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3283                         trace_kvm_hcall_enter(vcpu);
3284                         r = kvmppc_pseries_do_hcall(vcpu);
3285                         trace_kvm_hcall_exit(vcpu, r);
3286                         kvmppc_core_prepare_to_enter(vcpu);
3287                 } else if (r == RESUME_PAGE_FAULT) {
3288                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3289                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3290                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3291                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3292                 } else if (r == RESUME_PASSTHROUGH) {
3293                         if (WARN_ON(xive_enabled()))
3294                                 r = H_SUCCESS;
3295                         else
3296                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3297                 }
3298         } while (is_kvmppc_resume_guest(r));
3299
3300         /* Restore userspace EBB and other register values */
3301         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3302                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3303                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3304                 mtspr(SPRN_BESCR, ebb_regs[2]);
3305                 mtspr(SPRN_TAR, user_tar);
3306                 mtspr(SPRN_FSCR, current->thread.fscr);
3307         }
3308         mtspr(SPRN_VRSAVE, user_vrsave);
3309
3310         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3311         atomic_dec(&vcpu->kvm->arch.vcpus_running);
3312         return r;
3313 }
3314
3315 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3316                                      int linux_psize)
3317 {
3318         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3319
3320         if (!def->shift)
3321                 return;
3322         (*sps)->page_shift = def->shift;
3323         (*sps)->slb_enc = def->sllp;
3324         (*sps)->enc[0].page_shift = def->shift;
3325         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3326         /*
3327          * Add 16MB MPSS support if host supports it
3328          */
3329         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3330                 (*sps)->enc[1].page_shift = 24;
3331                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3332         }
3333         (*sps)++;
3334 }
3335
3336 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3337                                          struct kvm_ppc_smmu_info *info)
3338 {
3339         struct kvm_ppc_one_seg_page_size *sps;
3340
3341         /*
3342          * Since we don't yet support HPT guests on a radix host,
3343          * return an error if the host uses radix.
3344          */
3345         if (radix_enabled())
3346                 return -EINVAL;
3347
3348         /*
3349          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3350          * POWER7 doesn't support keys for instruction accesses,
3351          * POWER8 and POWER9 do.
3352          */
3353         info->data_keys = 32;
3354         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3355
3356         info->flags = KVM_PPC_PAGE_SIZES_REAL;
3357         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3358                 info->flags |= KVM_PPC_1T_SEGMENTS;
3359         info->slb_size = mmu_slb_size;
3360
3361         /* We only support these sizes for now, and no muti-size segments */
3362         sps = &info->sps[0];
3363         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3364         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3365         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3366
3367         return 0;
3368 }
3369
3370 /*
3371  * Get (and clear) the dirty memory log for a memory slot.
3372  */
3373 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3374                                          struct kvm_dirty_log *log)
3375 {
3376         struct kvm_memslots *slots;
3377         struct kvm_memory_slot *memslot;
3378         int i, r;
3379         unsigned long n;
3380         unsigned long *buf;
3381         struct kvm_vcpu *vcpu;
3382
3383         mutex_lock(&kvm->slots_lock);
3384
3385         r = -EINVAL;
3386         if (log->slot >= KVM_USER_MEM_SLOTS)
3387                 goto out;
3388
3389         slots = kvm_memslots(kvm);
3390         memslot = id_to_memslot(slots, log->slot);
3391         r = -ENOENT;
3392         if (!memslot->dirty_bitmap)
3393                 goto out;
3394
3395         /*
3396          * Use second half of bitmap area because radix accumulates
3397          * bits in the first half.
