1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
46 #include <asm/ftrace.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
68 #include <asm/dbell.h>
70 #include <asm/pnv-pci.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
82 #define CREATE_TRACE_POINTS
85 /* #define EXIT_DEBUG */
86 /* #define EXIT_DEBUG_SIMPLE */
87 /* #define EXIT_DEBUG_INT */
89 /* Used to indicate that a guest page fault needs to be handled */
90 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
91 /* Used to indicate that a guest passthrough interrupt needs to be handled */
92 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
94 /* Used as a "null" value for timebase values */
95 #define TB_NIL (~(u64)0)
97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
99 static int dynamic_mt_modes = 6;
100 module_param(dynamic_mt_modes, int, 0644);
101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
102 static int target_smt_mode;
103 module_param(target_smt_mode, int, 0644);
104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
106 static bool indep_threads_mode = true;
107 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 .set = param_set_int,
117 .get = param_get_int,
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
132 static inline bool nesting_enabled(struct kvm *kvm)
134 return kvm->arch.nested_enable && kvm_is_radix(kvm);
137 /* If set, the threads on each CPU core have to be in the same MMU mode */
138 static bool no_mixing_hpt_and_radix __read_mostly;
140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
143 * RWMR values for POWER8. These control the rate at which PURR
144 * and SPURR count and should be set according to the number of
145 * online threads in the vcore being run.
147 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
148 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
149 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
150 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
151 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
152 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
153 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
154 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
172 struct kvm_vcpu *vcpu;
174 while (++i < MAX_SMT_THREADS) {
175 vcpu = READ_ONCE(vc->runnable_threads[i]);
184 /* Used to traverse the list of runnable threads for a given vcore */
185 #define for_each_runnable_thread(i, vcpu, vc) \
186 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
188 static bool kvmppc_ipi_thread(int cpu)
190 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
192 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
193 if (kvmhv_on_pseries())
196 /* On POWER9 we can use msgsnd to IPI any cpu */
197 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
198 msg |= get_hard_smp_processor_id(cpu);
200 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
205 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
207 if (cpu_first_thread_sibling(cpu) ==
208 cpu_first_thread_sibling(smp_processor_id())) {
209 msg |= cpu_thread_in_core(cpu);
211 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219 if (cpu >= 0 && cpu < nr_cpu_ids) {
220 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
224 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
235 struct rcuwait *waitp;
237 waitp = kvm_arch_vcpu_get_wait(vcpu);
238 if (rcuwait_wake_up(waitp))
239 ++vcpu->stat.halt_wakeup;
241 cpu = READ_ONCE(vcpu->arch.thread_cpu);
242 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245 /* CPU points to the first thread of the core */
247 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248 smp_send_reschedule(cpu);
252 * We use the vcpu_load/put functions to measure stolen time.
253 * Stolen time is counted as time when either the vcpu is able to
254 * run as part of a virtual core, but the task running the vcore
255 * is preempted or sleeping, or when the vcpu needs something done
256 * in the kernel by the task running the vcpu, but that task is
257 * preempted or sleeping. Those two things have to be counted
258 * separately, since one of the vcpu tasks will take on the job
259 * of running the core, and the other vcpu tasks in the vcore will
260 * sleep waiting for it to do that, but that sleep shouldn't count
263 * Hence we accumulate stolen time when the vcpu can run as part of
264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265 * needs its task to do other things in the kernel (for example,
266 * service a page fault) in busy_stolen. We don't accumulate
267 * stolen time for a vcore when it is inactive, or for a vcpu
268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
269 * a misnomer; it means that the vcpu task is not executing in
270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271 * the kernel. We don't have any way of dividing up that time
272 * between time that the vcpu is genuinely stopped, time that
273 * the task is actively working on behalf of the vcpu, and time
274 * that the task is preempted, so we don't count any of it as
277 * Updates to busy_stolen are protected by arch.tbacct_lock;
278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279 * lock. The stolen times are measured in units of timebase ticks.
280 * (Note that the != TB_NIL checks below are purely defensive;
281 * they should never fail.)
284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
288 spin_lock_irqsave(&vc->stoltb_lock, flags);
289 vc->preempt_tb = mftb();
290 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
297 spin_lock_irqsave(&vc->stoltb_lock, flags);
298 if (vc->preempt_tb != TB_NIL) {
299 vc->stolen_tb += mftb() - vc->preempt_tb;
300 vc->preempt_tb = TB_NIL;
302 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 struct kvmppc_vcore *vc = vcpu->arch.vcore;
311 * We can test vc->runner without taking the vcore lock,
312 * because only this task ever sets vc->runner to this
313 * vcpu, and once it is set to this vcpu, only this task
314 * ever sets it to NULL.
316 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317 kvmppc_core_end_stolen(vc);
319 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321 vcpu->arch.busy_preempt != TB_NIL) {
322 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323 vcpu->arch.busy_preempt = TB_NIL;
325 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 struct kvmppc_vcore *vc = vcpu->arch.vcore;
333 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334 kvmppc_core_start_stolen(vc);
336 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338 vcpu->arch.busy_preempt = mftb();
339 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
344 vcpu->arch.pvr = pvr;
347 /* Dummy value used in computing PCR value below */
348 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
352 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353 struct kvmppc_vcore *vc = vcpu->arch.vcore;
355 /* We can (emulate) our own architecture version and anything older */
356 if (cpu_has_feature(CPU_FTR_ARCH_31))
357 host_pcr_bit = PCR_ARCH_31;
358 else if (cpu_has_feature(CPU_FTR_ARCH_300))
359 host_pcr_bit = PCR_ARCH_300;
360 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
361 host_pcr_bit = PCR_ARCH_207;
362 else if (cpu_has_feature(CPU_FTR_ARCH_206))
363 host_pcr_bit = PCR_ARCH_206;
365 host_pcr_bit = PCR_ARCH_205;
367 /* Determine lowest PCR bit needed to run guest in given PVR level */
368 guest_pcr_bit = host_pcr_bit;
370 switch (arch_compat) {
372 guest_pcr_bit = PCR_ARCH_205;
376 guest_pcr_bit = PCR_ARCH_206;
379 guest_pcr_bit = PCR_ARCH_207;
382 guest_pcr_bit = PCR_ARCH_300;
385 guest_pcr_bit = PCR_ARCH_31;
392 /* Check requested PCR bits don't exceed our capabilities */
393 if (guest_pcr_bit > host_pcr_bit)
396 spin_lock(&vc->lock);
397 vc->arch_compat = arch_compat;
399 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
400 * Also set all reserved PCR bits
402 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
403 spin_unlock(&vc->lock);
408 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
412 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
413 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
414 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
415 for (r = 0; r < 16; ++r)
416 pr_err("r%2d = %.16lx r%d = %.16lx\n",
417 r, kvmppc_get_gpr(vcpu, r),
418 r+16, kvmppc_get_gpr(vcpu, r+16));
419 pr_err("ctr = %.16lx lr = %.16lx\n",
420 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
421 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
422 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
423 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
424 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
425 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
426 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
427 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
428 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
429 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
430 pr_err("fault dar = %.16lx dsisr = %.8x\n",
431 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
433 for (r = 0; r < vcpu->arch.slb_max; ++r)
434 pr_err(" ESID = %.16llx VSID = %.16llx\n",
435 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
436 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
437 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
438 vcpu->arch.last_inst);
441 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
443 return kvm_get_vcpu_by_id(kvm, id);
446 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
448 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
449 vpa->yield_count = cpu_to_be32(1);
452 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
453 unsigned long addr, unsigned long len)
455 /* check address is cacheline aligned */
456 if (addr & (L1_CACHE_BYTES - 1))
458 spin_lock(&vcpu->arch.vpa_update_lock);
459 if (v->next_gpa != addr || v->len != len) {
461 v->len = addr ? len : 0;
462 v->update_pending = 1;
464 spin_unlock(&vcpu->arch.vpa_update_lock);
468 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
477 static int vpa_is_registered(struct kvmppc_vpa *vpap)
479 if (vpap->update_pending)
480 return vpap->next_gpa != 0;
481 return vpap->pinned_addr != NULL;
484 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
486 unsigned long vcpuid, unsigned long vpa)
488 struct kvm *kvm = vcpu->kvm;
489 unsigned long len, nb;
491 struct kvm_vcpu *tvcpu;
494 struct kvmppc_vpa *vpap;
496 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
500 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
501 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
502 subfunc == H_VPA_REG_SLB) {
503 /* Registering new area - address must be cache-line aligned */
504 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
507 /* convert logical addr to kernel addr and read length */
508 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
511 if (subfunc == H_VPA_REG_VPA)
512 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
514 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
515 kvmppc_unpin_guest_page(kvm, va, vpa, false);
518 if (len > nb || len < sizeof(struct reg_vpa))
527 spin_lock(&tvcpu->arch.vpa_update_lock);
530 case H_VPA_REG_VPA: /* register VPA */
532 * The size of our lppaca is 1kB because of the way we align
533 * it for the guest to avoid crossing a 4kB boundary. We only
534 * use 640 bytes of the structure though, so we should accept
535 * clients that set a size of 640.
537 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
538 if (len < sizeof(struct lppaca))
540 vpap = &tvcpu->arch.vpa;
544 case H_VPA_REG_DTL: /* register DTL */
545 if (len < sizeof(struct dtl_entry))
547 len -= len % sizeof(struct dtl_entry);
549 /* Check that they have previously registered a VPA */
551 if (!vpa_is_registered(&tvcpu->arch.vpa))
554 vpap = &tvcpu->arch.dtl;
558 case H_VPA_REG_SLB: /* register SLB shadow buffer */
559 /* Check that they have previously registered a VPA */
561 if (!vpa_is_registered(&tvcpu->arch.vpa))
564 vpap = &tvcpu->arch.slb_shadow;
568 case H_VPA_DEREG_VPA: /* deregister VPA */
569 /* Check they don't still have a DTL or SLB buf registered */
571 if (vpa_is_registered(&tvcpu->arch.dtl) ||
572 vpa_is_registered(&tvcpu->arch.slb_shadow))
575 vpap = &tvcpu->arch.vpa;
579 case H_VPA_DEREG_DTL: /* deregister DTL */
580 vpap = &tvcpu->arch.dtl;
584 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
585 vpap = &tvcpu->arch.slb_shadow;
591 vpap->next_gpa = vpa;
593 vpap->update_pending = 1;
596 spin_unlock(&tvcpu->arch.vpa_update_lock);
601 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
603 struct kvm *kvm = vcpu->kvm;
609 * We need to pin the page pointed to by vpap->next_gpa,
610 * but we can't call kvmppc_pin_guest_page under the lock
611 * as it does get_user_pages() and down_read(). So we
612 * have to drop the lock, pin the page, then get the lock
613 * again and check that a new area didn't get registered
617 gpa = vpap->next_gpa;
618 spin_unlock(&vcpu->arch.vpa_update_lock);
622 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
623 spin_lock(&vcpu->arch.vpa_update_lock);
624 if (gpa == vpap->next_gpa)
626 /* sigh... unpin that one and try again */
628 kvmppc_unpin_guest_page(kvm, va, gpa, false);
631 vpap->update_pending = 0;
632 if (va && nb < vpap->len) {
634 * If it's now too short, it must be that userspace
635 * has changed the mappings underlying guest memory,
636 * so unregister the region.
638 kvmppc_unpin_guest_page(kvm, va, gpa, false);
641 if (vpap->pinned_addr)
642 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
645 vpap->pinned_addr = va;
648 vpap->pinned_end = va + vpap->len;
651 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
653 if (!(vcpu->arch.vpa.update_pending ||
654 vcpu->arch.slb_shadow.update_pending ||
655 vcpu->arch.dtl.update_pending))
658 spin_lock(&vcpu->arch.vpa_update_lock);
659 if (vcpu->arch.vpa.update_pending) {
660 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
661 if (vcpu->arch.vpa.pinned_addr)
662 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
664 if (vcpu->arch.dtl.update_pending) {
665 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
666 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
667 vcpu->arch.dtl_index = 0;
669 if (vcpu->arch.slb_shadow.update_pending)
670 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
671 spin_unlock(&vcpu->arch.vpa_update_lock);
675 * Return the accumulated stolen time for the vcore up until `now'.
676 * The caller should hold the vcore lock.
678 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
683 spin_lock_irqsave(&vc->stoltb_lock, flags);
685 if (vc->vcore_state != VCORE_INACTIVE &&
686 vc->preempt_tb != TB_NIL)
687 p += now - vc->preempt_tb;
688 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
692 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
693 struct kvmppc_vcore *vc)
695 struct dtl_entry *dt;
697 unsigned long stolen;
698 unsigned long core_stolen;
702 dt = vcpu->arch.dtl_ptr;
703 vpa = vcpu->arch.vpa.pinned_addr;
705 core_stolen = vcore_stolen_time(vc, now);
706 stolen = core_stolen - vcpu->arch.stolen_logged;
707 vcpu->arch.stolen_logged = core_stolen;
708 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
709 stolen += vcpu->arch.busy_stolen;
710 vcpu->arch.busy_stolen = 0;
711 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
714 memset(dt, 0, sizeof(struct dtl_entry));
715 dt->dispatch_reason = 7;
716 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
717 dt->timebase = cpu_to_be64(now + vc->tb_offset);
718 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
719 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
720 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
722 if (dt == vcpu->arch.dtl.pinned_end)
723 dt = vcpu->arch.dtl.pinned_addr;
724 vcpu->arch.dtl_ptr = dt;
725 /* order writing *dt vs. writing vpa->dtl_idx */
727 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
728 vcpu->arch.dtl.dirty = true;
731 /* See if there is a doorbell interrupt pending for a vcpu */
732 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
735 struct kvmppc_vcore *vc;
737 if (vcpu->arch.doorbell_request)
740 * Ensure that the read of vcore->dpdes comes after the read
741 * of vcpu->doorbell_request. This barrier matches the
742 * smp_wmb() in kvmppc_guest_entry_inject().
