KVM: PPC: Book3S HV: Handle hypervisor instruction faults better
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76
77 #include "book3s.h"
78
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
90
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL  (~(u64)0)
93
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109         .set = param_set_int,
110         .get = param_get_int,
111 };
112
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125
126 /*
127  * RWMR values for POWER8.  These control the rate at which PURR
128  * and SPURR count and should be set according to the number of
129  * online threads in the vcore being run.
130  */
131 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
132 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
133 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
134 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
135 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
136 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
137 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
138 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
139
140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
141         RWMR_RPA_P8_1THREAD,
142         RWMR_RPA_P8_1THREAD,
143         RWMR_RPA_P8_2THREAD,
144         RWMR_RPA_P8_3THREAD,
145         RWMR_RPA_P8_4THREAD,
146         RWMR_RPA_P8_5THREAD,
147         RWMR_RPA_P8_6THREAD,
148         RWMR_RPA_P8_7THREAD,
149         RWMR_RPA_P8_8THREAD,
150 };
151
152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
153                 int *ip)
154 {
155         int i = *ip;
156         struct kvm_vcpu *vcpu;
157
158         while (++i < MAX_SMT_THREADS) {
159                 vcpu = READ_ONCE(vc->runnable_threads[i]);
160                 if (vcpu) {
161                         *ip = i;
162                         return vcpu;
163                 }
164         }
165         return NULL;
166 }
167
168 /* Used to traverse the list of runnable threads for a given vcore */
169 #define for_each_runnable_thread(i, vcpu, vc) \
170         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
171
172 static bool kvmppc_ipi_thread(int cpu)
173 {
174         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
175
176         /* On POWER9 we can use msgsnd to IPI any cpu */
177         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
178                 msg |= get_hard_smp_processor_id(cpu);
179                 smp_mb();
180                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
181                 return true;
182         }
183
184         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
185         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
186                 preempt_disable();
187                 if (cpu_first_thread_sibling(cpu) ==
188                     cpu_first_thread_sibling(smp_processor_id())) {
189                         msg |= cpu_thread_in_core(cpu);
190                         smp_mb();
191                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192                         preempt_enable();
193                         return true;
194                 }
195                 preempt_enable();
196         }
197
198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199         if (cpu >= 0 && cpu < nr_cpu_ids) {
200                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201                         xics_wake_cpu(cpu);
202                         return true;
203                 }
204                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205                 return true;
206         }
207 #endif
208
209         return false;
210 }
211
212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213 {
214         int cpu;
215         struct swait_queue_head *wqp;
216
217         wqp = kvm_arch_vcpu_wq(vcpu);
218         if (swq_has_sleeper(wqp)) {
219                 swake_up_one(wqp);
220                 ++vcpu->stat.halt_wakeup;
221         }
222
223         cpu = READ_ONCE(vcpu->arch.thread_cpu);
224         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225                 return;
226
227         /* CPU points to the first thread of the core */
228         cpu = vcpu->cpu;
229         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
230                 smp_send_reschedule(cpu);
231 }
232
233 /*
234  * We use the vcpu_load/put functions to measure stolen time.
235  * Stolen time is counted as time when either the vcpu is able to
236  * run as part of a virtual core, but the task running the vcore
237  * is preempted or sleeping, or when the vcpu needs something done
238  * in the kernel by the task running the vcpu, but that task is
239  * preempted or sleeping.  Those two things have to be counted
240  * separately, since one of the vcpu tasks will take on the job
241  * of running the core, and the other vcpu tasks in the vcore will
242  * sleep waiting for it to do that, but that sleep shouldn't count
243  * as stolen time.
244  *
245  * Hence we accumulate stolen time when the vcpu can run as part of
246  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
247  * needs its task to do other things in the kernel (for example,
248  * service a page fault) in busy_stolen.  We don't accumulate
249  * stolen time for a vcore when it is inactive, or for a vcpu
250  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
251  * a misnomer; it means that the vcpu task is not executing in
252  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
253  * the kernel.  We don't have any way of dividing up that time
254  * between time that the vcpu is genuinely stopped, time that
255  * the task is actively working on behalf of the vcpu, and time
256  * that the task is preempted, so we don't count any of it as
257  * stolen.
258  *
259  * Updates to busy_stolen are protected by arch.tbacct_lock;
260  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
261  * lock.  The stolen times are measured in units of timebase ticks.
262  * (Note that the != TB_NIL checks below are purely defensive;
263  * they should never fail.)
264  */
265
266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
267 {
268         unsigned long flags;
269
270         spin_lock_irqsave(&vc->stoltb_lock, flags);
271         vc->preempt_tb = mftb();
272         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
273 }
274
275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
276 {
277         unsigned long flags;
278
279         spin_lock_irqsave(&vc->stoltb_lock, flags);
280         if (vc->preempt_tb != TB_NIL) {
281                 vc->stolen_tb += mftb() - vc->preempt_tb;
282                 vc->preempt_tb = TB_NIL;
283         }
284         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286
287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288 {
289         struct kvmppc_vcore *vc = vcpu->arch.vcore;
290         unsigned long flags;
291
292         /*
293          * We can test vc->runner without taking the vcore lock,
294          * because only this task ever sets vc->runner to this
295          * vcpu, and once it is set to this vcpu, only this task
296          * ever sets it to NULL.
297          */
298         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
299                 kvmppc_core_end_stolen(vc);
300
301         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
303             vcpu->arch.busy_preempt != TB_NIL) {
304                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
305                 vcpu->arch.busy_preempt = TB_NIL;
306         }
307         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 }
309
310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311 {
312         struct kvmppc_vcore *vc = vcpu->arch.vcore;
313         unsigned long flags;
314
315         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316                 kvmppc_core_start_stolen(vc);
317
318         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
320                 vcpu->arch.busy_preempt = mftb();
321         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 }
323
324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325 {
326         /*
327          * Check for illegal transactional state bit combination
328          * and if we find it, force the TS field to a safe state.
329          */
330         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
331                 msr &= ~MSR_TS_MASK;
332         vcpu->arch.shregs.msr = msr;
333         kvmppc_end_cede(vcpu);
334 }
335
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338         vcpu->arch.pvr = pvr;
339 }
340
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
343
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347         struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
349         /* We can (emulate) our own architecture version and anything older */
350         if (cpu_has_feature(CPU_FTR_ARCH_300))
351                 host_pcr_bit = PCR_ARCH_300;
352         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
353                 host_pcr_bit = PCR_ARCH_207;
354         else if (cpu_has_feature(CPU_FTR_ARCH_206))
355                 host_pcr_bit = PCR_ARCH_206;
356         else
357                 host_pcr_bit = PCR_ARCH_205;
358
359         /* Determine lowest PCR bit needed to run guest in given PVR level */
360         guest_pcr_bit = host_pcr_bit;
361         if (arch_compat) {
362                 switch (arch_compat) {
363                 case PVR_ARCH_205:
364                         guest_pcr_bit = PCR_ARCH_205;
365                         break;
366                 case PVR_ARCH_206:
367                 case PVR_ARCH_206p:
368                         guest_pcr_bit = PCR_ARCH_206;
369                         break;
370                 case PVR_ARCH_207:
371                         guest_pcr_bit = PCR_ARCH_207;
372                         break;
373                 case PVR_ARCH_300:
374                         guest_pcr_bit = PCR_ARCH_300;
375                         break;
376                 default:
377                         return -EINVAL;
378                 }
379         }
380
381         /* Check requested PCR bits don't exceed our capabilities */
382         if (guest_pcr_bit > host_pcr_bit)
383                 return -EINVAL;
384
385         spin_lock(&vc->lock);
386         vc->arch_compat = arch_compat;
387         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
388         vc->pcr = host_pcr_bit - guest_pcr_bit;
389         spin_unlock(&vc->lock);
390
391         return 0;
392 }
393
394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 {
396         int r;
397
398         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
399         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401         for (r = 0; r < 16; ++r)
402                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
403                        r, kvmppc_get_gpr(vcpu, r),
404                        r+16, kvmppc_get_gpr(vcpu, r+16));
405         pr_err("ctr = %.16lx  lr  = %.16lx\n",
406                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
408                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
409         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
410                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
411         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
412                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
414                vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
416         pr_err("fault dar = %.16lx dsisr = %.8x\n",
417                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
418         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
419         for (r = 0; r < vcpu->arch.slb_max; ++r)
420                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
421                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
422         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424                vcpu->arch.last_inst);
425 }
426
427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428 {
429         struct kvm_vcpu *ret;
430
431         mutex_lock(&kvm->lock);
432         ret = kvm_get_vcpu_by_id(kvm, id);
433         mutex_unlock(&kvm->lock);
434         return ret;
435 }
436
437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440         vpa->yield_count = cpu_to_be32(1);
441 }
442
443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444                    unsigned long addr, unsigned long len)
445 {
446         /* check address is cacheline aligned */
447         if (addr & (L1_CACHE_BYTES - 1))
448                 return -EINVAL;
449         spin_lock(&vcpu->arch.vpa_update_lock);
450         if (v->next_gpa != addr || v->len != len) {
451                 v->next_gpa = addr;
452                 v->len = addr ? len : 0;
453                 v->update_pending = 1;
454         }
455         spin_unlock(&vcpu->arch.vpa_update_lock);
456         return 0;
457 }
458
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461         u32 dummy;
462         union {
463                 __be16 hword;
464                 __be32 word;
465         } length;
466 };
467
468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470         if (vpap->update_pending)
471                 return vpap->next_gpa != 0;
472         return vpap->pinned_addr != NULL;
473 }
474
475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476                                        unsigned long flags,
477                                        unsigned long vcpuid, unsigned long vpa)
478 {
479         struct kvm *kvm = vcpu->kvm;
480         unsigned long len, nb;
481         void *va;
482         struct kvm_vcpu *tvcpu;
483         int err;
484         int subfunc;
485         struct kvmppc_vpa *vpap;
486
487         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488         if (!tvcpu)
489                 return H_PARAMETER;
490
491         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493             subfunc == H_VPA_REG_SLB) {
494                 /* Registering new area - address must be cache-line aligned */
495                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496                         return H_PARAMETER;
497
498                 /* convert logical addr to kernel addr and read length */
499                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500                 if (va == NULL)
501                         return H_PARAMETER;
502                 if (subfunc == H_VPA_REG_VPA)
503                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504                 else
505                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
507
508                 /* Check length */
509                 if (len > nb || len < sizeof(struct reg_vpa))
510                         return H_PARAMETER;
511         } else {
512                 vpa = 0;
513                 len = 0;
514         }
515
516         err = H_PARAMETER;
517         vpap = NULL;
518         spin_lock(&tvcpu->arch.vpa_update_lock);
519
520         switch (subfunc) {
521         case H_VPA_REG_VPA:             /* register VPA */
522                 /*
523                  * The size of our lppaca is 1kB because of the way we align
524                  * it for the guest to avoid crossing a 4kB boundary. We only
525                  * use 640 bytes of the structure though, so we should accept
526                  * clients that set a size of 640.
527                  */
528                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529                 if (len < sizeof(struct lppaca))
530                         break;
531                 vpap = &tvcpu->arch.vpa;
532                 err = 0;
533                 break;
534
535         case H_VPA_REG_DTL:             /* register DTL */
536                 if (len < sizeof(struct dtl_entry))
537                         break;
538                 len -= len % sizeof(struct dtl_entry);
539
540                 /* Check that they have previously registered a VPA */
541                 err = H_RESOURCE;
542                 if (!vpa_is_registered(&tvcpu->arch.vpa))
543                         break;
544
545                 vpap = &tvcpu->arch.dtl;
546                 err = 0;
547                 break;
548
549         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
550                 /* Check that they have previously registered a VPA */
551                 err = H_RESOURCE;
552                 if (!vpa_is_registered(&tvcpu->arch.vpa))
553                         break;
554
555                 vpap = &tvcpu->arch.slb_shadow;
556                 err = 0;
557                 break;
558
559         case H_VPA_DEREG_VPA:           /* deregister VPA */
560                 /* Check they don't still have a DTL or SLB buf registered */
561                 err = H_RESOURCE;
562                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
563                     vpa_is_registered(&tvcpu->arch.slb_shadow))
564                         break;
565
566                 vpap = &tvcpu->arch.vpa;
567                 err = 0;
568                 break;
569
570         case H_VPA_DEREG_DTL:           /* deregister DTL */
571                 vpap = &tvcpu->arch.dtl;
572                 err = 0;
573                 break;
574
575         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
576                 vpap = &tvcpu->arch.slb_shadow;
577                 err = 0;
578                 break;
579         }
580
581         if (vpap) {
582                 vpap->next_gpa = vpa;
583                 vpap->len = len;
584                 vpap->update_pending = 1;
585         }
586
587         spin_unlock(&tvcpu->arch.vpa_update_lock);
588
589         return err;
590 }
591
592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594         struct kvm *kvm = vcpu->kvm;
595         void *va;
596         unsigned long nb;
597         unsigned long gpa;
598
599         /*
600          * We need to pin the page pointed to by vpap->next_gpa,
601          * but we can't call kvmppc_pin_guest_page under the lock
602          * as it does get_user_pages() and down_read().  So we
603          * have to drop the lock, pin the page, then get the lock
604          * again and check that a new area didn't get registered
605          * in the meantime.
606          */
607         for (;;) {
608                 gpa = vpap->next_gpa;
609                 spin_unlock(&vcpu->arch.vpa_update_lock);
610                 va = NULL;
611                 nb = 0;
612                 if (gpa)
613                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614                 spin_lock(&vcpu->arch.vpa_update_lock);
615                 if (gpa == vpap->next_gpa)
616                         break;
617                 /* sigh... unpin that one and try again */
618                 if (va)
619                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
620         }
621
622         vpap->update_pending = 0;
623         if (va && nb < vpap->len) {
624                 /*
625                  * If it's now too short, it must be that userspace
626                  * has changed the mappings underlying guest memory,
627                  * so unregister the region.
628                  */
629                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
630                 va = NULL;
631         }
632         if (vpap->pinned_addr)
633                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634                                         vpap->dirty);
635         vpap->gpa = gpa;
636         vpap->pinned_addr = va;
637         vpap->dirty = false;
638         if (va)
639                 vpap->pinned_end = va + vpap->len;
640 }
641
642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644         if (!(vcpu->arch.vpa.update_pending ||
645               vcpu->arch.slb_shadow.update_pending ||
646               vcpu->arch.dtl.update_pending))
647                 return;
648
649         spin_lock(&vcpu->arch.vpa_update_lock);
650         if (vcpu->arch.vpa.update_pending) {
651                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652                 if (vcpu->arch.vpa.pinned_addr)
653                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654         }
655         if (vcpu->arch.dtl.update_pending) {
656                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658                 vcpu->arch.dtl_index = 0;
659         }
660         if (vcpu->arch.slb_shadow.update_pending)
661                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662         spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664
665 /*
666  * Return the accumulated stolen time for the vcore up until `now'.
667  * The caller should hold the vcore lock.
668  */
669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671         u64 p;
672         unsigned long flags;
673
674         spin_lock_irqsave(&vc->stoltb_lock, flags);
675         p = vc->stolen_tb;
676         if (vc->vcore_state != VCORE_INACTIVE &&
677             vc->preempt_tb != TB_NIL)
678                 p += now - vc->preempt_tb;
679         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680         return p;
681 }
682
683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684                                     struct kvmppc_vcore *vc)
685 {
686         struct dtl_entry *dt;
687         struct lppaca *vpa;
688         unsigned long stolen;
689         unsigned long core_stolen;
690         u64 now;
691         unsigned long flags;
692
693         dt = vcpu->arch.dtl_ptr;
694         vpa = vcpu->arch.vpa.pinned_addr;
695         now = mftb();
696         core_stolen = vcore_stolen_time(vc, now);
697         stolen = core_stolen - vcpu->arch.stolen_logged;
698         vcpu->arch.stolen_logged = core_stolen;
699         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700         stolen += vcpu->arch.busy_stolen;
701         vcpu->arch.busy_stolen = 0;
702         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703         if (!dt || !vpa)
704                 return;
705         memset(dt, 0, sizeof(struct dtl_entry));
706         dt->dispatch_reason = 7;
707         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708         dt->timebase = cpu_to_be64(now + vc->tb_offset);
709         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712         ++dt;
713         if (dt == vcpu->arch.dtl.pinned_end)
714                 dt = vcpu->arch.dtl.pinned_addr;
715         vcpu->arch.dtl_ptr = dt;
716         /* order writing *dt vs. writing vpa->dtl_idx */
717         smp_wmb();
718         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719         vcpu->arch.dtl.dirty = true;
720 }
721
722 /* See if there is a doorbell interrupt pending for a vcpu */
723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725         int thr;
726         struct kvmppc_vcore *vc;
727
728         if (vcpu->arch.doorbell_request)
729                 return true;
730         /*
731          * Ensure that the read of vcore->dpdes comes after the read
732          * of vcpu->doorbell_request.  This barrier matches the
733          * smb_wmb() in kvmppc_guest_entry_inject().
734          */
735         smp_rmb();
736         vc = vcpu->arch.vcore;
737         thr = vcpu->vcpu_id - vc->first_vcpuid;
738         return !!(vc->dpdes & (1 << thr));
739 }
740
741 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
742 {
743         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
744                 return true;
745         if ((!vcpu->arch.vcore->arch_compat) &&
746             cpu_has_feature(CPU_FTR_ARCH_207S))
747                 return true;
748         return false;
749 }
750
751 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
752                              unsigned long resource, unsigned long value1,
753                              unsigned long value2)
754 {
755         switch (resource) {
756         case H_SET_MODE_RESOURCE_SET_CIABR:
757                 if (!kvmppc_power8_compatible(vcpu))
758                         return H_P2;
759                 if (value2)
760                         return H_P4;
761                 if (mflags)
762                         return H_UNSUPPORTED_FLAG_START;
763                 /* Guests can't breakpoint the hypervisor */
764                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
765                         return H_P3;
766                 vcpu->arch.ciabr  = value1;
767                 return H_SUCCESS;
768         case H_SET_MODE_RESOURCE_SET_DAWR:
769                 if (!kvmppc_power8_compatible(vcpu))
770                         return H_P2;
771                 if (!ppc_breakpoint_available())
772                         return H_P2;
773                 if (mflags)
774                         return H_UNSUPPORTED_FLAG_START;
775                 if (value2 & DABRX_HYP)
776                         return H_P4;
777                 vcpu->arch.dawr  = value1;
778                 vcpu->arch.dawrx = value2;
779                 return H_SUCCESS;
780         default:
781                 return H_TOO_HARD;
782         }
783 }
784
785 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
786 {
787         struct kvmppc_vcore *vcore = target->arch.vcore;
788
789         /*
790          * We expect to have been called by the real mode handler
791          * (kvmppc_rm_h_confer()) which would have directly returned
792          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
793          * have useful work to do and should not confer) so we don't
794          * recheck that here.
