KVM: PPC: Book3S HV: Decouple the debug timing from the P8 entry path
[linux-2.6-microblaze.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46
47 #include <asm/ftrace.h>
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/archrandom.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/interrupt.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/pmc.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78 #include <asm/kvm_book3s_uvmem.h>
79 #include <asm/ultravisor.h>
80 #include <asm/dtl.h>
81 #include <asm/plpar_wrappers.h>
82
83 #include "book3s.h"
84 #include "book3s_hv.h"
85
86 #define CREATE_TRACE_POINTS
87 #include "trace_hv.h"
88
89 /* #define EXIT_DEBUG */
90 /* #define EXIT_DEBUG_SIMPLE */
91 /* #define EXIT_DEBUG_INT */
92
93 /* Used to indicate that a guest page fault needs to be handled */
94 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
95 /* Used to indicate that a guest passthrough interrupt needs to be handled */
96 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
97
98 /* Used as a "null" value for timebase values */
99 #define TB_NIL  (~(u64)0)
100
101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
102
103 static int dynamic_mt_modes = 6;
104 module_param(dynamic_mt_modes, int, 0644);
105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
106 static int target_smt_mode;
107 module_param(target_smt_mode, int, 0644);
108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
109
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
113
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116         .set = param_set_int,
117         .get = param_get_int,
118 };
119
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131
132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
133
134 /*
135  * RWMR values for POWER8.  These control the rate at which PURR
136  * and SPURR count and should be set according to the number of
137  * online threads in the vcore being run.
138  */
139 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
140 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
141 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
142 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
143 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
147
148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
149         RWMR_RPA_P8_1THREAD,
150         RWMR_RPA_P8_1THREAD,
151         RWMR_RPA_P8_2THREAD,
152         RWMR_RPA_P8_3THREAD,
153         RWMR_RPA_P8_4THREAD,
154         RWMR_RPA_P8_5THREAD,
155         RWMR_RPA_P8_6THREAD,
156         RWMR_RPA_P8_7THREAD,
157         RWMR_RPA_P8_8THREAD,
158 };
159
160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
161                 int *ip)
162 {
163         int i = *ip;
164         struct kvm_vcpu *vcpu;
165
166         while (++i < MAX_SMT_THREADS) {
167                 vcpu = READ_ONCE(vc->runnable_threads[i]);
168                 if (vcpu) {
169                         *ip = i;
170                         return vcpu;
171                 }
172         }
173         return NULL;
174 }
175
176 /* Used to traverse the list of runnable threads for a given vcore */
177 #define for_each_runnable_thread(i, vcpu, vc) \
178         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
179
180 static bool kvmppc_ipi_thread(int cpu)
181 {
182         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
183
184         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
185         if (kvmhv_on_pseries())
186                 return false;
187
188         /* On POWER9 we can use msgsnd to IPI any cpu */
189         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
190                 msg |= get_hard_smp_processor_id(cpu);
191                 smp_mb();
192                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
193                 return true;
194         }
195
196         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
197         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
198                 preempt_disable();
199                 if (cpu_first_thread_sibling(cpu) ==
200                     cpu_first_thread_sibling(smp_processor_id())) {
201                         msg |= cpu_thread_in_core(cpu);
202                         smp_mb();
203                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204                         preempt_enable();
205                         return true;
206                 }
207                 preempt_enable();
208         }
209
210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
211         if (cpu >= 0 && cpu < nr_cpu_ids) {
212                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
213                         xics_wake_cpu(cpu);
214                         return true;
215                 }
216                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
217                 return true;
218         }
219 #endif
220
221         return false;
222 }
223
224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
225 {
226         int cpu;
227         struct rcuwait *waitp;
228
229         /*
230          * rcuwait_wake_up contains smp_mb() which orders prior stores that
231          * create pending work vs below loads of cpu fields. The other side
232          * is the barrier in vcpu run that orders setting the cpu fields vs
233          * testing for pending work.
234          */
235
236         waitp = kvm_arch_vcpu_get_wait(vcpu);
237         if (rcuwait_wake_up(waitp))
238                 ++vcpu->stat.generic.halt_wakeup;
239
240         cpu = READ_ONCE(vcpu->arch.thread_cpu);
241         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242                 return;
243
244         /* CPU points to the first thread of the core */
245         cpu = vcpu->cpu;
246         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247                 smp_send_reschedule(cpu);
248 }
249
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
284 {
285         unsigned long flags;
286
287         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
288
289         spin_lock_irqsave(&vc->stoltb_lock, flags);
290         vc->preempt_tb = tb;
291         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
295 {
296         unsigned long flags;
297
298         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
299
300         spin_lock_irqsave(&vc->stoltb_lock, flags);
301         if (vc->preempt_tb != TB_NIL) {
302                 vc->stolen_tb += tb - vc->preempt_tb;
303                 vc->preempt_tb = TB_NIL;
304         }
305         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
306 }
307
308 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
309 {
310         struct kvmppc_vcore *vc = vcpu->arch.vcore;
311         unsigned long flags;
312         u64 now;
313
314         if (cpu_has_feature(CPU_FTR_ARCH_300))
315                 return;
316
317         now = mftb();
318
319         /*
320          * We can test vc->runner without taking the vcore lock,
321          * because only this task ever sets vc->runner to this
322          * vcpu, and once it is set to this vcpu, only this task
323          * ever sets it to NULL.