745 vc = vcpu->arch.vcore;
746 thr = vcpu->vcpu_id - vc->first_vcpuid;
747 return !!(vc->dpdes & (1 << thr));
750 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
752 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
754 if ((!vcpu->arch.vcore->arch_compat) &&
755 cpu_has_feature(CPU_FTR_ARCH_207S))
760 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
761 unsigned long resource, unsigned long value1,
762 unsigned long value2)
765 case H_SET_MODE_RESOURCE_SET_CIABR:
766 if (!kvmppc_power8_compatible(vcpu))
771 return H_UNSUPPORTED_FLAG_START;
772 /* Guests can't breakpoint the hypervisor */
773 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
775 vcpu->arch.ciabr = value1;
777 case H_SET_MODE_RESOURCE_SET_DAWR0:
778 if (!kvmppc_power8_compatible(vcpu))
780 if (!ppc_breakpoint_available())
783 return H_UNSUPPORTED_FLAG_START;
784 if (value2 & DABRX_HYP)
786 vcpu->arch.dawr0 = value1;
787 vcpu->arch.dawrx0 = value2;
789 case H_SET_MODE_RESOURCE_SET_DAWR1:
790 if (!kvmppc_power8_compatible(vcpu))
792 if (!ppc_breakpoint_available())
794 if (!cpu_has_feature(CPU_FTR_DAWR1))
796 if (!vcpu->kvm->arch.dawr1_enabled)
799 return H_UNSUPPORTED_FLAG_START;
800 if (value2 & DABRX_HYP)
802 vcpu->arch.dawr1 = value1;
803 vcpu->arch.dawrx1 = value2;
805 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
806 /* KVM does not support mflags=2 (AIL=2) */
807 if (mflags != 0 && mflags != 3)
808 return H_UNSUPPORTED_FLAG_START;
815 /* Copy guest memory in place - must reside within a single memslot */
816 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
819 struct kvm_memory_slot *to_memslot = NULL;
820 struct kvm_memory_slot *from_memslot = NULL;
821 unsigned long to_addr, from_addr;
824 /* Get HPA for from address */
825 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
828 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
831 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
832 if (kvm_is_error_hva(from_addr))
834 from_addr |= (from & (PAGE_SIZE - 1));
836 /* Get HPA for to address */
837 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
840 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
843 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
844 if (kvm_is_error_hva(to_addr))
846 to_addr |= (to & (PAGE_SIZE - 1));
849 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
853 mark_page_dirty(kvm, to >> PAGE_SHIFT);
857 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
858 unsigned long dest, unsigned long src)
860 u64 pg_sz = SZ_4K; /* 4K page size */
861 u64 pg_mask = SZ_4K - 1;
864 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
865 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
866 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
869 /* dest (and src if copy_page flag set) must be page aligned */
870 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
873 /* zero and/or copy the page as determined by the flags */
874 if (flags & H_COPY_PAGE) {
875 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
878 } else if (flags & H_ZERO_PAGE) {
879 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
884 /* We can ignore the remaining flags */
889 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
891 struct kvmppc_vcore *vcore = target->arch.vcore;
894 * We expect to have been called by the real mode handler
895 * (kvmppc_rm_h_confer()) which would have directly returned
896 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
897 * have useful work to do and should not confer) so we don't
901 spin_lock(&vcore->lock);
902 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
903 vcore->vcore_state != VCORE_INACTIVE &&
905 target = vcore->runner;
906 spin_unlock(&vcore->lock);
908 return kvm_vcpu_yield_to(target);
911 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
914 struct lppaca *lppaca;
916 spin_lock(&vcpu->arch.vpa_update_lock);
917 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
919 yield_count = be32_to_cpu(lppaca->yield_count);
920 spin_unlock(&vcpu->arch.vpa_update_lock);
924 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
926 unsigned long req = kvmppc_get_gpr(vcpu, 3);
927 unsigned long target, ret = H_SUCCESS;
929 struct kvm_vcpu *tvcpu;
932 if (req <= MAX_HCALL_OPCODE &&
933 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
940 target = kvmppc_get_gpr(vcpu, 4);
941 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
946 tvcpu->arch.prodded = 1;
948 if (tvcpu->arch.ceded)
949 kvmppc_fast_vcpu_kick_hv(tvcpu);
952 target = kvmppc_get_gpr(vcpu, 4);
955 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
960 yield_count = kvmppc_get_gpr(vcpu, 5);
961 if (kvmppc_get_yield_count(tvcpu) != yield_count)
963 kvm_arch_vcpu_yield_to(tvcpu);
966 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
967 kvmppc_get_gpr(vcpu, 5),
968 kvmppc_get_gpr(vcpu, 6));
971 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
974 idx = srcu_read_lock(&vcpu->kvm->srcu);
975 rc = kvmppc_rtas_hcall(vcpu);
976 srcu_read_unlock(&vcpu->kvm->srcu, idx);
983 /* Send the error out to userspace via KVM_RUN */
985 case H_LOGICAL_CI_LOAD:
986 ret = kvmppc_h_logical_ci_load(vcpu);
987 if (ret == H_TOO_HARD)
990 case H_LOGICAL_CI_STORE:
991 ret = kvmppc_h_logical_ci_store(vcpu);
992 if (ret == H_TOO_HARD)
996 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
997 kvmppc_get_gpr(vcpu, 5),
998 kvmppc_get_gpr(vcpu, 6),
999 kvmppc_get_gpr(vcpu, 7));
1000 if (ret == H_TOO_HARD)
1009 if (kvmppc_xics_enabled(vcpu)) {
1010 if (xics_on_xive()) {
1011 ret = H_NOT_AVAILABLE;
1012 return RESUME_GUEST;
1014 ret = kvmppc_xics_hcall(vcpu, req);
1019 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1022 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 kvmppc_get_gpr(vcpu, 5));
1025 #ifdef CONFIG_SPAPR_TCE_IOMMU
1027 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1028 kvmppc_get_gpr(vcpu, 5));
1029 if (ret == H_TOO_HARD)
1033 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1034 kvmppc_get_gpr(vcpu, 5),
1035 kvmppc_get_gpr(vcpu, 6));
1036 if (ret == H_TOO_HARD)
1039 case H_PUT_TCE_INDIRECT:
1040 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1041 kvmppc_get_gpr(vcpu, 5),
1042 kvmppc_get_gpr(vcpu, 6),
1043 kvmppc_get_gpr(vcpu, 7));
1044 if (ret == H_TOO_HARD)
1048 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1049 kvmppc_get_gpr(vcpu, 5),
1050 kvmppc_get_gpr(vcpu, 6),
1051 kvmppc_get_gpr(vcpu, 7));
1052 if (ret == H_TOO_HARD)
1057 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1061 case H_SET_PARTITION_TABLE:
1063 if (nesting_enabled(vcpu->kvm))
1064 ret = kvmhv_set_partition_table(vcpu);
1066 case H_ENTER_NESTED:
1068 if (!nesting_enabled(vcpu->kvm))
1070 ret = kvmhv_enter_nested_guest(vcpu);
1071 if (ret == H_INTERRUPT) {
1072 kvmppc_set_gpr(vcpu, 3, 0);
1073 vcpu->arch.hcall_needed = 0;
1075 } else if (ret == H_TOO_HARD) {
1076 kvmppc_set_gpr(vcpu, 3, 0);
1077 vcpu->arch.hcall_needed = 0;
1081 case H_TLB_INVALIDATE:
1083 if (nesting_enabled(vcpu->kvm))
1084 ret = kvmhv_do_nested_tlbie(vcpu);
1086 case H_COPY_TOFROM_GUEST:
1088 if (nesting_enabled(vcpu->kvm))
1089 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1092 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1093 kvmppc_get_gpr(vcpu, 5),
1094 kvmppc_get_gpr(vcpu, 6));
1097 ret = H_UNSUPPORTED;
1098 if (kvmppc_get_srr1(vcpu) & MSR_S)
1099 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1100 kvmppc_get_gpr(vcpu, 4),
1101 kvmppc_get_gpr(vcpu, 5),
1102 kvmppc_get_gpr(vcpu, 6));
1104 case H_SVM_PAGE_OUT:
1105 ret = H_UNSUPPORTED;
1106 if (kvmppc_get_srr1(vcpu) & MSR_S)
1107 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1108 kvmppc_get_gpr(vcpu, 4),
1109 kvmppc_get_gpr(vcpu, 5),
1110 kvmppc_get_gpr(vcpu, 6));
1112 case H_SVM_INIT_START:
1113 ret = H_UNSUPPORTED;
1114 if (kvmppc_get_srr1(vcpu) & MSR_S)
1115 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1117 case H_SVM_INIT_DONE:
1118 ret = H_UNSUPPORTED;
1119 if (kvmppc_get_srr1(vcpu) & MSR_S)
1120 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1122 case H_SVM_INIT_ABORT:
1124 * Even if that call is made by the Ultravisor, the SSR1 value
1125 * is the guest context one, with the secure bit clear as it has
1126 * not yet been secured. So we can't check it here.
1127 * Instead the kvm->arch.secure_guest flag is checked inside
1128 * kvmppc_h_svm_init_abort().
1130 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1136 kvmppc_set_gpr(vcpu, 3, ret);
1137 vcpu->arch.hcall_needed = 0;
1138 return RESUME_GUEST;
1142 * Handle H_CEDE in the nested virtualization case where we haven't
1143 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1144 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1145 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1147 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1149 vcpu->arch.shregs.msr |= MSR_EE;
1150 vcpu->arch.ceded = 1;
1152 if (vcpu->arch.prodded) {
1153 vcpu->arch.prodded = 0;
1155 vcpu->arch.ceded = 0;
1159 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1165 case H_REGISTER_VPA:
1167 case H_LOGICAL_CI_LOAD:
1168 case H_LOGICAL_CI_STORE:
1169 #ifdef CONFIG_KVM_XICS
1181 /* See if it's in the real-mode table */
1182 return kvmppc_hcall_impl_hv_realmode(cmd);
1185 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1189 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1192 * Fetch failed, so return to guest and
1193 * try executing it again.
1195 return RESUME_GUEST;
1198 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1199 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1200 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1203 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1204 return RESUME_GUEST;
1208 static void do_nothing(void *x)
1212 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1214 int thr, cpu, pcpu, nthreads;
1216 unsigned long dpdes;
1218 nthreads = vcpu->kvm->arch.emul_smt_mode;
1220 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1221 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1222 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1226 * If the vcpu is currently running on a physical cpu thread,
1227 * interrupt it in order to pull it out of the guest briefly,
1228 * which will update its vcore->dpdes value.
1230 pcpu = READ_ONCE(v->cpu);
1232 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1233 if (kvmppc_doorbell_pending(v))
1240 * On POWER9, emulate doorbell-related instructions in order to
1241 * give the guest the illusion of running on a multi-threaded core.
1242 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1245 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1249 struct kvm *kvm = vcpu->kvm;
1250 struct kvm_vcpu *tvcpu;
1252 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1253 return RESUME_GUEST;
1254 if (get_op(inst) != 31)
1255 return EMULATE_FAIL;
1257 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1258 switch (get_xop(inst)) {
1259 case OP_31_XOP_MSGSNDP:
1260 arg = kvmppc_get_gpr(vcpu, rb);
1261 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1264 if (arg >= kvm->arch.emul_smt_mode)
1266 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1269 if (!tvcpu->arch.doorbell_request) {
1270 tvcpu->arch.doorbell_request = 1;
1271 kvmppc_fast_vcpu_kick_hv(tvcpu);
1274 case OP_31_XOP_MSGCLRP:
1275 arg = kvmppc_get_gpr(vcpu, rb);
1276 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1278 vcpu->arch.vcore->dpdes = 0;
1279 vcpu->arch.doorbell_request = 0;
1281 case OP_31_XOP_MFSPR:
1282 switch (get_sprn(inst)) {
1287 arg = kvmppc_read_dpdes(vcpu);
1290 return EMULATE_FAIL;
1292 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1295 return EMULATE_FAIL;
1297 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1298 return RESUME_GUEST;
1301 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1302 struct task_struct *tsk)
1304 struct kvm_run *run = vcpu->run;
1305 int r = RESUME_HOST;
1307 vcpu->stat.sum_exits++;
1310 * This can happen if an interrupt occurs in the last stages
1311 * of guest entry or the first stages of guest exit (i.e. after
1312 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1313 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1314 * That can happen due to a bug, or due to a machine check
1315 * occurring at just the wrong time.
1317 if (vcpu->arch.shregs.msr & MSR_HV) {
1318 printk(KERN_EMERG "KVM trap in HV mode!\n");
1319 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1320 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1321 vcpu->arch.shregs.msr);
1322 kvmppc_dump_regs(vcpu);
1323 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324 run->hw.hardware_exit_reason = vcpu->arch.trap;
1327 run->exit_reason = KVM_EXIT_UNKNOWN;
1328 run->ready_for_interrupt_injection = 1;
1329 switch (vcpu->arch.trap) {
1330 /* We're good on these - the host merely wanted to get our attention */
1331 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1332 vcpu->stat.dec_exits++;
1335 case BOOK3S_INTERRUPT_EXTERNAL:
1336 case BOOK3S_INTERRUPT_H_DOORBELL:
1337 case BOOK3S_INTERRUPT_H_VIRT:
1338 vcpu->stat.ext_intr_exits++;
1341 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1342 case BOOK3S_INTERRUPT_HMI:
1343 case BOOK3S_INTERRUPT_PERFMON:
1344 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1347 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1348 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1349 DEFAULT_RATELIMIT_BURST);
1351 * Print the MCE event to host console. Ratelimit so the guest
1352 * can't flood the host log.
1354 if (__ratelimit(&rs))
1355 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1358 * If the guest can do FWNMI, exit to userspace so it can
1359 * deliver a FWNMI to the guest.
1360 * Otherwise we synthesize a machine check for the guest
1361 * so that it knows that the machine check occurred.
1363 if (!vcpu->kvm->arch.fwnmi_enabled) {
1364 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1365 kvmppc_core_queue_machine_check(vcpu, flags);
1370 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1371 run->exit_reason = KVM_EXIT_NMI;
1372 run->hw.hardware_exit_reason = vcpu->arch.trap;
1373 /* Clear out the old NMI status from run->flags */
1374 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1375 /* Now set the NMI status */
1376 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1377 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1379 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1384 case BOOK3S_INTERRUPT_PROGRAM:
1388 * Normally program interrupts are delivered directly
1389 * to the guest by the hardware, but we can get here
1390 * as a result of a hypervisor emulation interrupt
1391 * (e40) getting turned into a 700 by BML RTAS.
1393 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1394 kvmppc_core_queue_program(vcpu, flags);
1398 case BOOK3S_INTERRUPT_SYSCALL:
1400 /* hcall - punt to userspace */
1403 /* hypercall with MSR_PR has already been handled in rmode,
1404 * and never reaches here.
1407 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1408 for (i = 0; i < 9; ++i)
1409 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1410 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1411 vcpu->arch.hcall_needed = 1;
1416 * We get these next two if the guest accesses a page which it thinks
1417 * it has mapped but which is not actually present, either because
1418 * it is for an emulated I/O device or because the corresonding
1419 * host page has been paged out. Any other HDSI/HISI interrupts
1420 * have been handled already.
1422 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1423 r = RESUME_PAGE_FAULT;
1425 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1426 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1427 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1428 DSISR_SRR1_MATCH_64S;
1429 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1430 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1431 r = RESUME_PAGE_FAULT;
1434 * This occurs if the guest executes an illegal instruction.
1435 * If the guest debug is disabled, generate a program interrupt
1436 * to the guest. If guest debug is enabled, we need to check
1437 * whether the instruction is a software breakpoint instruction.
1438 * Accordingly return to Guest or Host.
1440 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1441 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1442 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1443 swab32(vcpu->arch.emul_inst) :
1444 vcpu->arch.emul_inst;
1445 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1446 r = kvmppc_emulate_debug_inst(vcpu);
1448 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1453 * This occurs if the guest (kernel or userspace), does something that
1454 * is prohibited by HFSCR.
1455 * On POWER9, this could be a doorbell instruction that we need
1457 * Otherwise, we just generate a program interrupt to the guest.
1459 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1461 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1462 cpu_has_feature(CPU_FTR_ARCH_300))
1463 r = kvmppc_emulate_doorbell_instr(vcpu);
1464 if (r == EMULATE_FAIL) {
1465 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1470 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1471 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1473 * This occurs for various TM-related instructions that
1474 * we need to emulate on POWER9 DD2.2. We have already
1475 * handled the cases where the guest was in real-suspend
1476 * mode and was transitioning to transactional state.
1478 r = kvmhv_p9_tm_emulation(vcpu);
1482 case BOOK3S_INTERRUPT_HV_RM_HARD:
1483 r = RESUME_PASSTHROUGH;
1486 kvmppc_dump_regs(vcpu);
1487 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1488 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1489 vcpu->arch.shregs.msr);
1490 run->hw.hardware_exit_reason = vcpu->arch.trap;
1498 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1503 vcpu->stat.sum_exits++;
1506 * This can happen if an interrupt occurs in the last stages
1507 * of guest entry or the first stages of guest exit (i.e. after
1508 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1509 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1510 * That can happen due to a bug, or due to a machine check
1511 * occurring at just the wrong time.
1513 if (vcpu->arch.shregs.msr & MSR_HV) {
1514 pr_emerg("KVM trap in HV mode while nested!\n");
1515 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1516 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1517 vcpu->arch.shregs.msr);
1518 kvmppc_dump_regs(vcpu);
1521 switch (vcpu->arch.trap) {
1522 /* We're good on these - the host merely wanted to get our attention */
1523 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1524 vcpu->stat.dec_exits++;
1527 case BOOK3S_INTERRUPT_EXTERNAL:
1528 vcpu->stat.ext_intr_exits++;
1531 case BOOK3S_INTERRUPT_H_DOORBELL:
1532 case BOOK3S_INTERRUPT_H_VIRT:
1533 vcpu->stat.ext_intr_exits++;
1536 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1537 case BOOK3S_INTERRUPT_HMI:
1538 case BOOK3S_INTERRUPT_PERFMON:
1539 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1542 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1544 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1545 DEFAULT_RATELIMIT_BURST);
1546 /* Pass the machine check to the L1 guest */
1548 /* Print the MCE event to host console. */
1549 if (__ratelimit(&rs))
1550 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1554 * We get these next two if the guest accesses a page which it thinks
1555 * it has mapped but which is not actually present, either because
1556 * it is for an emulated I/O device or because the corresonding
1557 * host page has been paged out.
1559 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1560 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1561 r = kvmhv_nested_page_fault(vcpu);
1562 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1564 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1565 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1566 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1567 DSISR_SRR1_MATCH_64S;
1568 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1569 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1570 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1571 r = kvmhv_nested_page_fault(vcpu);
1572 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1575 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1576 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1578 * This occurs for various TM-related instructions that
1579 * we need to emulate on POWER9 DD2.2. We have already
1580 * handled the cases where the guest was in real-suspend
1581 * mode and was transitioning to transactional state.
1583 r = kvmhv_p9_tm_emulation(vcpu);
1587 case BOOK3S_INTERRUPT_HV_RM_HARD:
1588 vcpu->arch.trap = 0;
1590 if (!xics_on_xive())
1591 kvmppc_xics_rm_complete(vcpu, 0);
1601 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1602 struct kvm_sregs *sregs)
1606 memset(sregs, 0, sizeof(struct kvm_sregs));
1607 sregs->pvr = vcpu->arch.pvr;
1608 for (i = 0; i < vcpu->arch.slb_max; i++) {
1609 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1610 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1616 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1617 struct kvm_sregs *sregs)
1621 /* Only accept the same PVR as the host's, since we can't spoof it */
1622 if (sregs->pvr != vcpu->arch.pvr)
1626 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1627 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1628 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1629 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1633 vcpu->arch.slb_max = j;
1638 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1639 bool preserve_top32)
1641 struct kvm *kvm = vcpu->kvm;
1642 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1645 spin_lock(&vc->lock);
1647 * If ILE (interrupt little-endian) has changed, update the
1648 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1650 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1651 struct kvm_vcpu *vcpu;
1654 kvm_for_each_vcpu(i, vcpu, kvm) {
1655 if (vcpu->arch.vcore != vc)
1657 if (new_lpcr & LPCR_ILE)
1658 vcpu->arch.intr_msr |= MSR_LE;
1660 vcpu->arch.intr_msr &= ~MSR_LE;
1665 * Userspace can only modify DPFD (default prefetch depth),
1666 * ILE (interrupt little-endian) and TC (translation control).