795          */
796
797         spin_lock(&vcore->lock);
798         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
799             vcore->vcore_state != VCORE_INACTIVE &&
800             vcore->runner)
801                 target = vcore->runner;
802         spin_unlock(&vcore->lock);
803
804         return kvm_vcpu_yield_to(target);
805 }
806
807 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
808 {
809         int yield_count = 0;
810         struct lppaca *lppaca;
811
812         spin_lock(&vcpu->arch.vpa_update_lock);
813         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
814         if (lppaca)
815                 yield_count = be32_to_cpu(lppaca->yield_count);
816         spin_unlock(&vcpu->arch.vpa_update_lock);
817         return yield_count;
818 }
819
820 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
821 {
822         unsigned long req = kvmppc_get_gpr(vcpu, 3);
823         unsigned long target, ret = H_SUCCESS;
824         int yield_count;
825         struct kvm_vcpu *tvcpu;
826         int idx, rc;
827
828         if (req <= MAX_HCALL_OPCODE &&
829             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
830                 return RESUME_HOST;
831
832         switch (req) {
833         case H_CEDE:
834                 break;
835         case H_PROD:
836                 target = kvmppc_get_gpr(vcpu, 4);
837                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
838                 if (!tvcpu) {
839                         ret = H_PARAMETER;
840                         break;
841                 }
842                 tvcpu->arch.prodded = 1;
843                 smp_mb();
844                 if (tvcpu->arch.ceded)
845                         kvmppc_fast_vcpu_kick_hv(tvcpu);
846                 break;
847         case H_CONFER:
848                 target = kvmppc_get_gpr(vcpu, 4);
849                 if (target == -1)
850                         break;
851                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
852                 if (!tvcpu) {
853                         ret = H_PARAMETER;
854                         break;
855                 }
856                 yield_count = kvmppc_get_gpr(vcpu, 5);
857                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
858                         break;
859                 kvm_arch_vcpu_yield_to(tvcpu);
860                 break;
861         case H_REGISTER_VPA:
862                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
863                                         kvmppc_get_gpr(vcpu, 5),
864                                         kvmppc_get_gpr(vcpu, 6));
865                 break;
866         case H_RTAS:
867                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
868                         return RESUME_HOST;
869
870                 idx = srcu_read_lock(&vcpu->kvm->srcu);
871                 rc = kvmppc_rtas_hcall(vcpu);
872                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
873
874                 if (rc == -ENOENT)
875                         return RESUME_HOST;
876                 else if (rc == 0)
877                         break;
878
879                 /* Send the error out to userspace via KVM_RUN */
880                 return rc;
881         case H_LOGICAL_CI_LOAD:
882                 ret = kvmppc_h_logical_ci_load(vcpu);
883                 if (ret == H_TOO_HARD)
884                         return RESUME_HOST;
885                 break;
886         case H_LOGICAL_CI_STORE:
887                 ret = kvmppc_h_logical_ci_store(vcpu);
888                 if (ret == H_TOO_HARD)
889                         return RESUME_HOST;
890                 break;
891         case H_SET_MODE:
892                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
893                                         kvmppc_get_gpr(vcpu, 5),
894                                         kvmppc_get_gpr(vcpu, 6),
895                                         kvmppc_get_gpr(vcpu, 7));
896                 if (ret == H_TOO_HARD)
897                         return RESUME_HOST;
898                 break;
899         case H_XIRR:
900         case H_CPPR:
901         case H_EOI:
902         case H_IPI:
903         case H_IPOLL:
904         case H_XIRR_X:
905                 if (kvmppc_xics_enabled(vcpu)) {
906                         if (xive_enabled()) {
907                                 ret = H_NOT_AVAILABLE;
908                                 return RESUME_GUEST;
909                         }
910                         ret = kvmppc_xics_hcall(vcpu, req);
911                         break;
912                 }
913                 return RESUME_HOST;
914         case H_PUT_TCE:
915                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
916                                                 kvmppc_get_gpr(vcpu, 5),
917                                                 kvmppc_get_gpr(vcpu, 6));
918                 if (ret == H_TOO_HARD)
919                         return RESUME_HOST;
920                 break;
921         case H_PUT_TCE_INDIRECT:
922                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
923                                                 kvmppc_get_gpr(vcpu, 5),
924                                                 kvmppc_get_gpr(vcpu, 6),
925                                                 kvmppc_get_gpr(vcpu, 7));
926                 if (ret == H_TOO_HARD)
927                         return RESUME_HOST;
928                 break;
929         case H_STUFF_TCE:
930                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
931                                                 kvmppc_get_gpr(vcpu, 5),
932                                                 kvmppc_get_gpr(vcpu, 6),
933                                                 kvmppc_get_gpr(vcpu, 7));
934                 if (ret == H_TOO_HARD)
935                         return RESUME_HOST;
936                 break;
937         default:
938                 return RESUME_HOST;
939         }
940         kvmppc_set_gpr(vcpu, 3, ret);
941         vcpu->arch.hcall_needed = 0;
942         return RESUME_GUEST;
943 }
944
945 static int kvmppc_hcall_impl_hv(unsigned long cmd)
946 {
947         switch (cmd) {
948         case H_CEDE:
949         case H_PROD:
950         case H_CONFER:
951         case H_REGISTER_VPA:
952         case H_SET_MODE:
953         case H_LOGICAL_CI_LOAD:
954         case H_LOGICAL_CI_STORE:
955 #ifdef CONFIG_KVM_XICS
956         case H_XIRR:
957         case H_CPPR:
958         case H_EOI:
959         case H_IPI:
960         case H_IPOLL:
961         case H_XIRR_X:
962 #endif
963                 return 1;
964         }
965
966         /* See if it's in the real-mode table */
967         return kvmppc_hcall_impl_hv_realmode(cmd);
968 }
969
970 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
971                                         struct kvm_vcpu *vcpu)
972 {
973         u32 last_inst;
974
975         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
976                                         EMULATE_DONE) {
977                 /*
978                  * Fetch failed, so return to guest and
979                  * try executing it again.
980                  */
981                 return RESUME_GUEST;
982         }
983
984         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
985                 run->exit_reason = KVM_EXIT_DEBUG;
986                 run->debug.arch.address = kvmppc_get_pc(vcpu);
987                 return RESUME_HOST;
988         } else {
989                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
990                 return RESUME_GUEST;
991         }
992 }
993
994 static void do_nothing(void *x)
995 {
996 }
997
998 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
999 {
1000         int thr, cpu, pcpu, nthreads;
1001         struct kvm_vcpu *v;
1002         unsigned long dpdes;
1003
1004         nthreads = vcpu->kvm->arch.emul_smt_mode;
1005         dpdes = 0;
1006         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1007         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1008                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1009                 if (!v)
1010                         continue;
1011                 /*
1012                  * If the vcpu is currently running on a physical cpu thread,
1013                  * interrupt it in order to pull it out of the guest briefly,
1014                  * which will update its vcore->dpdes value.
1015                  */
1016                 pcpu = READ_ONCE(v->cpu);
1017                 if (pcpu >= 0)
1018                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1019                 if (kvmppc_doorbell_pending(v))
1020                         dpdes |= 1 << thr;
1021         }
1022         return dpdes;
1023 }
1024
1025 /*
1026  * On POWER9, emulate doorbell-related instructions in order to
1027  * give the guest the illusion of running on a multi-threaded core.
1028  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1029  * and mfspr DPDES.
1030  */
1031 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1032 {
1033         u32 inst, rb, thr;
1034         unsigned long arg;
1035         struct kvm *kvm = vcpu->kvm;
1036         struct kvm_vcpu *tvcpu;
1037
1038         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1039                 return RESUME_GUEST;
1040         if (get_op(inst) != 31)
1041                 return EMULATE_FAIL;
1042         rb = get_rb(inst);
1043         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1044         switch (get_xop(inst)) {
1045         case OP_31_XOP_MSGSNDP:
1046                 arg = kvmppc_get_gpr(vcpu, rb);
1047                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1048                         break;
1049                 arg &= 0x3f;
1050                 if (arg >= kvm->arch.emul_smt_mode)
1051                         break;
1052                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1053                 if (!tvcpu)
1054                         break;
1055                 if (!tvcpu->arch.doorbell_request) {
1056                         tvcpu->arch.doorbell_request = 1;
1057                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1058                 }
1059                 break;
1060         case OP_31_XOP_MSGCLRP:
1061                 arg = kvmppc_get_gpr(vcpu, rb);
1062                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1063                         break;
1064                 vcpu->arch.vcore->dpdes = 0;
1065                 vcpu->arch.doorbell_request = 0;
1066                 break;
1067         case OP_31_XOP_MFSPR:
1068                 switch (get_sprn(inst)) {
1069                 case SPRN_TIR:
1070                         arg = thr;
1071                         break;
1072                 case SPRN_DPDES:
1073                         arg = kvmppc_read_dpdes(vcpu);
1074                         break;
1075                 default:
1076                         return EMULATE_FAIL;
1077                 }
1078                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1079                 break;
1080         default:
1081                 return EMULATE_FAIL;
1082         }
1083         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1084         return RESUME_GUEST;
1085 }
1086
1087 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1088                                  struct task_struct *tsk)
1089 {
1090         int r = RESUME_HOST;
1091
1092         vcpu->stat.sum_exits++;
1093
1094         /*
1095          * This can happen if an interrupt occurs in the last stages
1096          * of guest entry or the first stages of guest exit (i.e. after
1097          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1098          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1099          * That can happen due to a bug, or due to a machine check
1100          * occurring at just the wrong time.
1101          */
1102         if (vcpu->arch.shregs.msr & MSR_HV) {
1103                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1104                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1105                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1106                         vcpu->arch.shregs.msr);
1107                 kvmppc_dump_regs(vcpu);
1108                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1109                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1110                 return RESUME_HOST;
1111         }
1112         run->exit_reason = KVM_EXIT_UNKNOWN;
1113         run->ready_for_interrupt_injection = 1;
1114         switch (vcpu->arch.trap) {
1115         /* We're good on these - the host merely wanted to get our attention */
1116         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1117                 vcpu->stat.dec_exits++;
1118                 r = RESUME_GUEST;
1119                 break;
1120         case BOOK3S_INTERRUPT_EXTERNAL:
1121         case BOOK3S_INTERRUPT_H_DOORBELL:
1122         case BOOK3S_INTERRUPT_H_VIRT:
1123                 vcpu->stat.ext_intr_exits++;
1124                 r = RESUME_GUEST;
1125                 break;
1126         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1127         case BOOK3S_INTERRUPT_HMI:
1128         case BOOK3S_INTERRUPT_PERFMON:
1129         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1130                 r = RESUME_GUEST;
1131                 break;
1132         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1133                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1134                 run->exit_reason = KVM_EXIT_NMI;
1135                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1136                 /* Clear out the old NMI status from run->flags */
1137                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1138                 /* Now set the NMI status */
1139                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1140                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1141                 else
1142                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1143
1144                 r = RESUME_HOST;
1145                 /* Print the MCE event to host console. */
1146                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1147                 break;
1148         case BOOK3S_INTERRUPT_PROGRAM:
1149         {
1150                 ulong flags;
1151                 /*
1152                  * Normally program interrupts are delivered directly
1153                  * to the guest by the hardware, but we can get here
1154                  * as a result of a hypervisor emulation interrupt
1155                  * (e40) getting turned into a 700 by BML RTAS.
1156                  */
1157                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1158                 kvmppc_core_queue_program(vcpu, flags);
1159                 r = RESUME_GUEST;
1160                 break;
1161         }
1162         case BOOK3S_INTERRUPT_SYSCALL:
1163         {
1164                 /* hcall - punt to userspace */
1165                 int i;
1166
1167                 /* hypercall with MSR_PR has already been handled in rmode,
1168                  * and never reaches here.
1169                  */
1170
1171                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1172                 for (i = 0; i < 9; ++i)
1173                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1174                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1175                 vcpu->arch.hcall_needed = 1;
1176                 r = RESUME_HOST;
1177                 break;
1178         }
1179         /*
1180          * We get these next two if the guest accesses a page which it thinks
1181          * it has mapped but which is not actually present, either because
1182          * it is for an emulated I/O device or because the corresonding
1183          * host page has been paged out.  Any other HDSI/HISI interrupts
1184          * have been handled already.
1185          */
1186         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1187                 r = RESUME_PAGE_FAULT;
1188                 break;
1189         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1190                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1191                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1192                         DSISR_SRR1_MATCH_64S;
1193                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1194                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1195                 r = RESUME_PAGE_FAULT;
1196                 break;
1197         /*
1198          * This occurs if the guest executes an illegal instruction.
1199          * If the guest debug is disabled, generate a program interrupt
1200          * to the guest. If guest debug is enabled, we need to check
1201          * whether the instruction is a software breakpoint instruction.
1202          * Accordingly return to Guest or Host.
1203          */
1204         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1205                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1206                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1207                                 swab32(vcpu->arch.emul_inst) :
1208                                 vcpu->arch.emul_inst;
1209                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1210                         r = kvmppc_emulate_debug_inst(run, vcpu);
1211                 } else {
1212                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1213                         r = RESUME_GUEST;
1214                 }
1215                 break;
1216         /*
1217          * This occurs if the guest (kernel or userspace), does something that
1218          * is prohibited by HFSCR.
1219          * On POWER9, this could be a doorbell instruction that we need
1220          * to emulate.
1221          * Otherwise, we just generate a program interrupt to the guest.
1222          */
1223         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1224                 r = EMULATE_FAIL;
1225                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1226                     cpu_has_feature(CPU_FTR_ARCH_300))
1227                         r = kvmppc_emulate_doorbell_instr(vcpu);
1228                 if (r == EMULATE_FAIL) {
1229                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1230                         r = RESUME_GUEST;
1231                 }
1232                 break;
1233
1234 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1235         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1236                 /*
1237                  * This occurs for various TM-related instructions that
1238                  * we need to emulate on POWER9 DD2.2.  We have already
1239                  * handled the cases where the guest was in real-suspend
1240                  * mode and was transitioning to transactional state.
1241                  */
1242                 r = kvmhv_p9_tm_emulation(vcpu);
1243                 break;
1244 #endif
1245
1246         case BOOK3S_INTERRUPT_HV_RM_HARD:
1247                 r = RESUME_PASSTHROUGH;
1248                 break;
1249         default:
1250                 kvmppc_dump_regs(vcpu);
1251                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1252                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1253                         vcpu->arch.shregs.msr);
1254                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1255                 r = RESUME_HOST;
1256                 break;
1257         }
1258
1259         return r;
1260 }
1261
1262 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1263                                             struct kvm_sregs *sregs)
1264 {
1265         int i;
1266
1267         memset(sregs, 0, sizeof(struct kvm_sregs));
1268         sregs->pvr = vcpu->arch.pvr;
1269         for (i = 0; i < vcpu->arch.slb_max; i++) {
1270                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1271                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1272         }
1273
1274         return 0;
1275 }
1276
1277 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1278                                             struct kvm_sregs *sregs)
1279 {
1280         int i, j;
1281
1282         /* Only accept the same PVR as the host's, since we can't spoof it */
1283         if (sregs->pvr != vcpu->arch.pvr)
1284                 return -EINVAL;
1285
1286         j = 0;
1287         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1288                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1289                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1290                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1291                         ++j;
1292                 }
1293         }
1294         vcpu->arch.slb_max = j;
1295
1296         return 0;
1297 }
1298
1299 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1300                 bool preserve_top32)
1301 {
1302         struct kvm *kvm = vcpu->kvm;
1303         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1304         u64 mask;
1305
1306         mutex_lock(&kvm->lock);
1307         spin_lock(&vc->lock);
1308         /*
1309          * If ILE (interrupt little-endian) has changed, update the
1310          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1311          */
1312         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1313                 struct kvm_vcpu *vcpu;
1314                 int i;
1315
1316                 kvm_for_each_vcpu(i, vcpu, kvm) {
1317                         if (vcpu->arch.vcore != vc)
1318                                 continue;
1319                         if (new_lpcr & LPCR_ILE)
1320                                 vcpu->arch.intr_msr |= MSR_LE;
1321                         else
1322                                 vcpu->arch.intr_msr &= ~MSR_LE;
1323                 }
1324         }
1325
1326         /*
1327          * Userspace can only modify DPFD (default prefetch depth),
1328          * ILE (interrupt little-endian) and TC (translation control).
1329          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1330          */
1331         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1332         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1333                 mask |= LPCR_AIL;
1334         /*
1335          * On POWER9, allow userspace to enable large decrementer for the
1336          * guest, whether or not the host has it enabled.