3398          */
3399         n = kvm_dirty_bitmap_bytes(memslot);
3400         buf = memslot->dirty_bitmap + n / sizeof(long);
3401         memset(buf, 0, n);
3402
3403         if (kvm_is_radix(kvm))
3404                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3405         else
3406                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3407         if (r)
3408                 goto out;
3409
3410         /* Harvest dirty bits from VPA and DTL updates */
3411         /* Note: we never modify the SLB shadow buffer areas */
3412         kvm_for_each_vcpu(i, vcpu, kvm) {
3413                 spin_lock(&vcpu->arch.vpa_update_lock);
3414                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3415                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3416                 spin_unlock(&vcpu->arch.vpa_update_lock);
3417         }
3418
3419         r = -EFAULT;
3420         if (copy_to_user(log->dirty_bitmap, buf, n))
3421                 goto out;
3422
3423         r = 0;
3424 out:
3425         mutex_unlock(&kvm->slots_lock);
3426         return r;
3427 }
3428
3429 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3430                                         struct kvm_memory_slot *dont)
3431 {
3432         if (!dont || free->arch.rmap != dont->arch.rmap) {
3433                 vfree(free->arch.rmap);
3434                 free->arch.rmap = NULL;
3435         }
3436 }
3437
3438 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3439                                          unsigned long npages)
3440 {
3441         /*
3442          * For now, if radix_enabled() then we only support radix guests,
3443          * and in that case we don't need the rmap array.
3444          */
3445         if (radix_enabled()) {
3446                 slot->arch.rmap = NULL;
3447                 return 0;
3448         }
3449
3450         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3451         if (!slot->arch.rmap)
3452                 return -ENOMEM;
3453
3454         return 0;
3455 }
3456
3457 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3458                                         struct kvm_memory_slot *memslot,
3459                                         const struct kvm_userspace_memory_region *mem)
3460 {
3461         return 0;
3462 }
3463
3464 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3465                                 const struct kvm_userspace_memory_region *mem,
3466                                 const struct kvm_memory_slot *old,
3467                                 const struct kvm_memory_slot *new)
3468 {
3469         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3470         struct kvm_memslots *slots;
3471         struct kvm_memory_slot *memslot;
3472
3473         /*
3474          * If we are making a new memslot, it might make
3475          * some address that was previously cached as emulated
3476          * MMIO be no longer emulated MMIO, so invalidate
3477          * all the caches of emulated MMIO translations.
3478          */
3479         if (npages)
3480                 atomic64_inc(&kvm->arch.mmio_update);
3481
3482         if (npages && old->npages && !kvm_is_radix(kvm)) {
3483                 /*
3484                  * If modifying a memslot, reset all the rmap dirty bits.
3485                  * If this is a new memslot, we don't need to do anything
3486                  * since the rmap array starts out as all zeroes,
3487                  * i.e. no pages are dirty.
3488                  */
3489                 slots = kvm_memslots(kvm);
3490                 memslot = id_to_memslot(slots, mem->slot);
3491                 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3492         }
3493 }
3494
3495 /*
3496  * Update LPCR values in kvm->arch and in vcores.
3497  * Caller must hold kvm->lock.
3498  */
3499 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3500 {
3501         long int i;
3502         u32 cores_done = 0;
3503
3504         if ((kvm->arch.lpcr & mask) == lpcr)
3505                 return;
3506
3507         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3508
3509         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3510                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3511                 if (!vc)
3512                         continue;
3513                 spin_lock(&vc->lock);
3514                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3515                 spin_unlock(&vc->lock);
3516                 if (++cores_done >= kvm->arch.online_vcores)
3517                         break;
3518         }
3519 }
3520
3521 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3522 {
3523         return;
3524 }
3525
3526 static void kvmppc_setup_partition_table(struct kvm *kvm)
3527 {
3528         unsigned long dw0, dw1;
3529
3530         if (!kvm_is_radix(kvm)) {
3531                 /* PS field - page size for VRMA */
3532                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3533                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3534                 /* HTABSIZE and HTABORG fields */
3535                 dw0 |= kvm->arch.sdr1;
3536
3537                 /* Second dword as set by userspace */
3538                 dw1 = kvm->arch.process_table;
3539         } else {
3540                 dw0 = PATB_HR | radix__get_tree_size() |
3541                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3542                 dw1 = PATB_GR | kvm->arch.process_table;