1667 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1669 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1670 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1673 * On POWER9, allow userspace to enable large decrementer for the
1674 * guest, whether or not the host has it enabled.
1676 if (cpu_has_feature(CPU_FTR_ARCH_300))
1679 /* Broken 32-bit version of LPCR must not clear top bits */
1682 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1683 spin_unlock(&vc->lock);
1686 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1687 union kvmppc_one_reg *val)
1693 case KVM_REG_PPC_DEBUG_INST:
1694 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1696 case KVM_REG_PPC_HIOR:
1697 *val = get_reg_val(id, 0);
1699 case KVM_REG_PPC_DABR:
1700 *val = get_reg_val(id, vcpu->arch.dabr);
1702 case KVM_REG_PPC_DABRX:
1703 *val = get_reg_val(id, vcpu->arch.dabrx);
1705 case KVM_REG_PPC_DSCR:
1706 *val = get_reg_val(id, vcpu->arch.dscr);
1708 case KVM_REG_PPC_PURR:
1709 *val = get_reg_val(id, vcpu->arch.purr);
1711 case KVM_REG_PPC_SPURR:
1712 *val = get_reg_val(id, vcpu->arch.spurr);
1714 case KVM_REG_PPC_AMR:
1715 *val = get_reg_val(id, vcpu->arch.amr);
1717 case KVM_REG_PPC_UAMOR:
1718 *val = get_reg_val(id, vcpu->arch.uamor);
1720 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1721 i = id - KVM_REG_PPC_MMCR0;
1722 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1724 case KVM_REG_PPC_MMCR2:
1725 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1727 case KVM_REG_PPC_MMCRA:
1728 *val = get_reg_val(id, vcpu->arch.mmcra);
1730 case KVM_REG_PPC_MMCRS:
1731 *val = get_reg_val(id, vcpu->arch.mmcrs);
1733 case KVM_REG_PPC_MMCR3:
1734 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1736 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1737 i = id - KVM_REG_PPC_PMC1;
1738 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1740 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1741 i = id - KVM_REG_PPC_SPMC1;
1742 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1744 case KVM_REG_PPC_SIAR:
1745 *val = get_reg_val(id, vcpu->arch.siar);
1747 case KVM_REG_PPC_SDAR:
1748 *val = get_reg_val(id, vcpu->arch.sdar);
1750 case KVM_REG_PPC_SIER:
1751 *val = get_reg_val(id, vcpu->arch.sier[0]);
1753 case KVM_REG_PPC_SIER2:
1754 *val = get_reg_val(id, vcpu->arch.sier[1]);
1756 case KVM_REG_PPC_SIER3:
1757 *val = get_reg_val(id, vcpu->arch.sier[2]);
1759 case KVM_REG_PPC_IAMR:
1760 *val = get_reg_val(id, vcpu->arch.iamr);
1762 case KVM_REG_PPC_PSPB:
1763 *val = get_reg_val(id, vcpu->arch.pspb);
1765 case KVM_REG_PPC_DPDES:
1767 * On POWER9, where we are emulating msgsndp etc.,
1768 * we return 1 bit for each vcpu, which can come from
1769 * either vcore->dpdes or doorbell_request.
1770 * On POWER8, doorbell_request is 0.
1772 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1773 vcpu->arch.doorbell_request);
1775 case KVM_REG_PPC_VTB:
1776 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1778 case KVM_REG_PPC_DAWR:
1779 *val = get_reg_val(id, vcpu->arch.dawr0);
1781 case KVM_REG_PPC_DAWRX:
1782 *val = get_reg_val(id, vcpu->arch.dawrx0);
1784 case KVM_REG_PPC_DAWR1:
1785 *val = get_reg_val(id, vcpu->arch.dawr1);
1787 case KVM_REG_PPC_DAWRX1:
1788 *val = get_reg_val(id, vcpu->arch.dawrx1);
1790 case KVM_REG_PPC_CIABR:
1791 *val = get_reg_val(id, vcpu->arch.ciabr);
1793 case KVM_REG_PPC_CSIGR:
1794 *val = get_reg_val(id, vcpu->arch.csigr);
1796 case KVM_REG_PPC_TACR:
1797 *val = get_reg_val(id, vcpu->arch.tacr);
1799 case KVM_REG_PPC_TCSCR:
1800 *val = get_reg_val(id, vcpu->arch.tcscr);
1802 case KVM_REG_PPC_PID:
1803 *val = get_reg_val(id, vcpu->arch.pid);
1805 case KVM_REG_PPC_ACOP:
1806 *val = get_reg_val(id, vcpu->arch.acop);
1808 case KVM_REG_PPC_WORT:
1809 *val = get_reg_val(id, vcpu->arch.wort);
1811 case KVM_REG_PPC_TIDR:
1812 *val = get_reg_val(id, vcpu->arch.tid);
1814 case KVM_REG_PPC_PSSCR:
1815 *val = get_reg_val(id, vcpu->arch.psscr);
1817 case KVM_REG_PPC_VPA_ADDR:
1818 spin_lock(&vcpu->arch.vpa_update_lock);
1819 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1820 spin_unlock(&vcpu->arch.vpa_update_lock);
1822 case KVM_REG_PPC_VPA_SLB:
1823 spin_lock(&vcpu->arch.vpa_update_lock);
1824 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1825 val->vpaval.length = vcpu->arch.slb_shadow.len;
1826 spin_unlock(&vcpu->arch.vpa_update_lock);
1828 case KVM_REG_PPC_VPA_DTL:
1829 spin_lock(&vcpu->arch.vpa_update_lock);
1830 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1831 val->vpaval.length = vcpu->arch.dtl.len;
1832 spin_unlock(&vcpu->arch.vpa_update_lock);
1834 case KVM_REG_PPC_TB_OFFSET:
1835 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1837 case KVM_REG_PPC_LPCR:
1838 case KVM_REG_PPC_LPCR_64:
1839 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1841 case KVM_REG_PPC_PPR:
1842 *val = get_reg_val(id, vcpu->arch.ppr);
1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1845 case KVM_REG_PPC_TFHAR:
1846 *val = get_reg_val(id, vcpu->arch.tfhar);
1848 case KVM_REG_PPC_TFIAR:
1849 *val = get_reg_val(id, vcpu->arch.tfiar);
1851 case KVM_REG_PPC_TEXASR:
1852 *val = get_reg_val(id, vcpu->arch.texasr);
1854 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1855 i = id - KVM_REG_PPC_TM_GPR0;
1856 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1858 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1861 i = id - KVM_REG_PPC_TM_VSR0;
1863 for (j = 0; j < TS_FPRWIDTH; j++)
1864 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1866 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1867 val->vval = vcpu->arch.vr_tm.vr[i-32];
1873 case KVM_REG_PPC_TM_CR:
1874 *val = get_reg_val(id, vcpu->arch.cr_tm);
1876 case KVM_REG_PPC_TM_XER:
1877 *val = get_reg_val(id, vcpu->arch.xer_tm);
1879 case KVM_REG_PPC_TM_LR:
1880 *val = get_reg_val(id, vcpu->arch.lr_tm);
1882 case KVM_REG_PPC_TM_CTR:
1883 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1885 case KVM_REG_PPC_TM_FPSCR:
1886 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1888 case KVM_REG_PPC_TM_AMR:
1889 *val = get_reg_val(id, vcpu->arch.amr_tm);
1891 case KVM_REG_PPC_TM_PPR:
1892 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1894 case KVM_REG_PPC_TM_VRSAVE:
1895 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1897 case KVM_REG_PPC_TM_VSCR:
1898 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1899 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1903 case KVM_REG_PPC_TM_DSCR:
1904 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1906 case KVM_REG_PPC_TM_TAR:
1907 *val = get_reg_val(id, vcpu->arch.tar_tm);
1910 case KVM_REG_PPC_ARCH_COMPAT:
1911 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1913 case KVM_REG_PPC_DEC_EXPIRY:
1914 *val = get_reg_val(id, vcpu->arch.dec_expires +
1915 vcpu->arch.vcore->tb_offset);
1917 case KVM_REG_PPC_ONLINE:
1918 *val = get_reg_val(id, vcpu->arch.online);
1920 case KVM_REG_PPC_PTCR:
1921 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1931 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1932 union kvmppc_one_reg *val)
1936 unsigned long addr, len;
1939 case KVM_REG_PPC_HIOR:
1940 /* Only allow this to be set to zero */
1941 if (set_reg_val(id, *val))
1944 case KVM_REG_PPC_DABR:
1945 vcpu->arch.dabr = set_reg_val(id, *val);
1947 case KVM_REG_PPC_DABRX:
1948 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1950 case KVM_REG_PPC_DSCR:
1951 vcpu->arch.dscr = set_reg_val(id, *val);
1953 case KVM_REG_PPC_PURR:
1954 vcpu->arch.purr = set_reg_val(id, *val);
1956 case KVM_REG_PPC_SPURR:
1957 vcpu->arch.spurr = set_reg_val(id, *val);
1959 case KVM_REG_PPC_AMR:
1960 vcpu->arch.amr = set_reg_val(id, *val);
1962 case KVM_REG_PPC_UAMOR:
1963 vcpu->arch.uamor = set_reg_val(id, *val);
1965 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1966 i = id - KVM_REG_PPC_MMCR0;
1967 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1969 case KVM_REG_PPC_MMCR2:
1970 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1972 case KVM_REG_PPC_MMCRA:
1973 vcpu->arch.mmcra = set_reg_val(id, *val);
1975 case KVM_REG_PPC_MMCRS:
1976 vcpu->arch.mmcrs = set_reg_val(id, *val);
1978 case KVM_REG_PPC_MMCR3:
1979 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1981 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1982 i = id - KVM_REG_PPC_PMC1;
1983 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1985 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1986 i = id - KVM_REG_PPC_SPMC1;
1987 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1989 case KVM_REG_PPC_SIAR:
1990 vcpu->arch.siar = set_reg_val(id, *val);
1992 case KVM_REG_PPC_SDAR:
1993 vcpu->arch.sdar = set_reg_val(id, *val);
1995 case KVM_REG_PPC_SIER:
1996 vcpu->arch.sier[0] = set_reg_val(id, *val);
1998 case KVM_REG_PPC_SIER2:
1999 vcpu->arch.sier[1] = set_reg_val(id, *val);
2001 case KVM_REG_PPC_SIER3:
2002 vcpu->arch.sier[2] = set_reg_val(id, *val);
2004 case KVM_REG_PPC_IAMR:
2005 vcpu->arch.iamr = set_reg_val(id, *val);
2007 case KVM_REG_PPC_PSPB:
2008 vcpu->arch.pspb = set_reg_val(id, *val);
2010 case KVM_REG_PPC_DPDES:
2011 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2013 case KVM_REG_PPC_VTB:
2014 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2016 case KVM_REG_PPC_DAWR:
2017 vcpu->arch.dawr0 = set_reg_val(id, *val);
2019 case KVM_REG_PPC_DAWRX:
2020 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2022 case KVM_REG_PPC_DAWR1:
2023 vcpu->arch.dawr1 = set_reg_val(id, *val);
2025 case KVM_REG_PPC_DAWRX1:
2026 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2028 case KVM_REG_PPC_CIABR:
2029 vcpu->arch.ciabr = set_reg_val(id, *val);
2030 /* Don't allow setting breakpoints in hypervisor code */
2031 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2032 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2034 case KVM_REG_PPC_CSIGR:
2035 vcpu->arch.csigr = set_reg_val(id, *val);
2037 case KVM_REG_PPC_TACR:
2038 vcpu->arch.tacr = set_reg_val(id, *val);
2040 case KVM_REG_PPC_TCSCR:
2041 vcpu->arch.tcscr = set_reg_val(id, *val);
2043 case KVM_REG_PPC_PID:
2044 vcpu->arch.pid = set_reg_val(id, *val);
2046 case KVM_REG_PPC_ACOP:
2047 vcpu->arch.acop = set_reg_val(id, *val);
2049 case KVM_REG_PPC_WORT:
2050 vcpu->arch.wort = set_reg_val(id, *val);
2052 case KVM_REG_PPC_TIDR:
2053 vcpu->arch.tid = set_reg_val(id, *val);
2055 case KVM_REG_PPC_PSSCR:
2056 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2058 case KVM_REG_PPC_VPA_ADDR:
2059 addr = set_reg_val(id, *val);
2061 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2062 vcpu->arch.dtl.next_gpa))
2064 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2066 case KVM_REG_PPC_VPA_SLB:
2067 addr = val->vpaval.addr;
2068 len = val->vpaval.length;
2070 if (addr && !vcpu->arch.vpa.next_gpa)
2072 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2074 case KVM_REG_PPC_VPA_DTL:
2075 addr = val->vpaval.addr;
2076 len = val->vpaval.length;
2078 if (addr && (len < sizeof(struct dtl_entry) ||
2079 !vcpu->arch.vpa.next_gpa))
2081 len -= len % sizeof(struct dtl_entry);
2082 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2084 case KVM_REG_PPC_TB_OFFSET:
2085 /* round up to multiple of 2^24 */
2086 vcpu->arch.vcore->tb_offset =
2087 ALIGN(set_reg_val(id, *val), 1UL << 24);
2089 case KVM_REG_PPC_LPCR:
2090 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2092 case KVM_REG_PPC_LPCR_64:
2093 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2095 case KVM_REG_PPC_PPR:
2096 vcpu->arch.ppr = set_reg_val(id, *val);
2098 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2099 case KVM_REG_PPC_TFHAR:
2100 vcpu->arch.tfhar = set_reg_val(id, *val);
2102 case KVM_REG_PPC_TFIAR:
2103 vcpu->arch.tfiar = set_reg_val(id, *val);
2105 case KVM_REG_PPC_TEXASR:
2106 vcpu->arch.texasr = set_reg_val(id, *val);
2108 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2109 i = id - KVM_REG_PPC_TM_GPR0;
2110 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2112 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2115 i = id - KVM_REG_PPC_TM_VSR0;
2117 for (j = 0; j < TS_FPRWIDTH; j++)
2118 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2120 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2121 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2126 case KVM_REG_PPC_TM_CR:
2127 vcpu->arch.cr_tm = set_reg_val(id, *val);
2129 case KVM_REG_PPC_TM_XER:
2130 vcpu->arch.xer_tm = set_reg_val(id, *val);
2132 case KVM_REG_PPC_TM_LR:
2133 vcpu->arch.lr_tm = set_reg_val(id, *val);
2135 case KVM_REG_PPC_TM_CTR:
2136 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2138 case KVM_REG_PPC_TM_FPSCR:
2139 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2141 case KVM_REG_PPC_TM_AMR:
2142 vcpu->arch.amr_tm = set_reg_val(id, *val);
2144 case KVM_REG_PPC_TM_PPR:
2145 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2147 case KVM_REG_PPC_TM_VRSAVE:
2148 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2150 case KVM_REG_PPC_TM_VSCR:
2151 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2152 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2156 case KVM_REG_PPC_TM_DSCR:
2157 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2159 case KVM_REG_PPC_TM_TAR:
2160 vcpu->arch.tar_tm = set_reg_val(id, *val);
2163 case KVM_REG_PPC_ARCH_COMPAT:
2164 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2166 case KVM_REG_PPC_DEC_EXPIRY:
2167 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2168 vcpu->arch.vcore->tb_offset;
2170 case KVM_REG_PPC_ONLINE:
2171 i = set_reg_val(id, *val);
2172 if (i && !vcpu->arch.online)
2173 atomic_inc(&vcpu->arch.vcore->online_count);
2174 else if (!i && vcpu->arch.online)
2175 atomic_dec(&vcpu->arch.vcore->online_count);
2176 vcpu->arch.online = i;
2178 case KVM_REG_PPC_PTCR:
2179 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2190 * On POWER9, threads are independent and can be in different partitions.
2191 * Therefore we consider each thread to be a subcore.
2192 * There is a restriction that all threads have to be in the same
2193 * MMU mode (radix or HPT), unfortunately, but since we only support
2194 * HPT guests on a HPT host so far, that isn't an impediment yet.