1337          */
1338         if (cpu_has_feature(CPU_FTR_ARCH_300))
1339                 mask |= LPCR_LD;
1340
1341         /* Broken 32-bit version of LPCR must not clear top bits */
1342         if (preserve_top32)
1343                 mask &= 0xFFFFFFFF;
1344         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1345         spin_unlock(&vc->lock);
1346         mutex_unlock(&kvm->lock);
1347 }
1348
1349 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1350                                  union kvmppc_one_reg *val)
1351 {
1352         int r = 0;
1353         long int i;
1354
1355         switch (id) {
1356         case KVM_REG_PPC_DEBUG_INST:
1357                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1358                 break;
1359         case KVM_REG_PPC_HIOR:
1360                 *val = get_reg_val(id, 0);
1361                 break;
1362         case KVM_REG_PPC_DABR:
1363                 *val = get_reg_val(id, vcpu->arch.dabr);
1364                 break;
1365         case KVM_REG_PPC_DABRX:
1366                 *val = get_reg_val(id, vcpu->arch.dabrx);
1367                 break;
1368         case KVM_REG_PPC_DSCR:
1369                 *val = get_reg_val(id, vcpu->arch.dscr);
1370                 break;
1371         case KVM_REG_PPC_PURR:
1372                 *val = get_reg_val(id, vcpu->arch.purr);
1373                 break;
1374         case KVM_REG_PPC_SPURR:
1375                 *val = get_reg_val(id, vcpu->arch.spurr);
1376                 break;
1377         case KVM_REG_PPC_AMR:
1378                 *val = get_reg_val(id, vcpu->arch.amr);
1379                 break;
1380         case KVM_REG_PPC_UAMOR:
1381                 *val = get_reg_val(id, vcpu->arch.uamor);
1382                 break;
1383         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1384                 i = id - KVM_REG_PPC_MMCR0;
1385                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1386                 break;
1387         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1388                 i = id - KVM_REG_PPC_PMC1;
1389                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1390                 break;
1391         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1392                 i = id - KVM_REG_PPC_SPMC1;
1393                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1394                 break;
1395         case KVM_REG_PPC_SIAR:
1396                 *val = get_reg_val(id, vcpu->arch.siar);
1397                 break;
1398         case KVM_REG_PPC_SDAR:
1399                 *val = get_reg_val(id, vcpu->arch.sdar);
1400                 break;
1401         case KVM_REG_PPC_SIER:
1402                 *val = get_reg_val(id, vcpu->arch.sier);
1403                 break;
1404         case KVM_REG_PPC_IAMR:
1405                 *val = get_reg_val(id, vcpu->arch.iamr);
1406                 break;
1407         case KVM_REG_PPC_PSPB:
1408                 *val = get_reg_val(id, vcpu->arch.pspb);
1409                 break;
1410         case KVM_REG_PPC_DPDES:
1411                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1412                 break;
1413         case KVM_REG_PPC_VTB:
1414                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1415                 break;
1416         case KVM_REG_PPC_DAWR:
1417                 *val = get_reg_val(id, vcpu->arch.dawr);
1418                 break;
1419         case KVM_REG_PPC_DAWRX:
1420                 *val = get_reg_val(id, vcpu->arch.dawrx);
1421                 break;
1422         case KVM_REG_PPC_CIABR:
1423                 *val = get_reg_val(id, vcpu->arch.ciabr);
1424                 break;
1425         case KVM_REG_PPC_CSIGR:
1426                 *val = get_reg_val(id, vcpu->arch.csigr);
1427                 break;
1428         case KVM_REG_PPC_TACR:
1429                 *val = get_reg_val(id, vcpu->arch.tacr);
1430                 break;
1431         case KVM_REG_PPC_TCSCR:
1432                 *val = get_reg_val(id, vcpu->arch.tcscr);
1433                 break;
1434         case KVM_REG_PPC_PID:
1435                 *val = get_reg_val(id, vcpu->arch.pid);
1436                 break;
1437         case KVM_REG_PPC_ACOP:
1438                 *val = get_reg_val(id, vcpu->arch.acop);
1439                 break;
1440         case KVM_REG_PPC_WORT:
1441                 *val = get_reg_val(id, vcpu->arch.wort);
1442                 break;
1443         case KVM_REG_PPC_TIDR:
1444                 *val = get_reg_val(id, vcpu->arch.tid);
1445                 break;
1446         case KVM_REG_PPC_PSSCR:
1447                 *val = get_reg_val(id, vcpu->arch.psscr);
1448                 break;
1449         case KVM_REG_PPC_VPA_ADDR:
1450                 spin_lock(&vcpu->arch.vpa_update_lock);
1451                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1452                 spin_unlock(&vcpu->arch.vpa_update_lock);
1453                 break;
1454         case KVM_REG_PPC_VPA_SLB:
1455                 spin_lock(&vcpu->arch.vpa_update_lock);
1456                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1457                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1458                 spin_unlock(&vcpu->arch.vpa_update_lock);
1459                 break;
1460         case KVM_REG_PPC_VPA_DTL:
1461                 spin_lock(&vcpu->arch.vpa_update_lock);
1462                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1463                 val->vpaval.length = vcpu->arch.dtl.len;
1464                 spin_unlock(&vcpu->arch.vpa_update_lock);
1465                 break;
1466         case KVM_REG_PPC_TB_OFFSET:
1467                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1468                 break;
1469         case KVM_REG_PPC_LPCR:
1470         case KVM_REG_PPC_LPCR_64:
1471                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1472                 break;
1473         case KVM_REG_PPC_PPR:
1474                 *val = get_reg_val(id, vcpu->arch.ppr);
1475                 break;
1476 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1477         case KVM_REG_PPC_TFHAR:
1478                 *val = get_reg_val(id, vcpu->arch.tfhar);
1479                 break;
1480         case KVM_REG_PPC_TFIAR:
1481                 *val = get_reg_val(id, vcpu->arch.tfiar);
1482                 break;
1483         case KVM_REG_PPC_TEXASR:
1484                 *val = get_reg_val(id, vcpu->arch.texasr);
1485                 break;
1486         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1487                 i = id - KVM_REG_PPC_TM_GPR0;
1488                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1489                 break;
1490         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1491         {
1492                 int j;
1493                 i = id - KVM_REG_PPC_TM_VSR0;
1494                 if (i < 32)
1495                         for (j = 0; j < TS_FPRWIDTH; j++)
1496                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1497                 else {
1498                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1499                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1500                         else
1501                                 r = -ENXIO;
1502                 }
1503                 break;
1504         }
1505         case KVM_REG_PPC_TM_CR:
1506                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1507                 break;
1508         case KVM_REG_PPC_TM_XER:
1509                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1510                 break;
1511         case KVM_REG_PPC_TM_LR:
1512                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1513                 break;
1514         case KVM_REG_PPC_TM_CTR:
1515                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1516                 break;
1517         case KVM_REG_PPC_TM_FPSCR:
1518                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1519                 break;
1520         case KVM_REG_PPC_TM_AMR:
1521                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1522                 break;
1523         case KVM_REG_PPC_TM_PPR:
1524                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1525                 break;
1526         case KVM_REG_PPC_TM_VRSAVE:
1527                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1528                 break;
1529         case KVM_REG_PPC_TM_VSCR:
1530                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1531                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1532                 else
1533                         r = -ENXIO;
1534                 break;
1535         case KVM_REG_PPC_TM_DSCR:
1536                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1537                 break;
1538         case KVM_REG_PPC_TM_TAR:
1539                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1540                 break;
1541 #endif
1542         case KVM_REG_PPC_ARCH_COMPAT:
1543                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1544                 break;
1545         case KVM_REG_PPC_DEC_EXPIRY:
1546                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1547                                    vcpu->arch.vcore->tb_offset);
1548                 break;
1549         case KVM_REG_PPC_ONLINE:
1550                 *val = get_reg_val(id, vcpu->arch.online);
1551                 break;
1552         default:
1553                 r = -EINVAL;
1554                 break;
1555         }
1556
1557         return r;
1558 }
1559
1560 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1561                                  union kvmppc_one_reg *val)
1562 {
1563         int r = 0;
1564         long int i;
1565         unsigned long addr, len;
1566
1567         switch (id) {
1568         case KVM_REG_PPC_HIOR:
1569                 /* Only allow this to be set to zero */
1570                 if (set_reg_val(id, *val))
1571                         r = -EINVAL;
1572                 break;
1573         case KVM_REG_PPC_DABR:
1574                 vcpu->arch.dabr = set_reg_val(id, *val);
1575                 break;
1576         case KVM_REG_PPC_DABRX:
1577                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1578                 break;
1579         case KVM_REG_PPC_DSCR:
1580                 vcpu->arch.dscr = set_reg_val(id, *val);
1581                 break;
1582         case KVM_REG_PPC_PURR:
1583                 vcpu->arch.purr = set_reg_val(id, *val);
1584                 break;
1585         case KVM_REG_PPC_SPURR:
1586                 vcpu->arch.spurr = set_reg_val(id, *val);
1587                 break;
1588         case KVM_REG_PPC_AMR:
1589                 vcpu->arch.amr = set_reg_val(id, *val);
1590                 break;
1591         case KVM_REG_PPC_UAMOR:
1592                 vcpu->arch.uamor = set_reg_val(id, *val);
1593                 break;
1594         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1595                 i = id - KVM_REG_PPC_MMCR0;
1596                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1597                 break;
1598         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1599                 i = id - KVM_REG_PPC_PMC1;
1600                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1601                 break;
1602         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1603                 i = id - KVM_REG_PPC_SPMC1;
1604                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1605                 break;
1606         case KVM_REG_PPC_SIAR:
1607                 vcpu->arch.siar = set_reg_val(id, *val);
1608                 break;
1609         case KVM_REG_PPC_SDAR:
1610                 vcpu->arch.sdar = set_reg_val(id, *val);
1611                 break;
1612         case KVM_REG_PPC_SIER:
1613                 vcpu->arch.sier = set_reg_val(id, *val);
1614                 break;
1615         case KVM_REG_PPC_IAMR:
1616                 vcpu->arch.iamr = set_reg_val(id, *val);
1617                 break;
1618         case KVM_REG_PPC_PSPB:
1619                 vcpu->arch.pspb = set_reg_val(id, *val);
1620                 break;
1621         case KVM_REG_PPC_DPDES:
1622                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1623                 break;
1624         case KVM_REG_PPC_VTB:
1625                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1626                 break;
1627         case KVM_REG_PPC_DAWR:
1628                 vcpu->arch.dawr = set_reg_val(id, *val);
1629                 break;
1630         case KVM_REG_PPC_DAWRX:
1631                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1632                 break;
1633         case KVM_REG_PPC_CIABR:
1634                 vcpu->arch.ciabr = set_reg_val(id, *val);
1635                 /* Don't allow setting breakpoints in hypervisor code */
1636                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1637                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1638                 break;
1639         case KVM_REG_PPC_CSIGR:
1640                 vcpu->arch.csigr = set_reg_val(id, *val);
1641                 break;
1642         case KVM_REG_PPC_TACR:
1643                 vcpu->arch.tacr = set_reg_val(id, *val);
1644                 break;
1645         case KVM_REG_PPC_TCSCR:
1646                 vcpu->arch.tcscr = set_reg_val(id, *val);
1647                 break;
1648         case KVM_REG_PPC_PID:
1649                 vcpu->arch.pid = set_reg_val(id, *val);
1650                 break;
1651         case KVM_REG_PPC_ACOP:
1652                 vcpu->arch.acop = set_reg_val(id, *val);
1653                 break;
1654         case KVM_REG_PPC_WORT:
1655                 vcpu->arch.wort = set_reg_val(id, *val);
1656                 break;
1657         case KVM_REG_PPC_TIDR:
1658                 vcpu->arch.tid = set_reg_val(id, *val);
1659                 break;
1660         case KVM_REG_PPC_PSSCR:
1661                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1662                 break;
1663         case KVM_REG_PPC_VPA_ADDR:
1664                 addr = set_reg_val(id, *val);
1665                 r = -EINVAL;
1666                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1667                               vcpu->arch.dtl.next_gpa))
1668                         break;
1669                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1670                 break;
1671         case KVM_REG_PPC_VPA_SLB:
1672                 addr = val->vpaval.addr;
1673                 len = val->vpaval.length;
1674                 r = -EINVAL;
1675                 if (addr && !vcpu->arch.vpa.next_gpa)
1676                         break;
1677                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1678                 break;
1679         case KVM_REG_PPC_VPA_DTL:
1680                 addr = val->vpaval.addr;
1681                 len = val->vpaval.length;
1682                 r = -EINVAL;
1683                 if (addr && (len < sizeof(struct dtl_entry) ||
1684                              !vcpu->arch.vpa.next_gpa))
1685                         break;
1686                 len -= len % sizeof(struct dtl_entry);
1687                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1688                 break;
1689         case KVM_REG_PPC_TB_OFFSET:
1690                 /* round up to multiple of 2^24 */
1691                 vcpu->arch.vcore->tb_offset =
1692                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1693                 break;
1694         case KVM_REG_PPC_LPCR:
1695                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1696                 break;
1697         case KVM_REG_PPC_LPCR_64:
1698                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1699                 break;
1700         case KVM_REG_PPC_PPR:
1701                 vcpu->arch.ppr = set_reg_val(id, *val);
1702                 break;
1703 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1704         case KVM_REG_PPC_TFHAR:
1705                 vcpu->arch.tfhar = set_reg_val(id, *val);
1706                 break;
1707         case KVM_REG_PPC_TFIAR:
1708                 vcpu->arch.tfiar = set_reg_val(id, *val);
1709                 break;
1710         case KVM_REG_PPC_TEXASR:
1711                 vcpu->arch.texasr = set_reg_val(id, *val);
1712                 break;
1713         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1714                 i = id - KVM_REG_PPC_TM_GPR0;
1715                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1716                 break;
1717         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1718         {
1719                 int j;
1720                 i = id - KVM_REG_PPC_TM_VSR0;
1721                 if (i < 32)
1722                         for (j = 0; j < TS_FPRWIDTH; j++)
1723                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1724                 else
1725                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1726                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1727                         else
1728                                 r = -ENXIO;
1729                 break;
1730         }
1731         case KVM_REG_PPC_TM_CR:
1732                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1733                 break;
1734         case KVM_REG_PPC_TM_XER:
1735                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1736                 break;
1737         case KVM_REG_PPC_TM_LR:
1738                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1739                 break;
1740         case KVM_REG_PPC_TM_CTR:
1741                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1742                 break;
1743         case KVM_REG_PPC_TM_FPSCR:
1744                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1745                 break;
1746         case KVM_REG_PPC_TM_AMR:
1747                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1748                 break;
1749         case KVM_REG_PPC_TM_PPR:
1750                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1751                 break;
1752         case KVM_REG_PPC_TM_VRSAVE:
1753                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1754                 break;
1755         case KVM_REG_PPC_TM_VSCR:
1756                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1757                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1758                 else
1759                         r = - ENXIO;
1760                 break;
1761         case KVM_REG_PPC_TM_DSCR:
1762                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1763                 break;
1764         case KVM_REG_PPC_TM_TAR:
1765                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1766                 break;
1767 #endif
1768         case KVM_REG_PPC_ARCH_COMPAT:
1769                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1770                 break;
1771         case KVM_REG_PPC_DEC_EXPIRY:
1772                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1773                         vcpu->arch.vcore->tb_offset;
1774                 break;
1775         case KVM_REG_PPC_ONLINE:
1776                 i = set_reg_val(id, *val);
1777                 if (i && !vcpu->arch.online)
1778                         atomic_inc(&vcpu->arch.vcore->online_count);
1779                 else if (!i && vcpu->arch.online)
1780                         atomic_dec(&vcpu->arch.vcore->online_count);
1781                 vcpu->arch.online = i;
1782                 break;
1783         default:
1784                 r = -EINVAL;
1785                 break;
1786         }
1787
1788         return r;
1789 }
1790
1791 /*
1792  * On POWER9, threads are independent and can be in different partitions.
1793  * Therefore we consider each thread to be a subcore.
1794  * There is a restriction that all threads have to be in the same
1795  * MMU mode (radix or HPT), unfortunately, but since we only support
1796  * HPT guests on a HPT host so far, that isn't an impediment yet.
1797  */
1798 static int threads_per_vcore(struct kvm *kvm)
1799 {
1800         if (kvm->arch.threads_indep)
1801                 return 1;
1802         return threads_per_subcore;
1803 }
1804
1805 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1806 {
1807         struct kvmppc_vcore *vcore;
1808
1809         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1810
1811         if (vcore == NULL)
1812                 return NULL;
1813
1814         spin_lock_init(&vcore->lock);
1815         spin_lock_init(&vcore->stoltb_lock);
1816         init_swait_queue_head(&vcore->wq);
1817         vcore->preempt_tb = TB_NIL;
1818         vcore->lpcr = kvm->arch.lpcr;
1819         vcore->first_vcpuid = id;
1820         vcore->kvm = kvm;
1821         INIT_LIST_HEAD(&vcore->preempt_list);
1822
1823         return vcore;
1824 }
1825
1826 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1827 static struct debugfs_timings_element {
1828         const char *name;
1829         size_t offset;
1830 } timings[] = {
1831         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1832         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1833         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1834         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1835         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1836 };
1837
1838 #define N_TIMINGS       (ARRAY_SIZE(timings))
1839
1840 struct debugfs_timings_state {
1841         struct kvm_vcpu *vcpu;
1842         unsigned int    buflen;
1843         char            buf[N_TIMINGS * 100];
1844 };
1845
1846 static int debugfs_timings_open(struct inode *inode, struct file *file)
1847 {
1848         struct kvm_vcpu *vcpu = inode->i_private;
1849         struct debugfs_timings_state *p;
1850
1851         p = kzalloc(sizeof(*p), GFP_KERNEL);
1852         if (!p)
1853                 return -ENOMEM;
1854
1855         kvm_get_kvm(vcpu->kvm);
1856         p->vcpu = vcpu;
1857         file->private_data = p;
1858
1859         return nonseekable_open(inode, file);
1860 }
1861
1862 static int debugfs_timings_release(struct inode *inode, struct file *file)
1863 {
1864         struct debugfs_timings_state *p = file->private_data;
1865
1866         kvm_put_kvm(p->vcpu->kvm);
1867         kfree(p);
1868         return 0;
1869 }
1870
1871 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1872                                     size_t len, loff_t *ppos)
1873 {
1874         struct debugfs_timings_state *p = file->private_data;
1875         struct kvm_vcpu *vcpu = p->vcpu;
1876         char *s, *buf_end;
1877         struct kvmhv_tb_accumulator tb;
1878         u64 count;
1879         loff_t pos;
1880         ssize_t n;
1881         int i, loops;
1882         bool ok;
1883
1884         if (!p->buflen) {
1885                 s = p->buf;
1886                 buf_end = s + sizeof(p->buf);
1887                 for (i = 0; i < N_TIMINGS; ++i) {
1888                         struct kvmhv_tb_accumulator *acc;
1889
1890                         acc = (struct kvmhv_tb_accumulator *)
1891                                 ((unsigned long)vcpu + timings[i].offset);
1892                         ok = false;
1893                         for (loops = 0; loops < 1000; ++loops) {
1894                                 count = acc->seqcount;
1895                                 if (!(count & 1)) {
1896                                         smp_rmb();
1897                                         tb = *acc;
1898                                         smp_rmb();
1899                                         if (count == acc->seqcount) {
1900                                                 ok = true;
1901                                                 break;
1902                                         }
1903                                 }
1904                                 udelay(1);
1905                         }
1906                         if (!ok)
1907                                 snprintf(s, buf_end - s, "%s: stuck\n",
1908                                         timings[i].name);
1909                         else
1910                                 snprintf(s, buf_end - s,
1911                                         "%s: %llu %llu %llu %llu\n",
1912                                         timings[i].name, count / 2,
1913                                         tb_to_ns(tb.tb_total),
1914                                         tb_to_ns(tb.tb_min),
1915                                         tb_to_ns(tb.tb_max));
1916                         s += strlen(s);
1917                 }
1918                 p->buflen = s - p->buf;
1919         }
1920
1921         pos = *ppos;
1922         if (pos >= p->buflen)
1923                 return 0;
1924         if (len > p->buflen - pos)
1925                 len = p->buflen - pos;
1926         n = copy_to_user(buf, p->buf + pos, len);
1927         if (n) {
1928                 if (n == len)
1929                         return -EFAULT;
1930                 len -= n;
1931         }
1932         *ppos = pos + len;
1933         return len;
1934 }
1935
1936 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1937                                      size_t len, loff_t *ppos)
1938 {
1939         return -EACCES;
1940 }
1941
1942 static const struct file_operations debugfs_timings_ops = {
1943         .owner   = THIS_MODULE,
1944         .open    = debugfs_timings_open,
1945         .release = debugfs_timings_release,
1946         .read    = debugfs_timings_read,
1947         .write   = debugfs_timings_write,
1948         .llseek  = generic_file_llseek,
1949 };
1950
1951 /* Create a debugfs directory for the vcpu */
1952 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1953 {
1954         char buf[16];
1955         struct kvm *kvm = vcpu->kvm;
1956
1957         snprintf(buf, sizeof(buf), "vcpu%u", id);
1958         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1959                 return;
1960         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1961         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1962                 return;
1963         vcpu->arch.debugfs_timings =
1964                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1965                                     vcpu, &debugfs_timings_ops);
1966 }
1967
1968 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1969 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1970 {
1971 }
1972 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1973
1974 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1975                                                    unsigned int id)
1976 {
1977         struct kvm_vcpu *vcpu;
1978         int err;
1979         int core;
1980         struct kvmppc_vcore *vcore;
1981
1982         err = -ENOMEM;
1983         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1984         if (!vcpu)
1985                 goto out;
1986
1987         err = kvm_vcpu_init(vcpu, kvm, id);
1988         if (err)
1989                 goto free_vcpu;
1990
1991         vcpu->arch.shared = &vcpu->arch.shregs;
1992 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1993         /*
1994          * The shared struct is never shared on HV,
1995          * so we can always use host endianness
1996          */
1997 #ifdef __BIG_ENDIAN__
1998         vcpu->arch.shared_big_endian = true;
1999 #else
2000         vcpu->arch.shared_big_endian = false;
2001 #endif
2002 #endif
2003         vcpu->arch.mmcr[0] = MMCR0_FC;
2004         vcpu->arch.ctrl = CTRL_RUNLATCH;
2005         /* default to host PVR, since we can't spoof it */
2006         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2007         spin_lock_init(&vcpu->arch.vpa_update_lock);
2008         spin_lock_init(&vcpu->arch.tbacct_lock);
2009         vcpu->arch.busy_preempt = TB_NIL;
2010         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2011
2012         /*
2013          * Set the default HFSCR for the guest from the host value.