324          */
325         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
326                 kvmppc_core_end_stolen(vc, now);
327
328         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
329         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
330             vcpu->arch.busy_preempt != TB_NIL) {
331                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
332                 vcpu->arch.busy_preempt = TB_NIL;
333         }
334         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
335 }
336
337 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
338 {
339         struct kvmppc_vcore *vc = vcpu->arch.vcore;
340         unsigned long flags;
341         u64 now;
342
343         if (cpu_has_feature(CPU_FTR_ARCH_300))
344                 return;
345
346         now = mftb();
347
348         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
349                 kvmppc_core_start_stolen(vc, now);
350
351         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
352         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
353                 vcpu->arch.busy_preempt = now;
354         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
355 }
356
357 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
358 {
359         vcpu->arch.pvr = pvr;
360 }
361
362 /* Dummy value used in computing PCR value below */
363 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
364
365 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
366 {
367         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
368         struct kvmppc_vcore *vc = vcpu->arch.vcore;
369
370         /* We can (emulate) our own architecture version and anything older */
371         if (cpu_has_feature(CPU_FTR_ARCH_31))
372                 host_pcr_bit = PCR_ARCH_31;
373         else if (cpu_has_feature(CPU_FTR_ARCH_300))
374                 host_pcr_bit = PCR_ARCH_300;
375         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
376                 host_pcr_bit = PCR_ARCH_207;
377         else if (cpu_has_feature(CPU_FTR_ARCH_206))
378                 host_pcr_bit = PCR_ARCH_206;
379         else
380                 host_pcr_bit = PCR_ARCH_205;
381
382         /* Determine lowest PCR bit needed to run guest in given PVR level */
383         guest_pcr_bit = host_pcr_bit;
384         if (arch_compat) {
385                 switch (arch_compat) {
386                 case PVR_ARCH_205:
387                         guest_pcr_bit = PCR_ARCH_205;
388                         break;
389                 case PVR_ARCH_206:
390                 case PVR_ARCH_206p:
391                         guest_pcr_bit = PCR_ARCH_206;
392                         break;
393                 case PVR_ARCH_207:
394                         guest_pcr_bit = PCR_ARCH_207;
395                         break;
396                 case PVR_ARCH_300:
397                         guest_pcr_bit = PCR_ARCH_300;
398                         break;
399                 case PVR_ARCH_31:
400                         guest_pcr_bit = PCR_ARCH_31;
401                         break;
402                 default:
403                         return -EINVAL;
404                 }
405         }
406
407         /* Check requested PCR bits don't exceed our capabilities */
408         if (guest_pcr_bit > host_pcr_bit)
409                 return -EINVAL;
410
411         spin_lock(&vc->lock);
412         vc->arch_compat = arch_compat;
413         /*
414          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
415          * Also set all reserved PCR bits
416          */
417         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
418         spin_unlock(&vc->lock);
419
420         return 0;
421 }
422
423 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
424 {
425         int r;
426
427         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
428         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
429                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
430         for (r = 0; r < 16; ++r)
431                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
432                        r, kvmppc_get_gpr(vcpu, r),
433                        r+16, kvmppc_get_gpr(vcpu, r+16));
434         pr_err("ctr = %.16lx  lr  = %.16lx\n",
435                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
436         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
437                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
438         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
439                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
440         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
441                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
442         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
443                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
444         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
445         pr_err("fault dar = %.16lx dsisr = %.8x\n",
446                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
447         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
448         for (r = 0; r < vcpu->arch.slb_max; ++r)
449                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
450                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
451         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
452                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
453                vcpu->arch.last_inst);
454 }
455
456 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
457 {
458         return kvm_get_vcpu_by_id(kvm, id);
459 }
460
461 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
462 {
463         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
464         vpa->yield_count = cpu_to_be32(1);
465 }
466
467 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
468                    unsigned long addr, unsigned long len)
469 {
470         /* check address is cacheline aligned */
471         if (addr & (L1_CACHE_BYTES - 1))
472                 return -EINVAL;
473         spin_lock(&vcpu->arch.vpa_update_lock);
474         if (v->next_gpa != addr || v->len != len) {
475                 v->next_gpa = addr;
476                 v->len = addr ? len : 0;
477                 v->update_pending = 1;
478         }
479         spin_unlock(&vcpu->arch.vpa_update_lock);
480         return 0;
481 }
482
483 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
484 struct reg_vpa {
485         u32 dummy;
486         union {
487                 __be16 hword;
488                 __be32 word;
489         } length;
490 };
491
492 static int vpa_is_registered(struct kvmppc_vpa *vpap)
493 {
494         if (vpap->update_pending)
495                 return vpap->next_gpa != 0;
496         return vpap->pinned_addr != NULL;
497 }
498
499 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
500                                        unsigned long flags,
501                                        unsigned long vcpuid, unsigned long vpa)
502 {
503         struct kvm *kvm = vcpu->kvm;
504         unsigned long len, nb;
505         void *va;
506         struct kvm_vcpu *tvcpu;
507         int err;
508         int subfunc;
509         struct kvmppc_vpa *vpap;
510
511         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
512         if (!tvcpu)
513                 return H_PARAMETER;
514
515         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
516         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
517             subfunc == H_VPA_REG_SLB) {
518                 /* Registering new area - address must be cache-line aligned */
519                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
520                         return H_PARAMETER;
521
522                 /* convert logical addr to kernel addr and read length */
523                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
524                 if (va == NULL)
525                         return H_PARAMETER;
526                 if (subfunc == H_VPA_REG_VPA)
527                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
528                 else
529                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
530                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
531
532                 /* Check length */
533                 if (len > nb || len < sizeof(struct reg_vpa))
534                         return H_PARAMETER;
535         } else {
536                 vpa = 0;
537                 len = 0;
538         }
539
540         err = H_PARAMETER;
541         vpap = NULL;
542         spin_lock(&tvcpu->arch.vpa_update_lock);
543
544         switch (subfunc) {
545         case H_VPA_REG_VPA:             /* register VPA */
546                 /*
547                  * The size of our lppaca is 1kB because of the way we align
548                  * it for the guest to avoid crossing a 4kB boundary. We only
549                  * use 640 bytes of the structure though, so we should accept
550                  * clients that set a size of 640.
551                  */
552                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
553                 if (len < sizeof(struct lppaca))
554                         break;
555                 vpap = &tvcpu->arch.vpa;
556                 err = 0;
557                 break;
558
559         case H_VPA_REG_DTL:             /* register DTL */
560                 if (len < sizeof(struct dtl_entry))
561                         break;
562                 len -= len % sizeof(struct dtl_entry);
563
564                 /* Check that they have previously registered a VPA */
565                 err = H_RESOURCE;
566                 if (!vpa_is_registered(&tvcpu->arch.vpa))
567                         break;
568
569                 vpap = &tvcpu->arch.dtl;
570                 err = 0;
571                 break;
572
573         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
574                 /* Check that they have previously registered a VPA */
575                 err = H_RESOURCE;
576                 if (!vpa_is_registered(&tvcpu->arch.vpa))
577                         break;
578
579                 vpap = &tvcpu->arch.slb_shadow;
580                 err = 0;
581                 break;
582
583         case H_VPA_DEREG_VPA:           /* deregister VPA */
584                 /* Check they don't still have a DTL or SLB buf registered */
585                 err = H_RESOURCE;
586                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
587                     vpa_is_registered(&tvcpu->arch.slb_shadow))
588                         break;
589
590                 vpap = &tvcpu->arch.vpa;
591                 err = 0;
592                 break;
593
594         case H_VPA_DEREG_DTL:           /* deregister DTL */
595                 vpap = &tvcpu->arch.dtl;
596                 err = 0;
597                 break;
598
599         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
600                 vpap = &tvcpu->arch.slb_shadow;
601                 err = 0;
602                 break;
603         }
604
605         if (vpap) {
606                 vpap->next_gpa = vpa;
607                 vpap->len = len;
608                 vpap->update_pending = 1;
609         }
610
611         spin_unlock(&tvcpu->arch.vpa_update_lock);
612
613         return err;
614 }
615
616 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
617 {
618         struct kvm *kvm = vcpu->kvm;
619         void *va;
620         unsigned long nb;
621         unsigned long gpa;
622
623         /*
624          * We need to pin the page pointed to by vpap->next_gpa,
625          * but we can't call kvmppc_pin_guest_page under the lock
626          * as it does get_user_pages() and down_read().  So we
627          * have to drop the lock, pin the page, then get the lock
628          * again and check that a new area didn't get registered
629          * in the meantime.
630          */
631         for (;;) {
632                 gpa = vpap->next_gpa;
633                 spin_unlock(&vcpu->arch.vpa_update_lock);
634                 va = NULL;
635                 nb = 0;
636                 if (gpa)
637                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
638                 spin_lock(&vcpu->arch.vpa_update_lock);
639                 if (gpa == vpap->next_gpa)
640                         break;
641                 /* sigh... unpin that one and try again */
642                 if (va)
643                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
644         }
645
646         vpap->update_pending = 0;
647         if (va && nb < vpap->len) {
648                 /*
649                  * If it's now too short, it must be that userspace
650                  * has changed the mappings underlying guest memory,
651                  * so unregister the region.