2196 static int threads_per_vcore(struct kvm *kvm)
2198 if (kvm->arch.threads_indep)
2200 return threads_per_subcore;
2203 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2205 struct kvmppc_vcore *vcore;
2207 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2212 spin_lock_init(&vcore->lock);
2213 spin_lock_init(&vcore->stoltb_lock);
2214 rcuwait_init(&vcore->wait);
2215 vcore->preempt_tb = TB_NIL;
2216 vcore->lpcr = kvm->arch.lpcr;
2217 vcore->first_vcpuid = id;
2219 INIT_LIST_HEAD(&vcore->preempt_list);
2224 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2225 static struct debugfs_timings_element {
2229 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2230 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2231 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2232 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2233 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2236 #define N_TIMINGS (ARRAY_SIZE(timings))
2238 struct debugfs_timings_state {
2239 struct kvm_vcpu *vcpu;
2240 unsigned int buflen;
2241 char buf[N_TIMINGS * 100];
2244 static int debugfs_timings_open(struct inode *inode, struct file *file)
2246 struct kvm_vcpu *vcpu = inode->i_private;
2247 struct debugfs_timings_state *p;
2249 p = kzalloc(sizeof(*p), GFP_KERNEL);
2253 kvm_get_kvm(vcpu->kvm);
2255 file->private_data = p;
2257 return nonseekable_open(inode, file);
2260 static int debugfs_timings_release(struct inode *inode, struct file *file)
2262 struct debugfs_timings_state *p = file->private_data;
2264 kvm_put_kvm(p->vcpu->kvm);
2269 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2270 size_t len, loff_t *ppos)
2272 struct debugfs_timings_state *p = file->private_data;
2273 struct kvm_vcpu *vcpu = p->vcpu;
2275 struct kvmhv_tb_accumulator tb;
2284 buf_end = s + sizeof(p->buf);
2285 for (i = 0; i < N_TIMINGS; ++i) {
2286 struct kvmhv_tb_accumulator *acc;
2288 acc = (struct kvmhv_tb_accumulator *)
2289 ((unsigned long)vcpu + timings[i].offset);
2291 for (loops = 0; loops < 1000; ++loops) {
2292 count = acc->seqcount;
2297 if (count == acc->seqcount) {
2305 snprintf(s, buf_end - s, "%s: stuck\n",
2308 snprintf(s, buf_end - s,
2309 "%s: %llu %llu %llu %llu\n",
2310 timings[i].name, count / 2,
2311 tb_to_ns(tb.tb_total),
2312 tb_to_ns(tb.tb_min),
2313 tb_to_ns(tb.tb_max));
2316 p->buflen = s - p->buf;
2320 if (pos >= p->buflen)
2322 if (len > p->buflen - pos)
2323 len = p->buflen - pos;
2324 n = copy_to_user(buf, p->buf + pos, len);
2334 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2335 size_t len, loff_t *ppos)
2340 static const struct file_operations debugfs_timings_ops = {
2341 .owner = THIS_MODULE,
2342 .open = debugfs_timings_open,
2343 .release = debugfs_timings_release,
2344 .read = debugfs_timings_read,
2345 .write = debugfs_timings_write,
2346 .llseek = generic_file_llseek,
2349 /* Create a debugfs directory for the vcpu */
2350 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2353 struct kvm *kvm = vcpu->kvm;
2355 snprintf(buf, sizeof(buf), "vcpu%u", id);
2356 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2357 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2358 &debugfs_timings_ops);
2361 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2362 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2365 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2367 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2371 struct kvmppc_vcore *vcore;
2378 vcpu->arch.shared = &vcpu->arch.shregs;
2379 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2381 * The shared struct is never shared on HV,
2382 * so we can always use host endianness
2384 #ifdef __BIG_ENDIAN__
2385 vcpu->arch.shared_big_endian = true;
2387 vcpu->arch.shared_big_endian = false;
2390 vcpu->arch.mmcr[0] = MMCR0_FC;
2391 vcpu->arch.ctrl = CTRL_RUNLATCH;
2392 /* default to host PVR, since we can't spoof it */
2393 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2394 spin_lock_init(&vcpu->arch.vpa_update_lock);
2395 spin_lock_init(&vcpu->arch.tbacct_lock);
2396 vcpu->arch.busy_preempt = TB_NIL;
2397 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2400 * Set the default HFSCR for the guest from the host value.
2401 * This value is only used on POWER9.
2402 * On POWER9, we want to virtualize the doorbell facility, so we
2403 * don't set the HFSCR_MSGP bit, and that causes those instructions
2404 * to trap and then we emulate them.
2406 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2407 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2408 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2409 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2410 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2411 vcpu->arch.hfscr |= HFSCR_TM;
2413 if (cpu_has_feature(CPU_FTR_TM_COMP))
2414 vcpu->arch.hfscr |= HFSCR_TM;
2416 kvmppc_mmu_book3s_hv_init(vcpu);
2418 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2420 init_waitqueue_head(&vcpu->arch.cpu_run);
2422 mutex_lock(&kvm->lock);
2425 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2426 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2427 pr_devel("KVM: VCPU ID too high\n");
2428 core = KVM_MAX_VCORES;
2430 BUG_ON(kvm->arch.smt_mode != 1);
2431 core = kvmppc_pack_vcpu_id(kvm, id);
2434 core = id / kvm->arch.smt_mode;
2436 if (core < KVM_MAX_VCORES) {
2437 vcore = kvm->arch.vcores[core];
2438 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2439 pr_devel("KVM: collision on id %u", id);
2441 } else if (!vcore) {
2443 * Take mmu_setup_lock for mutual exclusion
2444 * with kvmppc_update_lpcr().
2447 vcore = kvmppc_vcore_create(kvm,
2448 id & ~(kvm->arch.smt_mode - 1));
2449 mutex_lock(&kvm->arch.mmu_setup_lock);
2450 kvm->arch.vcores[core] = vcore;
2451 kvm->arch.online_vcores++;
2452 mutex_unlock(&kvm->arch.mmu_setup_lock);
2455 mutex_unlock(&kvm->lock);
2460 spin_lock(&vcore->lock);
2461 ++vcore->num_threads;
2462 spin_unlock(&vcore->lock);
2463 vcpu->arch.vcore = vcore;
2464 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2465 vcpu->arch.thread_cpu = -1;
2466 vcpu->arch.prev_cpu = -1;
2468 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2469 kvmppc_sanity_check(vcpu);
2471 debugfs_vcpu_init(vcpu, id);
2476 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2477 unsigned long flags)
2484 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2486 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2488 * On POWER8 (or POWER7), the threading mode is "strict",
2489 * so we pack smt_mode vcpus per vcore.
2491 if (smt_mode > threads_per_subcore)
2495 * On POWER9, the threading mode is "loose",
2496 * so each vcpu gets its own vcore.
2501 mutex_lock(&kvm->lock);
2503 if (!kvm->arch.online_vcores) {
2504 kvm->arch.smt_mode = smt_mode;
2505 kvm->arch.emul_smt_mode = esmt;
2508 mutex_unlock(&kvm->lock);
2513 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2515 if (vpa->pinned_addr)
2516 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2520 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2522 spin_lock(&vcpu->arch.vpa_update_lock);
2523 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2524 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2525 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2526 spin_unlock(&vcpu->arch.vpa_update_lock);
2529 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2531 /* Indicate we want to get back into the guest */
2535 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2537 unsigned long dec_nsec, now;
2540 if (now > vcpu->arch.dec_expires) {
2541 /* decrementer has already gone negative */
2542 kvmppc_core_queue_dec(vcpu);
2543 kvmppc_core_prepare_to_enter(vcpu);
2546 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2547 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2548 vcpu->arch.timer_running = 1;
2551 extern int __kvmppc_vcore_entry(void);
2553 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2554 struct kvm_vcpu *vcpu)
2558 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2560 spin_lock_irq(&vcpu->arch.tbacct_lock);
2562 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2563 vcpu->arch.stolen_logged;
2564 vcpu->arch.busy_preempt = now;
2565 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2566 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2568 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2571 static int kvmppc_grab_hwthread(int cpu)
2573 struct paca_struct *tpaca;
2574 long timeout = 10000;
2576 tpaca = paca_ptrs[cpu];
2578 /* Ensure the thread won't go into the kernel if it wakes */
2579 tpaca->kvm_hstate.kvm_vcpu = NULL;
2580 tpaca->kvm_hstate.kvm_vcore = NULL;
2581 tpaca->kvm_hstate.napping = 0;
2583 tpaca->kvm_hstate.hwthread_req = 1;
2586 * If the thread is already executing in the kernel (e.g. handling
2587 * a stray interrupt), wait for it to get back to nap mode.
2588 * The smp_mb() is to ensure that our setting of hwthread_req
2589 * is visible before we look at hwthread_state, so if this
2590 * races with the code at system_reset_pSeries and the thread
2591 * misses our setting of hwthread_req, we are sure to see its
2592 * setting of hwthread_state, and vice versa.
2595 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2596 if (--timeout <= 0) {
2597 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2605 static void kvmppc_release_hwthread(int cpu)
2607 struct paca_struct *tpaca;
2609 tpaca = paca_ptrs[cpu];
2610 tpaca->kvm_hstate.hwthread_req = 0;
2611 tpaca->kvm_hstate.kvm_vcpu = NULL;
2612 tpaca->kvm_hstate.kvm_vcore = NULL;
2613 tpaca->kvm_hstate.kvm_split_mode = NULL;
2616 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2618 struct kvm_nested_guest *nested = vcpu->arch.nested;
2619 cpumask_t *cpu_in_guest;
2622 cpu = cpu_first_thread_sibling(cpu);
2624 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2625 cpu_in_guest = &nested->cpu_in_guest;
2627 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2628 cpu_in_guest = &kvm->arch.cpu_in_guest;
2631 * Make sure setting of bit in need_tlb_flush precedes
2632 * testing of cpu_in_guest bits. The matching barrier on
2633 * the other side is the first smp_mb() in kvmppc_run_core().
2636 for (i = 0; i < threads_per_core; ++i)
2637 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2638 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2641 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2643 struct kvm_nested_guest *nested = vcpu->arch.nested;
2644 struct kvm *kvm = vcpu->kvm;
2647 if (!cpu_has_feature(CPU_FTR_HVMODE))
2651 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2653 prev_cpu = vcpu->arch.prev_cpu;
2656 * With radix, the guest can do TLB invalidations itself,
2657 * and it could choose to use the local form (tlbiel) if
2658 * it is invalidating a translation that has only ever been
2659 * used on one vcpu. However, that doesn't mean it has
2660 * only ever been used on one physical cpu, since vcpus
2661 * can move around between pcpus. To cope with this, when
2662 * a vcpu moves from one pcpu to another, we need to tell
2663 * any vcpus running on the same core as this vcpu previously
2664 * ran to flush the TLB. The TLB is shared between threads,
2665 * so we use a single bit in .need_tlb_flush for all 4 threads.
2667 if (prev_cpu != pcpu) {
2668 if (prev_cpu >= 0 &&
2669 cpu_first_thread_sibling(prev_cpu) !=
2670 cpu_first_thread_sibling(pcpu))
2671 radix_flush_cpu(kvm, prev_cpu, vcpu);
2673 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2675 vcpu->arch.prev_cpu = pcpu;
2679 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2682 struct paca_struct *tpaca;
2683 struct kvm *kvm = vc->kvm;
2687 if (vcpu->arch.timer_running) {
2688 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2689 vcpu->arch.timer_running = 0;
2691 cpu += vcpu->arch.ptid;
2692 vcpu->cpu = vc->pcpu;
2693 vcpu->arch.thread_cpu = cpu;
2694 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2696 tpaca = paca_ptrs[cpu];
2697 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2698 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2699 tpaca->kvm_hstate.fake_suspend = 0;
2700 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2702 tpaca->kvm_hstate.kvm_vcore = vc;
2703 if (cpu != smp_processor_id())
2704 kvmppc_ipi_thread(cpu);
2707 static void kvmppc_wait_for_nap(int n_threads)
2709 int cpu = smp_processor_id();
2714 for (loops = 0; loops < 1000000; ++loops) {
2716 * Check if all threads are finished.
2717 * We set the vcore pointer when starting a thread
2718 * and the thread clears it when finished, so we look
2719 * for any threads that still have a non-NULL vcore ptr.
2721 for (i = 1; i < n_threads; ++i)
2722 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2724 if (i == n_threads) {
2731 for (i = 1; i < n_threads; ++i)
2732 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2733 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2737 * Check that we are on thread 0 and that any other threads in
2738 * this core are off-line. Then grab the threads so they can't
2741 static int on_primary_thread(void)
2743 int cpu = smp_processor_id();
2746 /* Are we on a primary subcore? */
2747 if (cpu_thread_in_subcore(cpu))
2751 while (++thr < threads_per_subcore)
2752 if (cpu_online(cpu + thr))
2755 /* Grab all hw threads so they can't go into the kernel */
2756 for (thr = 1; thr < threads_per_subcore; ++thr) {
2757 if (kvmppc_grab_hwthread(cpu + thr)) {
2758 /* Couldn't grab one; let the others go */
2760 kvmppc_release_hwthread(cpu + thr);
2761 } while (--thr > 0);
2769 * A list of virtual cores for each physical CPU.
2770 * These are vcores that could run but their runner VCPU tasks are
2771 * (or may be) preempted.
2773 struct preempted_vcore_list {
2774 struct list_head list;
2778 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2780 static void init_vcore_lists(void)
2784 for_each_possible_cpu(cpu) {
2785 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2786 spin_lock_init(&lp->lock);
2787 INIT_LIST_HEAD(&lp->list);
2791 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2793 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2795 vc->vcore_state = VCORE_PREEMPT;
2796 vc->pcpu = smp_processor_id();
2797 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2798 spin_lock(&lp->lock);
2799 list_add_tail(&vc->preempt_list, &lp->list);
2800 spin_unlock(&lp->lock);
2803 /* Start accumulating stolen time */
2804 kvmppc_core_start_stolen(vc);
2807 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2809 struct preempted_vcore_list *lp;
2811 kvmppc_core_end_stolen(vc);
2812 if (!list_empty(&vc->preempt_list)) {
2813 lp = &per_cpu(preempted_vcores, vc->pcpu);
2814 spin_lock(&lp->lock);
2815 list_del_init(&vc->preempt_list);
2816 spin_unlock(&lp->lock);
2818 vc->vcore_state = VCORE_INACTIVE;
2822 * This stores information about the virtual cores currently
2823 * assigned to a physical core.
2827 int max_subcore_threads;
2829 int subcore_threads[MAX_SUBCORES];
2830 struct kvmppc_vcore *vc[MAX_SUBCORES];
2834 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2835 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2837 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2839 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2841 memset(cip, 0, sizeof(*cip));
2842 cip->n_subcores = 1;
2843 cip->max_subcore_threads = vc->num_threads;
2844 cip->total_threads = vc->num_threads;
2845 cip->subcore_threads[0] = vc->num_threads;
2849 static bool subcore_config_ok(int n_subcores, int n_threads)
2852 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2853 * split-core mode, with one thread per subcore.
2855 if (cpu_has_feature(CPU_FTR_ARCH_300))
2856 return n_subcores <= 4 && n_threads == 1;
2858 /* On POWER8, can only dynamically split if unsplit to begin with */
2859 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2861 if (n_subcores > MAX_SUBCORES)
2863 if (n_subcores > 1) {
2864 if (!(dynamic_mt_modes & 2))
2866 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2870 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2873 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2875 vc->entry_exit_map = 0;
2877 vc->napping_threads = 0;
2878 vc->conferring_threads = 0;
2879 vc->tb_offset_applied = 0;
2882 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2884 int n_threads = vc->num_threads;
2887 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2890 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2891 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2894 if (n_threads < cip->max_subcore_threads)
2895 n_threads = cip->max_subcore_threads;
2896 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2898 cip->max_subcore_threads = n_threads;
2900 sub = cip->n_subcores;
2902 cip->total_threads += vc->num_threads;
2903 cip->subcore_threads[sub] = vc->num_threads;
2905 init_vcore_to_run(vc);
2906 list_del_init(&vc->preempt_list);
2912 * Work out whether it is possible to piggyback the execution of
2913 * vcore *pvc onto the execution of the other vcores described in *cip.
2915 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2918 if (cip->total_threads + pvc->num_threads > target_threads)
2921 return can_dynamic_split(pvc, cip);
2924 static void prepare_threads(struct kvmppc_vcore *vc)
2927 struct kvm_vcpu *vcpu;
2929 for_each_runnable_thread(i, vcpu, vc) {
2930 if (signal_pending(vcpu->arch.run_task))
2931 vcpu->arch.ret = -EINTR;
2932 else if (no_mixing_hpt_and_radix &&
2933 kvm_is_radix(vc->kvm) != radix_enabled())
2934 vcpu->arch.ret = -EINVAL;
2935 else if (vcpu->arch.vpa.update_pending ||
2936 vcpu->arch.slb_shadow.update_pending ||
2937 vcpu->arch.dtl.update_pending)
2938 vcpu->arch.ret = RESUME_GUEST;
2941 kvmppc_remove_runnable(vc, vcpu);
2942 wake_up(&vcpu->arch.cpu_run);
2946 static void collect_piggybacks(struct core_info *cip, int target_threads)
2948 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2949 struct kvmppc_vcore *pvc, *vcnext;
2951 spin_lock(&lp->lock);
2952 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2953 if (!spin_trylock(&pvc->lock))
2955 prepare_threads(pvc);
2956 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2957 list_del_init(&pvc->preempt_list);
2958 if (pvc->runner == NULL) {
2959 pvc->vcore_state = VCORE_INACTIVE;
2960 kvmppc_core_end_stolen(pvc);
2962 spin_unlock(&pvc->lock);
2965 if (!can_piggyback(pvc, cip, target_threads)) {
2966 spin_unlock(&pvc->lock);
2969 kvmppc_core_end_stolen(pvc);
2970 pvc->vcore_state = VCORE_PIGGYBACK;
2971 if (cip->total_threads >= target_threads)
2974 spin_unlock(&lp->lock);
2977 static bool recheck_signals_and_mmu(struct core_info *cip)
2980 struct kvm_vcpu *vcpu;
2981 struct kvmppc_vcore *vc;
2983 for (sub = 0; sub < cip->n_subcores; ++sub) {
2985 if (!vc->kvm->arch.mmu_ready)
2987 for_each_runnable_thread(i, vcpu, vc)
2988 if (signal_pending(vcpu->arch.run_task))
2994 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2996 int still_running = 0, i;
2999 struct kvm_vcpu *vcpu;
3001 spin_lock(&vc->lock);
3003 for_each_runnable_thread(i, vcpu, vc) {
3005 * It's safe to unlock the vcore in the loop here, because
3006 * for_each_runnable_thread() is safe against removal of
3007 * the vcpu, and the vcore state is VCORE_EXITING here,
3008 * so any vcpus becoming runnable will have their arch.trap
3009 * set to zero and can't actually run in the guest.