2014          * This value is only used on POWER9.
2015          * On POWER9, we want to virtualize the doorbell facility, so we
2016          * turn off the HFSCR bit, which causes those instructions to trap.
2017          */
2018         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2019         if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2020                 vcpu->arch.hfscr |= HFSCR_TM;
2021         else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2022                 vcpu->arch.hfscr &= ~HFSCR_TM;
2023         if (cpu_has_feature(CPU_FTR_ARCH_300))
2024                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2025
2026         kvmppc_mmu_book3s_hv_init(vcpu);
2027
2028         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2029
2030         init_waitqueue_head(&vcpu->arch.cpu_run);
2031
2032         mutex_lock(&kvm->lock);
2033         vcore = NULL;
2034         err = -EINVAL;
2035         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2036                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2037                         pr_devel("KVM: VCPU ID too high\n");
2038                         core = KVM_MAX_VCORES;
2039                 } else {
2040                         BUG_ON(kvm->arch.smt_mode != 1);
2041                         core = kvmppc_pack_vcpu_id(kvm, id);
2042                 }
2043         } else {
2044                 core = id / kvm->arch.smt_mode;
2045         }
2046         if (core < KVM_MAX_VCORES) {
2047                 vcore = kvm->arch.vcores[core];
2048                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2049                         pr_devel("KVM: collision on id %u", id);
2050                         vcore = NULL;
2051                 } else if (!vcore) {
2052                         err = -ENOMEM;
2053                         vcore = kvmppc_vcore_create(kvm,
2054                                         id & ~(kvm->arch.smt_mode - 1));
2055                         kvm->arch.vcores[core] = vcore;
2056                         kvm->arch.online_vcores++;
2057                 }
2058         }
2059         mutex_unlock(&kvm->lock);
2060
2061         if (!vcore)
2062                 goto free_vcpu;
2063
2064         spin_lock(&vcore->lock);
2065         ++vcore->num_threads;
2066         spin_unlock(&vcore->lock);
2067         vcpu->arch.vcore = vcore;
2068         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2069         vcpu->arch.thread_cpu = -1;
2070         vcpu->arch.prev_cpu = -1;
2071
2072         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2073         kvmppc_sanity_check(vcpu);
2074
2075         debugfs_vcpu_init(vcpu, id);
2076
2077         return vcpu;
2078
2079 free_vcpu:
2080         kmem_cache_free(kvm_vcpu_cache, vcpu);
2081 out:
2082         return ERR_PTR(err);
2083 }
2084
2085 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2086                               unsigned long flags)
2087 {
2088         int err;
2089         int esmt = 0;
2090
2091         if (flags)
2092                 return -EINVAL;
2093         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2094                 return -EINVAL;
2095         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2096                 /*
2097                  * On POWER8 (or POWER7), the threading mode is "strict",
2098                  * so we pack smt_mode vcpus per vcore.
2099                  */
2100                 if (smt_mode > threads_per_subcore)
2101                         return -EINVAL;
2102         } else {
2103                 /*
2104                  * On POWER9, the threading mode is "loose",
2105                  * so each vcpu gets its own vcore.
2106                  */
2107                 esmt = smt_mode;
2108                 smt_mode = 1;
2109         }
2110         mutex_lock(&kvm->lock);
2111         err = -EBUSY;
2112         if (!kvm->arch.online_vcores) {
2113                 kvm->arch.smt_mode = smt_mode;
2114                 kvm->arch.emul_smt_mode = esmt;
2115                 err = 0;
2116         }
2117         mutex_unlock(&kvm->lock);
2118
2119         return err;
2120 }
2121
2122 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2123 {
2124         if (vpa->pinned_addr)
2125                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2126                                         vpa->dirty);
2127 }
2128
2129 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2130 {
2131         spin_lock(&vcpu->arch.vpa_update_lock);
2132         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2133         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2134         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2135         spin_unlock(&vcpu->arch.vpa_update_lock);
2136         kvm_vcpu_uninit(vcpu);
2137         kmem_cache_free(kvm_vcpu_cache, vcpu);
2138 }
2139
2140 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2141 {
2142         /* Indicate we want to get back into the guest */
2143         return 1;
2144 }
2145
2146 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2147 {
2148         unsigned long dec_nsec, now;
2149
2150         now = get_tb();
2151         if (now > vcpu->arch.dec_expires) {
2152                 /* decrementer has already gone negative */
2153                 kvmppc_core_queue_dec(vcpu);
2154                 kvmppc_core_prepare_to_enter(vcpu);
2155                 return;
2156         }
2157         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2158                    / tb_ticks_per_sec;
2159         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2160         vcpu->arch.timer_running = 1;
2161 }
2162
2163 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2164 {
2165         vcpu->arch.ceded = 0;
2166         if (vcpu->arch.timer_running) {
2167                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2168                 vcpu->arch.timer_running = 0;
2169         }
2170 }
2171
2172 extern int __kvmppc_vcore_entry(void);
2173
2174 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2175                                    struct kvm_vcpu *vcpu)
2176 {
2177         u64 now;
2178
2179         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2180                 return;
2181         spin_lock_irq(&vcpu->arch.tbacct_lock);
2182         now = mftb();
2183         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2184                 vcpu->arch.stolen_logged;
2185         vcpu->arch.busy_preempt = now;
2186         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2187         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2188         --vc->n_runnable;
2189         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2190 }
2191
2192 static int kvmppc_grab_hwthread(int cpu)
2193 {
2194         struct paca_struct *tpaca;
2195         long timeout = 10000;
2196
2197         tpaca = paca_ptrs[cpu];
2198
2199         /* Ensure the thread won't go into the kernel if it wakes */
2200         tpaca->kvm_hstate.kvm_vcpu = NULL;
2201         tpaca->kvm_hstate.kvm_vcore = NULL;
2202         tpaca->kvm_hstate.napping = 0;
2203         smp_wmb();
2204         tpaca->kvm_hstate.hwthread_req = 1;
2205
2206         /*
2207          * If the thread is already executing in the kernel (e.g. handling
2208          * a stray interrupt), wait for it to get back to nap mode.
2209          * The smp_mb() is to ensure that our setting of hwthread_req
2210          * is visible before we look at hwthread_state, so if this
2211          * races with the code at system_reset_pSeries and the thread
2212          * misses our setting of hwthread_req, we are sure to see its
2213          * setting of hwthread_state, and vice versa.
2214          */
2215         smp_mb();
2216         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2217                 if (--timeout <= 0) {
2218                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2219                         return -EBUSY;
2220                 }
2221                 udelay(1);
2222         }
2223         return 0;
2224 }
2225
2226 static void kvmppc_release_hwthread(int cpu)
2227 {
2228         struct paca_struct *tpaca;
2229
2230         tpaca = paca_ptrs[cpu];
2231         tpaca->kvm_hstate.hwthread_req = 0;
2232         tpaca->kvm_hstate.kvm_vcpu = NULL;
2233         tpaca->kvm_hstate.kvm_vcore = NULL;
2234         tpaca->kvm_hstate.kvm_split_mode = NULL;
2235 }
2236
2237 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2238 {
2239         int i;
2240
2241         cpu = cpu_first_thread_sibling(cpu);
2242         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2243         /*
2244          * Make sure setting of bit in need_tlb_flush precedes
2245          * testing of cpu_in_guest bits.  The matching barrier on
2246          * the other side is the first smp_mb() in kvmppc_run_core().
2247          */
2248         smp_mb();
2249         for (i = 0; i < threads_per_core; ++i)
2250                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2251                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2252 }
2253
2254 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2255 {
2256         struct kvm *kvm = vcpu->kvm;
2257
2258         /*
2259          * With radix, the guest can do TLB invalidations itself,
2260          * and it could choose to use the local form (tlbiel) if
2261          * it is invalidating a translation that has only ever been
2262          * used on one vcpu.  However, that doesn't mean it has
2263          * only ever been used on one physical cpu, since vcpus
2264          * can move around between pcpus.  To cope with this, when
2265          * a vcpu moves from one pcpu to another, we need to tell
2266          * any vcpus running on the same core as this vcpu previously
2267          * ran to flush the TLB.  The TLB is shared between threads,
2268          * so we use a single bit in .need_tlb_flush for all 4 threads.
2269          */
2270         if (vcpu->arch.prev_cpu != pcpu) {
2271                 if (vcpu->arch.prev_cpu >= 0 &&
2272                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2273                     cpu_first_thread_sibling(pcpu))
2274                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2275                 vcpu->arch.prev_cpu = pcpu;
2276         }
2277 }
2278
2279 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2280 {
2281         int cpu;
2282         struct paca_struct *tpaca;
2283         struct kvm *kvm = vc->kvm;
2284
2285         cpu = vc->pcpu;
2286         if (vcpu) {
2287                 if (vcpu->arch.timer_running) {
2288                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2289                         vcpu->arch.timer_running = 0;
2290                 }
2291                 cpu += vcpu->arch.ptid;
2292                 vcpu->cpu = vc->pcpu;
2293                 vcpu->arch.thread_cpu = cpu;
2294                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2295         }
2296         tpaca = paca_ptrs[cpu];
2297         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2298         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2299         tpaca->kvm_hstate.fake_suspend = 0;
2300         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2301         smp_wmb();
2302         tpaca->kvm_hstate.kvm_vcore = vc;
2303         if (cpu != smp_processor_id())
2304                 kvmppc_ipi_thread(cpu);
2305 }
2306
2307 static void kvmppc_wait_for_nap(int n_threads)
2308 {
2309         int cpu = smp_processor_id();
2310         int i, loops;
2311
2312         if (n_threads <= 1)
2313                 return;
2314         for (loops = 0; loops < 1000000; ++loops) {
2315                 /*
2316                  * Check if all threads are finished.
2317                  * We set the vcore pointer when starting a thread
2318                  * and the thread clears it when finished, so we look
2319                  * for any threads that still have a non-NULL vcore ptr.
2320                  */
2321                 for (i = 1; i < n_threads; ++i)
2322                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2323                                 break;
2324                 if (i == n_threads) {
2325                         HMT_medium();
2326                         return;
2327                 }
2328                 HMT_low();
2329         }
2330         HMT_medium();
2331         for (i = 1; i < n_threads; ++i)
2332                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2333                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2334 }
2335
2336 /*
2337  * Check that we are on thread 0 and that any other threads in
2338  * this core are off-line.  Then grab the threads so they can't
2339  * enter the kernel.
2340  */
2341 static int on_primary_thread(void)
2342 {
2343         int cpu = smp_processor_id();
2344         int thr;
2345
2346         /* Are we on a primary subcore? */
2347         if (cpu_thread_in_subcore(cpu))
2348                 return 0;
2349
2350         thr = 0;
2351         while (++thr < threads_per_subcore)
2352                 if (cpu_online(cpu + thr))
2353                         return 0;
2354
2355         /* Grab all hw threads so they can't go into the kernel */
2356         for (thr = 1; thr < threads_per_subcore; ++thr) {
2357                 if (kvmppc_grab_hwthread(cpu + thr)) {
2358                         /* Couldn't grab one; let the others go */
2359                         do {
2360                                 kvmppc_release_hwthread(cpu + thr);
2361                         } while (--thr > 0);
2362                         return 0;
2363                 }
2364         }
2365         return 1;
2366 }
2367
2368 /*
2369  * A list of virtual cores for each physical CPU.
2370  * These are vcores that could run but their runner VCPU tasks are
2371  * (or may be) preempted.
2372  */
2373 struct preempted_vcore_list {
2374         struct list_head        list;
2375         spinlock_t              lock;
2376 };
2377
2378 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2379
2380 static void init_vcore_lists(void)
2381 {
2382         int cpu;
2383
2384         for_each_possible_cpu(cpu) {
2385                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2386                 spin_lock_init(&lp->lock);
2387                 INIT_LIST_HEAD(&lp->list);
2388         }
2389 }
2390
2391 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2392 {
2393         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2394
2395         vc->vcore_state = VCORE_PREEMPT;
2396         vc->pcpu = smp_processor_id();
2397         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2398                 spin_lock(&lp->lock);
2399                 list_add_tail(&vc->preempt_list, &lp->list);
2400                 spin_unlock(&lp->lock);
2401         }
2402
2403         /* Start accumulating stolen time */
2404         kvmppc_core_start_stolen(vc);
2405 }
2406
2407 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2408 {
2409         struct preempted_vcore_list *lp;
2410
2411         kvmppc_core_end_stolen(vc);
2412         if (!list_empty(&vc->preempt_list)) {
2413                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2414                 spin_lock(&lp->lock);
2415                 list_del_init(&vc->preempt_list);
2416                 spin_unlock(&lp->lock);
2417         }
2418         vc->vcore_state = VCORE_INACTIVE;
2419 }
2420
2421 /*
2422  * This stores information about the virtual cores currently
2423  * assigned to a physical core.
2424  */
2425 struct core_info {
2426         int             n_subcores;
2427         int             max_subcore_threads;
2428         int             total_threads;
2429         int             subcore_threads[MAX_SUBCORES];
2430         struct kvmppc_vcore *vc[MAX_SUBCORES];
2431 };
2432
2433 /*
2434  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2435  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2436  */
2437 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2438
2439 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2440 {
2441         memset(cip, 0, sizeof(*cip));
2442         cip->n_subcores = 1;
2443         cip->max_subcore_threads = vc->num_threads;
2444         cip->total_threads = vc->num_threads;
2445         cip->subcore_threads[0] = vc->num_threads;
2446         cip->vc[0] = vc;
2447 }
2448
2449 static bool subcore_config_ok(int n_subcores, int n_threads)
2450 {
2451         /*
2452          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2453          * split-core mode, with one thread per subcore.
2454          */
2455         if (cpu_has_feature(CPU_FTR_ARCH_300))
2456                 return n_subcores <= 4 && n_threads == 1;
2457
2458         /* On POWER8, can only dynamically split if unsplit to begin with */
2459         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2460                 return false;
2461         if (n_subcores > MAX_SUBCORES)
2462                 return false;
2463         if (n_subcores > 1) {
2464                 if (!(dynamic_mt_modes & 2))
2465                         n_subcores = 4;
2466                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2467                         return false;
2468         }
2469
2470         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2471 }
2472
2473 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2474 {
2475         vc->entry_exit_map = 0;
2476         vc->in_guest = 0;
2477         vc->napping_threads = 0;
2478         vc->conferring_threads = 0;
2479         vc->tb_offset_applied = 0;
2480 }
2481
2482 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2483 {
2484         int n_threads = vc->num_threads;
2485         int sub;
2486
2487         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2488                 return false;
2489
2490         /* Some POWER9 chips require all threads to be in the same MMU mode */
2491         if (no_mixing_hpt_and_radix &&
2492             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2493                 return false;
2494
2495         if (n_threads < cip->max_subcore_threads)
2496                 n_threads = cip->max_subcore_threads;
2497         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2498                 return false;
2499         cip->max_subcore_threads = n_threads;
2500
2501         sub = cip->n_subcores;
2502         ++cip->n_subcores;
2503         cip->total_threads += vc->num_threads;
2504         cip->subcore_threads[sub] = vc->num_threads;
2505         cip->vc[sub] = vc;
2506         init_vcore_to_run(vc);
2507         list_del_init(&vc->preempt_list);
2508
2509         return true;
2510 }
2511
2512 /*
2513  * Work out whether it is possible to piggyback the execution of
2514  * vcore *pvc onto the execution of the other vcores described in *cip.
2515  */
2516 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2517                           int target_threads)
2518 {
2519         if (cip->total_threads + pvc->num_threads > target_threads)
2520                 return false;
2521
2522         return can_dynamic_split(pvc, cip);
2523 }
2524
2525 static void prepare_threads(struct kvmppc_vcore *vc)
2526 {
2527         int i;
2528         struct kvm_vcpu *vcpu;
2529
2530         for_each_runnable_thread(i, vcpu, vc) {
2531                 if (signal_pending(vcpu->arch.run_task))
2532                         vcpu->arch.ret = -EINTR;
2533                 else if (vcpu->arch.vpa.update_pending ||
2534                          vcpu->arch.slb_shadow.update_pending ||
2535                          vcpu->arch.dtl.update_pending)
2536                         vcpu->arch.ret = RESUME_GUEST;
2537                 else
2538                         continue;
2539                 kvmppc_remove_runnable(vc, vcpu);
2540                 wake_up(&vcpu->arch.cpu_run);
2541         }
2542 }
2543
2544 static void collect_piggybacks(struct core_info *cip, int target_threads)
2545 {
2546         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2547         struct kvmppc_vcore *pvc, *vcnext;
2548
2549         spin_lock(&lp->lock);
2550         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2551                 if (!spin_trylock(&pvc->lock))
2552                         continue;
2553                 prepare_threads(pvc);
2554                 if (!pvc->n_runnable) {
2555                         list_del_init(&pvc->preempt_list);
2556                         if (pvc->runner == NULL) {
2557                                 pvc->vcore_state = VCORE_INACTIVE;
2558                                 kvmppc_core_end_stolen(pvc);
2559                         }
2560                         spin_unlock(&pvc->lock);
2561                         continue;
2562                 }
2563                 if (!can_piggyback(pvc, cip, target_threads)) {
2564                         spin_unlock(&pvc->lock);
2565                         continue;
2566                 }
2567                 kvmppc_core_end_stolen(pvc);
2568                 pvc->vcore_state = VCORE_PIGGYBACK;
2569                 if (cip->total_threads >= target_threads)
2570                         break;
2571         }
2572         spin_unlock(&lp->lock);
2573 }
2574
2575 static bool recheck_signals(struct core_info *cip)
2576 {
2577         int sub, i;
2578         struct kvm_vcpu *vcpu;
2579
2580         for (sub = 0; sub < cip->n_subcores; ++sub)
2581                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2582                         if (signal_pending(vcpu->arch.run_task))
2583                                 return true;
2584         return false;
2585 }
2586
2587 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2588 {
2589         int still_running = 0, i;
2590         u64 now;
2591         long ret;
2592         struct kvm_vcpu *vcpu;
2593
2594         spin_lock(&vc->lock);
2595         now = get_tb();
2596         for_each_runnable_thread(i, vcpu, vc) {
2597                 /*
2598                  * It's safe to unlock the vcore in the loop here, because
2599                  * for_each_runnable_thread() is safe against removal of
2600                  * the vcpu, and the vcore state is VCORE_EXITING here,
2601                  * so any vcpus becoming runnable will have their arch.trap
2602                  * set to zero and can't actually run in the guest.