652                  */
653                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
654                 va = NULL;
655         }
656         if (vpap->pinned_addr)
657                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
658                                         vpap->dirty);
659         vpap->gpa = gpa;
660         vpap->pinned_addr = va;
661         vpap->dirty = false;
662         if (va)
663                 vpap->pinned_end = va + vpap->len;
664 }
665
666 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
667 {
668         if (!(vcpu->arch.vpa.update_pending ||
669               vcpu->arch.slb_shadow.update_pending ||
670               vcpu->arch.dtl.update_pending))
671                 return;
672
673         spin_lock(&vcpu->arch.vpa_update_lock);
674         if (vcpu->arch.vpa.update_pending) {
675                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
676                 if (vcpu->arch.vpa.pinned_addr)
677                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
678         }
679         if (vcpu->arch.dtl.update_pending) {
680                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
681                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
682                 vcpu->arch.dtl_index = 0;
683         }
684         if (vcpu->arch.slb_shadow.update_pending)
685                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
686         spin_unlock(&vcpu->arch.vpa_update_lock);
687 }
688
689 /*
690  * Return the accumulated stolen time for the vcore up until `now'.
691  * The caller should hold the vcore lock.
692  */
693 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
694 {
695         u64 p;
696         unsigned long flags;
697
698         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
699
700         spin_lock_irqsave(&vc->stoltb_lock, flags);
701         p = vc->stolen_tb;
702         if (vc->vcore_state != VCORE_INACTIVE &&
703             vc->preempt_tb != TB_NIL)
704                 p += now - vc->preempt_tb;
705         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
706         return p;
707 }
708
709 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
710                                         unsigned int pcpu, u64 now,
711                                         unsigned long stolen)
712 {
713         struct dtl_entry *dt;
714         struct lppaca *vpa;
715
716         dt = vcpu->arch.dtl_ptr;
717         vpa = vcpu->arch.vpa.pinned_addr;
718
719         if (!dt || !vpa)
720                 return;
721
722         dt->dispatch_reason = 7;
723         dt->preempt_reason = 0;
724         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
725         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
726         dt->ready_to_enqueue_time = 0;
727         dt->waiting_to_ready_time = 0;
728         dt->timebase = cpu_to_be64(now);
729         dt->fault_addr = 0;
730         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
731         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
732
733         ++dt;
734         if (dt == vcpu->arch.dtl.pinned_end)
735                 dt = vcpu->arch.dtl.pinned_addr;
736         vcpu->arch.dtl_ptr = dt;
737         /* order writing *dt vs. writing vpa->dtl_idx */
738         smp_wmb();
739         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
740         vcpu->arch.dtl.dirty = true;
741 }
742
743 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
744                                     struct kvmppc_vcore *vc)
745 {
746         unsigned long stolen;
747         unsigned long core_stolen;
748         u64 now;
749         unsigned long flags;
750
751         now = mftb();
752
753         core_stolen = vcore_stolen_time(vc, now);
754         stolen = core_stolen - vcpu->arch.stolen_logged;
755         vcpu->arch.stolen_logged = core_stolen;
756         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
757         stolen += vcpu->arch.busy_stolen;
758         vcpu->arch.busy_stolen = 0;
759         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
760
761         __kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
762 }
763
764 /* See if there is a doorbell interrupt pending for a vcpu */
765 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
766 {
767         int thr;
768         struct kvmppc_vcore *vc;
769
770         if (vcpu->arch.doorbell_request)
771                 return true;
772         if (cpu_has_feature(CPU_FTR_ARCH_300))
773                 return false;
774         /*
775          * Ensure that the read of vcore->dpdes comes after the read
776          * of vcpu->doorbell_request.  This barrier matches the
777          * smp_wmb() in kvmppc_guest_entry_inject().
778          */
779         smp_rmb();
780         vc = vcpu->arch.vcore;
781         thr = vcpu->vcpu_id - vc->first_vcpuid;
782         return !!(vc->dpdes & (1 << thr));
783 }
784
785 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
786 {
787         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
788                 return true;
789         if ((!vcpu->arch.vcore->arch_compat) &&
790             cpu_has_feature(CPU_FTR_ARCH_207S))
791                 return true;
792         return false;
793 }
794
795 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
796                              unsigned long resource, unsigned long value1,
797                              unsigned long value2)
798 {
799         switch (resource) {
800         case H_SET_MODE_RESOURCE_SET_CIABR:
801                 if (!kvmppc_power8_compatible(vcpu))
802                         return H_P2;
803                 if (value2)
804                         return H_P4;
805                 if (mflags)
806                         return H_UNSUPPORTED_FLAG_START;
807                 /* Guests can't breakpoint the hypervisor */
808                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
809                         return H_P3;
810                 vcpu->arch.ciabr  = value1;
811                 return H_SUCCESS;
812         case H_SET_MODE_RESOURCE_SET_DAWR0:
813                 if (!kvmppc_power8_compatible(vcpu))
814                         return H_P2;
815                 if (!ppc_breakpoint_available())
816                         return H_P2;
817                 if (mflags)
818                         return H_UNSUPPORTED_FLAG_START;
819                 if (value2 & DABRX_HYP)
820                         return H_P4;
821                 vcpu->arch.dawr0  = value1;
822                 vcpu->arch.dawrx0 = value2;
823                 return H_SUCCESS;
824         case H_SET_MODE_RESOURCE_SET_DAWR1:
825                 if (!kvmppc_power8_compatible(vcpu))
826                         return H_P2;
827                 if (!ppc_breakpoint_available())
828                         return H_P2;
829                 if (!cpu_has_feature(CPU_FTR_DAWR1))
830                         return H_P2;
831                 if (!vcpu->kvm->arch.dawr1_enabled)
832                         return H_FUNCTION;
833                 if (mflags)
834                         return H_UNSUPPORTED_FLAG_START;
835                 if (value2 & DABRX_HYP)
836                         return H_P4;
837                 vcpu->arch.dawr1  = value1;
838                 vcpu->arch.dawrx1 = value2;
839                 return H_SUCCESS;
840         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
841                 /*
842                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
843                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
844                  */
845                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
846                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
847                         return H_UNSUPPORTED_FLAG_START;
848                 return H_TOO_HARD;
849         default:
850                 return H_TOO_HARD;
851         }
852 }
853
854 /* Copy guest memory in place - must reside within a single memslot */
855 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
856                                   unsigned long len)
857 {
858         struct kvm_memory_slot *to_memslot = NULL;
859         struct kvm_memory_slot *from_memslot = NULL;
860         unsigned long to_addr, from_addr;
861         int r;
862
863         /* Get HPA for from address */
864         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
865         if (!from_memslot)
866                 return -EFAULT;
867         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
868                              << PAGE_SHIFT))
869                 return -EINVAL;
870         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
871         if (kvm_is_error_hva(from_addr))
872                 return -EFAULT;
873         from_addr |= (from & (PAGE_SIZE - 1));
874
875         /* Get HPA for to address */
876         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
877         if (!to_memslot)
878                 return -EFAULT;
879         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
880                            << PAGE_SHIFT))
881                 return -EINVAL;
882         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
883         if (kvm_is_error_hva(to_addr))
884                 return -EFAULT;
885         to_addr |= (to & (PAGE_SIZE - 1));
886
887         /* Perform copy */
888         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
889                              len);
890         if (r)
891                 return -EFAULT;
892         mark_page_dirty(kvm, to >> PAGE_SHIFT);
893         return 0;
894 }
895
896 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
897                                unsigned long dest, unsigned long src)
898 {
899         u64 pg_sz = SZ_4K;              /* 4K page size */
900         u64 pg_mask = SZ_4K - 1;
901         int ret;
902
903         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
904         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
905                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
906                 return H_PARAMETER;
907
908         /* dest (and src if copy_page flag set) must be page aligned */
909         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
910                 return H_PARAMETER;
911
912         /* zero and/or copy the page as determined by the flags */
913         if (flags & H_COPY_PAGE) {
914                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
915                 if (ret < 0)
916                         return H_PARAMETER;
917         } else if (flags & H_ZERO_PAGE) {
918                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
919                 if (ret < 0)
920                         return H_PARAMETER;
921         }
922
923         /* We can ignore the remaining flags */
924
925         return H_SUCCESS;
926 }
927
928 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
929 {
930         struct kvmppc_vcore *vcore = target->arch.vcore;
931
932         /*
933          * We expect to have been called by the real mode handler
934          * (kvmppc_rm_h_confer()) which would have directly returned
935          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
936          * have useful work to do and should not confer) so we don't
937          * recheck that here.