3011 spin_unlock(&vc->lock);
3012 /* cancel pending dec exception if dec is positive */
3013 if (now < vcpu->arch.dec_expires &&
3014 kvmppc_core_pending_dec(vcpu))
3015 kvmppc_core_dequeue_dec(vcpu);
3017 trace_kvm_guest_exit(vcpu);
3020 if (vcpu->arch.trap)
3021 ret = kvmppc_handle_exit_hv(vcpu,
3022 vcpu->arch.run_task);
3024 vcpu->arch.ret = ret;
3025 vcpu->arch.trap = 0;
3027 spin_lock(&vc->lock);
3028 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3029 if (vcpu->arch.pending_exceptions)
3030 kvmppc_core_prepare_to_enter(vcpu);
3031 if (vcpu->arch.ceded)
3032 kvmppc_set_timer(vcpu);
3036 kvmppc_remove_runnable(vc, vcpu);
3037 wake_up(&vcpu->arch.cpu_run);
3041 if (still_running > 0) {
3042 kvmppc_vcore_preempt(vc);
3043 } else if (vc->runner) {
3044 vc->vcore_state = VCORE_PREEMPT;
3045 kvmppc_core_start_stolen(vc);
3047 vc->vcore_state = VCORE_INACTIVE;
3049 if (vc->n_runnable > 0 && vc->runner == NULL) {
3050 /* make sure there's a candidate runner awake */
3052 vcpu = next_runnable_thread(vc, &i);
3053 wake_up(&vcpu->arch.cpu_run);
3056 spin_unlock(&vc->lock);
3060 * Clear core from the list of active host cores as we are about to
3061 * enter the guest. Only do this if it is the primary thread of the
3062 * core (not if a subcore) that is entering the guest.
3064 static inline int kvmppc_clear_host_core(unsigned int cpu)
3068 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3071 * Memory barrier can be omitted here as we will do a smp_wmb()
3072 * later in kvmppc_start_thread and we need ensure that state is
3073 * visible to other CPUs only after we enter guest.
3075 core = cpu >> threads_shift;
3076 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3081 * Advertise this core as an active host core since we exited the guest
3082 * Only need to do this if it is the primary thread of the core that is
3085 static inline int kvmppc_set_host_core(unsigned int cpu)
3089 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3093 * Memory barrier can be omitted here because we do a spin_unlock
3094 * immediately after this which provides the memory barrier.
3096 core = cpu >> threads_shift;
3097 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3101 static void set_irq_happened(int trap)
3104 case BOOK3S_INTERRUPT_EXTERNAL:
3105 local_paca->irq_happened |= PACA_IRQ_EE;
3107 case BOOK3S_INTERRUPT_H_DOORBELL:
3108 local_paca->irq_happened |= PACA_IRQ_DBELL;
3110 case BOOK3S_INTERRUPT_HMI:
3111 local_paca->irq_happened |= PACA_IRQ_HMI;
3113 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3114 replay_system_reset();
3120 * Run a set of guest threads on a physical core.
3121 * Called with vc->lock held.
3123 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3125 struct kvm_vcpu *vcpu;
3128 struct core_info core_info;
3129 struct kvmppc_vcore *pvc;
3130 struct kvm_split_mode split_info, *sip;
3131 int split, subcore_size, active;
3134 unsigned long cmd_bit, stat_bit;
3137 int controlled_threads;
3142 * Remove from the list any threads that have a signal pending
3143 * or need a VPA update done
3145 prepare_threads(vc);
3147 /* if the runner is no longer runnable, let the caller pick a new one */
3148 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3154 init_vcore_to_run(vc);
3155 vc->preempt_tb = TB_NIL;
3158 * Number of threads that we will be controlling: the same as
3159 * the number of threads per subcore, except on POWER9,
3160 * where it's 1 because the threads are (mostly) independent.
3162 controlled_threads = threads_per_vcore(vc->kvm);
3165 * Make sure we are running on primary threads, and that secondary
3166 * threads are offline. Also check if the number of threads in this
3167 * guest are greater than the current system threads per guest.
3168 * On POWER9, we need to be not in independent-threads mode if
3169 * this is a HPT guest on a radix host machine where the
3170 * CPU threads may not be in different MMU modes.
3172 if ((controlled_threads > 1) &&
3173 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3174 for_each_runnable_thread(i, vcpu, vc) {
3175 vcpu->arch.ret = -EBUSY;
3176 kvmppc_remove_runnable(vc, vcpu);
3177 wake_up(&vcpu->arch.cpu_run);
3183 * See if we could run any other vcores on the physical core
3184 * along with this one.
3186 init_core_info(&core_info, vc);
3187 pcpu = smp_processor_id();
3188 target_threads = controlled_threads;
3189 if (target_smt_mode && target_smt_mode < target_threads)
3190 target_threads = target_smt_mode;
3191 if (vc->num_threads < target_threads)
3192 collect_piggybacks(&core_info, target_threads);
3195 * On radix, arrange for TLB flushing if necessary.
3196 * This has to be done before disabling interrupts since
3197 * it uses smp_call_function().
3199 pcpu = smp_processor_id();
3200 if (kvm_is_radix(vc->kvm)) {
3201 for (sub = 0; sub < core_info.n_subcores; ++sub)
3202 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3203 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3207 * Hard-disable interrupts, and check resched flag and signals.
3208 * If we need to reschedule or deliver a signal, clean up
3209 * and return without going into the guest(s).
3210 * If the mmu_ready flag has been cleared, don't go into the
3211 * guest because that means a HPT resize operation is in progress.
3213 local_irq_disable();
3215 if (lazy_irq_pending() || need_resched() ||
3216 recheck_signals_and_mmu(&core_info)) {
3218 vc->vcore_state = VCORE_INACTIVE;
3219 /* Unlock all except the primary vcore */
3220 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3221 pvc = core_info.vc[sub];
3222 /* Put back on to the preempted vcores list */
3223 kvmppc_vcore_preempt(pvc);
3224 spin_unlock(&pvc->lock);
3226 for (i = 0; i < controlled_threads; ++i)
3227 kvmppc_release_hwthread(pcpu + i);
3231 kvmppc_clear_host_core(pcpu);
3233 /* Decide on micro-threading (split-core) mode */
3234 subcore_size = threads_per_subcore;
3235 cmd_bit = stat_bit = 0;
3236 split = core_info.n_subcores;
3238 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3239 && !cpu_has_feature(CPU_FTR_ARCH_300);
3243 memset(&split_info, 0, sizeof(split_info));
3244 for (sub = 0; sub < core_info.n_subcores; ++sub)
3245 split_info.vc[sub] = core_info.vc[sub];
3248 if (split == 2 && (dynamic_mt_modes & 2)) {
3249 cmd_bit = HID0_POWER8_1TO2LPAR;
3250 stat_bit = HID0_POWER8_2LPARMODE;
3253 cmd_bit = HID0_POWER8_1TO4LPAR;
3254 stat_bit = HID0_POWER8_4LPARMODE;
3256 subcore_size = MAX_SMT_THREADS / split;
3257 split_info.rpr = mfspr(SPRN_RPR);
3258 split_info.pmmar = mfspr(SPRN_PMMAR);
3259 split_info.ldbar = mfspr(SPRN_LDBAR);
3260 split_info.subcore_size = subcore_size;
3262 split_info.subcore_size = 1;
3265 /* order writes to split_info before kvm_split_mode pointer */
3269 for (thr = 0; thr < controlled_threads; ++thr) {
3270 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3272 paca->kvm_hstate.napping = 0;
3273 paca->kvm_hstate.kvm_split_mode = sip;
3276 /* Initiate micro-threading (split-core) on POWER8 if required */
3278 unsigned long hid0 = mfspr(SPRN_HID0);
3280 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3282 mtspr(SPRN_HID0, hid0);
3285 hid0 = mfspr(SPRN_HID0);
3286 if (hid0 & stat_bit)
3293 * On POWER8, set RWMR register.
3294 * Since it only affects PURR and SPURR, it doesn't affect
3295 * the host, so we don't save/restore the host value.
3298 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3299 int n_online = atomic_read(&vc->online_count);
3302 * Use the 8-thread value if we're doing split-core
3303 * or if the vcore's online count looks bogus.
3305 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3306 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3307 rwmr_val = p8_rwmr_values[n_online];
3308 mtspr(SPRN_RWMR, rwmr_val);
3311 /* Start all the threads */
3313 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3314 thr = is_power8 ? subcore_thread_map[sub] : sub;
3317 pvc = core_info.vc[sub];
3318 pvc->pcpu = pcpu + thr;
3319 for_each_runnable_thread(i, vcpu, pvc) {
3320 kvmppc_start_thread(vcpu, pvc);
3321 kvmppc_create_dtl_entry(vcpu, pvc);
3322 trace_kvm_guest_enter(vcpu);
3323 if (!vcpu->arch.ptid)
3325 active |= 1 << (thr + vcpu->arch.ptid);
3328 * We need to start the first thread of each subcore
3329 * even if it doesn't have a vcpu.
3332 kvmppc_start_thread(NULL, pvc);
3336 * Ensure that split_info.do_nap is set after setting
3337 * the vcore pointer in the PACA of the secondaries.
3342 * When doing micro-threading, poke the inactive threads as well.
3343 * This gets them to the nap instruction after kvm_do_nap,
3344 * which reduces the time taken to unsplit later.
3347 split_info.do_nap = 1; /* ask secondaries to nap when done */
3348 for (thr = 1; thr < threads_per_subcore; ++thr)
3349 if (!(active & (1 << thr)))
3350 kvmppc_ipi_thread(pcpu + thr);
3353 vc->vcore_state = VCORE_RUNNING;
3356 trace_kvmppc_run_core(vc, 0);
3358 for (sub = 0; sub < core_info.n_subcores; ++sub)
3359 spin_unlock(&core_info.vc[sub]->lock);
3361 guest_enter_irqoff();
3363 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3365 this_cpu_disable_ftrace();
3368 * Interrupts will be enabled once we get into the guest,
3369 * so tell lockdep that we're about to enable interrupts.
3371 trace_hardirqs_on();
3373 trap = __kvmppc_vcore_entry();
3375 trace_hardirqs_off();
3377 this_cpu_enable_ftrace();
3379 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3381 set_irq_happened(trap);
3383 spin_lock(&vc->lock);
3384 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3385 vc->vcore_state = VCORE_EXITING;
3387 /* wait for secondary threads to finish writing their state to memory */
3388 kvmppc_wait_for_nap(controlled_threads);
3390 /* Return to whole-core mode if we split the core earlier */
3392 unsigned long hid0 = mfspr(SPRN_HID0);
3393 unsigned long loops = 0;
3395 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3396 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3398 mtspr(SPRN_HID0, hid0);
3401 hid0 = mfspr(SPRN_HID0);
3402 if (!(hid0 & stat_bit))
3407 split_info.do_nap = 0;
3410 kvmppc_set_host_core(pcpu);
3412 guest_exit_irqoff();
3416 /* Let secondaries go back to the offline loop */
3417 for (i = 0; i < controlled_threads; ++i) {
3418 kvmppc_release_hwthread(pcpu + i);
3419 if (sip && sip->napped[i])
3420 kvmppc_ipi_thread(pcpu + i);
3421 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3424 spin_unlock(&vc->lock);
3426 /* make sure updates to secondary vcpu structs are visible now */
3431 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3432 pvc = core_info.vc[sub];
3433 post_guest_process(pvc, pvc == vc);
3436 spin_lock(&vc->lock);
3439 vc->vcore_state = VCORE_INACTIVE;
3440 trace_kvmppc_run_core(vc, 1);
3444 * Load up hypervisor-mode registers on P9.
3446 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3449 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3451 u64 tb, purr, spurr;
3453 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3454 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3455 unsigned long host_dawr0 = mfspr(SPRN_DAWR0);
3456 unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0);
3457 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3458 unsigned long host_pidr = mfspr(SPRN_PID);
3459 unsigned long host_dawr1 = 0;
3460 unsigned long host_dawrx1 = 0;
3462 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3463 host_dawr1 = mfspr(SPRN_DAWR1);
3464 host_dawrx1 = mfspr(SPRN_DAWRX1);
3468 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3469 * so set HDICE before writing HDEC.
3471 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3474 hdec = time_limit - mftb();
3476 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3478 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3480 mtspr(SPRN_HDEC, hdec);
3482 if (vc->tb_offset) {
3483 u64 new_tb = mftb() + vc->tb_offset;
3484 mtspr(SPRN_TBU40, new_tb);
3486 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3487 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3488 vc->tb_offset_applied = vc->tb_offset;
3492 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3493 mtspr(SPRN_DPDES, vc->dpdes);
3494 mtspr(SPRN_VTB, vc->vtb);
3496 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3497 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3498 mtspr(SPRN_PURR, vcpu->arch.purr);
3499 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3501 if (dawr_enabled()) {
3502 mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
3503 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
3504 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3505 mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
3506 mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
3509 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3510 mtspr(SPRN_IC, vcpu->arch.ic);
3511 mtspr(SPRN_PID, vcpu->arch.pid);
3513 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3514 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3516 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3518 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3519 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3520 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3521 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3523 mtspr(SPRN_AMOR, ~0UL);
3525 mtspr(SPRN_LPCR, lpcr);
3528 kvmppc_xive_push_vcpu(vcpu);
3530 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3531 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3533 trap = __kvmhv_vcpu_entry_p9(vcpu);
3535 /* Advance host PURR/SPURR by the amount used by guest */
3536 purr = mfspr(SPRN_PURR);
3537 spurr = mfspr(SPRN_SPURR);
3538 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3539 purr - vcpu->arch.purr);
3540 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3541 spurr - vcpu->arch.spurr);
3542 vcpu->arch.purr = purr;
3543 vcpu->arch.spurr = spurr;
3545 vcpu->arch.ic = mfspr(SPRN_IC);
3546 vcpu->arch.pid = mfspr(SPRN_PID);
3547 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3549 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3550 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3551 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3552 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3554 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3555 mtspr(SPRN_PSSCR, host_psscr |
3556 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3557 mtspr(SPRN_HFSCR, host_hfscr);
3558 mtspr(SPRN_CIABR, host_ciabr);
3559 mtspr(SPRN_DAWR0, host_dawr0);
3560 mtspr(SPRN_DAWRX0, host_dawrx0);
3561 if (cpu_has_feature(CPU_FTR_DAWR1)) {
3562 mtspr(SPRN_DAWR1, host_dawr1);
3563 mtspr(SPRN_DAWRX1, host_dawrx1);
3565 mtspr(SPRN_PID, host_pidr);
3568 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3569 * case we interrupted the guest between a tlbie and a ptesync.
3571 asm volatile("eieio; tlbsync; ptesync");
3574 * cp_abort is required if the processor supports local copy-paste
3575 * to clear the copy buffer that was under control of the guest.
3577 if (cpu_has_feature(CPU_FTR_ARCH_31))
3578 asm volatile(PPC_CP_ABORT);
3580 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3583 vc->dpdes = mfspr(SPRN_DPDES);
3584 vc->vtb = mfspr(SPRN_VTB);
3585 mtspr(SPRN_DPDES, 0);
3587 mtspr(SPRN_PCR, PCR_MASK);
3589 if (vc->tb_offset_applied) {
3590 u64 new_tb = mftb() - vc->tb_offset_applied;
3591 mtspr(SPRN_TBU40, new_tb);
3593 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3594 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3595 vc->tb_offset_applied = 0;
3598 mtspr(SPRN_HDEC, 0x7fffffff);
3599 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3605 * Virtual-mode guest entry for POWER9 and later when the host and
3606 * guest are both using the radix MMU. The LPIDR has already been set.