2603                  */
2604                 spin_unlock(&vc->lock);
2605                 /* cancel pending dec exception if dec is positive */
2606                 if (now < vcpu->arch.dec_expires &&
2607                     kvmppc_core_pending_dec(vcpu))
2608                         kvmppc_core_dequeue_dec(vcpu);
2609
2610                 trace_kvm_guest_exit(vcpu);
2611
2612                 ret = RESUME_GUEST;
2613                 if (vcpu->arch.trap)
2614                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2615                                                     vcpu->arch.run_task);
2616
2617                 vcpu->arch.ret = ret;
2618                 vcpu->arch.trap = 0;
2619
2620                 spin_lock(&vc->lock);
2621                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2622                         if (vcpu->arch.pending_exceptions)
2623                                 kvmppc_core_prepare_to_enter(vcpu);
2624                         if (vcpu->arch.ceded)
2625                                 kvmppc_set_timer(vcpu);
2626                         else
2627                                 ++still_running;
2628                 } else {
2629                         kvmppc_remove_runnable(vc, vcpu);
2630                         wake_up(&vcpu->arch.cpu_run);
2631                 }
2632         }
2633         if (!is_master) {
2634                 if (still_running > 0) {
2635                         kvmppc_vcore_preempt(vc);
2636                 } else if (vc->runner) {
2637                         vc->vcore_state = VCORE_PREEMPT;
2638                         kvmppc_core_start_stolen(vc);
2639                 } else {
2640                         vc->vcore_state = VCORE_INACTIVE;
2641                 }
2642                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2643                         /* make sure there's a candidate runner awake */
2644                         i = -1;
2645                         vcpu = next_runnable_thread(vc, &i);
2646                         wake_up(&vcpu->arch.cpu_run);
2647                 }
2648         }
2649         spin_unlock(&vc->lock);
2650 }
2651
2652 /*
2653  * Clear core from the list of active host cores as we are about to
2654  * enter the guest. Only do this if it is the primary thread of the
2655  * core (not if a subcore) that is entering the guest.
2656  */
2657 static inline int kvmppc_clear_host_core(unsigned int cpu)
2658 {
2659         int core;
2660
2661         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2662                 return 0;
2663         /*
2664          * Memory barrier can be omitted here as we will do a smp_wmb()
2665          * later in kvmppc_start_thread and we need ensure that state is
2666          * visible to other CPUs only after we enter guest.
2667          */
2668         core = cpu >> threads_shift;
2669         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2670         return 0;
2671 }
2672
2673 /*
2674  * Advertise this core as an active host core since we exited the guest
2675  * Only need to do this if it is the primary thread of the core that is
2676  * exiting.
2677  */
2678 static inline int kvmppc_set_host_core(unsigned int cpu)
2679 {
2680         int core;
2681
2682         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2683                 return 0;
2684
2685         /*
2686          * Memory barrier can be omitted here because we do a spin_unlock
2687          * immediately after this which provides the memory barrier.
2688          */
2689         core = cpu >> threads_shift;
2690         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2691         return 0;
2692 }
2693
2694 static void set_irq_happened(int trap)
2695 {
2696         switch (trap) {
2697         case BOOK3S_INTERRUPT_EXTERNAL:
2698                 local_paca->irq_happened |= PACA_IRQ_EE;
2699                 break;
2700         case BOOK3S_INTERRUPT_H_DOORBELL:
2701                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2702                 break;
2703         case BOOK3S_INTERRUPT_HMI:
2704                 local_paca->irq_happened |= PACA_IRQ_HMI;
2705                 break;
2706         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2707                 replay_system_reset();
2708                 break;
2709         }
2710 }
2711
2712 /*
2713  * Run a set of guest threads on a physical core.
2714  * Called with vc->lock held.
2715  */
2716 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2717 {
2718         struct kvm_vcpu *vcpu;
2719         int i;
2720         int srcu_idx;
2721         struct core_info core_info;
2722         struct kvmppc_vcore *pvc;
2723         struct kvm_split_mode split_info, *sip;
2724         int split, subcore_size, active;
2725         int sub;
2726         bool thr0_done;
2727         unsigned long cmd_bit, stat_bit;
2728         int pcpu, thr;
2729         int target_threads;
2730         int controlled_threads;
2731         int trap;
2732         bool is_power8;
2733         bool hpt_on_radix;
2734
2735         /*
2736          * Remove from the list any threads that have a signal pending
2737          * or need a VPA update done
2738          */
2739         prepare_threads(vc);
2740
2741         /* if the runner is no longer runnable, let the caller pick a new one */
2742         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2743                 return;
2744
2745         /*
2746          * Initialize *vc.
2747          */
2748         init_vcore_to_run(vc);
2749         vc->preempt_tb = TB_NIL;
2750
2751         /*
2752          * Number of threads that we will be controlling: the same as
2753          * the number of threads per subcore, except on POWER9,
2754          * where it's 1 because the threads are (mostly) independent.
2755          */
2756         controlled_threads = threads_per_vcore(vc->kvm);
2757
2758         /*
2759          * Make sure we are running on primary threads, and that secondary
2760          * threads are offline.  Also check if the number of threads in this
2761          * guest are greater than the current system threads per guest.
2762          * On POWER9, we need to be not in independent-threads mode if
2763          * this is a HPT guest on a radix host machine where the
2764          * CPU threads may not be in different MMU modes.
2765          */
2766         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2767                 !kvm_is_radix(vc->kvm);
2768         if (((controlled_threads > 1) &&
2769              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2770             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2771                 for_each_runnable_thread(i, vcpu, vc) {
2772                         vcpu->arch.ret = -EBUSY;
2773                         kvmppc_remove_runnable(vc, vcpu);
2774                         wake_up(&vcpu->arch.cpu_run);
2775                 }
2776                 goto out;
2777         }
2778
2779         /*
2780          * See if we could run any other vcores on the physical core
2781          * along with this one.
2782          */
2783         init_core_info(&core_info, vc);
2784         pcpu = smp_processor_id();
2785         target_threads = controlled_threads;
2786         if (target_smt_mode && target_smt_mode < target_threads)
2787                 target_threads = target_smt_mode;
2788         if (vc->num_threads < target_threads)
2789                 collect_piggybacks(&core_info, target_threads);
2790
2791         /*
2792          * On radix, arrange for TLB flushing if necessary.
2793          * This has to be done before disabling interrupts since
2794          * it uses smp_call_function().
2795          */
2796         pcpu = smp_processor_id();
2797         if (kvm_is_radix(vc->kvm)) {
2798                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2799                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2800                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2801         }
2802
2803         /*
2804          * Hard-disable interrupts, and check resched flag and signals.
2805          * If we need to reschedule or deliver a signal, clean up
2806          * and return without going into the guest(s).
2807          * If the mmu_ready flag has been cleared, don't go into the
2808          * guest because that means a HPT resize operation is in progress.
2809          */
2810         local_irq_disable();
2811         hard_irq_disable();
2812         if (lazy_irq_pending() || need_resched() ||
2813             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2814                 local_irq_enable();
2815                 vc->vcore_state = VCORE_INACTIVE;
2816                 /* Unlock all except the primary vcore */
2817                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2818                         pvc = core_info.vc[sub];
2819                         /* Put back on to the preempted vcores list */
2820                         kvmppc_vcore_preempt(pvc);
2821                         spin_unlock(&pvc->lock);
2822                 }
2823                 for (i = 0; i < controlled_threads; ++i)
2824                         kvmppc_release_hwthread(pcpu + i);
2825                 return;
2826         }
2827
2828         kvmppc_clear_host_core(pcpu);
2829
2830         /* Decide on micro-threading (split-core) mode */
2831         subcore_size = threads_per_subcore;
2832         cmd_bit = stat_bit = 0;
2833         split = core_info.n_subcores;
2834         sip = NULL;
2835         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2836                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2837
2838         if (split > 1 || hpt_on_radix) {
2839                 sip = &split_info;
2840                 memset(&split_info, 0, sizeof(split_info));
2841                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2842                         split_info.vc[sub] = core_info.vc[sub];
2843
2844                 if (is_power8) {
2845                         if (split == 2 && (dynamic_mt_modes & 2)) {
2846                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2847                                 stat_bit = HID0_POWER8_2LPARMODE;
2848                         } else {
2849                                 split = 4;
2850                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2851                                 stat_bit = HID0_POWER8_4LPARMODE;
2852                         }
2853                         subcore_size = MAX_SMT_THREADS / split;
2854                         split_info.rpr = mfspr(SPRN_RPR);
2855                         split_info.pmmar = mfspr(SPRN_PMMAR);
2856                         split_info.ldbar = mfspr(SPRN_LDBAR);
2857                         split_info.subcore_size = subcore_size;
2858                 } else {
2859                         split_info.subcore_size = 1;
2860                         if (hpt_on_radix) {
2861                                 /* Use the split_info for LPCR/LPIDR changes */
2862                                 split_info.lpcr_req = vc->lpcr;
2863                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2864                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2865                                 split_info.do_set = 1;
2866                         }
2867                 }
2868
2869                 /* order writes to split_info before kvm_split_mode pointer */
2870                 smp_wmb();
2871         }
2872
2873         for (thr = 0; thr < controlled_threads; ++thr) {
2874                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2875
2876                 paca->kvm_hstate.tid = thr;
2877                 paca->kvm_hstate.napping = 0;
2878                 paca->kvm_hstate.kvm_split_mode = sip;
2879         }
2880
2881         /* Initiate micro-threading (split-core) on POWER8 if required */
2882         if (cmd_bit) {
2883                 unsigned long hid0 = mfspr(SPRN_HID0);
2884
2885                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2886                 mb();
2887                 mtspr(SPRN_HID0, hid0);
2888                 isync();
2889                 for (;;) {
2890                         hid0 = mfspr(SPRN_HID0);
2891                         if (hid0 & stat_bit)
2892                                 break;
2893                         cpu_relax();
2894                 }
2895         }
2896
2897         /*
2898          * On POWER8, set RWMR register.
2899          * Since it only affects PURR and SPURR, it doesn't affect
2900          * the host, so we don't save/restore the host value.
2901          */
2902         if (is_power8) {
2903                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2904                 int n_online = atomic_read(&vc->online_count);
2905
2906                 /*
2907                  * Use the 8-thread value if we're doing split-core
2908                  * or if the vcore's online count looks bogus.
2909                  */
2910                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2911                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
2912                         rwmr_val = p8_rwmr_values[n_online];
2913                 mtspr(SPRN_RWMR, rwmr_val);
2914         }
2915
2916         /* Start all the threads */
2917         active = 0;
2918         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2919                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2920                 thr0_done = false;
2921                 active |= 1 << thr;
2922                 pvc = core_info.vc[sub];
2923                 pvc->pcpu = pcpu + thr;
2924                 for_each_runnable_thread(i, vcpu, pvc) {
2925                         kvmppc_start_thread(vcpu, pvc);
2926                         kvmppc_create_dtl_entry(vcpu, pvc);
2927                         trace_kvm_guest_enter(vcpu);
2928                         if (!vcpu->arch.ptid)
2929                                 thr0_done = true;
2930                         active |= 1 << (thr + vcpu->arch.ptid);
2931                 }
2932                 /*
2933                  * We need to start the first thread of each subcore
2934                  * even if it doesn't have a vcpu.
2935                  */
2936                 if (!thr0_done)
2937                         kvmppc_start_thread(NULL, pvc);
2938         }
2939
2940         /*
2941          * Ensure that split_info.do_nap is set after setting
2942          * the vcore pointer in the PACA of the secondaries.
2943          */
2944         smp_mb();
2945
2946         /*
2947          * When doing micro-threading, poke the inactive threads as well.
2948          * This gets them to the nap instruction after kvm_do_nap,
2949          * which reduces the time taken to unsplit later.
2950          * For POWER9 HPT guest on radix host, we need all the secondary
2951          * threads woken up so they can do the LPCR/LPIDR change.
2952          */
2953         if (cmd_bit || hpt_on_radix) {
2954                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2955                 for (thr = 1; thr < threads_per_subcore; ++thr)
2956                         if (!(active & (1 << thr)))
2957                                 kvmppc_ipi_thread(pcpu + thr);
2958         }
2959
2960         vc->vcore_state = VCORE_RUNNING;
2961         preempt_disable();
2962
2963         trace_kvmppc_run_core(vc, 0);
2964
2965         for (sub = 0; sub < core_info.n_subcores; ++sub)
2966                 spin_unlock(&core_info.vc[sub]->lock);
2967
2968         if (kvm_is_radix(vc->kvm)) {
2969                 int tmp = pcpu;
2970
2971                 /*
2972                  * Do we need to flush the process scoped TLB for the LPAR?
2973                  *
2974                  * On POWER9, individual threads can come in here, but the
2975                  * TLB is shared between the 4 threads in a core, hence
2976                  * invalidating on one thread invalidates for all.
2977                  * Thus we make all 4 threads use the same bit here.
2978                  *
2979                  * Hash must be flushed in realmode in order to use tlbiel.
2980                  */
2981                 mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2982                 isync();
2983
2984                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2985                         tmp &= ~0x3UL;
2986
2987                 if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2988                         radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2989                         /* Clear the bit after the TLB flush */
2990                         cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2991                 }
2992         }
2993
2994         /*
2995          * Interrupts will be enabled once we get into the guest,
2996          * so tell lockdep that we're about to enable interrupts.
2997          */
2998         trace_hardirqs_on();
2999
3000         guest_enter_irqoff();
3001
3002         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3003
3004         this_cpu_disable_ftrace();
3005
3006         trap = __kvmppc_vcore_entry();
3007
3008         this_cpu_enable_ftrace();
3009
3010         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3011
3012         trace_hardirqs_off();
3013         set_irq_happened(trap);
3014
3015         spin_lock(&vc->lock);
3016         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3017         vc->vcore_state = VCORE_EXITING;
3018
3019         /* wait for secondary threads to finish writing their state to memory */
3020         kvmppc_wait_for_nap(controlled_threads);
3021
3022         /* Return to whole-core mode if we split the core earlier */
3023         if (cmd_bit) {
3024                 unsigned long hid0 = mfspr(SPRN_HID0);
3025                 unsigned long loops = 0;
3026
3027                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3028                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3029                 mb();
3030                 mtspr(SPRN_HID0, hid0);
3031                 isync();
3032                 for (;;) {
3033                         hid0 = mfspr(SPRN_HID0);
3034                         if (!(hid0 & stat_bit))
3035                                 break;
3036                         cpu_relax();
3037                         ++loops;
3038                 }
3039         } else if (hpt_on_radix) {
3040                 /* Wait for all threads to have seen final sync */
3041                 for (thr = 1; thr < controlled_threads; ++thr) {
3042                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3043
3044                         while (paca->kvm_hstate.kvm_split_mode) {
3045                                 HMT_low();
3046                                 barrier();
3047                         }
3048                         HMT_medium();
3049                 }
3050         }
3051         split_info.do_nap = 0;
3052
3053         kvmppc_set_host_core(pcpu);
3054
3055         local_irq_enable();
3056         guest_exit();
3057
3058         /* Let secondaries go back to the offline loop */
3059         for (i = 0; i < controlled_threads; ++i) {
3060                 kvmppc_release_hwthread(pcpu + i);
3061                 if (sip && sip->napped[i])
3062                         kvmppc_ipi_thread(pcpu + i);
3063                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3064         }
3065
3066         spin_unlock(&vc->lock);
3067
3068         /* make sure updates to secondary vcpu structs are visible now */
3069         smp_mb();
3070
3071         preempt_enable();
3072
3073         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3074                 pvc = core_info.vc[sub];
3075                 post_guest_process(pvc, pvc == vc);
3076         }
3077
3078         spin_lock(&vc->lock);
3079
3080  out:
3081         vc->vcore_state = VCORE_INACTIVE;
3082         trace_kvmppc_run_core(vc, 1);
3083 }
3084
3085 /*
3086  * Load up hypervisor-mode registers on P9.
3087  */
3088 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit)
3089 {
3090         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3091         s64 hdec;
3092         u64 tb, purr, spurr;
3093         int trap;
3094         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3095         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3096         unsigned long host_dawr = mfspr(SPRN_DAWR);
3097         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3098         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3099         unsigned long host_pidr = mfspr(SPRN_PID);
3100
3101         hdec = time_limit - mftb();
3102         if (hdec < 0)
3103                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3104         mtspr(SPRN_HDEC, hdec);
3105
3106         if (vc->tb_offset) {
3107                 u64 new_tb = mftb() + vc->tb_offset;
3108                 mtspr(SPRN_TBU40, new_tb);
3109                 tb = mftb();
3110                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3111                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3112                 vc->tb_offset_applied = vc->tb_offset;
3113         }
3114
3115         if (vc->pcr)
3116                 mtspr(SPRN_PCR, vc->pcr);
3117         mtspr(SPRN_DPDES, vc->dpdes);
3118         mtspr(SPRN_VTB, vc->vtb);
3119
3120         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3121         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3122         mtspr(SPRN_PURR, vcpu->arch.purr);
3123         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3124
3125         if (cpu_has_feature(CPU_FTR_DAWR)) {
3126                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3127                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3128         }
3129         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3130         mtspr(SPRN_IC, vcpu->arch.ic);
3131         mtspr(SPRN_PID, vcpu->arch.pid);
3132
3133         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3134               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3135
3136         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3137
3138         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3139         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3140         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3141         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3142
3143         mtspr(SPRN_AMOR, ~0UL);
3144
3145         mtspr(SPRN_LPCR, vc->lpcr);
3146         isync();
3147
3148         kvmppc_xive_push_vcpu(vcpu);
3149
3150         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3151         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3152
3153         trap = __kvmhv_vcpu_entry_p9(vcpu);
3154
3155         /* Advance host PURR/SPURR by the amount used by guest */
3156         purr = mfspr(SPRN_PURR);
3157         spurr = mfspr(SPRN_SPURR);
3158         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3159               purr - vcpu->arch.purr);
3160         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3161               spurr - vcpu->arch.spurr);
3162         vcpu->arch.purr = purr;
3163         vcpu->arch.spurr = spurr;
3164
3165         vcpu->arch.ic = mfspr(SPRN_IC);
3166         vcpu->arch.pid = mfspr(SPRN_PID);
3167         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3168
3169         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3170         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3171         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3172         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3173
3174         mtspr(SPRN_PSSCR, host_psscr);
3175         mtspr(SPRN_HFSCR, host_hfscr);
3176         mtspr(SPRN_CIABR, host_ciabr);
3177         mtspr(SPRN_DAWR, host_dawr);
3178         mtspr(SPRN_DAWRX, host_dawrx);
3179         mtspr(SPRN_PID, host_pidr);
3180
3181         /*
3182          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3183          * case we interrupted the guest between a tlbie and a ptesync.