938          *
939          * In the case of the P9 single vcpu per vcore case, the real
940          * mode handler is not called but no other threads are in the
941          * source vcore.
942          */
943         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
944                 spin_lock(&vcore->lock);
945                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
946                     vcore->vcore_state != VCORE_INACTIVE &&
947                     vcore->runner)
948                         target = vcore->runner;
949                 spin_unlock(&vcore->lock);
950         }
951
952         return kvm_vcpu_yield_to(target);
953 }
954
955 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
956 {
957         int yield_count = 0;
958         struct lppaca *lppaca;
959
960         spin_lock(&vcpu->arch.vpa_update_lock);
961         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
962         if (lppaca)
963                 yield_count = be32_to_cpu(lppaca->yield_count);
964         spin_unlock(&vcpu->arch.vpa_update_lock);
965         return yield_count;
966 }
967
968 /*
969  * H_RPT_INVALIDATE hcall handler for nested guests.
970  *
971  * Handles only nested process-scoped invalidation requests in L0.
972  */
973 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
974 {
975         unsigned long type = kvmppc_get_gpr(vcpu, 6);
976         unsigned long pid, pg_sizes, start, end;
977
978         /*
979          * The partition-scoped invalidations aren't handled here in L0.
980          */
981         if (type & H_RPTI_TYPE_NESTED)
982                 return RESUME_HOST;
983
984         pid = kvmppc_get_gpr(vcpu, 4);
985         pg_sizes = kvmppc_get_gpr(vcpu, 7);
986         start = kvmppc_get_gpr(vcpu, 8);
987         end = kvmppc_get_gpr(vcpu, 9);
988
989         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
990                                 type, pg_sizes, start, end);
991
992         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
993         return RESUME_GUEST;
994 }
995
996 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
997                                     unsigned long id, unsigned long target,
998                                     unsigned long type, unsigned long pg_sizes,
999                                     unsigned long start, unsigned long end)
1000 {
1001         if (!kvm_is_radix(vcpu->kvm))
1002                 return H_UNSUPPORTED;
1003
1004         if (end < start)
1005                 return H_P5;
1006
1007         /*
1008          * Partition-scoped invalidation for nested guests.
1009          */
1010         if (type & H_RPTI_TYPE_NESTED) {
1011                 if (!nesting_enabled(vcpu->kvm))
1012                         return H_FUNCTION;
1013
1014                 /* Support only cores as target */
1015                 if (target != H_RPTI_TARGET_CMMU)
1016                         return H_P2;
1017
1018                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1019                                                start, end);
1020         }
1021
1022         /*
1023          * Process-scoped invalidation for L1 guests.
1024          */
1025         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1026                                 type, pg_sizes, start, end);
1027         return H_SUCCESS;
1028 }
1029
1030 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1031 {
1032         struct kvm *kvm = vcpu->kvm;
1033         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1034         unsigned long target, ret = H_SUCCESS;
1035         int yield_count;
1036         struct kvm_vcpu *tvcpu;
1037         int idx, rc;
1038
1039         if (req <= MAX_HCALL_OPCODE &&
1040             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1041                 return RESUME_HOST;
1042
1043         switch (req) {
1044         case H_REMOVE:
1045                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1046                                         kvmppc_get_gpr(vcpu, 5),
1047                                         kvmppc_get_gpr(vcpu, 6));
1048                 if (ret == H_TOO_HARD)
1049                         return RESUME_HOST;
1050                 break;
1051         case H_ENTER:
1052                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1053                                         kvmppc_get_gpr(vcpu, 5),
1054                                         kvmppc_get_gpr(vcpu, 6),
1055                                         kvmppc_get_gpr(vcpu, 7));
1056                 if (ret == H_TOO_HARD)
1057                         return RESUME_HOST;
1058                 break;
1059         case H_READ:
1060                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1061                                         kvmppc_get_gpr(vcpu, 5));
1062                 if (ret == H_TOO_HARD)
1063                         return RESUME_HOST;
1064                 break;
1065         case H_CLEAR_MOD:
1066                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1067                                         kvmppc_get_gpr(vcpu, 5));
1068                 if (ret == H_TOO_HARD)
1069                         return RESUME_HOST;
1070                 break;
1071         case H_CLEAR_REF:
1072                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1073                                         kvmppc_get_gpr(vcpu, 5));
1074                 if (ret == H_TOO_HARD)
1075                         return RESUME_HOST;
1076                 break;
1077         case H_PROTECT:
1078                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1079                                         kvmppc_get_gpr(vcpu, 5),
1080                                         kvmppc_get_gpr(vcpu, 6));
1081                 if (ret == H_TOO_HARD)
1082                         return RESUME_HOST;
1083                 break;
1084         case H_BULK_REMOVE:
1085                 ret = kvmppc_h_bulk_remove(vcpu);
1086                 if (ret == H_TOO_HARD)
1087                         return RESUME_HOST;
1088                 break;
1089
1090         case H_CEDE:
1091                 break;
1092         case H_PROD:
1093                 target = kvmppc_get_gpr(vcpu, 4);
1094                 tvcpu = kvmppc_find_vcpu(kvm, target);
1095                 if (!tvcpu) {
1096                         ret = H_PARAMETER;
1097                         break;
1098                 }
1099                 tvcpu->arch.prodded = 1;
1100                 smp_mb(); /* This orders prodded store vs ceded load */
1101                 if (tvcpu->arch.ceded)
1102                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1103                 break;
1104         case H_CONFER:
1105                 target = kvmppc_get_gpr(vcpu, 4);
1106                 if (target == -1)
1107                         break;
1108                 tvcpu = kvmppc_find_vcpu(kvm, target);
1109                 if (!tvcpu) {
1110                         ret = H_PARAMETER;
1111                         break;
1112                 }
1113                 yield_count = kvmppc_get_gpr(vcpu, 5);
1114                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1115                         break;
1116                 kvm_arch_vcpu_yield_to(tvcpu);
1117                 break;
1118         case H_REGISTER_VPA:
1119                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1120                                         kvmppc_get_gpr(vcpu, 5),
1121                                         kvmppc_get_gpr(vcpu, 6));
1122                 break;
1123         case H_RTAS:
1124                 if (list_empty(&kvm->arch.rtas_tokens))
1125                         return RESUME_HOST;
1126
1127                 idx = srcu_read_lock(&kvm->srcu);
1128                 rc = kvmppc_rtas_hcall(vcpu);
1129                 srcu_read_unlock(&kvm->srcu, idx);
1130
1131                 if (rc == -ENOENT)
1132                         return RESUME_HOST;
1133                 else if (rc == 0)
1134                         break;
1135
1136                 /* Send the error out to userspace via KVM_RUN */
1137                 return rc;
1138         case H_LOGICAL_CI_LOAD:
1139                 ret = kvmppc_h_logical_ci_load(vcpu);
1140                 if (ret == H_TOO_HARD)
1141                         return RESUME_HOST;
1142                 break;
1143         case H_LOGICAL_CI_STORE:
1144                 ret = kvmppc_h_logical_ci_store(vcpu);
1145                 if (ret == H_TOO_HARD)
1146                         return RESUME_HOST;
1147                 break;
1148         case H_SET_MODE:
1149                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1150                                         kvmppc_get_gpr(vcpu, 5),
1151                                         kvmppc_get_gpr(vcpu, 6),
1152                                         kvmppc_get_gpr(vcpu, 7));
1153                 if (ret == H_TOO_HARD)
1154                         return RESUME_HOST;