3608 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3611 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3612 unsigned long host_dscr = mfspr(SPRN_DSCR);
3613 unsigned long host_tidr = mfspr(SPRN_TIDR);
3614 unsigned long host_iamr = mfspr(SPRN_IAMR);
3615 unsigned long host_amr = mfspr(SPRN_AMR);
3616 unsigned long host_fscr = mfspr(SPRN_FSCR);
3621 dec = mfspr(SPRN_DEC);
3624 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3625 local_paca->kvm_hstate.dec_expires = dec + tb;
3626 if (local_paca->kvm_hstate.dec_expires < time_limit)
3627 time_limit = local_paca->kvm_hstate.dec_expires;
3629 vcpu->arch.ceded = 0;
3631 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3633 kvmppc_subcore_enter_guest();
3635 vc->entry_exit_map = 1;
3638 if (vcpu->arch.vpa.pinned_addr) {
3639 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3640 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3641 lp->yield_count = cpu_to_be32(yield_count);
3642 vcpu->arch.vpa.dirty = 1;
3645 if (cpu_has_feature(CPU_FTR_TM) ||
3646 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3647 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3649 kvmhv_load_guest_pmu(vcpu);
3651 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3652 load_fp_state(&vcpu->arch.fp);
3653 #ifdef CONFIG_ALTIVEC
3654 load_vr_state(&vcpu->arch.vr);
3656 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3658 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3659 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3660 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3661 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3662 mtspr(SPRN_TAR, vcpu->arch.tar);
3663 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3664 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3665 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3666 mtspr(SPRN_WORT, vcpu->arch.wort);
3667 mtspr(SPRN_TIDR, vcpu->arch.tid);
3668 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3669 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3670 mtspr(SPRN_AMR, vcpu->arch.amr);
3671 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3673 if (!(vcpu->arch.ctrl & 1))
3674 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3676 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3678 if (kvmhv_on_pseries()) {
3680 * We need to save and restore the guest visible part of the
3681 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3682 * doesn't do this for us. Note only required if pseries since
3683 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3685 unsigned long host_psscr;
3686 /* call our hypervisor to load up HV regs and go */
3687 struct hv_guest_state hvregs;
3689 host_psscr = mfspr(SPRN_PSSCR_PR);
3690 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3691 kvmhv_save_hv_regs(vcpu, &hvregs);
3693 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3694 hvregs.version = HV_GUEST_STATE_VERSION;
3695 if (vcpu->arch.nested) {
3696 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3697 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3699 hvregs.lpid = vcpu->kvm->arch.lpid;
3700 hvregs.vcpu_token = vcpu->vcpu_id;
3702 hvregs.hdec_expiry = time_limit;
3703 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3704 __pa(&vcpu->arch.regs));
3705 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3706 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3707 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3708 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3709 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3710 mtspr(SPRN_PSSCR_PR, host_psscr);
3712 /* H_CEDE has to be handled now, not later */
3713 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3714 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3715 kvmppc_nested_cede(vcpu);
3716 kvmppc_set_gpr(vcpu, 3, 0);
3720 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3723 vcpu->arch.slb_max = 0;
3724 dec = mfspr(SPRN_DEC);
3725 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3728 vcpu->arch.dec_expires = dec + tb;
3730 vcpu->arch.thread_cpu = -1;
3731 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3733 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3734 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3735 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3736 vcpu->arch.tar = mfspr(SPRN_TAR);
3737 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3738 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3739 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3740 vcpu->arch.wort = mfspr(SPRN_WORT);
3741 vcpu->arch.tid = mfspr(SPRN_TIDR);
3742 vcpu->arch.amr = mfspr(SPRN_AMR);
3743 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3744 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3746 mtspr(SPRN_PSPB, 0);
3747 mtspr(SPRN_WORT, 0);
3748 mtspr(SPRN_UAMOR, 0);
3749 mtspr(SPRN_DSCR, host_dscr);
3750 mtspr(SPRN_TIDR, host_tidr);
3751 mtspr(SPRN_IAMR, host_iamr);
3752 mtspr(SPRN_PSPB, 0);
3754 if (host_amr != vcpu->arch.amr)
3755 mtspr(SPRN_AMR, host_amr);
3757 if (host_fscr != vcpu->arch.fscr)
3758 mtspr(SPRN_FSCR, host_fscr);
3760 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3761 store_fp_state(&vcpu->arch.fp);
3762 #ifdef CONFIG_ALTIVEC
3763 store_vr_state(&vcpu->arch.vr);
3765 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3767 if (cpu_has_feature(CPU_FTR_TM) ||
3768 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3769 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3772 if (vcpu->arch.vpa.pinned_addr) {
3773 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3774 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3775 lp->yield_count = cpu_to_be32(yield_count);
3776 vcpu->arch.vpa.dirty = 1;
3777 save_pmu = lp->pmcregs_in_use;
3779 /* Must save pmu if this guest is capable of running nested guests */
3780 save_pmu |= nesting_enabled(vcpu->kvm);
3782 kvmhv_save_guest_pmu(vcpu, save_pmu);
3784 vc->entry_exit_map = 0x101;
3787 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3788 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3790 kvmhv_load_host_pmu();
3792 kvmppc_subcore_exit_guest();
3798 * Wait for some other vcpu thread to execute us, and
3799 * wake us up when we need to handle something in the host.
3801 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3802 struct kvm_vcpu *vcpu, int wait_state)
3806 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3807 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3808 spin_unlock(&vc->lock);
3810 spin_lock(&vc->lock);
3812 finish_wait(&vcpu->arch.cpu_run, &wait);
3815 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3817 if (!halt_poll_ns_grow)
3820 vc->halt_poll_ns *= halt_poll_ns_grow;
3821 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3822 vc->halt_poll_ns = halt_poll_ns_grow_start;
3825 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3827 if (halt_poll_ns_shrink == 0)
3828 vc->halt_poll_ns = 0;
3830 vc->halt_poll_ns /= halt_poll_ns_shrink;
3833 #ifdef CONFIG_KVM_XICS
3834 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3836 if (!xics_on_xive())
3838 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3839 vcpu->arch.xive_saved_state.cppr;
3842 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3846 #endif /* CONFIG_KVM_XICS */
3848 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3850 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3851 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3858 * Check to see if any of the runnable vcpus on the vcore have pending
3859 * exceptions or are no longer ceded
3861 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3863 struct kvm_vcpu *vcpu;
3866 for_each_runnable_thread(i, vcpu, vc) {
3867 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3875 * All the vcpus in this vcore are idle, so wait for a decrementer
3876 * or external interrupt to one of the vcpus. vc->lock is held.
3878 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3880 ktime_t cur, start_poll, start_wait;
3884 /* Poll for pending exceptions and ceded state */
3885 cur = start_poll = ktime_get();
3886 if (vc->halt_poll_ns) {
3887 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3888 ++vc->runner->stat.halt_attempted_poll;
3890 vc->vcore_state = VCORE_POLLING;
3891 spin_unlock(&vc->lock);
3894 if (kvmppc_vcore_check_block(vc)) {
3899 } while (single_task_running() && ktime_before(cur, stop));
3901 spin_lock(&vc->lock);
3902 vc->vcore_state = VCORE_INACTIVE;
3905 ++vc->runner->stat.halt_successful_poll;
3910 prepare_to_rcuwait(&vc->wait);
3911 set_current_state(TASK_INTERRUPTIBLE);
3912 if (kvmppc_vcore_check_block(vc)) {
3913 finish_rcuwait(&vc->wait);
3915 /* If we polled, count this as a successful poll */
3916 if (vc->halt_poll_ns)
3917 ++vc->runner->stat.halt_successful_poll;
3921 start_wait = ktime_get();
3923 vc->vcore_state = VCORE_SLEEPING;
3924 trace_kvmppc_vcore_blocked(vc, 0);
3925 spin_unlock(&vc->lock);
3927 finish_rcuwait(&vc->wait);
3928 spin_lock(&vc->lock);
3929 vc->vcore_state = VCORE_INACTIVE;
3930 trace_kvmppc_vcore_blocked(vc, 1);
3931 ++vc->runner->stat.halt_successful_wait;
3936 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3938 /* Attribute wait time */
3940 vc->runner->stat.halt_wait_ns +=
3941 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3942 /* Attribute failed poll time */
3943 if (vc->halt_poll_ns)
3944 vc->runner->stat.halt_poll_fail_ns +=
3945 ktime_to_ns(start_wait) -
3946 ktime_to_ns(start_poll);
3948 /* Attribute successful poll time */
3949 if (vc->halt_poll_ns)
3950 vc->runner->stat.halt_poll_success_ns +=
3952 ktime_to_ns(start_poll);
3955 /* Adjust poll time */
3957 if (block_ns <= vc->halt_poll_ns)
3959 /* We slept and blocked for longer than the max halt time */
3960 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3961 shrink_halt_poll_ns(vc);
3962 /* We slept and our poll time is too small */
3963 else if (vc->halt_poll_ns < halt_poll_ns &&
3964 block_ns < halt_poll_ns)
3965 grow_halt_poll_ns(vc);
3966 if (vc->halt_poll_ns > halt_poll_ns)
3967 vc->halt_poll_ns = halt_poll_ns;
3969 vc->halt_poll_ns = 0;
3971 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3975 * This never fails for a radix guest, as none of the operations it does
3976 * for a radix guest can fail or have a way to report failure.
3977 * kvmhv_run_single_vcpu() relies on this fact.
3979 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3982 struct kvm *kvm = vcpu->kvm;
3984 mutex_lock(&kvm->arch.mmu_setup_lock);
3985 if (!kvm->arch.mmu_ready) {
3986 if (!kvm_is_radix(kvm))
3987 r = kvmppc_hv_setup_htab_rma(vcpu);
3989 if (cpu_has_feature(CPU_FTR_ARCH_300))
3990 kvmppc_setup_partition_table(kvm);
3991 kvm->arch.mmu_ready = 1;
3994 mutex_unlock(&kvm->arch.mmu_setup_lock);
3998 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4000 struct kvm_run *run = vcpu->run;
4002 struct kvmppc_vcore *vc;
4005 trace_kvmppc_run_vcpu_enter(vcpu);
4007 run->exit_reason = 0;
4008 vcpu->arch.ret = RESUME_GUEST;
4009 vcpu->arch.trap = 0;
4010 kvmppc_update_vpas(vcpu);
4013 * Synchronize with other threads in this virtual core
4015 vc = vcpu->arch.vcore;
4016 spin_lock(&vc->lock);
4017 vcpu->arch.ceded = 0;
4018 vcpu->arch.run_task = current;
4019 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4020 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4021 vcpu->arch.busy_preempt = TB_NIL;
4022 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4026 * This happens the first time this is called for a vcpu.
4027 * If the vcore is already running, we may be able to start
4028 * this thread straight away and have it join in.
4030 if (!signal_pending(current)) {
4031 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4032 vc->vcore_state == VCORE_RUNNING) &&
4033 !VCORE_IS_EXITING(vc)) {
4034 kvmppc_create_dtl_entry(vcpu, vc);
4035 kvmppc_start_thread(vcpu, vc);
4036 trace_kvm_guest_enter(vcpu);
4037 } else if (vc->vcore_state == VCORE_SLEEPING) {
4038 rcuwait_wake_up(&vc->wait);
4043 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4044 !signal_pending(current)) {
4045 /* See if the MMU is ready to go */
4046 if (!vcpu->kvm->arch.mmu_ready) {
4047 spin_unlock(&vc->lock);
4048 r = kvmhv_setup_mmu(vcpu);
4049 spin_lock(&vc->lock);
4051 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4053 hardware_entry_failure_reason = 0;
4059 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4060 kvmppc_vcore_end_preempt(vc);
4062 if (vc->vcore_state != VCORE_INACTIVE) {
4063 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4066 for_each_runnable_thread(i, v, vc) {
4067 kvmppc_core_prepare_to_enter(v);
4068 if (signal_pending(v->arch.run_task)) {
4069 kvmppc_remove_runnable(vc, v);
4070 v->stat.signal_exits++;
4071 v->run->exit_reason = KVM_EXIT_INTR;
4072 v->arch.ret = -EINTR;
4073 wake_up(&v->arch.cpu_run);
4076 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4079 for_each_runnable_thread(i, v, vc) {
4080 if (!kvmppc_vcpu_woken(v))
4081 n_ceded += v->arch.ceded;
4086 if (n_ceded == vc->n_runnable) {
4087 kvmppc_vcore_blocked(vc);
4088 } else if (need_resched()) {
4089 kvmppc_vcore_preempt(vc);
4090 /* Let something else run */
4091 cond_resched_lock(&vc->lock);
4092 if (vc->vcore_state == VCORE_PREEMPT)
4093 kvmppc_vcore_end_preempt(vc);
4095 kvmppc_run_core(vc);
4100 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4101 (vc->vcore_state == VCORE_RUNNING ||
4102 vc->vcore_state == VCORE_EXITING ||
4103 vc->vcore_state == VCORE_PIGGYBACK))
4104 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4106 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4107 kvmppc_vcore_end_preempt(vc);
4109 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4110 kvmppc_remove_runnable(vc, vcpu);
4111 vcpu->stat.signal_exits++;
4112 run->exit_reason = KVM_EXIT_INTR;
4113 vcpu->arch.ret = -EINTR;
4116 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4117 /* Wake up some vcpu to run the core */
4119 v = next_runnable_thread(vc, &i);
4120 wake_up(&v->arch.cpu_run);
4123 trace_kvmppc_run_vcpu_exit(vcpu);
4124 spin_unlock(&vc->lock);
4125 return vcpu->arch.ret;
4128 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4131 struct kvm_run *run = vcpu->run;
4134 struct kvmppc_vcore *vc;
4135 struct kvm *kvm = vcpu->kvm;
4136 struct kvm_nested_guest *nested = vcpu->arch.nested;
4138 trace_kvmppc_run_vcpu_enter(vcpu);
4140 run->exit_reason = 0;
4141 vcpu->arch.ret = RESUME_GUEST;
4142 vcpu->arch.trap = 0;
4144 vc = vcpu->arch.vcore;
4145 vcpu->arch.ceded = 0;
4146 vcpu->arch.run_task = current;
4147 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4148 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4149 vcpu->arch.busy_preempt = TB_NIL;
4150 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4151 vc->runnable_threads[0] = vcpu;
4155 /* See if the MMU is ready to go */
4156 if (!kvm->arch.mmu_ready)
4157 kvmhv_setup_mmu(vcpu);
4162 kvmppc_update_vpas(vcpu);
4164 init_vcore_to_run(vc);
4165 vc->preempt_tb = TB_NIL;
4168 pcpu = smp_processor_id();
4170 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4172 local_irq_disable();
4174 if (signal_pending(current))
4176 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4180 kvmppc_core_prepare_to_enter(vcpu);
4181 if (vcpu->arch.doorbell_request) {
4184 vcpu->arch.doorbell_request = 0;
4186 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4187 &vcpu->arch.pending_exceptions))
4189 } else if (vcpu->arch.pending_exceptions ||
4190 vcpu->arch.doorbell_request ||
4191 xive_interrupt_pending(vcpu)) {
4192 vcpu->arch.ret = RESUME_HOST;
4196 kvmppc_clear_host_core(pcpu);
4198 local_paca->kvm_hstate.napping = 0;
4199 local_paca->kvm_hstate.kvm_split_mode = NULL;
4200 kvmppc_start_thread(vcpu, vc);
4201 kvmppc_create_dtl_entry(vcpu, vc);
4202 trace_kvm_guest_enter(vcpu);
4204 vc->vcore_state = VCORE_RUNNING;
4205 trace_kvmppc_run_core(vc, 0);
4207 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4208 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4209 mtspr(SPRN_LPID, lpid);
4211 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4214 guest_enter_irqoff();
4216 srcu_idx = srcu_read_lock(&kvm->srcu);
4218 this_cpu_disable_ftrace();
4220 /* Tell lockdep that we're about to enable interrupts */
4221 trace_hardirqs_on();
4223 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4224 vcpu->arch.trap = trap;
4226 trace_hardirqs_off();
4228 this_cpu_enable_ftrace();
4230 srcu_read_unlock(&kvm->srcu, srcu_idx);
4232 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4233 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4237 set_irq_happened(trap);
4239 kvmppc_set_host_core(pcpu);
4241 guest_exit_irqoff();
4245 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4250 * cancel pending decrementer exception if DEC is now positive, or if
4251 * entering a nested guest in which case the decrementer is now owned
4252 * by L2 and the L1 decrementer is provided in hdec_expires
4254 if (kvmppc_core_pending_dec(vcpu) &&
4255 ((get_tb() < vcpu->arch.dec_expires) ||
4256 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4257 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4258 kvmppc_core_dequeue_dec(vcpu);
4260 trace_kvm_guest_exit(vcpu);
4264 r = kvmppc_handle_exit_hv(vcpu, current);
4266 r = kvmppc_handle_nested_exit(vcpu);
4270 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4271 !kvmppc_vcpu_woken(vcpu)) {
4272 kvmppc_set_timer(vcpu);
4273 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4274 if (signal_pending(current)) {
4275 vcpu->stat.signal_exits++;
4276 run->exit_reason = KVM_EXIT_INTR;
4277 vcpu->arch.ret = -EINTR;
4280 spin_lock(&vc->lock);
4281 kvmppc_vcore_blocked(vc);
4282 spin_unlock(&vc->lock);
4285 vcpu->arch.ceded = 0;
4287 vc->vcore_state = VCORE_INACTIVE;
4288 trace_kvmppc_run_core(vc, 1);
4291 kvmppc_remove_runnable(vc, vcpu);
4292 trace_kvmppc_run_vcpu_exit(vcpu);
4294 return vcpu->arch.ret;
4297 vcpu->stat.signal_exits++;
4298 run->exit_reason = KVM_EXIT_INTR;
4299 vcpu->arch.ret = -EINTR;
4306 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4308 struct kvm_run *run = vcpu->run;
4311 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4312 unsigned long user_tar = 0;
4313 unsigned int user_vrsave;
4316 if (!vcpu->arch.sane) {
4317 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4322 * Don't allow entry with a suspended transaction, because
4323 * the guest entry/exit code will lose it.