3543         }
3544
3545         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3546 }
3547
3548 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3549 {
3550         int err = 0;
3551         struct kvm *kvm = vcpu->kvm;
3552         unsigned long hva;
3553         struct kvm_memory_slot *memslot;
3554         struct vm_area_struct *vma;
3555         unsigned long lpcr = 0, senc;
3556         unsigned long psize, porder;
3557         int srcu_idx;
3558
3559         mutex_lock(&kvm->lock);
3560         if (kvm->arch.hpte_setup_done)
3561                 goto out;       /* another vcpu beat us to it */
3562
3563         /* Allocate hashed page table (if not done already) and reset it */
3564         if (!kvm->arch.hpt.virt) {
3565                 int order = KVM_DEFAULT_HPT_ORDER;
3566                 struct kvm_hpt_info info;
3567
3568                 err = kvmppc_allocate_hpt(&info, order);
3569                 /* If we get here, it means userspace didn't specify a
3570                  * size explicitly.  So, try successively smaller
3571                  * sizes if the default failed. */
3572                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3573                         err  = kvmppc_allocate_hpt(&info, order);
3574
3575                 if (err < 0) {
3576                         pr_err("KVM: Couldn't alloc HPT\n");
3577                         goto out;
3578                 }
3579
3580                 kvmppc_set_hpt(kvm, &info);
3581         }
3582
3583         /* Look up the memslot for guest physical address 0 */
3584         srcu_idx = srcu_read_lock(&kvm->srcu);
3585         memslot = gfn_to_memslot(kvm, 0);
3586
3587         /* We must have some memory at 0 by now */
3588         err = -EINVAL;
3589         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3590                 goto out_srcu;
3591
3592         /* Look up the VMA for the start of this memory slot */
3593         hva = memslot->userspace_addr;
3594         down_read(&current->mm->mmap_sem);
3595         vma = find_vma(current->mm, hva);
3596         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3597                 goto up_out;
3598
3599         psize = vma_kernel_pagesize(vma);
3600         porder = __ilog2(psize);
3601
3602         up_read(&current->mm->mmap_sem);
3603
3604         /* We can handle 4k, 64k or 16M pages in the VRMA */
3605         err = -EINVAL;
3606         if (!(psize == 0x1000 || psize == 0x10000 ||
3607               psize == 0x1000000))
3608                 goto out_srcu;
3609
3610         senc = slb_pgsize_encoding(psize);
3611         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3612                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3613         /* Create HPTEs in the hash page table for the VRMA */
3614         kvmppc_map_vrma(vcpu, memslot, porder);
3615
3616         /* Update VRMASD field in the LPCR */
3617         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3618                 /* the -4 is to account for senc values starting at 0x10 */
3619                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3620                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3621         } else {
3622                 kvmppc_setup_partition_table(kvm);
3623         }
3624
3625         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3626         smp_wmb();
3627         kvm->arch.hpte_setup_done = 1;
3628         err = 0;
3629  out_srcu:
3630         srcu_read_unlock(&kvm->srcu, srcu_idx);
3631  out:
3632         mutex_unlock(&kvm->lock);
3633         return err;
3634
3635  up_out:
3636         up_read(&current->mm->mmap_sem);
3637         goto out_srcu;
3638 }
3639
3640 #ifdef CONFIG_KVM_XICS
3641 /*
3642  * Allocate a per-core structure for managing state about which cores are
3643  * running in the host versus the guest and for exchanging data between
3644  * real mode KVM and CPU running in the host.
3645  * This is only done for the first VM.
3646  * The allocated structure stays even if all VMs have stopped.
3647  * It is only freed when the kvm-hv module is unloaded.
3648  * It's OK for this routine to fail, we just don't support host
3649  * core operations like redirecting H_IPI wakeups.
3650  */
3651 void kvmppc_alloc_host_rm_ops(void)
3652 {
3653         struct kvmppc_host_rm_ops *ops;
3654         unsigned long l_ops;
3655         int cpu, core;
3656         int size;
3657
3658         /* Not the first time here ? */
3659         if (kvmppc_host_rm_ops_hv != NULL)
3660                 return;
3661
3662         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3663         if (!ops)
3664                 return;
3665
3666         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3667         ops->rm_core = kzalloc(size, GFP_KERNEL);
3668
3669         if (!ops->rm_core) {
3670                 kfree(ops);
3671                 return;
3672         }
3673
3674         cpus_read_lock();
3675
3676         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3677                 if (!cpu_online(cpu))
3678                         continue;
3679
3680                 core = cpu >> threads_shift;
3681                 ops->rm_core[core].rm_state.in_host = 1;
3682         }
3683
3684         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3685
3686         /*
3687          * Make the contents of the kvmppc_host_rm_ops structure visible
3688          * to other CPUs before we assign it to the global variable.