1155                 break;
1156         case H_XIRR:
1157         case H_CPPR:
1158         case H_EOI:
1159         case H_IPI:
1160         case H_IPOLL:
1161         case H_XIRR_X:
1162                 if (kvmppc_xics_enabled(vcpu)) {
1163                         if (xics_on_xive()) {
1164                                 ret = H_NOT_AVAILABLE;
1165                                 return RESUME_GUEST;
1166                         }
1167                         ret = kvmppc_xics_hcall(vcpu, req);
1168                         break;
1169                 }
1170                 return RESUME_HOST;
1171         case H_SET_DABR:
1172                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1173                 break;
1174         case H_SET_XDABR:
1175                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1176                                                 kvmppc_get_gpr(vcpu, 5));
1177                 break;
1178 #ifdef CONFIG_SPAPR_TCE_IOMMU
1179         case H_GET_TCE:
1180                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1181                                                 kvmppc_get_gpr(vcpu, 5));
1182                 if (ret == H_TOO_HARD)
1183                         return RESUME_HOST;
1184                 break;
1185         case H_PUT_TCE:
1186                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1187                                                 kvmppc_get_gpr(vcpu, 5),
1188                                                 kvmppc_get_gpr(vcpu, 6));
1189                 if (ret == H_TOO_HARD)
1190                         return RESUME_HOST;
1191                 break;
1192         case H_PUT_TCE_INDIRECT:
1193                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1194                                                 kvmppc_get_gpr(vcpu, 5),
1195                                                 kvmppc_get_gpr(vcpu, 6),
1196                                                 kvmppc_get_gpr(vcpu, 7));
1197                 if (ret == H_TOO_HARD)
1198                         return RESUME_HOST;
1199                 break;
1200         case H_STUFF_TCE:
1201                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1202                                                 kvmppc_get_gpr(vcpu, 5),
1203                                                 kvmppc_get_gpr(vcpu, 6),
1204                                                 kvmppc_get_gpr(vcpu, 7));
1205                 if (ret == H_TOO_HARD)
1206                         return RESUME_HOST;
1207                 break;
1208 #endif
1209         case H_RANDOM:
1210                 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1211                         ret = H_HARDWARE;
1212                 break;
1213         case H_RPT_INVALIDATE:
1214                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1215                                               kvmppc_get_gpr(vcpu, 5),
1216                                               kvmppc_get_gpr(vcpu, 6),
1217                                               kvmppc_get_gpr(vcpu, 7),
1218                                               kvmppc_get_gpr(vcpu, 8),
1219                                               kvmppc_get_gpr(vcpu, 9));
1220                 break;
1221
1222         case H_SET_PARTITION_TABLE:
1223                 ret = H_FUNCTION;
1224                 if (nesting_enabled(kvm))
1225                         ret = kvmhv_set_partition_table(vcpu);
1226                 break;
1227         case H_ENTER_NESTED:
1228                 ret = H_FUNCTION;
1229                 if (!nesting_enabled(kvm))
1230                         break;
1231                 ret = kvmhv_enter_nested_guest(vcpu);
1232                 if (ret == H_INTERRUPT) {
1233                         kvmppc_set_gpr(vcpu, 3, 0);
1234                         vcpu->arch.hcall_needed = 0;
1235                         return -EINTR;
1236                 } else if (ret == H_TOO_HARD) {
1237                         kvmppc_set_gpr(vcpu, 3, 0);
1238                         vcpu->arch.hcall_needed = 0;
1239                         return RESUME_HOST;
1240                 }
1241                 break;
1242         case H_TLB_INVALIDATE:
1243                 ret = H_FUNCTION;
1244                 if (nesting_enabled(kvm))
1245                         ret = kvmhv_do_nested_tlbie(vcpu);
1246                 break;
1247         case H_COPY_TOFROM_GUEST:
1248                 ret = H_FUNCTION;
1249                 if (nesting_enabled(kvm))
1250                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1251                 break;
1252         case H_PAGE_INIT:
1253                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1254                                          kvmppc_get_gpr(vcpu, 5),
1255                                          kvmppc_get_gpr(vcpu, 6));
1256                 break;
1257         case H_SVM_PAGE_IN:
1258                 ret = H_UNSUPPORTED;
1259                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1260                         ret = kvmppc_h_svm_page_in(kvm,
1261                                                    kvmppc_get_gpr(vcpu, 4),
1262                                                    kvmppc_get_gpr(vcpu, 5),
1263                                                    kvmppc_get_gpr(vcpu, 6));
1264                 break;
1265         case H_SVM_PAGE_OUT:
1266                 ret = H_UNSUPPORTED;
1267                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1268                         ret = kvmppc_h_svm_page_out(kvm,
1269                                                     kvmppc_get_gpr(vcpu, 4),
1270                                                     kvmppc_get_gpr(vcpu, 5),
1271                                                     kvmppc_get_gpr(vcpu, 6));
1272                 break;
1273         case H_SVM_INIT_START:
1274                 ret = H_UNSUPPORTED;
1275                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1276                         ret = kvmppc_h_svm_init_start(kvm);
1277                 break;
1278         case H_SVM_INIT_DONE:
1279                 ret = H_UNSUPPORTED;
1280                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1281                         ret = kvmppc_h_svm_init_done(kvm);
1282                 break;
1283         case H_SVM_INIT_ABORT:
1284                 /*
1285                  * Even if that call is made by the Ultravisor, the SSR1 value
1286                  * is the guest context one, with the secure bit clear as it has
1287                  * not yet been secured. So we can't check it here.
1288                  * Instead the kvm->arch.secure_guest flag is checked inside
1289                  * kvmppc_h_svm_init_abort().
1290                  */
1291                 ret = kvmppc_h_svm_init_abort(kvm);
1292                 break;
1293
1294         default:
1295                 return RESUME_HOST;
1296         }
1297         WARN_ON_ONCE(ret == H_TOO_HARD);
1298         kvmppc_set_gpr(vcpu, 3, ret);
1299         vcpu->arch.hcall_needed = 0;
1300         return RESUME_GUEST;
1301 }
1302
1303 /*
1304  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1305  * handlers in book3s_hv_rmhandlers.S.
1306  *
1307  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1308  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1309  */
1310 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1311 {
1312         vcpu->arch.shregs.msr |= MSR_EE;
1313         vcpu->arch.ceded = 1;
1314         smp_mb();
1315         if (vcpu->arch.prodded) {
1316                 vcpu->arch.prodded = 0;
1317                 smp_mb();
1318                 vcpu->arch.ceded = 0;
1319         }
1320 }
1321
1322 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1323 {
1324         switch (cmd) {
1325         case H_CEDE:
1326         case H_PROD:
1327         case H_CONFER:
1328         case H_REGISTER_VPA:
1329         case H_SET_MODE:
1330 #ifdef CONFIG_SPAPR_TCE_IOMMU
1331         case H_GET_TCE:
1332         case H_PUT_TCE:
1333         case H_PUT_TCE_INDIRECT:
1334         case H_STUFF_TCE:
1335 #endif
1336         case H_LOGICAL_CI_LOAD:
1337         case H_LOGICAL_CI_STORE:
1338 #ifdef CONFIG_KVM_XICS
1339         case H_XIRR:
1340         case H_CPPR:
1341         case H_EOI:
1342         case H_IPI:
1343         case H_IPOLL:
1344         case H_XIRR_X:
1345 #endif
1346         case H_PAGE_INIT:
1347         case H_RPT_INVALIDATE:
1348                 return 1;
1349         }
1350
1351         /* See if it's in the real-mode table */
1352         return kvmppc_hcall_impl_hv_realmode(cmd);
1353 }
1354
1355 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1356 {
1357         u32 last_inst;
1358
1359         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1360                                         EMULATE_DONE) {
1361                 /*
1362                  * Fetch failed, so return to guest and
1363                  * try executing it again.