4324 * If the guest has TM enabled, save away their TM-related SPRs
4325 * (they will get restored by the TM unavailable interrupt).
4327 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4328 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4329 (current->thread.regs->msr & MSR_TM)) {
4330 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4331 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4332 run->fail_entry.hardware_entry_failure_reason = 0;
4335 /* Enable TM so we can read the TM SPRs */
4336 mtmsr(mfmsr() | MSR_TM);
4337 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4338 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4339 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4340 current->thread.regs->msr &= ~MSR_TM;
4345 * Force online to 1 for the sake of old userspace which doesn't
4348 if (!vcpu->arch.online) {
4349 atomic_inc(&vcpu->arch.vcore->online_count);
4350 vcpu->arch.online = 1;
4353 kvmppc_core_prepare_to_enter(vcpu);
4355 /* No need to go into the guest when all we'll do is come back out */
4356 if (signal_pending(current)) {
4357 run->exit_reason = KVM_EXIT_INTR;
4362 atomic_inc(&kvm->arch.vcpus_running);
4363 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4366 flush_all_to_thread(current);
4368 /* Save userspace EBB and other register values */
4369 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4370 ebb_regs[0] = mfspr(SPRN_EBBHR);
4371 ebb_regs[1] = mfspr(SPRN_EBBRR);
4372 ebb_regs[2] = mfspr(SPRN_BESCR);
4373 user_tar = mfspr(SPRN_TAR);
4375 user_vrsave = mfspr(SPRN_VRSAVE);
4377 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4378 vcpu->arch.pgdir = kvm->mm->pgd;
4379 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4383 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu
4384 * path, which also handles hash and dependent threads mode.
4386 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4387 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
4388 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4389 vcpu->arch.vcore->lpcr);
4391 r = kvmppc_run_vcpu(vcpu);
4393 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4394 !(vcpu->arch.shregs.msr & MSR_PR)) {
4395 trace_kvm_hcall_enter(vcpu);
4396 r = kvmppc_pseries_do_hcall(vcpu);
4397 trace_kvm_hcall_exit(vcpu, r);
4398 kvmppc_core_prepare_to_enter(vcpu);
4399 } else if (r == RESUME_PAGE_FAULT) {
4400 srcu_idx = srcu_read_lock(&kvm->srcu);
4401 r = kvmppc_book3s_hv_page_fault(vcpu,
4402 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4403 srcu_read_unlock(&kvm->srcu, srcu_idx);
4404 } else if (r == RESUME_PASSTHROUGH) {
4405 if (WARN_ON(xics_on_xive()))
4408 r = kvmppc_xics_rm_complete(vcpu, 0);
4410 } while (is_kvmppc_resume_guest(r));
4412 /* Restore userspace EBB and other register values */
4413 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4414 mtspr(SPRN_EBBHR, ebb_regs[0]);
4415 mtspr(SPRN_EBBRR, ebb_regs[1]);
4416 mtspr(SPRN_BESCR, ebb_regs[2]);
4417 mtspr(SPRN_TAR, user_tar);
4418 mtspr(SPRN_FSCR, current->thread.fscr);
4420 mtspr(SPRN_VRSAVE, user_vrsave);
4422 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4423 atomic_dec(&kvm->arch.vcpus_running);
4427 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4428 int shift, int sllp)
4430 (*sps)->page_shift = shift;
4431 (*sps)->slb_enc = sllp;
4432 (*sps)->enc[0].page_shift = shift;
4433 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4435 * Add 16MB MPSS support (may get filtered out by userspace)
4438 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4440 (*sps)->enc[1].page_shift = 24;
4441 (*sps)->enc[1].pte_enc = penc;
4447 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4448 struct kvm_ppc_smmu_info *info)
4450 struct kvm_ppc_one_seg_page_size *sps;
4453 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4454 * POWER7 doesn't support keys for instruction accesses,
4455 * POWER8 and POWER9 do.
4457 info->data_keys = 32;
4458 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4460 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4461 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4462 info->slb_size = 32;
4464 /* We only support these sizes for now, and no muti-size segments */
4465 sps = &info->sps[0];
4466 kvmppc_add_seg_page_size(&sps, 12, 0);
4467 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4468 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4470 /* If running as a nested hypervisor, we don't support HPT guests */
4471 if (kvmhv_on_pseries())
4472 info->flags |= KVM_PPC_NO_HASH;
4478 * Get (and clear) the dirty memory log for a memory slot.
4480 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4481 struct kvm_dirty_log *log)
4483 struct kvm_memslots *slots;
4484 struct kvm_memory_slot *memslot;
4487 unsigned long *buf, *p;
4488 struct kvm_vcpu *vcpu;
4490 mutex_lock(&kvm->slots_lock);
4493 if (log->slot >= KVM_USER_MEM_SLOTS)
4496 slots = kvm_memslots(kvm);
4497 memslot = id_to_memslot(slots, log->slot);
4499 if (!memslot || !memslot->dirty_bitmap)
4503 * Use second half of bitmap area because both HPT and radix
4504 * accumulate bits in the first half.
4506 n = kvm_dirty_bitmap_bytes(memslot);
4507 buf = memslot->dirty_bitmap + n / sizeof(long);
4510 if (kvm_is_radix(kvm))
4511 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4513 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4518 * We accumulate dirty bits in the first half of the
4519 * memslot's dirty_bitmap area, for when pages are paged
4520 * out or modified by the host directly. Pick up these
4521 * bits and add them to the map.
4523 p = memslot->dirty_bitmap;
4524 for (i = 0; i < n / sizeof(long); ++i)
4525 buf[i] |= xchg(&p[i], 0);
4527 /* Harvest dirty bits from VPA and DTL updates */
4528 /* Note: we never modify the SLB shadow buffer areas */
4529 kvm_for_each_vcpu(i, vcpu, kvm) {
4530 spin_lock(&vcpu->arch.vpa_update_lock);
4531 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4532 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4533 spin_unlock(&vcpu->arch.vpa_update_lock);
4537 if (copy_to_user(log->dirty_bitmap, buf, n))
4542 mutex_unlock(&kvm->slots_lock);
4546 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4548 vfree(slot->arch.rmap);
4549 slot->arch.rmap = NULL;
4552 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4553 struct kvm_memory_slot *slot,
4554 const struct kvm_userspace_memory_region *mem,
4555 enum kvm_mr_change change)
4557 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4559 if (change == KVM_MR_CREATE) {
4560 slot->arch.rmap = vzalloc(array_size(npages,
4561 sizeof(*slot->arch.rmap)));
4562 if (!slot->arch.rmap)
4569 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4570 const struct kvm_userspace_memory_region *mem,
4571 const struct kvm_memory_slot *old,
4572 const struct kvm_memory_slot *new,
4573 enum kvm_mr_change change)
4575 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4578 * If we are making a new memslot, it might make
4579 * some address that was previously cached as emulated
4580 * MMIO be no longer emulated MMIO, so invalidate
4581 * all the caches of emulated MMIO translations.
4584 atomic64_inc(&kvm->arch.mmio_update);
4587 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4588 * have already called kvm_arch_flush_shadow_memslot() to
4589 * flush shadow mappings. For KVM_MR_CREATE we have no
4590 * previous mappings. So the only case to handle is
4591 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4593 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4594 * to get rid of any THP PTEs in the partition-scoped page tables
4595 * so we can track dirtiness at the page level; we flush when
4596 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4599 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4600 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4601 kvmppc_radix_flush_memslot(kvm, old);
4603 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4605 if (!kvm->arch.secure_guest)
4611 * @TODO kvmppc_uvmem_memslot_create() can fail and
4612 * return error. Fix this.
4614 kvmppc_uvmem_memslot_create(kvm, new);
4617 kvmppc_uvmem_memslot_delete(kvm, old);
4620 /* TODO: Handle KVM_MR_MOVE */
4626 * Update LPCR values in kvm->arch and in vcores.
4627 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4628 * of kvm->arch.lpcr update).
4630 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4635 if ((kvm->arch.lpcr & mask) == lpcr)
4638 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4640 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4641 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4644 spin_lock(&vc->lock);
4645 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4646 spin_unlock(&vc->lock);
4647 if (++cores_done >= kvm->arch.online_vcores)
4652 void kvmppc_setup_partition_table(struct kvm *kvm)
4654 unsigned long dw0, dw1;
4656 if (!kvm_is_radix(kvm)) {
4657 /* PS field - page size for VRMA */
4658 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4659 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4660 /* HTABSIZE and HTABORG fields */
4661 dw0 |= kvm->arch.sdr1;
4663 /* Second dword as set by userspace */
4664 dw1 = kvm->arch.process_table;
4666 dw0 = PATB_HR | radix__get_tree_size() |
4667 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4668 dw1 = PATB_GR | kvm->arch.process_table;
4670 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4674 * Set up HPT (hashed page table) and RMA (real-mode area).
4675 * Must be called with kvm->arch.mmu_setup_lock held.
4677 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4680 struct kvm *kvm = vcpu->kvm;
4682 struct kvm_memory_slot *memslot;
4683 struct vm_area_struct *vma;
4684 unsigned long lpcr = 0, senc;
4685 unsigned long psize, porder;
4688 /* Allocate hashed page table (if not done already) and reset it */
4689 if (!kvm->arch.hpt.virt) {
4690 int order = KVM_DEFAULT_HPT_ORDER;
4691 struct kvm_hpt_info info;
4693 err = kvmppc_allocate_hpt(&info, order);
4694 /* If we get here, it means userspace didn't specify a
4695 * size explicitly. So, try successively smaller
4696 * sizes if the default failed. */
4697 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4698 err = kvmppc_allocate_hpt(&info, order);
4701 pr_err("KVM: Couldn't alloc HPT\n");
4705 kvmppc_set_hpt(kvm, &info);
4708 /* Look up the memslot for guest physical address 0 */
4709 srcu_idx = srcu_read_lock(&kvm->srcu);
4710 memslot = gfn_to_memslot(kvm, 0);
4712 /* We must have some memory at 0 by now */
4714 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4717 /* Look up the VMA for the start of this memory slot */
4718 hva = memslot->userspace_addr;
4719 mmap_read_lock(kvm->mm);
4720 vma = find_vma(kvm->mm, hva);
4721 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4724 psize = vma_kernel_pagesize(vma);
4726 mmap_read_unlock(kvm->mm);
4728 /* We can handle 4k, 64k or 16M pages in the VRMA */
4729 if (psize >= 0x1000000)
4731 else if (psize >= 0x10000)
4735 porder = __ilog2(psize);
4737 senc = slb_pgsize_encoding(psize);
4738 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4739 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4740 /* Create HPTEs in the hash page table for the VRMA */
4741 kvmppc_map_vrma(vcpu, memslot, porder);
4743 /* Update VRMASD field in the LPCR */
4744 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4745 /* the -4 is to account for senc values starting at 0x10 */
4746 lpcr = senc << (LPCR_VRMASD_SH - 4);
4747 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4750 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4754 srcu_read_unlock(&kvm->srcu, srcu_idx);
4759 mmap_read_unlock(kvm->mm);
4764 * Must be called with kvm->arch.mmu_setup_lock held and
4765 * mmu_ready = 0 and no vcpus running.
4767 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4769 if (nesting_enabled(kvm))
4770 kvmhv_release_all_nested(kvm);
4771 kvmppc_rmap_reset(kvm);
4772 kvm->arch.process_table = 0;
4773 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4774 spin_lock(&kvm->mmu_lock);
4775 kvm->arch.radix = 0;
4776 spin_unlock(&kvm->mmu_lock);
4777 kvmppc_free_radix(kvm);
4778 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4779 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4784 * Must be called with kvm->arch.mmu_setup_lock held and
4785 * mmu_ready = 0 and no vcpus running.
4787 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4791 err = kvmppc_init_vm_radix(kvm);
4794 kvmppc_rmap_reset(kvm);
4795 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4796 spin_lock(&kvm->mmu_lock);
4797 kvm->arch.radix = 1;
4798 spin_unlock(&kvm->mmu_lock);
4799 kvmppc_free_hpt(&kvm->arch.hpt);
4800 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4801 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4805 #ifdef CONFIG_KVM_XICS
4807 * Allocate a per-core structure for managing state about which cores are
4808 * running in the host versus the guest and for exchanging data between
4809 * real mode KVM and CPU running in the host.
4810 * This is only done for the first VM.
4811 * The allocated structure stays even if all VMs have stopped.
4812 * It is only freed when the kvm-hv module is unloaded.
4813 * It's OK for this routine to fail, we just don't support host
4814 * core operations like redirecting H_IPI wakeups.
4816 void kvmppc_alloc_host_rm_ops(void)
4818 struct kvmppc_host_rm_ops *ops;
4819 unsigned long l_ops;
4823 /* Not the first time here ? */
4824 if (kvmppc_host_rm_ops_hv != NULL)
4827 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4831 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4832 ops->rm_core = kzalloc(size, GFP_KERNEL);
4834 if (!ops->rm_core) {
4841 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4842 if (!cpu_online(cpu))
4845 core = cpu >> threads_shift;
4846 ops->rm_core[core].rm_state.in_host = 1;
4849 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4852 * Make the contents of the kvmppc_host_rm_ops structure visible
4853 * to other CPUs before we assign it to the global variable.
4854 * Do an atomic assignment (no locks used here), but if someone
4855 * beats us to it, just free our copy and return.
4858 l_ops = (unsigned long) ops;
4860 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4862 kfree(ops->rm_core);
4867 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4868 "ppc/kvm_book3s:prepare",
4869 kvmppc_set_host_core,
4870 kvmppc_clear_host_core);
4874 void kvmppc_free_host_rm_ops(void)
4876 if (kvmppc_host_rm_ops_hv) {
4877 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4878 kfree(kvmppc_host_rm_ops_hv->rm_core);
4879 kfree(kvmppc_host_rm_ops_hv);
4880 kvmppc_host_rm_ops_hv = NULL;
4885 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4887 unsigned long lpcr, lpid;
4891 mutex_init(&kvm->arch.uvmem_lock);
4892 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4893 mutex_init(&kvm->arch.mmu_setup_lock);
4895 /* Allocate the guest's logical partition ID */
4897 lpid = kvmppc_alloc_lpid();
4900 kvm->arch.lpid = lpid;
4902 kvmppc_alloc_host_rm_ops();
4904 kvmhv_vm_nested_init(kvm);
4907 * Since we don't flush the TLB when tearing down a VM,
4908 * and this lpid might have previously been used,
4909 * make sure we flush on each core before running the new VM.
4910 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4911 * does this flush for us.
4913 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4914 cpumask_setall(&kvm->arch.need_tlb_flush);
4916 /* Start out with the default set of hcalls enabled */
4917 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4918 sizeof(kvm->arch.enabled_hcalls));
4920 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4921 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4923 /* Init LPCR for virtual RMA mode */
4924 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4925 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4926 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4927 lpcr &= LPCR_PECE | LPCR_LPES;
4931 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4932 LPCR_VPM0 | LPCR_VPM1;
4933 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4934 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4935 /* On POWER8 turn on online bit to enable PURR/SPURR */
4936 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4939 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4940 * Set HVICE bit to enable hypervisor virtualization interrupts.
4941 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4942 * be unnecessary but better safe than sorry in case we re-enable
4943 * EE in HV mode with this LPCR still set)
4945 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4947 lpcr |= LPCR_HVICE | LPCR_HEIC;
4950 * If xive is enabled, we route 0x500 interrupts directly
4958 * If the host uses radix, the guest starts out as radix.
4960 if (radix_enabled()) {
4961 kvm->arch.radix = 1;
4962 kvm->arch.mmu_ready = 1;
4964 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4965 ret = kvmppc_init_vm_radix(kvm);
4967 kvmppc_free_lpid(kvm->arch.lpid);
4970 kvmppc_setup_partition_table(kvm);
4973 kvm->arch.lpcr = lpcr;
4975 /* Initialization for future HPT resizes */
4976 kvm->arch.resize_hpt = NULL;
4979 * Work out how many sets the TLB has, for the use of
4980 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4982 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
4984 * P10 will flush all the congruence class with a single tlbiel
4986 kvm->arch.tlb_sets = 1;
4987 } else if (radix_enabled())
4988 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4989 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4990 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4991 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4992 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4994 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4997 * Track that we now have a HV mode VM active. This blocks secondary
4998 * CPU threads from coming online.
4999 * On POWER9, we only need to do this if the "indep_threads_mode"
5000 * module parameter has been set to N.
5002 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5003 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5004 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5005 kvm->arch.threads_indep = true;
5007 kvm->arch.threads_indep = indep_threads_mode;
5010 if (!kvm->arch.threads_indep)
5011 kvm_hv_vm_activated();
5014 * Initialize smt_mode depending on processor.