3689          * Do an atomic assignment (no locks used here), but if someone
3690          * beats us to it, just free our copy and return.
3691          */
3692         smp_wmb();
3693         l_ops = (unsigned long) ops;
3694
3695         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3696                 cpus_read_unlock();
3697                 kfree(ops->rm_core);
3698                 kfree(ops);
3699                 return;
3700         }
3701
3702         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3703                                              "ppc/kvm_book3s:prepare",
3704                                              kvmppc_set_host_core,
3705                                              kvmppc_clear_host_core);
3706         cpus_read_unlock();
3707 }
3708
3709 void kvmppc_free_host_rm_ops(void)
3710 {
3711         if (kvmppc_host_rm_ops_hv) {
3712                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3713                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3714                 kfree(kvmppc_host_rm_ops_hv);
3715                 kvmppc_host_rm_ops_hv = NULL;
3716         }
3717 }
3718 #endif
3719
3720 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3721 {
3722         unsigned long lpcr, lpid;
3723         char buf[32];
3724         int ret;
3725
3726         /* Allocate the guest's logical partition ID */
3727
3728         lpid = kvmppc_alloc_lpid();
3729         if ((long)lpid < 0)
3730                 return -ENOMEM;
3731         kvm->arch.lpid = lpid;
3732
3733         kvmppc_alloc_host_rm_ops();
3734
3735         /*
3736          * Since we don't flush the TLB when tearing down a VM,
3737          * and this lpid might have previously been used,
3738          * make sure we flush on each core before running the new VM.
3739          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3740          * does this flush for us.
3741          */
3742         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3743                 cpumask_setall(&kvm->arch.need_tlb_flush);
3744
3745         /* Start out with the default set of hcalls enabled */
3746         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3747                sizeof(kvm->arch.enabled_hcalls));
3748
3749         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3750                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3751
3752         /* Init LPCR for virtual RMA mode */
3753         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3754         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3755         lpcr &= LPCR_PECE | LPCR_LPES;
3756         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3757                 LPCR_VPM0 | LPCR_VPM1;
3758         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3759                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3760         /* On POWER8 turn on online bit to enable PURR/SPURR */
3761         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3762                 lpcr |= LPCR_ONL;
3763         /*
3764          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3765          * Set HVICE bit to enable hypervisor virtualization interrupts.
3766          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3767          * be unnecessary but better safe than sorry in case we re-enable
3768          * EE in HV mode with this LPCR still set)
3769          */
3770         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3771                 lpcr &= ~LPCR_VPM0;
3772                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3773
3774                 /*
3775                  * If xive is enabled, we route 0x500 interrupts directly
3776                  * to the guest.
3777                  */
3778                 if (xive_enabled())
3779                         lpcr |= LPCR_LPES;
3780         }
3781
3782         /*
3783          * For now, if the host uses radix, the guest must be radix.
3784          */
3785         if (radix_enabled()) {
3786                 kvm->arch.radix = 1;
3787                 lpcr &= ~LPCR_VPM1;
3788                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3789                 ret = kvmppc_init_vm_radix(kvm);
3790                 if (ret) {
3791                         kvmppc_free_lpid(kvm->arch.lpid);
3792                         return ret;
3793                 }
3794                 kvmppc_setup_partition_table(kvm);
3795         }
3796
3797         kvm->arch.lpcr = lpcr;
3798
3799         /* Initialization for future HPT resizes */
3800         kvm->arch.resize_hpt = NULL;
3801
3802         /*
3803          * Work out how many sets the TLB has, for the use of
3804          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3805          */
3806         if (kvm_is_radix(kvm))
3807                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3808         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3809                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3810         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3811                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3812         else
3813                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3814
3815         /*
3816          * Track that we now have a HV mode VM active. This blocks secondary
3817          * CPU threads from coming online.