3184          */
3185         asm volatile("eieio; tlbsync; ptesync");
3186
3187         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3188         isync();
3189
3190         vc->dpdes = mfspr(SPRN_DPDES);
3191         vc->vtb = mfspr(SPRN_VTB);
3192         mtspr(SPRN_DPDES, 0);
3193         if (vc->pcr)
3194                 mtspr(SPRN_PCR, 0);
3195
3196         if (vc->tb_offset_applied) {
3197                 u64 new_tb = mftb() - vc->tb_offset_applied;
3198                 mtspr(SPRN_TBU40, new_tb);
3199                 tb = mftb();
3200                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3201                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3202                 vc->tb_offset_applied = 0;
3203         }
3204
3205         mtspr(SPRN_HDEC, 0x7fffffff);
3206         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3207
3208         return trap;
3209 }
3210
3211 /*
3212  * Virtual-mode guest entry for POWER9 and later when the host and
3213  * guest are both using the radix MMU.  The LPIDR has already been set.
3214  */
3215 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit)
3216 {
3217         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3218         unsigned long host_dscr = mfspr(SPRN_DSCR);
3219         unsigned long host_tidr = mfspr(SPRN_TIDR);
3220         unsigned long host_iamr = mfspr(SPRN_IAMR);
3221         s64 dec;
3222         u64 tb;
3223         int trap, save_pmu;
3224
3225         dec = mfspr(SPRN_DEC);
3226         tb = mftb();
3227         if (dec < 512)
3228                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3229         local_paca->kvm_hstate.dec_expires = dec + tb;
3230         if (local_paca->kvm_hstate.dec_expires < time_limit)
3231                 time_limit = local_paca->kvm_hstate.dec_expires;
3232
3233         vcpu->arch.ceded = 0;
3234
3235         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3236
3237         kvmppc_subcore_enter_guest();
3238
3239         vc->entry_exit_map = 1;
3240         vc->in_guest = 1;
3241
3242         if (vcpu->arch.vpa.pinned_addr) {
3243                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3244                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3245                 lp->yield_count = cpu_to_be32(yield_count);
3246                 vcpu->arch.vpa.dirty = 1;
3247         }
3248
3249         if (cpu_has_feature(CPU_FTR_TM) ||
3250             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3251                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3252
3253         kvmhv_load_guest_pmu(vcpu);
3254
3255         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3256         load_fp_state(&vcpu->arch.fp);
3257 #ifdef CONFIG_ALTIVEC
3258         load_vr_state(&vcpu->arch.vr);
3259 #endif
3260
3261         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3262         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3263         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3264         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3265         mtspr(SPRN_TAR, vcpu->arch.tar);
3266         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3267         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3268         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3269         mtspr(SPRN_WORT, vcpu->arch.wort);
3270         mtspr(SPRN_TIDR, vcpu->arch.tid);
3271         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3272         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3273         mtspr(SPRN_AMR, vcpu->arch.amr);
3274         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3275
3276         if (!(vcpu->arch.ctrl & 1))
3277                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3278
3279         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3280
3281         if (vcpu->arch.doorbell_request) {
3282                 vc->dpdes = 1;
3283                 smp_wmb();
3284                 vcpu->arch.doorbell_request = 0;
3285         }
3286
3287         trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit);
3288
3289         vcpu->arch.slb_max = 0;
3290         dec = mfspr(SPRN_DEC);
3291         tb = mftb();
3292         vcpu->arch.dec_expires = dec + tb;
3293         vcpu->cpu = -1;
3294         vcpu->arch.thread_cpu = -1;
3295         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3296
3297         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3298         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3299         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3300         vcpu->arch.tar = mfspr(SPRN_TAR);
3301         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3302         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3303         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3304         vcpu->arch.wort = mfspr(SPRN_WORT);
3305         vcpu->arch.tid = mfspr(SPRN_TIDR);
3306         vcpu->arch.amr = mfspr(SPRN_AMR);
3307         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3308         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3309
3310         mtspr(SPRN_PSPB, 0);
3311         mtspr(SPRN_WORT, 0);
3312         mtspr(SPRN_AMR, 0);
3313         mtspr(SPRN_UAMOR, 0);
3314         mtspr(SPRN_DSCR, host_dscr);
3315         mtspr(SPRN_TIDR, host_tidr);
3316         mtspr(SPRN_IAMR, host_iamr);
3317         mtspr(SPRN_PSPB, 0);
3318
3319         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3320         store_fp_state(&vcpu->arch.fp);
3321 #ifdef CONFIG_ALTIVEC
3322         store_vr_state(&vcpu->arch.vr);
3323 #endif
3324
3325         if (cpu_has_feature(CPU_FTR_TM) ||
3326             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3327                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3328
3329         save_pmu = 1;
3330         if (vcpu->arch.vpa.pinned_addr) {
3331                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3332                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3333                 lp->yield_count = cpu_to_be32(yield_count);
3334                 vcpu->arch.vpa.dirty = 1;
3335                 save_pmu = lp->pmcregs_in_use;
3336         }
3337
3338         kvmhv_save_guest_pmu(vcpu, save_pmu);
3339
3340         vc->entry_exit_map = 0x101;
3341         vc->in_guest = 0;
3342
3343         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3344
3345         kvmhv_load_host_pmu();
3346
3347         kvmppc_subcore_exit_guest();
3348
3349         return trap;
3350 }
3351
3352 /*
3353  * Wait for some other vcpu thread to execute us, and
3354  * wake us up when we need to handle something in the host.
3355  */
3356 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3357                                  struct kvm_vcpu *vcpu, int wait_state)
3358 {
3359         DEFINE_WAIT(wait);
3360
3361         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3362         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3363                 spin_unlock(&vc->lock);
3364                 schedule();
3365                 spin_lock(&vc->lock);
3366         }
3367         finish_wait(&vcpu->arch.cpu_run, &wait);
3368 }
3369
3370 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3371 {
3372         /* 10us base */
3373         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3374                 vc->halt_poll_ns = 10000;
3375         else
3376                 vc->halt_poll_ns *= halt_poll_ns_grow;
3377 }
3378
3379 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3380 {
3381         if (halt_poll_ns_shrink == 0)
3382                 vc->halt_poll_ns = 0;
3383         else
3384                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3385 }
3386
3387 #ifdef CONFIG_KVM_XICS
3388 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3389 {
3390         if (!xive_enabled())
3391                 return false;
3392         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3393                 vcpu->arch.xive_saved_state.cppr;
3394 }
3395 #else
3396 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3397 {
3398         return false;
3399 }
3400 #endif /* CONFIG_KVM_XICS */
3401
3402 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3403 {
3404         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3405             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3406                 return true;
3407
3408         return false;
3409 }
3410
3411 /*
3412  * Check to see if any of the runnable vcpus on the vcore have pending
3413  * exceptions or are no longer ceded
3414  */
3415 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3416 {
3417         struct kvm_vcpu *vcpu;
3418         int i;
3419
3420         for_each_runnable_thread(i, vcpu, vc) {
3421                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3422                         return 1;
3423         }
3424
3425         return 0;
3426 }
3427
3428 /*
3429  * All the vcpus in this vcore are idle, so wait for a decrementer
3430  * or external interrupt to one of the vcpus.  vc->lock is held.
3431  */
3432 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3433 {
3434         ktime_t cur, start_poll, start_wait;
3435         int do_sleep = 1;
3436         u64 block_ns;
3437         DECLARE_SWAITQUEUE(wait);
3438
3439         /* Poll for pending exceptions and ceded state */
3440         cur = start_poll = ktime_get();
3441         if (vc->halt_poll_ns) {
3442                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3443                 ++vc->runner->stat.halt_attempted_poll;
3444
3445                 vc->vcore_state = VCORE_POLLING;
3446                 spin_unlock(&vc->lock);
3447
3448                 do {
3449                         if (kvmppc_vcore_check_block(vc)) {
3450                                 do_sleep = 0;
3451                                 break;
3452                         }
3453                         cur = ktime_get();
3454                 } while (single_task_running() && ktime_before(cur, stop));
3455
3456                 spin_lock(&vc->lock);
3457                 vc->vcore_state = VCORE_INACTIVE;
3458
3459                 if (!do_sleep) {
3460                         ++vc->runner->stat.halt_successful_poll;
3461                         goto out;
3462                 }
3463         }
3464
3465         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3466
3467         if (kvmppc_vcore_check_block(vc)) {
3468                 finish_swait(&vc->wq, &wait);
3469                 do_sleep = 0;
3470                 /* If we polled, count this as a successful poll */
3471                 if (vc->halt_poll_ns)
3472                         ++vc->runner->stat.halt_successful_poll;
3473                 goto out;
3474         }
3475
3476         start_wait = ktime_get();
3477
3478         vc->vcore_state = VCORE_SLEEPING;
3479         trace_kvmppc_vcore_blocked(vc, 0);
3480         spin_unlock(&vc->lock);
3481         schedule();
3482         finish_swait(&vc->wq, &wait);
3483         spin_lock(&vc->lock);
3484         vc->vcore_state = VCORE_INACTIVE;
3485         trace_kvmppc_vcore_blocked(vc, 1);
3486         ++vc->runner->stat.halt_successful_wait;
3487
3488         cur = ktime_get();
3489
3490 out:
3491         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3492
3493         /* Attribute wait time */
3494         if (do_sleep) {
3495                 vc->runner->stat.halt_wait_ns +=
3496                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3497                 /* Attribute failed poll time */
3498                 if (vc->halt_poll_ns)
3499                         vc->runner->stat.halt_poll_fail_ns +=
3500                                 ktime_to_ns(start_wait) -
3501                                 ktime_to_ns(start_poll);
3502         } else {
3503                 /* Attribute successful poll time */
3504                 if (vc->halt_poll_ns)
3505                         vc->runner->stat.halt_poll_success_ns +=
3506                                 ktime_to_ns(cur) -
3507                                 ktime_to_ns(start_poll);
3508         }
3509
3510         /* Adjust poll time */
3511         if (halt_poll_ns) {
3512                 if (block_ns <= vc->halt_poll_ns)
3513                         ;
3514                 /* We slept and blocked for longer than the max halt time */
3515                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3516                         shrink_halt_poll_ns(vc);
3517                 /* We slept and our poll time is too small */
3518                 else if (vc->halt_poll_ns < halt_poll_ns &&
3519                                 block_ns < halt_poll_ns)
3520                         grow_halt_poll_ns(vc);
3521                 if (vc->halt_poll_ns > halt_poll_ns)
3522                         vc->halt_poll_ns = halt_poll_ns;
3523         } else
3524                 vc->halt_poll_ns = 0;
3525
3526         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3527 }
3528
3529 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3530 {
3531         int r = 0;
3532         struct kvm *kvm = vcpu->kvm;
3533
3534         mutex_lock(&kvm->lock);
3535         if (!kvm->arch.mmu_ready) {
3536                 if (!kvm_is_radix(kvm))
3537                         r = kvmppc_hv_setup_htab_rma(vcpu);
3538                 if (!r) {
3539                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3540                                 kvmppc_setup_partition_table(kvm);
3541                         kvm->arch.mmu_ready = 1;
3542                 }
3543         }
3544         mutex_unlock(&kvm->lock);
3545         return r;
3546 }
3547
3548 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3549 {
3550         int n_ceded, i, r;
3551         struct kvmppc_vcore *vc;
3552         struct kvm_vcpu *v;
3553
3554         trace_kvmppc_run_vcpu_enter(vcpu);
3555
3556         kvm_run->exit_reason = 0;
3557         vcpu->arch.ret = RESUME_GUEST;
3558         vcpu->arch.trap = 0;
3559         kvmppc_update_vpas(vcpu);
3560
3561         /*
3562          * Synchronize with other threads in this virtual core
3563          */
3564         vc = vcpu->arch.vcore;
3565         spin_lock(&vc->lock);
3566         vcpu->arch.ceded = 0;
3567         vcpu->arch.run_task = current;
3568         vcpu->arch.kvm_run = kvm_run;
3569         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3570         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3571         vcpu->arch.busy_preempt = TB_NIL;
3572         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3573         ++vc->n_runnable;
3574
3575         /*
3576          * This happens the first time this is called for a vcpu.
3577          * If the vcore is already running, we may be able to start
3578          * this thread straight away and have it join in.
3579          */
3580         if (!signal_pending(current)) {
3581                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3582                      vc->vcore_state == VCORE_RUNNING) &&
3583                            !VCORE_IS_EXITING(vc)) {
3584                         kvmppc_create_dtl_entry(vcpu, vc);
3585                         kvmppc_start_thread(vcpu, vc);
3586                         trace_kvm_guest_enter(vcpu);
3587                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3588                         swake_up_one(&vc->wq);
3589                 }
3590
3591         }
3592
3593         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3594                !signal_pending(current)) {
3595                 /* See if the MMU is ready to go */
3596                 if (!vcpu->kvm->arch.mmu_ready) {
3597                         spin_unlock(&vc->lock);
3598                         r = kvmhv_setup_mmu(vcpu);
3599                         spin_lock(&vc->lock);
3600                         if (r) {
3601                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3602                                 kvm_run->fail_entry.
3603                                         hardware_entry_failure_reason = 0;
3604                                 vcpu->arch.ret = r;
3605                                 break;
3606                         }
3607                 }
3608
3609                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3610                         kvmppc_vcore_end_preempt(vc);
3611
3612                 if (vc->vcore_state != VCORE_INACTIVE) {
3613                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3614                         continue;
3615                 }
3616                 for_each_runnable_thread(i, v, vc) {
3617                         kvmppc_core_prepare_to_enter(v);
3618                         if (signal_pending(v->arch.run_task)) {
3619                                 kvmppc_remove_runnable(vc, v);
3620                                 v->stat.signal_exits++;
3621                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3622                                 v->arch.ret = -EINTR;
3623                                 wake_up(&v->arch.cpu_run);
3624                         }
3625                 }
3626                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3627                         break;
3628                 n_ceded = 0;
3629                 for_each_runnable_thread(i, v, vc) {
3630                         if (!kvmppc_vcpu_woken(v))
3631                                 n_ceded += v->arch.ceded;
3632                         else
3633                                 v->arch.ceded = 0;
3634                 }
3635                 vc->runner = vcpu;
3636                 if (n_ceded == vc->n_runnable) {
3637                         kvmppc_vcore_blocked(vc);
3638                 } else if (need_resched()) {
3639                         kvmppc_vcore_preempt(vc);
3640                         /* Let something else run */
3641                         cond_resched_lock(&vc->lock);
3642                         if (vc->vcore_state == VCORE_PREEMPT)
3643                                 kvmppc_vcore_end_preempt(vc);
3644                 } else {
3645                         kvmppc_run_core(vc);
3646                 }
3647                 vc->runner = NULL;
3648         }
3649
3650         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3651                (vc->vcore_state == VCORE_RUNNING ||
3652                 vc->vcore_state == VCORE_EXITING ||
3653                 vc->vcore_state == VCORE_PIGGYBACK))
3654                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3655
3656         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3657                 kvmppc_vcore_end_preempt(vc);
3658
3659         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3660                 kvmppc_remove_runnable(vc, vcpu);
3661                 vcpu->stat.signal_exits++;
3662                 kvm_run->exit_reason = KVM_EXIT_INTR;
3663                 vcpu->arch.ret = -EINTR;
3664         }
3665
3666         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3667                 /* Wake up some vcpu to run the core */
3668                 i = -1;
3669                 v = next_runnable_thread(vc, &i);
3670                 wake_up(&v->arch.cpu_run);
3671         }
3672
3673         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3674         spin_unlock(&vc->lock);
3675         return vcpu->arch.ret;
3676 }
3677
3678 static int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
3679                                  struct kvm_vcpu *vcpu, u64 time_limit)
3680 {
3681         int trap, r, pcpu, pcpu0;
3682         int srcu_idx;
3683         struct kvmppc_vcore *vc;
3684         struct kvm *kvm = vcpu->kvm;
3685
3686         trace_kvmppc_run_vcpu_enter(vcpu);
3687
3688         kvm_run->exit_reason = 0;
3689         vcpu->arch.ret = RESUME_GUEST;
3690         vcpu->arch.trap = 0;
3691
3692         vc = vcpu->arch.vcore;
3693         vcpu->arch.ceded = 0;
3694         vcpu->arch.run_task = current;
3695         vcpu->arch.kvm_run = kvm_run;
3696         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3697         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3698         vcpu->arch.busy_preempt = TB_NIL;
3699         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
3700         vc->runnable_threads[0] = vcpu;
3701         vc->n_runnable = 1;
3702         vc->runner = vcpu;
3703
3704         /* See if the MMU is ready to go */
3705         if (!kvm->arch.mmu_ready) {
3706                 r = kvmhv_setup_mmu(vcpu);
3707                 if (r) {
3708                         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3709                         kvm_run->fail_entry.