5015 * POWER8 and earlier have to use "strict" threading, where
5016 * all vCPUs in a vcore have to run on the same (sub)core,
5017 * whereas on POWER9 the threads can each run a different
5020 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5021 kvm->arch.smt_mode = threads_per_subcore;
5023 kvm->arch.smt_mode = 1;
5024 kvm->arch.emul_smt_mode = 1;
5027 * Create a debugfs directory for the VM
5029 snprintf(buf, sizeof(buf), "vm%d", current->pid);
5030 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5031 kvmppc_mmu_debugfs_init(kvm);
5032 if (radix_enabled())
5033 kvmhv_radix_debugfs_init(kvm);
5038 static void kvmppc_free_vcores(struct kvm *kvm)
5042 for (i = 0; i < KVM_MAX_VCORES; ++i)
5043 kfree(kvm->arch.vcores[i]);
5044 kvm->arch.online_vcores = 0;
5047 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5049 debugfs_remove_recursive(kvm->arch.debugfs_dir);
5051 if (!kvm->arch.threads_indep)
5052 kvm_hv_vm_deactivated();
5054 kvmppc_free_vcores(kvm);
5057 if (kvm_is_radix(kvm))
5058 kvmppc_free_radix(kvm);
5060 kvmppc_free_hpt(&kvm->arch.hpt);
5062 /* Perform global invalidation and return lpid to the pool */
5063 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5064 if (nesting_enabled(kvm))
5065 kvmhv_release_all_nested(kvm);
5066 kvm->arch.process_table = 0;
5067 if (kvm->arch.secure_guest)
5068 uv_svm_terminate(kvm->arch.lpid);
5069 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5072 kvmppc_free_lpid(kvm->arch.lpid);
5074 kvmppc_free_pimap(kvm);
5077 /* We don't need to emulate any privileged instructions or dcbz */
5078 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5079 unsigned int inst, int *advance)
5081 return EMULATE_FAIL;
5084 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5087 return EMULATE_FAIL;
5090 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5093 return EMULATE_FAIL;
5096 static int kvmppc_core_check_processor_compat_hv(void)
5098 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5099 cpu_has_feature(CPU_FTR_ARCH_206))
5102 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5103 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5109 #ifdef CONFIG_KVM_XICS
5111 void kvmppc_free_pimap(struct kvm *kvm)
5113 kfree(kvm->arch.pimap);
5116 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5118 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5121 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5123 struct irq_desc *desc;
5124 struct kvmppc_irq_map *irq_map;
5125 struct kvmppc_passthru_irqmap *pimap;
5126 struct irq_chip *chip;
5129 if (!kvm_irq_bypass)
5132 desc = irq_to_desc(host_irq);
5136 mutex_lock(&kvm->lock);
5138 pimap = kvm->arch.pimap;
5139 if (pimap == NULL) {
5140 /* First call, allocate structure to hold IRQ map */
5141 pimap = kvmppc_alloc_pimap();
5142 if (pimap == NULL) {
5143 mutex_unlock(&kvm->lock);
5146 kvm->arch.pimap = pimap;
5150 * For now, we only support interrupts for which the EOI operation
5151 * is an OPAL call followed by a write to XIRR, since that's
5152 * what our real-mode EOI code does, or a XIVE interrupt
5154 chip = irq_data_get_irq_chip(&desc->irq_data);
5155 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5156 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5157 host_irq, guest_gsi);
5158 mutex_unlock(&kvm->lock);
5163 * See if we already have an entry for this guest IRQ number.
5164 * If it's mapped to a hardware IRQ number, that's an error,
5165 * otherwise re-use this entry.
5167 for (i = 0; i < pimap->n_mapped; i++) {
5168 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5169 if (pimap->mapped[i].r_hwirq) {
5170 mutex_unlock(&kvm->lock);
5177 if (i == KVMPPC_PIRQ_MAPPED) {
5178 mutex_unlock(&kvm->lock);
5179 return -EAGAIN; /* table is full */
5182 irq_map = &pimap->mapped[i];
5184 irq_map->v_hwirq = guest_gsi;
5185 irq_map->desc = desc;
5188 * Order the above two stores before the next to serialize with
5189 * the KVM real mode handler.
5192 irq_map->r_hwirq = desc->irq_data.hwirq;
5194 if (i == pimap->n_mapped)
5198 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5200 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5202 irq_map->r_hwirq = 0;
5204 mutex_unlock(&kvm->lock);
5209 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5211 struct irq_desc *desc;
5212 struct kvmppc_passthru_irqmap *pimap;
5215 if (!kvm_irq_bypass)
5218 desc = irq_to_desc(host_irq);
5222 mutex_lock(&kvm->lock);
5223 if (!kvm->arch.pimap)
5226 pimap = kvm->arch.pimap;
5228 for (i = 0; i < pimap->n_mapped; i++) {
5229 if (guest_gsi == pimap->mapped[i].v_hwirq)
5233 if (i == pimap->n_mapped) {
5234 mutex_unlock(&kvm->lock);
5239 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5241 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5243 /* invalidate the entry (what do do on error from the above ?) */
5244 pimap->mapped[i].r_hwirq = 0;
5247 * We don't free this structure even when the count goes to
5248 * zero. The structure is freed when we destroy the VM.
5251 mutex_unlock(&kvm->lock);
5255 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5256 struct irq_bypass_producer *prod)
5259 struct kvm_kernel_irqfd *irqfd =
5260 container_of(cons, struct kvm_kernel_irqfd, consumer);
5262 irqfd->producer = prod;
5264 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5266 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5267 prod->irq, irqfd->gsi, ret);
5272 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5273 struct irq_bypass_producer *prod)
5276 struct kvm_kernel_irqfd *irqfd =
5277 container_of(cons, struct kvm_kernel_irqfd, consumer);
5279 irqfd->producer = NULL;
5282 * When producer of consumer is unregistered, we change back to
5283 * default external interrupt handling mode - KVM real mode
5284 * will switch back to host.
5286 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5288 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5289 prod->irq, irqfd->gsi, ret);
5293 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5294 unsigned int ioctl, unsigned long arg)
5296 struct kvm *kvm __maybe_unused = filp->private_data;
5297 void __user *argp = (void __user *)arg;
5302 case KVM_PPC_ALLOCATE_HTAB: {
5305 /* If we're a nested hypervisor, we currently only support radix */
5306 if (kvmhv_on_pseries()) {
5312 if (get_user(htab_order, (u32 __user *)argp))
5314 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5321 case KVM_PPC_GET_HTAB_FD: {
5322 struct kvm_get_htab_fd ghf;
5325 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5327 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5331 case KVM_PPC_RESIZE_HPT_PREPARE: {
5332 struct kvm_ppc_resize_hpt rhpt;
5335 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5338 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5342 case KVM_PPC_RESIZE_HPT_COMMIT: {
5343 struct kvm_ppc_resize_hpt rhpt;
5346 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5349 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5361 * List of hcall numbers to enable by default.
5362 * For compatibility with old userspace, we enable by default
5363 * all hcalls that were implemented before the hcall-enabling
5364 * facility was added. Note this list should not include H_RTAS.
5366 static unsigned int default_hcall_list[] = {
5380 #ifdef CONFIG_KVM_XICS
5391 static void init_default_hcalls(void)
5396 for (i = 0; default_hcall_list[i]; ++i) {
5397 hcall = default_hcall_list[i];
5398 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5399 __set_bit(hcall / 4, default_enabled_hcalls);
5403 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5409 /* If not on a POWER9, reject it */
5410 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5413 /* If any unknown flags set, reject it */
5414 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5417 /* GR (guest radix) bit in process_table field must match */
5418 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5419 if (!!(cfg->process_table & PATB_GR) != radix)
5422 /* Process table size field must be reasonable, i.e. <= 24 */
5423 if ((cfg->process_table & PRTS_MASK) > 24)
5426 /* We can change a guest to/from radix now, if the host is radix */
5427 if (radix && !radix_enabled())
5430 /* If we're a nested hypervisor, we currently only support radix */
5431 if (kvmhv_on_pseries() && !radix)
5434 mutex_lock(&kvm->arch.mmu_setup_lock);
5435 if (radix != kvm_is_radix(kvm)) {
5436 if (kvm->arch.mmu_ready) {
5437 kvm->arch.mmu_ready = 0;
5438 /* order mmu_ready vs. vcpus_running */
5440 if (atomic_read(&kvm->arch.vcpus_running)) {
5441 kvm->arch.mmu_ready = 1;
5447 err = kvmppc_switch_mmu_to_radix(kvm);
5449 err = kvmppc_switch_mmu_to_hpt(kvm);
5454 kvm->arch.process_table = cfg->process_table;
5455 kvmppc_setup_partition_table(kvm);
5457 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5458 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5462 mutex_unlock(&kvm->arch.mmu_setup_lock);
5466 static int kvmhv_enable_nested(struct kvm *kvm)
5470 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5473 /* kvm == NULL means the caller is testing if the capability exists */
5475 kvm->arch.nested_enable = true;
5479 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5484 if (kvmhv_vcpu_is_radix(vcpu)) {
5485 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5491 /* For now quadrants are the only way to access nested guest memory */
5492 if (rc && vcpu->arch.nested)
5498 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5503 if (kvmhv_vcpu_is_radix(vcpu)) {
5504 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5510 /* For now quadrants are the only way to access nested guest memory */
5511 if (rc && vcpu->arch.nested)
5517 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5519 unpin_vpa(kvm, vpa);
5521 vpa->pinned_addr = NULL;
5523 vpa->update_pending = 0;
5527 * Enable a guest to become a secure VM, or test whether
5528 * that could be enabled.
5529 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5530 * tested (kvm == NULL) or enabled (kvm != NULL).
5532 static int kvmhv_enable_svm(struct kvm *kvm)
5534 if (!kvmppc_uvmem_available())
5537 kvm->arch.svm_enabled = 1;
5542 * IOCTL handler to turn off secure mode of guest
5544 * - Release all device pages
5545 * - Issue ucall to terminate the guest on the UV side
5546 * - Unpin the VPA pages.
5547 * - Reinit the partition scoped page tables
5549 static int kvmhv_svm_off(struct kvm *kvm)
5551 struct kvm_vcpu *vcpu;
5557 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5560 mutex_lock(&kvm->arch.mmu_setup_lock);
5561 mmu_was_ready = kvm->arch.mmu_ready;
5562 if (kvm->arch.mmu_ready) {
5563 kvm->arch.mmu_ready = 0;
5564 /* order mmu_ready vs. vcpus_running */
5566 if (atomic_read(&kvm->arch.vcpus_running)) {
5567 kvm->arch.mmu_ready = 1;
5573 srcu_idx = srcu_read_lock(&kvm->srcu);
5574 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5575 struct kvm_memory_slot *memslot;
5576 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5581 kvm_for_each_memslot(memslot, slots) {
5582 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5583 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5586 srcu_read_unlock(&kvm->srcu, srcu_idx);
5588 ret = uv_svm_terminate(kvm->arch.lpid);
5589 if (ret != U_SUCCESS) {
5595 * When secure guest is reset, all the guest pages are sent
5596 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5597 * chance to run and unpin their VPA pages. Unpinning of all
5598 * VPA pages is done here explicitly so that VPA pages
5599 * can be migrated to the secure side.
5601 * This is required to for the secure SMP guest to reboot
5604 kvm_for_each_vcpu(i, vcpu, kvm) {
5605 spin_lock(&vcpu->arch.vpa_update_lock);
5606 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5607 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5608 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5609 spin_unlock(&vcpu->arch.vpa_update_lock);
5612 kvmppc_setup_partition_table(kvm);
5613 kvm->arch.secure_guest = 0;
5614 kvm->arch.mmu_ready = mmu_was_ready;
5616 mutex_unlock(&kvm->arch.mmu_setup_lock);
5620 static int kvmhv_enable_dawr1(struct kvm *kvm)
5622 if (!cpu_has_feature(CPU_FTR_DAWR1))
5625 /* kvm == NULL means the caller is testing if the capability exists */
5627 kvm->arch.dawr1_enabled = true;
5631 static bool kvmppc_hash_v3_possible(void)
5633 if (radix_enabled() && no_mixing_hpt_and_radix)
5636 return cpu_has_feature(CPU_FTR_ARCH_300) &&
5637 cpu_has_feature(CPU_FTR_HVMODE);
5640 static struct kvmppc_ops kvm_ops_hv = {
5641 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5642 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5643 .get_one_reg = kvmppc_get_one_reg_hv,
5644 .set_one_reg = kvmppc_set_one_reg_hv,
5645 .vcpu_load = kvmppc_core_vcpu_load_hv,
5646 .vcpu_put = kvmppc_core_vcpu_put_hv,
5647 .inject_interrupt = kvmppc_inject_interrupt_hv,
5648 .set_msr = kvmppc_set_msr_hv,
5649 .vcpu_run = kvmppc_vcpu_run_hv,
5650 .vcpu_create = kvmppc_core_vcpu_create_hv,
5651 .vcpu_free = kvmppc_core_vcpu_free_hv,
5652 .check_requests = kvmppc_core_check_requests_hv,
5653 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5654 .flush_memslot = kvmppc_core_flush_memslot_hv,
5655 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5656 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5657 .unmap_hva_range = kvm_unmap_hva_range_hv,
5658 .age_hva = kvm_age_hva_hv,
5659 .test_age_hva = kvm_test_age_hva_hv,
5660 .set_spte_hva = kvm_set_spte_hva_hv,
5661 .free_memslot = kvmppc_core_free_memslot_hv,
5662 .init_vm = kvmppc_core_init_vm_hv,
5663 .destroy_vm = kvmppc_core_destroy_vm_hv,
5664 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5665 .emulate_op = kvmppc_core_emulate_op_hv,
5666 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5667 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5668 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5669 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5670 .hcall_implemented = kvmppc_hcall_impl_hv,
5671 #ifdef CONFIG_KVM_XICS
5672 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5673 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5675 .configure_mmu = kvmhv_configure_mmu,
5676 .get_rmmu_info = kvmhv_get_rmmu_info,
5677 .set_smt_mode = kvmhv_set_smt_mode,
5678 .enable_nested = kvmhv_enable_nested,
5679 .load_from_eaddr = kvmhv_load_from_eaddr,
5680 .store_to_eaddr = kvmhv_store_to_eaddr,
5681 .enable_svm = kvmhv_enable_svm,
5682 .svm_off = kvmhv_svm_off,
5683 .enable_dawr1 = kvmhv_enable_dawr1,
5684 .hash_v3_possible = kvmppc_hash_v3_possible,
5687 static int kvm_init_subcore_bitmap(void)
5690 int nr_cores = cpu_nr_cores();
5691 struct sibling_subcore_state *sibling_subcore_state;
5693 for (i = 0; i < nr_cores; i++) {
5694 int first_cpu = i * threads_per_core;
5695 int node = cpu_to_node(first_cpu);
5697 /* Ignore if it is already allocated. */
5698 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5701 sibling_subcore_state =
5702 kzalloc_node(sizeof(struct sibling_subcore_state),
5704 if (!sibling_subcore_state)
5708 for (j = 0; j < threads_per_core; j++) {
5709 int cpu = first_cpu + j;
5711 paca_ptrs[cpu]->sibling_subcore_state =
5712 sibling_subcore_state;
5718 static int kvmppc_radix_possible(void)
5720 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5723 static int kvmppc_book3s_init_hv(void)
5727 if (!tlbie_capable) {
5728 pr_err("KVM-HV: Host does not support TLBIE\n");
5733 * FIXME!! Do we need to check on all cpus ?
5735 r = kvmppc_core_check_processor_compat_hv();
5739 r = kvmhv_nested_init();
5743 r = kvm_init_subcore_bitmap();
5748 * We need a way of accessing the XICS interrupt controller,
5749 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5750 * indirectly, via OPAL.
5753 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5754 !local_paca->kvm_hstate.xics_phys) {
5755 struct device_node *np;
5757 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5759 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5762 /* presence of intc confirmed - node can be dropped again */
5767 kvm_ops_hv.owner = THIS_MODULE;
5768 kvmppc_hv_ops = &kvm_ops_hv;
5770 init_default_hcalls();
5774 r = kvmppc_mmu_hv_init();
5778 if (kvmppc_radix_possible())
5779 r = kvmppc_radix_init();
5782 * POWER9 chips before version 2.02 can't have some threads in
5783 * HPT mode and some in radix mode on the same core.
5785 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5786 unsigned int pvr = mfspr(SPRN_PVR);
5787 if ((pvr >> 16) == PVR_POWER9 &&
5788 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5789 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5790 no_mixing_hpt_and_radix = true;
5793 r = kvmppc_uvmem_init();
5795 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5800 static void kvmppc_book3s_exit_hv(void)
5802 kvmppc_uvmem_free();
5803 kvmppc_free_host_rm_ops();
5804 if (kvmppc_radix_possible())
5805 kvmppc_radix_exit();
5806 kvmppc_hv_ops = NULL;
5807 kvmhv_nested_exit();
5810 module_init(kvmppc_book3s_init_hv);
5811 module_exit(kvmppc_book3s_exit_hv);
5812 MODULE_LICENSE("GPL");
5813 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5814 MODULE_ALIAS("devname:kvm");