3818          * On POWER9, we only need to do this for HPT guests on a radix
3819          * host, which is not yet supported.
3820          */
3821         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3822                 kvm_hv_vm_activated();
3823
3824         /*
3825          * Initialize smt_mode depending on processor.
3826          * POWER8 and earlier have to use "strict" threading, where
3827          * all vCPUs in a vcore have to run on the same (sub)core,
3828          * whereas on POWER9 the threads can each run a different
3829          * guest.
3830          */
3831         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3832                 kvm->arch.smt_mode = threads_per_subcore;
3833         else
3834                 kvm->arch.smt_mode = 1;
3835         kvm->arch.emul_smt_mode = 1;
3836
3837         /*
3838          * Create a debugfs directory for the VM
3839          */
3840         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3841         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3842         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3843                 kvmppc_mmu_debugfs_init(kvm);
3844
3845         return 0;
3846 }
3847
3848 static void kvmppc_free_vcores(struct kvm *kvm)
3849 {
3850         long int i;
3851
3852         for (i = 0; i < KVM_MAX_VCORES; ++i)
3853                 kfree(kvm->arch.vcores[i]);
3854         kvm->arch.online_vcores = 0;
3855 }
3856
3857 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3858 {
3859         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3860
3861         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3862                 kvm_hv_vm_deactivated();
3863
3864         kvmppc_free_vcores(kvm);
3865
3866         kvmppc_free_lpid(kvm->arch.lpid);
3867
3868         if (kvm_is_radix(kvm))
3869                 kvmppc_free_radix(kvm);
3870         else
3871                 kvmppc_free_hpt(&kvm->arch.hpt);
3872
3873         kvmppc_free_pimap(kvm);
3874 }
3875
3876 /* We don't need to emulate any privileged instructions or dcbz */
3877 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3878                                      unsigned int inst, int *advance)
3879 {
3880         return EMULATE_FAIL;
3881 }
3882
3883 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3884                                         ulong spr_val)
3885 {
3886         return EMULATE_FAIL;
3887 }
3888
3889 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3890                                         ulong *spr_val)
3891 {
3892         return EMULATE_FAIL;
3893 }
3894
3895 static int kvmppc_core_check_processor_compat_hv(void)
3896 {
3897         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3898             !cpu_has_feature(CPU_FTR_ARCH_206))
3899                 return -EIO;
3900
3901         return 0;
3902 }
3903
3904 #ifdef CONFIG_KVM_XICS
3905
3906 void kvmppc_free_pimap(struct kvm *kvm)
3907 {
3908         kfree(kvm->arch.pimap);
3909 }
3910
3911 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3912 {
3913         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3914 }
3915
3916 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3917 {
3918         struct irq_desc *desc;
3919         struct kvmppc_irq_map *irq_map;
3920         struct kvmppc_passthru_irqmap *pimap;
3921         struct irq_chip *chip;
3922         int i, rc = 0;
3923
3924         if (!kvm_irq_bypass)
3925                 return 1;
3926
3927         desc = irq_to_desc(host_irq);
3928         if (!desc)
3929                 return -EIO;
3930
3931         mutex_lock(&kvm->lock);
3932
3933         pimap = kvm->arch.pimap;
3934         if (pimap == NULL) {
3935                 /* First call, allocate structure to hold IRQ map */
3936                 pimap = kvmppc_alloc_pimap();
3937                 if (pimap == NULL) {
3938                         mutex_unlock(&kvm->lock);
3939                         return -ENOMEM;
3940                 }
3941                 kvm->arch.pimap = pimap;
3942         }
3943
3944         /*
3945          * For now, we only support interrupts for which the EOI operation
3946          * is an OPAL call followed by a write to XIRR, since that's
3947          * what our real-mode EOI code does, or a XIVE interrupt
3948          */
3949         chip = irq_data_get_irq_chip(&desc->irq_data);
3950         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3951                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3952                         host_irq, guest_gsi);
3953                 mutex_unlock(&kvm->lock);
3954                 return -ENOENT;
3955         }
3956
3957         /*
3958          * See if we already have an entry for this guest IRQ number.