3710                                 hardware_entry_failure_reason = 0;
3711                         vcpu->arch.ret = r;
3712                         goto out;
3713                 }
3714         }
3715
3716         if (need_resched())
3717                 cond_resched();
3718
3719         kvmppc_update_vpas(vcpu);
3720
3721         init_vcore_to_run(vc);
3722         vc->preempt_tb = TB_NIL;
3723
3724         preempt_disable();
3725         pcpu = smp_processor_id();
3726         vc->pcpu = pcpu;
3727         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3728
3729         local_irq_disable();
3730         hard_irq_disable();
3731         if (signal_pending(current))
3732                 goto sigpend;
3733         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
3734                 goto out;
3735
3736         kvmppc_core_prepare_to_enter(vcpu);
3737
3738         kvmppc_clear_host_core(pcpu);
3739
3740         local_paca->kvm_hstate.tid = 0;
3741         local_paca->kvm_hstate.napping = 0;
3742         local_paca->kvm_hstate.kvm_split_mode = NULL;
3743         kvmppc_start_thread(vcpu, vc);
3744         kvmppc_create_dtl_entry(vcpu, vc);
3745         trace_kvm_guest_enter(vcpu);
3746
3747         vc->vcore_state = VCORE_RUNNING;
3748         trace_kvmppc_run_core(vc, 0);
3749
3750         mtspr(SPRN_LPID, vc->kvm->arch.lpid);
3751         isync();
3752
3753         /* See comment above in kvmppc_run_core() about this */
3754         pcpu0 = pcpu;
3755         if (cpu_has_feature(CPU_FTR_ARCH_300))
3756                 pcpu0 &= ~0x3UL;
3757
3758         if (cpumask_test_cpu(pcpu0, &kvm->arch.need_tlb_flush)) {
3759                 radix__local_flush_tlb_lpid_guest(kvm->arch.lpid);
3760                 /* Clear the bit after the TLB flush */
3761                 cpumask_clear_cpu(pcpu0, &kvm->arch.need_tlb_flush);
3762         }
3763
3764         trace_hardirqs_on();
3765         guest_enter_irqoff();
3766
3767         srcu_idx = srcu_read_lock(&kvm->srcu);
3768
3769         this_cpu_disable_ftrace();
3770
3771         trap = kvmhv_p9_guest_entry(vcpu, time_limit);
3772         vcpu->arch.trap = trap;
3773
3774         this_cpu_enable_ftrace();
3775
3776         srcu_read_unlock(&kvm->srcu, srcu_idx);
3777
3778         mtspr(SPRN_LPID, kvm->arch.host_lpid);
3779         isync();
3780
3781         trace_hardirqs_off();
3782         set_irq_happened(trap);
3783
3784         kvmppc_set_host_core(pcpu);
3785
3786         local_irq_enable();
3787         guest_exit();
3788
3789         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
3790
3791         preempt_enable();
3792
3793         /* cancel pending decrementer exception if DEC is now positive */
3794         if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
3795                 kvmppc_core_dequeue_dec(vcpu);
3796
3797         trace_kvm_guest_exit(vcpu);
3798         r = RESUME_GUEST;
3799         if (trap)
3800                 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
3801         vcpu->arch.ret = r;
3802
3803         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
3804             !kvmppc_vcpu_woken(vcpu)) {
3805                 kvmppc_set_timer(vcpu);
3806                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
3807                         if (signal_pending(current)) {
3808                                 vcpu->stat.signal_exits++;
3809                                 kvm_run->exit_reason = KVM_EXIT_INTR;
3810                                 vcpu->arch.ret = -EINTR;
3811                                 break;
3812                         }
3813                         spin_lock(&vc->lock);
3814                         kvmppc_vcore_blocked(vc);
3815                         spin_unlock(&vc->lock);
3816                 }
3817         }
3818         vcpu->arch.ceded = 0;
3819
3820         vc->vcore_state = VCORE_INACTIVE;
3821         trace_kvmppc_run_core(vc, 1);
3822
3823  done:
3824         kvmppc_remove_runnable(vc, vcpu);
3825         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3826
3827         return vcpu->arch.ret;
3828
3829  sigpend:
3830         vcpu->stat.signal_exits++;
3831         kvm_run->exit_reason = KVM_EXIT_INTR;
3832         vcpu->arch.ret = -EINTR;
3833  out:
3834         local_irq_enable();
3835         preempt_enable();
3836         goto done;
3837 }
3838
3839 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3840 {
3841         int r;
3842         int srcu_idx;
3843         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3844         unsigned long user_tar = 0;
3845         unsigned int user_vrsave;
3846         struct kvm *kvm;
3847
3848         if (!vcpu->arch.sane) {
3849                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3850                 return -EINVAL;
3851         }
3852
3853         /*
3854          * Don't allow entry with a suspended transaction, because
3855          * the guest entry/exit code will lose it.
3856          * If the guest has TM enabled, save away their TM-related SPRs
3857          * (they will get restored by the TM unavailable interrupt).
3858          */
3859 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3860         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3861             (current->thread.regs->msr & MSR_TM)) {
3862                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3863                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3864                         run->fail_entry.hardware_entry_failure_reason = 0;
3865                         return -EINVAL;
3866                 }
3867                 /* Enable TM so we can read the TM SPRs */
3868                 mtmsr(mfmsr() | MSR_TM);
3869                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3870                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3871                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3872                 current->thread.regs->msr &= ~MSR_TM;
3873         }
3874 #endif
3875
3876         /*
3877          * Force online to 1 for the sake of old userspace which doesn't
3878          * set it.
3879          */
3880         if (!vcpu->arch.online) {
3881                 atomic_inc(&vcpu->arch.vcore->online_count);
3882                 vcpu->arch.online = 1;
3883         }
3884
3885         kvmppc_core_prepare_to_enter(vcpu);
3886
3887         /* No need to go into the guest when all we'll do is come back out */
3888         if (signal_pending(current)) {
3889                 run->exit_reason = KVM_EXIT_INTR;
3890                 return -EINTR;
3891         }
3892
3893         kvm = vcpu->kvm;
3894         atomic_inc(&kvm->arch.vcpus_running);
3895         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3896         smp_mb();
3897
3898         flush_all_to_thread(current);
3899
3900         /* Save userspace EBB and other register values */
3901         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3902                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3903                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3904                 ebb_regs[2] = mfspr(SPRN_BESCR);
3905                 user_tar = mfspr(SPRN_TAR);
3906         }
3907         user_vrsave = mfspr(SPRN_VRSAVE);
3908
3909         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3910         vcpu->arch.pgdir = current->mm->pgd;
3911         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3912
3913         do {
3914                 if (kvm->arch.threads_indep && kvm_is_radix(kvm))
3915                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0);
3916                 else
3917                         r = kvmppc_run_vcpu(run, vcpu);
3918
3919                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3920                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3921                         trace_kvm_hcall_enter(vcpu);
3922                         r = kvmppc_pseries_do_hcall(vcpu);
3923                         trace_kvm_hcall_exit(vcpu, r);
3924                         kvmppc_core_prepare_to_enter(vcpu);
3925                 } else if (r == RESUME_PAGE_FAULT) {
3926                         srcu_idx = srcu_read_lock(&kvm->srcu);
3927                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3928                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3929                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3930                 } else if (r == RESUME_PASSTHROUGH) {
3931                         if (WARN_ON(xive_enabled()))
3932                                 r = H_SUCCESS;
3933                         else
3934                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3935                 }
3936         } while (is_kvmppc_resume_guest(r));
3937
3938         /* Restore userspace EBB and other register values */
3939         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3940                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3941                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3942                 mtspr(SPRN_BESCR, ebb_regs[2]);
3943                 mtspr(SPRN_TAR, user_tar);
3944                 mtspr(SPRN_FSCR, current->thread.fscr);
3945         }
3946         mtspr(SPRN_VRSAVE, user_vrsave);
3947
3948         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3949         atomic_dec(&kvm->arch.vcpus_running);
3950         return r;
3951 }
3952
3953 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3954                                      int shift, int sllp)
3955 {
3956         (*sps)->page_shift = shift;
3957         (*sps)->slb_enc = sllp;
3958         (*sps)->enc[0].page_shift = shift;
3959         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3960         /*
3961          * Add 16MB MPSS support (may get filtered out by userspace)
3962          */
3963         if (shift != 24) {
3964                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3965                 if (penc != -1) {
3966                         (*sps)->enc[1].page_shift = 24;
3967                         (*sps)->enc[1].pte_enc = penc;
3968                 }
3969         }
3970         (*sps)++;
3971 }
3972
3973 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3974                                          struct kvm_ppc_smmu_info *info)
3975 {
3976         struct kvm_ppc_one_seg_page_size *sps;
3977
3978         /*
3979          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3980          * POWER7 doesn't support keys for instruction accesses,
3981          * POWER8 and POWER9 do.
3982          */
3983         info->data_keys = 32;
3984         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3985
3986         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3987         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3988         info->slb_size = 32;
3989
3990         /* We only support these sizes for now, and no muti-size segments */
3991         sps = &info->sps[0];
3992         kvmppc_add_seg_page_size(&sps, 12, 0);
3993         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3994         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3995
3996         return 0;
3997 }
3998
3999 /*
4000  * Get (and clear) the dirty memory log for a memory slot.
4001  */
4002 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4003                                          struct kvm_dirty_log *log)
4004 {
4005         struct kvm_memslots *slots;
4006         struct kvm_memory_slot *memslot;
4007         int i, r;
4008         unsigned long n;
4009         unsigned long *buf, *p;
4010         struct kvm_vcpu *vcpu;
4011
4012         mutex_lock(&kvm->slots_lock);
4013
4014         r = -EINVAL;
4015         if (log->slot >= KVM_USER_MEM_SLOTS)
4016                 goto out;
4017
4018         slots = kvm_memslots(kvm);
4019         memslot = id_to_memslot(slots, log->slot);
4020         r = -ENOENT;
4021         if (!memslot->dirty_bitmap)
4022                 goto out;
4023
4024         /*
4025          * Use second half of bitmap area because both HPT and radix
4026          * accumulate bits in the first half.
4027          */
4028         n = kvm_dirty_bitmap_bytes(memslot);
4029         buf = memslot->dirty_bitmap + n / sizeof(long);
4030         memset(buf, 0, n);
4031
4032         if (kvm_is_radix(kvm))
4033                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4034         else
4035                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4036         if (r)
4037                 goto out;
4038
4039         /*
4040          * We accumulate dirty bits in the first half of the
4041          * memslot's dirty_bitmap area, for when pages are paged
4042          * out or modified by the host directly.  Pick up these
4043          * bits and add them to the map.
4044          */
4045         p = memslot->dirty_bitmap;
4046         for (i = 0; i < n / sizeof(long); ++i)
4047                 buf[i] |= xchg(&p[i], 0);
4048
4049         /* Harvest dirty bits from VPA and DTL updates */
4050         /* Note: we never modify the SLB shadow buffer areas */
4051         kvm_for_each_vcpu(i, vcpu, kvm) {
4052                 spin_lock(&vcpu->arch.vpa_update_lock);
4053                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4054                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4055                 spin_unlock(&vcpu->arch.vpa_update_lock);
4056         }
4057
4058         r = -EFAULT;
4059         if (copy_to_user(log->dirty_bitmap, buf, n))
4060                 goto out;
4061
4062         r = 0;
4063 out:
4064         mutex_unlock(&kvm->slots_lock);
4065         return r;
4066 }
4067
4068 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4069                                         struct kvm_memory_slot *dont)
4070 {
4071         if (!dont || free->arch.rmap != dont->arch.rmap) {
4072                 vfree(free->arch.rmap);
4073                 free->arch.rmap = NULL;
4074         }
4075 }
4076
4077 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4078                                          unsigned long npages)
4079 {
4080         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4081         if (!slot->arch.rmap)
4082                 return -ENOMEM;
4083
4084         return 0;
4085 }
4086
4087 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4088                                         struct kvm_memory_slot *memslot,
4089                                         const struct kvm_userspace_memory_region *mem)
4090 {
4091         return 0;
4092 }
4093
4094 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4095                                 const struct kvm_userspace_memory_region *mem,
4096                                 const struct kvm_memory_slot *old,
4097                                 const struct kvm_memory_slot *new)
4098 {
4099         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4100
4101         /*
4102          * If we are making a new memslot, it might make
4103          * some address that was previously cached as emulated
4104          * MMIO be no longer emulated MMIO, so invalidate
4105          * all the caches of emulated MMIO translations.
4106          */
4107         if (npages)
4108                 atomic64_inc(&kvm->arch.mmio_update);
4109 }
4110
4111 /*
4112  * Update LPCR values in kvm->arch and in vcores.
4113  * Caller must hold kvm->lock.
4114  */
4115 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4116 {
4117         long int i;
4118         u32 cores_done = 0;
4119
4120         if ((kvm->arch.lpcr & mask) == lpcr)
4121                 return;
4122
4123         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4124
4125         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4126                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4127                 if (!vc)
4128                         continue;
4129                 spin_lock(&vc->lock);
4130                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4131                 spin_unlock(&vc->lock);
4132                 if (++cores_done >= kvm->arch.online_vcores)
4133                         break;
4134         }
4135 }
4136
4137 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4138 {
4139         return;
4140 }
4141
4142 void kvmppc_setup_partition_table(struct kvm *kvm)
4143 {
4144         unsigned long dw0, dw1;
4145
4146         if (!kvm_is_radix(kvm)) {
4147                 /* PS field - page size for VRMA */
4148                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4149                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4150                 /* HTABSIZE and HTABORG fields */
4151                 dw0 |= kvm->arch.sdr1;
4152
4153                 /* Second dword as set by userspace */
4154                 dw1 = kvm->arch.process_table;
4155         } else {
4156                 dw0 = PATB_HR | radix__get_tree_size() |
4157                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4158                 dw1 = PATB_GR | kvm->arch.process_table;
4159         }
4160
4161         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
4162 }
4163
4164 /*
4165  * Set up HPT (hashed page table) and RMA (real-mode area).
4166  * Must be called with kvm->lock held.
4167  */
4168 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4169 {
4170         int err = 0;
4171         struct kvm *kvm = vcpu->kvm;
4172         unsigned long hva;
4173         struct kvm_memory_slot *memslot;
4174         struct vm_area_struct *vma;
4175         unsigned long lpcr = 0, senc;
4176         unsigned long psize, porder;
4177         int srcu_idx;
4178
4179         /* Allocate hashed page table (if not done already) and reset it */
4180         if (!kvm->arch.hpt.virt) {
4181                 int order = KVM_DEFAULT_HPT_ORDER;
4182                 struct kvm_hpt_info info;
4183
4184                 err = kvmppc_allocate_hpt(&info, order);
4185                 /* If we get here, it means userspace didn't specify a
4186                  * size explicitly.  So, try successively smaller
4187                  * sizes if the default failed. */
4188                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4189                         err  = kvmppc_allocate_hpt(&info, order);
4190
4191                 if (err < 0) {
4192                         pr_err("KVM: Couldn't alloc HPT\n");
4193                         goto out;
4194                 }
4195
4196                 kvmppc_set_hpt(kvm, &info);
4197         }
4198
4199         /* Look up the memslot for guest physical address 0 */
4200         srcu_idx = srcu_read_lock(&kvm->srcu);
4201         memslot = gfn_to_memslot(kvm, 0);
4202
4203         /* We must have some memory at 0 by now */
4204         err = -EINVAL;
4205         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4206                 goto out_srcu;
4207
4208         /* Look up the VMA for the start of this memory slot */
4209         hva = memslot->userspace_addr;
4210         down_read(&current->mm->mmap_sem);
4211         vma = find_vma(current->mm, hva);
4212         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4213                 goto up_out;
4214
4215         psize = vma_kernel_pagesize(vma);
4216
4217         up_read(&current->mm->mmap_sem);
4218
4219         /* We can handle 4k, 64k or 16M pages in the VRMA */
4220         if (psize >= 0x1000000)
4221                 psize = 0x1000000;
4222         else if (psize >= 0x10000)
4223                 psize = 0x10000;
4224         else
4225                 psize = 0x1000;
4226         porder = __ilog2(psize);
4227
4228         senc = slb_pgsize_encoding(psize);
4229         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4230                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4231         /* Create HPTEs in the hash page table for the VRMA */
4232         kvmppc_map_vrma(vcpu, memslot, porder);
4233
4234         /* Update VRMASD field in the LPCR */
4235         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4236                 /* the -4 is to account for senc values starting at 0x10 */
4237                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4238                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4239         }
4240
4241         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4242         smp_wmb();
4243         err = 0;
4244  out_srcu:
4245         srcu_read_unlock(&kvm->srcu, srcu_idx);
4246  out:
4247         return err;
4248
4249  up_out:
4250         up_read(&current->mm->mmap_sem);
4251         goto out_srcu;
4252 }
4253
4254 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4255 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4256 {
4257         kvmppc_free_radix(kvm);
4258         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4259                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4260         kvmppc_rmap_reset(kvm);
4261         kvm->arch.radix = 0;
4262         kvm->arch.process_table = 0;
4263         return 0;
4264 }
4265
4266 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4267 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4268 {
4269         int err;
4270
4271         err = kvmppc_init_vm_radix(kvm);
4272         if (err)
4273                 return err;
4274
4275         kvmppc_free_hpt(&kvm->arch.hpt);
4276         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4277                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4278         kvm->arch.radix = 1;
4279         return 0;
4280 }
4281
4282 #ifdef CONFIG_KVM_XICS
4283 /*
4284  * Allocate a per-core structure for managing state about which cores are
4285  * running in the host versus the guest and for exchanging data between
4286  * real mode KVM and CPU running in the host.
4287  * This is only done for the first VM.
4288  * The allocated structure stays even if all VMs have stopped.
4289  * It is only freed when the kvm-hv module is unloaded.
4290  * It's OK for this routine to fail, we just don't support host
4291  * core operations like redirecting H_IPI wakeups.
4292  */
4293 void kvmppc_alloc_host_rm_ops(void)
4294 {
4295         struct kvmppc_host_rm_ops *ops;
4296         unsigned long l_ops;
4297         int cpu, core;
4298         int size;
4299
4300         /* Not the first time here ? */
4301         if (kvmppc_host_rm_ops_hv != NULL)
4302                 return;
4303
4304         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4305         if (!ops)
4306                 return;
4307
4308         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4309         ops->rm_core = kzalloc(size, GFP_KERNEL);
4310
4311         if (!ops->rm_core) {
4312                 kfree(ops);
4313                 return;
4314         }
4315
4316         cpus_read_lock();
4317
4318         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4319                 if (!cpu_online(cpu))
4320                         continue;
4321
4322                 core = cpu >> threads_shift;
4323                 ops->rm_core[core].rm_state.in_host = 1;
4324         }
4325
4326         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4327
4328         /*
4329          * Make the contents of the kvmppc_host_rm_ops structure visible
4330          * to other CPUs before we assign it to the global variable.
4331          * Do an atomic assignment (no locks used here), but if someone
4332          * beats us to it, just free our copy and return.
4333          */
4334         smp_wmb();
4335         l_ops = (unsigned long) ops;
4336
4337         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4338                 cpus_read_unlock();
4339                 kfree(ops->rm_core);
4340                 kfree(ops);
4341                 return;
4342         }
4343
4344         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4345                                              "ppc/kvm_book3s:prepare",
4346                                              kvmppc_set_host_core,
4347                                              kvmppc_clear_host_core);
4348         cpus_read_unlock();
4349 }
4350
4351 void kvmppc_free_host_rm_ops(void)
4352 {
4353         if (kvmppc_host_rm_ops_hv) {
4354                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4355                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4356                 kfree(kvmppc_host_rm_ops_hv);
4357                 kvmppc_host_rm_ops_hv = NULL;
4358         }
4359 }
4360 #endif
4361
4362 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4363 {
4364         unsigned long lpcr, lpid;
4365         char buf[32];
4366         int ret;
4367
4368         /* Allocate the guest's logical partition ID */
4369
4370         lpid = kvmppc_alloc_lpid();
4371         if ((long)lpid < 0)
4372                 return -ENOMEM;
4373         kvm->arch.lpid = lpid;
4374
4375         kvmppc_alloc_host_rm_ops();
4376
4377         /*
4378          * Since we don't flush the TLB when tearing down a VM,
4379          * and this lpid might have previously been used,
4380          * make sure we flush on each core before running the new VM.
4381          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4382          * does this flush for us.