1364                  */
1365                 return RESUME_GUEST;
1366         }
1367
1368         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1369                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1370                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1371                 return RESUME_HOST;
1372         } else {
1373                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1374                 return RESUME_GUEST;
1375         }
1376 }
1377
1378 static void do_nothing(void *x)
1379 {
1380 }
1381
1382 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1383 {
1384         int thr, cpu, pcpu, nthreads;
1385         struct kvm_vcpu *v;
1386         unsigned long dpdes;
1387
1388         nthreads = vcpu->kvm->arch.emul_smt_mode;
1389         dpdes = 0;
1390         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1391         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1392                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1393                 if (!v)
1394                         continue;
1395                 /*
1396                  * If the vcpu is currently running on a physical cpu thread,
1397                  * interrupt it in order to pull it out of the guest briefly,
1398                  * which will update its vcore->dpdes value.
1399                  */
1400                 pcpu = READ_ONCE(v->cpu);
1401                 if (pcpu >= 0)
1402                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1403                 if (kvmppc_doorbell_pending(v))
1404                         dpdes |= 1 << thr;
1405         }
1406         return dpdes;
1407 }
1408
1409 /*
1410  * On POWER9, emulate doorbell-related instructions in order to
1411  * give the guest the illusion of running on a multi-threaded core.
1412  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1413  * and mfspr DPDES.
1414  */
1415 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1416 {
1417         u32 inst, rb, thr;
1418         unsigned long arg;
1419         struct kvm *kvm = vcpu->kvm;
1420         struct kvm_vcpu *tvcpu;
1421
1422         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1423                 return RESUME_GUEST;
1424         if (get_op(inst) != 31)
1425                 return EMULATE_FAIL;
1426         rb = get_rb(inst);
1427         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1428         switch (get_xop(inst)) {
1429         case OP_31_XOP_MSGSNDP:
1430                 arg = kvmppc_get_gpr(vcpu, rb);
1431                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1432                         break;
1433                 arg &= 0x7f;
1434                 if (arg >= kvm->arch.emul_smt_mode)
1435                         break;
1436                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1437                 if (!tvcpu)
1438                         break;
1439                 if (!tvcpu->arch.doorbell_request) {
1440                         tvcpu->arch.doorbell_request = 1;
1441                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1442                 }
1443                 break;
1444         case OP_31_XOP_MSGCLRP:
1445                 arg = kvmppc_get_gpr(vcpu, rb);
1446                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1447                         break;
1448                 vcpu->arch.vcore->dpdes = 0;
1449                 vcpu->arch.doorbell_request = 0;
1450                 break;
1451         case OP_31_XOP_MFSPR:
1452                 switch (get_sprn(inst)) {
1453                 case SPRN_TIR:
1454                         arg = thr;
1455                         break;
1456                 case SPRN_DPDES:
1457                         arg = kvmppc_read_dpdes(vcpu);
1458                         break;
1459                 default:
1460                         return EMULATE_FAIL;
1461                 }
1462                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1463                 break;
1464         default:
1465                 return EMULATE_FAIL;
1466         }
1467         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1468         return RESUME_GUEST;
1469 }
1470
1471 /*
1472  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1473  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1474  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1475  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1476  * allow the guest access to continue.
1477  */
1478 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1479 {
1480         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1481                 return EMULATE_FAIL;
1482
1483         vcpu->arch.hfscr |= HFSCR_PM;
1484
1485         return RESUME_GUEST;
1486 }
1487
1488 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1489 {
1490         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1491                 return EMULATE_FAIL;
1492
1493         vcpu->arch.hfscr |= HFSCR_EBB;
1494
1495         return RESUME_GUEST;
1496 }
1497
1498 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1499 {
1500         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1501                 return EMULATE_FAIL;
1502
1503         vcpu->arch.hfscr |= HFSCR_TM;
1504
1505         return RESUME_GUEST;
1506 }
1507
1508 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1509                                  struct task_struct *tsk)
1510 {
1511         struct kvm_run *run = vcpu->run;
1512         int r = RESUME_HOST;
1513
1514         vcpu->stat.sum_exits++;
1515
1516         /*
1517          * This can happen if an interrupt occurs in the last stages
1518          * of guest entry or the first stages of guest exit (i.e. after
1519          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1520          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1521          * That can happen due to a bug, or due to a machine check
1522          * occurring at just the wrong time.
1523          */
1524         if (vcpu->arch.shregs.msr & MSR_HV) {
1525                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1526                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1527                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1528                         vcpu->arch.shregs.msr);
1529                 kvmppc_dump_regs(vcpu);
1530                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1531                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1532                 return RESUME_HOST;
1533         }
1534         run->exit_reason = KVM_EXIT_UNKNOWN;
1535         run->ready_for_interrupt_injection = 1;
1536         switch (vcpu->arch.trap) {
1537         /* We're good on these - the host merely wanted to get our attention */
1538         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1539                 WARN_ON_ONCE(1); /* Should never happen */
1540                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1541                 fallthrough;
1542         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1543                 vcpu->stat.dec_exits++;
1544                 r = RESUME_GUEST;
1545                 break;
1546         case BOOK3S_INTERRUPT_EXTERNAL:
1547         case BOOK3S_INTERRUPT_H_DOORBELL:
1548         case BOOK3S_INTERRUPT_H_VIRT:
1549                 vcpu->stat.ext_intr_exits++;
1550                 r = RESUME_GUEST;
1551                 break;
1552         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1553         case BOOK3S_INTERRUPT_HMI:
1554         case BOOK3S_INTERRUPT_PERFMON:
1555         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1556                 r = RESUME_GUEST;
1557                 break;
1558         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1559                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1560                                               DEFAULT_RATELIMIT_BURST);
1561                 /*
1562                  * Print the MCE event to host console. Ratelimit so the guest
1563                  * can't flood the host log.
1564                  */
1565                 if (__ratelimit(&rs))
1566                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1567
1568                 /*
1569                  * If the guest can do FWNMI, exit to userspace so it can
1570                  * deliver a FWNMI to the guest.
1571                  * Otherwise we synthesize a machine check for the guest
1572                  * so that it knows that the machine check occurred.
1573                  */
1574                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1575                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1576                         kvmppc_core_queue_machine_check(vcpu, flags);
1577                         r = RESUME_GUEST;
1578                         break;
1579                 }
1580
1581                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1582                 run->exit_reason = KVM_EXIT_NMI;
1583                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1584                 /* Clear out the old NMI status from run->flags */
1585                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1586                 /* Now set the NMI status */
1587                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1588                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1589                 else
1590                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1591
1592                 r = RESUME_HOST;
1593                 break;
1594         }
1595         case BOOK3S_INTERRUPT_PROGRAM:
1596         {
1597                 ulong flags;
1598                 /*
1599                  * Normally program interrupts are delivered directly
1600                  * to the guest by the hardware, but we can get here
1601                  * as a result of a hypervisor emulation interrupt
1602                  * (e40) getting turned into a 700 by BML RTAS.