3959          * If it's mapped to a hardware IRQ number, that's an error,
3960          * otherwise re-use this entry.
3961          */
3962         for (i = 0; i < pimap->n_mapped; i++) {
3963                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3964                         if (pimap->mapped[i].r_hwirq) {
3965                                 mutex_unlock(&kvm->lock);
3966                                 return -EINVAL;
3967                         }
3968                         break;
3969                 }
3970         }
3971
3972         if (i == KVMPPC_PIRQ_MAPPED) {
3973                 mutex_unlock(&kvm->lock);
3974                 return -EAGAIN;         /* table is full */
3975         }
3976
3977         irq_map = &pimap->mapped[i];
3978
3979         irq_map->v_hwirq = guest_gsi;
3980         irq_map->desc = desc;
3981
3982         /*
3983          * Order the above two stores before the next to serialize with
3984          * the KVM real mode handler.
3985          */
3986         smp_wmb();
3987         irq_map->r_hwirq = desc->irq_data.hwirq;
3988
3989         if (i == pimap->n_mapped)
3990                 pimap->n_mapped++;
3991
3992         if (xive_enabled())
3993                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3994         else
3995                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3996         if (rc)
3997                 irq_map->r_hwirq = 0;
3998
3999         mutex_unlock(&kvm->lock);
4000
4001         return 0;
4002 }
4003
4004 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4005 {
4006         struct irq_desc *desc;
4007         struct kvmppc_passthru_irqmap *pimap;
4008         int i, rc = 0;
4009
4010         if (!kvm_irq_bypass)
4011                 return 0;
4012
4013         desc = irq_to_desc(host_irq);
4014         if (!desc)
4015                 return -EIO;
4016
4017         mutex_lock(&kvm->lock);
4018         if (!kvm->arch.pimap)
4019                 goto unlock;
4020
4021         pimap = kvm->arch.pimap;
4022
4023         for (i = 0; i < pimap->n_mapped; i++) {
4024                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4025                         break;
4026         }
4027
4028         if (i == pimap->n_mapped) {
4029                 mutex_unlock(&kvm->lock);
4030                 return -ENODEV;
4031         }
4032
4033         if (xive_enabled())
4034                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4035         else
4036                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4037
4038         /* invalidate the entry (what do do on error from the above ?) */
4039         pimap->mapped[i].r_hwirq = 0;
4040
4041         /*
4042          * We don't free this structure even when the count goes to
4043          * zero. The structure is freed when we destroy the VM.
4044          */
4045  unlock:
4046         mutex_unlock(&kvm->lock);
4047         return rc;
4048 }
4049
4050 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4051                                              struct irq_bypass_producer *prod)
4052 {
4053         int ret = 0;
4054         struct kvm_kernel_irqfd *irqfd =
4055                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4056
4057         irqfd->producer = prod;
4058
4059         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4060         if (ret)
4061                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4062                         prod->irq, irqfd->gsi, ret);
4063
4064         return ret;
4065 }
4066
4067 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4068                                               struct irq_bypass_producer *prod)
4069 {
4070         int ret;
4071         struct kvm_kernel_irqfd *irqfd =
4072                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4073
4074         irqfd->producer = NULL;
4075
4076         /*
4077          * When producer of consumer is unregistered, we change back to
4078          * default external interrupt handling mode - KVM real mode
4079          * will switch back to host.