4383          */
4384         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4385                 cpumask_setall(&kvm->arch.need_tlb_flush);
4386
4387         /* Start out with the default set of hcalls enabled */
4388         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4389                sizeof(kvm->arch.enabled_hcalls));
4390
4391         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4392                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4393
4394         /* Init LPCR for virtual RMA mode */
4395         kvm->arch.host_lpid = mfspr(SPRN_LPID);
4396         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4397         lpcr &= LPCR_PECE | LPCR_LPES;
4398         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4399                 LPCR_VPM0 | LPCR_VPM1;
4400         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4401                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4402         /* On POWER8 turn on online bit to enable PURR/SPURR */
4403         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4404                 lpcr |= LPCR_ONL;
4405         /*
4406          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4407          * Set HVICE bit to enable hypervisor virtualization interrupts.
4408          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4409          * be unnecessary but better safe than sorry in case we re-enable
4410          * EE in HV mode with this LPCR still set)
4411          */
4412         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4413                 lpcr &= ~LPCR_VPM0;
4414                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4415
4416                 /*
4417                  * If xive is enabled, we route 0x500 interrupts directly
4418                  * to the guest.
4419                  */
4420                 if (xive_enabled())
4421                         lpcr |= LPCR_LPES;
4422         }
4423
4424         /*
4425          * If the host uses radix, the guest starts out as radix.
4426          */
4427         if (radix_enabled()) {
4428                 kvm->arch.radix = 1;
4429                 kvm->arch.mmu_ready = 1;
4430                 lpcr &= ~LPCR_VPM1;
4431                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4432                 ret = kvmppc_init_vm_radix(kvm);
4433                 if (ret) {
4434                         kvmppc_free_lpid(kvm->arch.lpid);
4435                         return ret;
4436                 }
4437                 kvmppc_setup_partition_table(kvm);
4438         }
4439
4440         kvm->arch.lpcr = lpcr;
4441
4442         /* Initialization for future HPT resizes */
4443         kvm->arch.resize_hpt = NULL;
4444
4445         /*
4446          * Work out how many sets the TLB has, for the use of
4447          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4448          */
4449         if (radix_enabled())
4450                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4451         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4452                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4453         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4454                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4455         else
4456                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4457
4458         /*
4459          * Track that we now have a HV mode VM active. This blocks secondary
4460          * CPU threads from coming online.
4461          * On POWER9, we only need to do this if the "indep_threads_mode"
4462          * module parameter has been set to N.
4463          */
4464         if (cpu_has_feature(CPU_FTR_ARCH_300))
4465                 kvm->arch.threads_indep = indep_threads_mode;
4466         if (!kvm->arch.threads_indep)
4467                 kvm_hv_vm_activated();
4468
4469         /*
4470          * Initialize smt_mode depending on processor.
4471          * POWER8 and earlier have to use "strict" threading, where
4472          * all vCPUs in a vcore have to run on the same (sub)core,
4473          * whereas on POWER9 the threads can each run a different
4474          * guest.
4475          */
4476         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4477                 kvm->arch.smt_mode = threads_per_subcore;
4478         else
4479                 kvm->arch.smt_mode = 1;
4480         kvm->arch.emul_smt_mode = 1;
4481
4482         /*
4483          * Create a debugfs directory for the VM
4484          */
4485         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4486         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4487         kvmppc_mmu_debugfs_init(kvm);
4488
4489         return 0;
4490 }
4491
4492 static void kvmppc_free_vcores(struct kvm *kvm)
4493 {
4494         long int i;
4495
4496         for (i = 0; i < KVM_MAX_VCORES; ++i)
4497                 kfree(kvm->arch.vcores[i]);
4498         kvm->arch.online_vcores = 0;
4499 }
4500
4501 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4502 {
4503         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4504
4505         if (!kvm->arch.threads_indep)
4506                 kvm_hv_vm_deactivated();
4507
4508         kvmppc_free_vcores(kvm);
4509
4510         kvmppc_free_lpid(kvm->arch.lpid);
4511
4512         if (kvm_is_radix(kvm))
4513                 kvmppc_free_radix(kvm);
4514         else
4515                 kvmppc_free_hpt(&kvm->arch.hpt);
4516
4517         kvmppc_free_pimap(kvm);
4518 }
4519
4520 /* We don't need to emulate any privileged instructions or dcbz */
4521 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4522                                      unsigned int inst, int *advance)
4523 {
4524         return EMULATE_FAIL;
4525 }
4526
4527 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4528                                         ulong spr_val)
4529 {
4530         return EMULATE_FAIL;
4531 }
4532
4533 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4534                                         ulong *spr_val)
4535 {
4536         return EMULATE_FAIL;
4537 }
4538
4539 static int kvmppc_core_check_processor_compat_hv(void)
4540 {
4541         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4542             !cpu_has_feature(CPU_FTR_ARCH_206))
4543                 return -EIO;
4544
4545         return 0;
4546 }
4547
4548 #ifdef CONFIG_KVM_XICS
4549
4550 void kvmppc_free_pimap(struct kvm *kvm)
4551 {
4552         kfree(kvm->arch.pimap);
4553 }
4554
4555 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4556 {
4557         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4558 }
4559
4560 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4561 {
4562         struct irq_desc *desc;
4563         struct kvmppc_irq_map *irq_map;
4564         struct kvmppc_passthru_irqmap *pimap;
4565         struct irq_chip *chip;
4566         int i, rc = 0;
4567
4568         if (!kvm_irq_bypass)
4569                 return 1;
4570
4571         desc = irq_to_desc(host_irq);
4572         if (!desc)
4573                 return -EIO;
4574
4575         mutex_lock(&kvm->lock);
4576
4577         pimap = kvm->arch.pimap;
4578         if (pimap == NULL) {
4579                 /* First call, allocate structure to hold IRQ map */
4580                 pimap = kvmppc_alloc_pimap();
4581                 if (pimap == NULL) {
4582                         mutex_unlock(&kvm->lock);
4583                         return -ENOMEM;
4584                 }
4585                 kvm->arch.pimap = pimap;
4586         }
4587
4588         /*
4589          * For now, we only support interrupts for which the EOI operation
4590          * is an OPAL call followed by a write to XIRR, since that's
4591          * what our real-mode EOI code does, or a XIVE interrupt
4592          */
4593         chip = irq_data_get_irq_chip(&desc->irq_data);
4594         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4595                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4596                         host_irq, guest_gsi);
4597                 mutex_unlock(&kvm->lock);
4598                 return -ENOENT;
4599         }
4600
4601         /*
4602          * See if we already have an entry for this guest IRQ number.
4603          * If it's mapped to a hardware IRQ number, that's an error,
4604          * otherwise re-use this entry.
4605          */
4606         for (i = 0; i < pimap->n_mapped; i++) {
4607                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4608                         if (pimap->mapped[i].r_hwirq) {
4609                                 mutex_unlock(&kvm->lock);
4610                                 return -EINVAL;
4611                         }
4612                         break;
4613                 }
4614         }
4615
4616         if (i == KVMPPC_PIRQ_MAPPED) {
4617                 mutex_unlock(&kvm->lock);
4618                 return -EAGAIN;         /* table is full */
4619         }
4620
4621         irq_map = &pimap->mapped[i];
4622
4623         irq_map->v_hwirq = guest_gsi;
4624         irq_map->desc = desc;
4625
4626         /*
4627          * Order the above two stores before the next to serialize with
4628          * the KVM real mode handler.
4629          */
4630         smp_wmb();
4631         irq_map->r_hwirq = desc->irq_data.hwirq;
4632
4633         if (i == pimap->n_mapped)
4634                 pimap->n_mapped++;
4635
4636         if (xive_enabled())
4637                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4638         else
4639                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4640         if (rc)
4641                 irq_map->r_hwirq = 0;
4642
4643         mutex_unlock(&kvm->lock);
4644
4645         return 0;
4646 }
4647
4648 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4649 {
4650         struct irq_desc *desc;
4651         struct kvmppc_passthru_irqmap *pimap;
4652         int i, rc = 0;
4653
4654         if (!kvm_irq_bypass)
4655                 return 0;
4656
4657         desc = irq_to_desc(host_irq);
4658         if (!desc)
4659                 return -EIO;
4660
4661         mutex_lock(&kvm->lock);
4662         if (!kvm->arch.pimap)
4663                 goto unlock;
4664
4665         pimap = kvm->arch.pimap;
4666
4667         for (i = 0; i < pimap->n_mapped; i++) {
4668                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4669                         break;
4670         }
4671
4672         if (i == pimap->n_mapped) {
4673                 mutex_unlock(&kvm->lock);
4674                 return -ENODEV;
4675         }
4676
4677         if (xive_enabled())
4678                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4679         else
4680                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4681
4682         /* invalidate the entry (what do do on error from the above ?) */
4683         pimap->mapped[i].r_hwirq = 0;
4684
4685         /*
4686          * We don't free this structure even when the count goes to
4687          * zero. The structure is freed when we destroy the VM.
4688          */
4689  unlock:
4690         mutex_unlock(&kvm->lock);
4691         return rc;
4692 }
4693
4694 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4695                                              struct irq_bypass_producer *prod)
4696 {
4697         int ret = 0;
4698         struct kvm_kernel_irqfd *irqfd =
4699                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4700
4701         irqfd->producer = prod;
4702
4703         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4704         if (ret)
4705                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4706                         prod->irq, irqfd->gsi, ret);
4707
4708         return ret;
4709 }
4710
4711 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4712                                               struct irq_bypass_producer *prod)
4713 {
4714         int ret;
4715         struct kvm_kernel_irqfd *irqfd =
4716                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4717
4718         irqfd->producer = NULL;
4719
4720         /*
4721          * When producer of consumer is unregistered, we change back to
4722          * default external interrupt handling mode - KVM real mode
4723          * will switch back to host.
4724          */
4725         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4726         if (ret)
4727                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4728                         prod->irq, irqfd->gsi, ret);
4729 }
4730 #endif
4731
4732 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4733                                  unsigned int ioctl, unsigned long arg)
4734 {
4735         struct kvm *kvm __maybe_unused = filp->private_data;
4736         void __user *argp = (void __user *)arg;
4737         long r;
4738
4739         switch (ioctl) {
4740
4741         case KVM_PPC_ALLOCATE_HTAB: {
4742                 u32 htab_order;
4743
4744                 r = -EFAULT;
4745                 if (get_user(htab_order, (u32 __user *)argp))
4746                         break;
4747                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4748                 if (r)
4749                         break;
4750                 r = 0;
4751                 break;
4752         }
4753
4754         case KVM_PPC_GET_HTAB_FD: {
4755                 struct kvm_get_htab_fd ghf;
4756
4757                 r = -EFAULT;
4758                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4759                         break;
4760                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4761                 break;
4762         }
4763
4764         case KVM_PPC_RESIZE_HPT_PREPARE: {
4765                 struct kvm_ppc_resize_hpt rhpt;
4766
4767                 r = -EFAULT;
4768                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4769                         break;
4770
4771                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4772                 break;
4773         }
4774
4775         case KVM_PPC_RESIZE_HPT_COMMIT: {
4776                 struct kvm_ppc_resize_hpt rhpt;
4777
4778                 r = -EFAULT;
4779                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4780                         break;
4781
4782                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4783                 break;
4784         }
4785
4786         default:
4787                 r = -ENOTTY;
4788         }
4789
4790         return r;
4791 }
4792
4793 /*
4794  * List of hcall numbers to enable by default.
4795  * For compatibility with old userspace, we enable by default
4796  * all hcalls that were implemented before the hcall-enabling
4797  * facility was added.  Note this list should not include H_RTAS.
4798  */
4799 static unsigned int default_hcall_list[] = {
4800         H_REMOVE,
4801         H_ENTER,
4802         H_READ,
4803         H_PROTECT,
4804         H_BULK_REMOVE,
4805         H_GET_TCE,
4806         H_PUT_TCE,
4807         H_SET_DABR,
4808         H_SET_XDABR,
4809         H_CEDE,
4810         H_PROD,
4811         H_CONFER,
4812         H_REGISTER_VPA,
4813 #ifdef CONFIG_KVM_XICS
4814         H_EOI,
4815         H_CPPR,
4816         H_IPI,
4817         H_IPOLL,
4818         H_XIRR,
4819         H_XIRR_X,
4820 #endif
4821         0
4822 };
4823
4824 static void init_default_hcalls(void)
4825 {
4826         int i;
4827         unsigned int hcall;
4828
4829         for (i = 0; default_hcall_list[i]; ++i) {
4830                 hcall = default_hcall_list[i];
4831                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4832                 __set_bit(hcall / 4, default_enabled_hcalls);
4833         }
4834 }
4835
4836 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4837 {
4838         unsigned long lpcr;
4839         int radix;
4840         int err;
4841
4842         /* If not on a POWER9, reject it */
4843         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4844                 return -ENODEV;
4845
4846         /* If any unknown flags set, reject it */
4847         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4848                 return -EINVAL;
4849
4850         /* GR (guest radix) bit in process_table field must match */
4851         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4852         if (!!(cfg->process_table & PATB_GR) != radix)
4853                 return -EINVAL;
4854
4855         /* Process table size field must be reasonable, i.e. <= 24 */
4856         if ((cfg->process_table & PRTS_MASK) > 24)
4857                 return -EINVAL;
4858
4859         /* We can change a guest to/from radix now, if the host is radix */
4860         if (radix && !radix_enabled())
4861                 return -EINVAL;
4862
4863         mutex_lock(&kvm->lock);
4864         if (radix != kvm_is_radix(kvm)) {
4865                 if (kvm->arch.mmu_ready) {
4866                         kvm->arch.mmu_ready = 0;
4867                         /* order mmu_ready vs. vcpus_running */
4868                         smp_mb();
4869                         if (atomic_read(&kvm->arch.vcpus_running)) {
4870                                 kvm->arch.mmu_ready = 1;
4871                                 err = -EBUSY;
4872                                 goto out_unlock;
4873                         }
4874                 }
4875                 if (radix)
4876                         err = kvmppc_switch_mmu_to_radix(kvm);
4877                 else
4878                         err = kvmppc_switch_mmu_to_hpt(kvm);
4879                 if (err)
4880                         goto out_unlock;
4881         }
4882
4883         kvm->arch.process_table = cfg->process_table;
4884         kvmppc_setup_partition_table(kvm);
4885
4886         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4887         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4888         err = 0;
4889
4890  out_unlock:
4891         mutex_unlock(&kvm->lock);
4892         return err;
4893 }
4894
4895 static struct kvmppc_ops kvm_ops_hv = {
4896         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4897         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4898         .get_one_reg = kvmppc_get_one_reg_hv,
4899         .set_one_reg = kvmppc_set_one_reg_hv,
4900         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4901         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4902         .set_msr     = kvmppc_set_msr_hv,
4903         .vcpu_run    = kvmppc_vcpu_run_hv,
4904         .vcpu_create = kvmppc_core_vcpu_create_hv,
4905         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4906         .check_requests = kvmppc_core_check_requests_hv,
4907         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4908         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4909         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4910         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4911         .unmap_hva_range = kvm_unmap_hva_range_hv,
4912         .age_hva  = kvm_age_hva_hv,
4913         .test_age_hva = kvm_test_age_hva_hv,
4914         .set_spte_hva = kvm_set_spte_hva_hv,
4915         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4916         .free_memslot = kvmppc_core_free_memslot_hv,
4917         .create_memslot = kvmppc_core_create_memslot_hv,
4918         .init_vm =  kvmppc_core_init_vm_hv,
4919         .destroy_vm = kvmppc_core_destroy_vm_hv,
4920         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4921         .emulate_op = kvmppc_core_emulate_op_hv,
4922         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4923         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4924         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4925         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4926         .hcall_implemented = kvmppc_hcall_impl_hv,
4927 #ifdef CONFIG_KVM_XICS
4928         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4929         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4930 #endif
4931         .configure_mmu = kvmhv_configure_mmu,
4932         .get_rmmu_info = kvmhv_get_rmmu_info,
4933         .set_smt_mode = kvmhv_set_smt_mode,
4934 };
4935
4936 static int kvm_init_subcore_bitmap(void)
4937 {
4938         int i, j;
4939         int nr_cores = cpu_nr_cores();
4940         struct sibling_subcore_state *sibling_subcore_state;
4941
4942         for (i = 0; i < nr_cores; i++) {
4943                 int first_cpu = i * threads_per_core;
4944                 int node = cpu_to_node(first_cpu);
4945
4946                 /* Ignore if it is already allocated. */
4947                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4948                         continue;
4949
4950                 sibling_subcore_state =
4951                         kmalloc_node(sizeof(struct sibling_subcore_state),
4952                                                         GFP_KERNEL, node);
4953                 if (!sibling_subcore_state)
4954                         return -ENOMEM;
4955
4956                 memset(sibling_subcore_state, 0,
4957                                 sizeof(struct sibling_subcore_state));
4958
4959                 for (j = 0; j < threads_per_core; j++) {
4960                         int cpu = first_cpu + j;
4961
4962                         paca_ptrs[cpu]->sibling_subcore_state =
4963                                                 sibling_subcore_state;
4964                 }
4965         }
4966         return 0;
4967 }
4968
4969 static int kvmppc_radix_possible(void)
4970 {
4971         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4972 }
4973
4974 static int kvmppc_book3s_init_hv(void)
4975 {
4976         int r;
4977         /*
4978          * FIXME!! Do we need to check on all cpus ?
4979          */
4980         r = kvmppc_core_check_processor_compat_hv();
4981         if (r < 0)
4982                 return -ENODEV;
4983
4984         r = kvm_init_subcore_bitmap();
4985         if (r)
4986                 return r;
4987
4988         /*
4989          * We need a way of accessing the XICS interrupt controller,
4990          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4991          * indirectly, via OPAL.
4992          */
4993 #ifdef CONFIG_SMP
4994         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4995                 struct device_node *np;
4996
4997                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4998                 if (!np) {
4999                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5000                         return -ENODEV;
5001                 }
5002                 /* presence of intc confirmed - node can be dropped again */
5003                 of_node_put(np);
5004         }
5005 #endif
5006
5007         kvm_ops_hv.owner = THIS_MODULE;
5008         kvmppc_hv_ops = &kvm_ops_hv;
5009
5010         init_default_hcalls();
5011
5012         init_vcore_lists();
5013
5014         r = kvmppc_mmu_hv_init();
5015         if (r)
5016                 return r;
5017
5018         if (kvmppc_radix_possible())
5019                 r = kvmppc_radix_init();
5020
5021         /*
5022          * POWER9 chips before version 2.02 can't have some threads in
5023          * HPT mode and some in radix mode on the same core.
5024          */
5025         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5026                 unsigned int pvr = mfspr(SPRN_PVR);
5027                 if ((pvr >> 16) == PVR_POWER9 &&
5028                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5029                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5030                         no_mixing_hpt_and_radix = true;
5031         }
5032
5033         return r;
5034 }
5035
5036 static void kvmppc_book3s_exit_hv(void)
5037 {
5038         kvmppc_free_host_rm_ops();
5039         if (kvmppc_radix_possible())
5040                 kvmppc_radix_exit();
5041         kvmppc_hv_ops = NULL;
5042 }
5043
5044 module_init(kvmppc_book3s_init_hv);
5045 module_exit(kvmppc_book3s_exit_hv);
5046 MODULE_LICENSE("GPL");
5047 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5048 MODULE_ALIAS("devname:kvm");