1603                  */
1604                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1605                 kvmppc_core_queue_program(vcpu, flags);
1606                 r = RESUME_GUEST;
1607                 break;
1608         }
1609         case BOOK3S_INTERRUPT_SYSCALL:
1610         {
1611                 int i;
1612
1613                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1614                         /*
1615                          * Guest userspace executed sc 1. This can only be
1616                          * reached by the P9 path because the old path
1617                          * handles this case in realmode hcall handlers.
1618                          */
1619                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1620                                 /*
1621                                  * A guest could be running PR KVM, so this
1622                                  * may be a PR KVM hcall. It must be reflected
1623                                  * to the guest kernel as a sc interrupt.
1624                                  */
1625                                 kvmppc_core_queue_syscall(vcpu);
1626                         } else {
1627                                 /*
1628                                  * Radix guests can not run PR KVM or nested HV
1629                                  * hash guests which might run PR KVM, so this
1630                                  * is always a privilege fault. Send a program
1631                                  * check to guest kernel.
1632                                  */
1633                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1634                         }
1635                         r = RESUME_GUEST;
1636                         break;
1637                 }
1638
1639                 /*
1640                  * hcall - gather args and set exit_reason. This will next be
1641                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1642                  * with it and resume guest, or may punt to userspace.
1643                  */
1644                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1645                 for (i = 0; i < 9; ++i)
1646                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1647                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1648                 vcpu->arch.hcall_needed = 1;
1649                 r = RESUME_HOST;
1650                 break;
1651         }
1652         /*
1653          * We get these next two if the guest accesses a page which it thinks
1654          * it has mapped but which is not actually present, either because
1655          * it is for an emulated I/O device or because the corresonding
1656          * host page has been paged out.
1657          *
1658          * Any other HDSI/HISI interrupts have been handled already for P7/8
1659          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1660          * fault handling is done here.
1661          */
1662         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1663                 unsigned long vsid;
1664                 long err;
1665
1666                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1667                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1668                         r = RESUME_GUEST; /* Just retry if it's the canary */
1669                         break;
1670                 }
1671
1672                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1673                         /*
1674                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1675                          * already attempted to handle this in rmhandlers. The
1676                          * hash fault handling below is v3 only (it uses ASDR
1677                          * via fault_gpa).
1678                          */
1679                         r = RESUME_PAGE_FAULT;
1680                         break;
1681                 }
1682
1683                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1684                         kvmppc_core_queue_data_storage(vcpu,
1685                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1686                         r = RESUME_GUEST;
1687                         break;
1688                 }
1689
1690                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1691                         vsid = vcpu->kvm->arch.vrma_slb_v;
1692                 else
1693                         vsid = vcpu->arch.fault_gpa;
1694
1695                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1696                                 vsid, vcpu->arch.fault_dsisr, true);
1697                 if (err == 0) {
1698                         r = RESUME_GUEST;
1699                 } else if (err == -1 || err == -2) {
1700                         r = RESUME_PAGE_FAULT;
1701                 } else {
1702                         kvmppc_core_queue_data_storage(vcpu,
1703                                 vcpu->arch.fault_dar, err);
1704                         r = RESUME_GUEST;
1705                 }
1706                 break;
1707         }
1708         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1709                 unsigned long vsid;
1710                 long err;
1711
1712                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1713                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1714                         DSISR_SRR1_MATCH_64S;
1715                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1716                         /*
1717                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1718                          * already attempted to handle this in rmhandlers. The
1719                          * hash fault handling below is v3 only (it uses ASDR
1720                          * via fault_gpa).
1721                          */
1722                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1723                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1724                         r = RESUME_PAGE_FAULT;
1725                         break;
1726                 }
1727
1728                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1729                         kvmppc_core_queue_inst_storage(vcpu,
1730                                 vcpu->arch.fault_dsisr);
1731                         r = RESUME_GUEST;
1732                         break;
1733                 }
1734
1735                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1736                         vsid = vcpu->kvm->arch.vrma_slb_v;
1737                 else
1738                         vsid = vcpu->arch.fault_gpa;
1739
1740                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1741                                 vsid, vcpu->arch.fault_dsisr, false);
1742                 if (err == 0) {
1743                         r = RESUME_GUEST;
1744                 } else if (err == -1) {
1745                         r = RESUME_PAGE_FAULT;
1746                 } else {
1747                         kvmppc_core_queue_inst_storage(vcpu, err);
1748                         r = RESUME_GUEST;
1749                 }
1750                 break;
1751         }
1752
1753         /*
1754          * This occurs if the guest executes an illegal instruction.
1755          * If the guest debug is disabled, generate a program interrupt
1756          * to the guest. If guest debug is enabled, we need to check
1757          * whether the instruction is a software breakpoint instruction.
1758          * Accordingly return to Guest or Host.
1759          */
1760         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1761                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1762                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1763                                 swab32(vcpu->arch.emul_inst) :
1764                                 vcpu->arch.emul_inst;
1765                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1766                         r = kvmppc_emulate_debug_inst(vcpu);
1767                 } else {
1768                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1769                         r = RESUME_GUEST;
1770                 }
1771                 break;
1772
1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1774         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1775                 /*
1776                  * This occurs for various TM-related instructions that
1777                  * we need to emulate on POWER9 DD2.2.  We have already
1778                  * handled the cases where the guest was in real-suspend
1779                  * mode and was transitioning to transactional state.
1780                  */
1781                 r = kvmhv_p9_tm_emulation(vcpu);
1782                 if (r != -1)
1783                         break;
1784                 fallthrough; /* go to facility unavailable handler */
1785 #endif
1786
1787         /*
1788          * This occurs if the guest (kernel or userspace), does something that
1789          * is prohibited by HFSCR.
1790          * On POWER9, this could be a doorbell instruction that we need
1791          * to emulate.
1792          * Otherwise, we just generate a program interrupt to the guest.
1793          */
1794         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1795                 u64 cause = vcpu->arch.hfscr >> 56;
1796
1797                 r = EMULATE_FAIL;
1798                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1799                         if (cause == FSCR_MSGP_LG)
1800                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1801                         if (cause == FSCR_PM_LG)
1802                                 r = kvmppc_pmu_unavailable(vcpu);
1803                         if (cause == FSCR_EBB_LG)
1804                                 r = kvmppc_ebb_unavailable(vcpu);
1805                         if (cause == FSCR_TM_LG)
1806                                 r = kvmppc_tm_unavailable(vcpu);
1807                 }
1808                 if (r == EMULATE_FAIL) {
1809                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1810                         r = RESUME_GUEST;
1811                 }
1812                 break;
1813         }
1814
1815         case BOOK3S_INTERRUPT_HV_RM_HARD:
1816                 r = RESUME_PASSTHROUGH;
1817                 break;
1818         default:
1819                 kvmppc_dump_regs(vcpu);
1820                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1821                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1822                         vcpu->arch.shregs.msr);
1823                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1824                 r = RESUME_HOST;
1825                 break;
1826         }
1827
1828         return r;
1829 }
1830
1831 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1832 {
1833         int r;
1834         int srcu_idx;
1835
1836         vcpu->stat.sum_exits++;
1837
1838         /*
1839          * This can happen if an interrupt occurs in the last stages
1840          * of guest entry or the first stages of guest exit (i.e. after
1841          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1842          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1843          * That can happen due to a bug, or due to a machine check
1844          * occurring at just the wrong time.