4080          */
4081         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4082         if (ret)
4083                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4084                         prod->irq, irqfd->gsi, ret);
4085 }
4086 #endif
4087
4088 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4089                                  unsigned int ioctl, unsigned long arg)
4090 {
4091         struct kvm *kvm __maybe_unused = filp->private_data;
4092         void __user *argp = (void __user *)arg;
4093         long r;
4094
4095         switch (ioctl) {
4096
4097         case KVM_PPC_ALLOCATE_HTAB: {
4098                 u32 htab_order;
4099
4100                 r = -EFAULT;
4101                 if (get_user(htab_order, (u32 __user *)argp))
4102                         break;
4103                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4104                 if (r)
4105                         break;
4106                 r = 0;
4107                 break;
4108         }
4109
4110         case KVM_PPC_GET_HTAB_FD: {
4111                 struct kvm_get_htab_fd ghf;
4112
4113                 r = -EFAULT;
4114                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4115                         break;
4116                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4117                 break;
4118         }
4119
4120         case KVM_PPC_RESIZE_HPT_PREPARE: {
4121                 struct kvm_ppc_resize_hpt rhpt;
4122
4123                 r = -EFAULT;
4124                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4125                         break;
4126
4127                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4128                 break;
4129         }
4130
4131         case KVM_PPC_RESIZE_HPT_COMMIT: {
4132                 struct kvm_ppc_resize_hpt rhpt;
4133
4134                 r = -EFAULT;
4135                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4136                         break;
4137
4138                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4139                 break;
4140         }
4141
4142         default:
4143                 r = -ENOTTY;
4144         }
4145
4146         return r;
4147 }
4148
4149 /*
4150  * List of hcall numbers to enable by default.
4151  * For compatibility with old userspace, we enable by default
4152  * all hcalls that were implemented before the hcall-enabling
4153  * facility was added.  Note this list should not include H_RTAS.
4154  */
4155 static unsigned int default_hcall_list[] = {
4156         H_REMOVE,
4157         H_ENTER,
4158         H_READ,
4159         H_PROTECT,
4160         H_BULK_REMOVE,
4161         H_GET_TCE,
4162         H_PUT_TCE,
4163         H_SET_DABR,
4164         H_SET_XDABR,
4165         H_CEDE,
4166         H_PROD,
4167         H_CONFER,
4168         H_REGISTER_VPA,
4169 #ifdef CONFIG_KVM_XICS
4170         H_EOI,
4171         H_CPPR,
4172         H_IPI,
4173         H_IPOLL,
4174         H_XIRR,
4175         H_XIRR_X,
4176 #endif
4177         0
4178 };
4179
4180 static void init_default_hcalls(void)
4181 {
4182         int i;
4183         unsigned int hcall;
4184
4185         for (i = 0; default_hcall_list[i]; ++i) {
4186                 hcall = default_hcall_list[i];
4187                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4188                 __set_bit(hcall / 4, default_enabled_hcalls);
4189         }
4190 }
4191
4192 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4193 {
4194         unsigned long lpcr;
4195         int radix;
4196
4197         /* If not on a POWER9, reject it */
4198         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4199                 return -ENODEV;
4200
4201         /* If any unknown flags set, reject it */
4202         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4203                 return -EINVAL;
4204
4205         /* We can't change a guest to/from radix yet */
4206         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4207         if (radix != kvm_is_radix(kvm))
4208                 return -EINVAL;
4209
4210         /* GR (guest radix) bit in process_table field must match */
4211         if (!!(cfg->process_table & PATB_GR) != radix)
4212                 return -EINVAL;
4213
4214         /* Process table size field must be reasonable, i.e. <= 24 */
4215         if ((cfg->process_table & PRTS_MASK) > 24)
4216                 return -EINVAL;
4217
4218         mutex_lock(&kvm->lock);
4219         kvm->arch.process_table = cfg->process_table;
4220         kvmppc_setup_partition_table(kvm);
4221
4222         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4223         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4224         mutex_unlock(&kvm->lock);
4225
4226         return 0;
4227 }
4228
4229 static struct kvmppc_ops kvm_ops_hv = {
4230         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4231         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4232         .get_one_reg = kvmppc_get_one_reg_hv,
4233         .set_one_reg = kvmppc_set_one_reg_hv,
4234         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4235         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4236         .set_msr     = kvmppc_set_msr_hv,
4237         .vcpu_run    = kvmppc_vcpu_run_hv,
4238         .vcpu_create = kvmppc_core_vcpu_create_hv,
4239         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4240         .check_requests = kvmppc_core_check_requests_hv,
4241         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4242         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4243         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4244         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4245         .unmap_hva = kvm_unmap_hva_hv,
4246         .unmap_hva_range = kvm_unmap_hva_range_hv,
4247         .age_hva  = kvm_age_hva_hv,
4248         .test_age_hva = kvm_test_age_hva_hv,
4249         .set_spte_hva = kvm_set_spte_hva_hv,
4250         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4251         .free_memslot = kvmppc_core_free_memslot_hv,
4252         .create_memslot = kvmppc_core_create_memslot_hv,
4253         .init_vm =  kvmppc_core_init_vm_hv,
4254         .destroy_vm = kvmppc_core_destroy_vm_hv,
4255         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4256         .emulate_op = kvmppc_core_emulate_op_hv,
4257         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4258         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4259         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4260         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4261         .hcall_implemented = kvmppc_hcall_impl_hv,
4262 #ifdef CONFIG_KVM_XICS
4263         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4264         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4265 #endif
4266         .configure_mmu = kvmhv_configure_mmu,
4267         .get_rmmu_info = kvmhv_get_rmmu_info,
4268         .set_smt_mode = kvmhv_set_smt_mode,
4269 };
4270
4271 static int kvm_init_subcore_bitmap(void)
4272 {
4273         int i, j;
4274         int nr_cores = cpu_nr_cores();
4275         struct sibling_subcore_state *sibling_subcore_state;
4276
4277         for (i = 0; i < nr_cores; i++) {
4278                 int first_cpu = i * threads_per_core;
4279                 int node = cpu_to_node(first_cpu);
4280
4281                 /* Ignore if it is already allocated. */
4282                 if (paca[first_cpu].sibling_subcore_state)
4283                         continue;
4284
4285                 sibling_subcore_state =
4286                         kmalloc_node(sizeof(struct sibling_subcore_state),
4287                                                         GFP_KERNEL, node);
4288                 if (!sibling_subcore_state)
4289                         return -ENOMEM;
4290
4291                 memset(sibling_subcore_state, 0,
4292                                 sizeof(struct sibling_subcore_state));
4293
4294                 for (j = 0; j < threads_per_core; j++) {
4295                         int cpu = first_cpu + j;
4296
4297                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4298                 }
4299         }
4300         return 0;
4301 }
4302
4303 static int kvmppc_radix_possible(void)
4304 {
4305         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4306 }
4307
4308 static int kvmppc_book3s_init_hv(void)
4309 {
4310         int r;
4311         /*
4312          * FIXME!! Do we need to check on all cpus ?
4313          */
4314         r = kvmppc_core_check_processor_compat_hv();
4315         if (r < 0)
4316                 return -ENODEV;
4317
4318         r = kvm_init_subcore_bitmap();
4319         if (r)
4320                 return r;
4321
4322         /*
4323          * We need a way of accessing the XICS interrupt controller,
4324          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4325          * indirectly, via OPAL.
4326          */
4327 #ifdef CONFIG_SMP
4328         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4329                 struct device_node *np;
4330
4331                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4332                 if (!np) {
4333                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4334                         return -ENODEV;
4335                 }
4336         }
4337 #endif
4338
4339         kvm_ops_hv.owner = THIS_MODULE;
4340         kvmppc_hv_ops = &kvm_ops_hv;
4341
4342         init_default_hcalls();
4343
4344         init_vcore_lists();
4345
4346         r = kvmppc_mmu_hv_init();
4347         if (r)
4348                 return r;
4349
4350         if (kvmppc_radix_possible())
4351                 r = kvmppc_radix_init();
4352         return r;
4353 }
4354
4355 static void kvmppc_book3s_exit_hv(void)
4356 {
4357         kvmppc_free_host_rm_ops();
4358         if (kvmppc_radix_possible())
4359                 kvmppc_radix_exit();
4360         kvmppc_hv_ops = NULL;
4361 }
4362
4363 module_init(kvmppc_book3s_init_hv);
4364 module_exit(kvmppc_book3s_exit_hv);
4365 MODULE_LICENSE("GPL");
4366 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4367 MODULE_ALIAS("devname:kvm");
4368