1845          */
1846         if (vcpu->arch.shregs.msr & MSR_HV) {
1847                 pr_emerg("KVM trap in HV mode while nested!\n");
1848                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1849                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1850                          vcpu->arch.shregs.msr);
1851                 kvmppc_dump_regs(vcpu);
1852                 return RESUME_HOST;
1853         }
1854         switch (vcpu->arch.trap) {
1855         /* We're good on these - the host merely wanted to get our attention */
1856         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1857                 vcpu->stat.dec_exits++;
1858                 r = RESUME_GUEST;
1859                 break;
1860         case BOOK3S_INTERRUPT_EXTERNAL:
1861                 vcpu->stat.ext_intr_exits++;
1862                 r = RESUME_HOST;
1863                 break;
1864         case BOOK3S_INTERRUPT_H_DOORBELL:
1865         case BOOK3S_INTERRUPT_H_VIRT:
1866                 vcpu->stat.ext_intr_exits++;
1867                 r = RESUME_GUEST;
1868                 break;
1869         /* These need to go to the nested HV */
1870         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1871                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1872                 vcpu->stat.dec_exits++;
1873                 r = RESUME_HOST;
1874                 break;
1875         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1876         case BOOK3S_INTERRUPT_HMI:
1877         case BOOK3S_INTERRUPT_PERFMON:
1878         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1879                 r = RESUME_GUEST;
1880                 break;
1881         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1882         {
1883                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1884                                               DEFAULT_RATELIMIT_BURST);
1885                 /* Pass the machine check to the L1 guest */
1886                 r = RESUME_HOST;
1887                 /* Print the MCE event to host console. */
1888                 if (__ratelimit(&rs))
1889                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1890                 break;
1891         }
1892         /*
1893          * We get these next two if the guest accesses a page which it thinks
1894          * it has mapped but which is not actually present, either because
1895          * it is for an emulated I/O device or because the corresonding
1896          * host page has been paged out.
1897          */
1898         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1899                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1900                 r = kvmhv_nested_page_fault(vcpu);
1901                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1902                 break;
1903         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1904                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1905                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1906                                          DSISR_SRR1_MATCH_64S;
1907                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1908                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1909                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1910                 r = kvmhv_nested_page_fault(vcpu);
1911                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1912                 break;
1913
1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1916                 /*
1917                  * This occurs for various TM-related instructions that
1918                  * we need to emulate on POWER9 DD2.2.  We have already
1919                  * handled the cases where the guest was in real-suspend
1920                  * mode and was transitioning to transactional state.
1921                  */
1922                 r = kvmhv_p9_tm_emulation(vcpu);
1923                 if (r != -1)
1924                         break;
1925                 fallthrough; /* go to facility unavailable handler */
1926 #endif
1927
1928         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1929                 u64 cause = vcpu->arch.hfscr >> 56;
1930
1931                 /*
1932                  * Only pass HFU interrupts to the L1 if the facility is
1933                  * permitted but disabled by the L1's HFSCR, otherwise
1934                  * the interrupt does not make sense to the L1 so turn
1935                  * it into a HEAI.
1936                  */
1937                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1938                                 (vcpu->arch.nested_hfscr & (1UL << cause))) {
1939                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1940
1941                         /*
1942                          * If the fetch failed, return to guest and
1943                          * try executing it again.
1944                          */
1945                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1946                                                  &vcpu->arch.emul_inst);
1947                         if (r != EMULATE_DONE)
1948                                 r = RESUME_GUEST;
1949                         else
1950                                 r = RESUME_HOST;
1951                 } else {
1952                         r = RESUME_HOST;
1953                 }
1954
1955                 break;
1956         }
1957
1958         case BOOK3S_INTERRUPT_HV_RM_HARD:
1959                 vcpu->arch.trap = 0;
1960                 r = RESUME_GUEST;
1961                 if (!xics_on_xive())
1962                         kvmppc_xics_rm_complete(vcpu, 0);
1963                 break;
1964         case BOOK3S_INTERRUPT_SYSCALL:
1965         {
1966                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1967
1968                 /*
1969                  * The H_RPT_INVALIDATE hcalls issued by nested
1970                  * guests for process-scoped invalidations when
1971                  * GTSE=0, are handled here in L0.
1972                  */
1973                 if (req == H_RPT_INVALIDATE) {
1974                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
1975                         break;
1976                 }
1977
1978                 r = RESUME_HOST;
1979                 break;
1980         }
1981         default:
1982                 r = RESUME_HOST;
1983                 break;
1984         }
1985
1986         return r;
1987 }
1988
1989 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1990                                             struct kvm_sregs *sregs)
1991 {
1992         int i;
1993
1994         memset(sregs, 0, sizeof(struct kvm_sregs));
1995         sregs->pvr = vcpu->arch.pvr;
1996         for (i = 0; i < vcpu->arch.slb_max; i++) {
1997                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1998                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1999         }
2000
2001         return 0;
2002 }
2003
2004 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2005                                             struct kvm_sregs *sregs)
2006 {
2007         int i, j;
2008
2009         /* Only accept the same PVR as the host's, since we can't spoof it */
2010         if (sregs->pvr != vcpu->arch.pvr)
2011                 return -EINVAL;
2012
2013         j = 0;
2014         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2015                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2016                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2017                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2018                         ++j;
2019                 }
2020         }
2021         vcpu->arch.slb_max = j;
2022
2023         return 0;
2024 }
2025
2026 /*
2027  * Enforce limits on guest LPCR values based on hardware availability,
2028  * guest configuration, and possibly hypervisor support and security
2029  * concerns.
2030  */
2031 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2032 {
2033         /* LPCR_TC only applies to HPT guests */
2034         if (kvm_is_radix(kvm))
2035                 lpcr &= ~LPCR_TC;
2036
2037         /* On POWER8 and above, userspace can modify AIL */
2038         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2039                 lpcr &= ~LPCR_AIL;
2040         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2041                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2042         /*
2043          * On some POWER9s we force AIL off for radix guests to prevent
2044          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2045          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2046          * be cached, which the host TLB management does not expect.
2047          */
2048         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2049                 lpcr &= ~LPCR_AIL;
2050
2051         /*
2052          * On POWER9, allow userspace to enable large decrementer for the
2053          * guest, whether or not the host has it enabled.
2054          */
2055         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2056                 lpcr &= ~LPCR_LD;
2057
2058         return lpcr;
2059 }
2060
2061 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2062 {
2063         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2064                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2065                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2066         }
2067 }
2068
2069 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2070                 bool preserve_top32)
2071 {
2072         struct kvm *kvm = vcpu->kvm;
2073         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2074         u64 mask;
2075
2076         spin_lock(&vc->lock);
2077
2078         /*
2079          * Userspace can only modify
2080          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2081          * TC (translation control), AIL (alternate interrupt location),
2082          * LD (large decrementer).
2083          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2084          */
2085         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2086
2087         /* Broken 32-bit version of LPCR must not clear top bits */
2088         if (preserve_top32)
2089                 mask &= 0xFFFFFFFF;
2090
2091         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2092                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2093
2094         /*
2095          * If ILE (interrupt little-endian) has changed, update the
2096          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2097          */
2098         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2099                 struct kvm_vcpu *vcpu;
2100                 unsigned long i;
2101
2102                 kvm_for_each_vcpu(i, vcpu, kvm) {
2103                         if (vcpu->arch.vcore != vc)
2104                                 continue;
2105                         if (new_lpcr & LPCR_ILE)
2106                                 vcpu->arch.intr_msr |= MSR_LE;
2107                         else
2108                                 vcpu->arch.intr_msr &= ~MSR_LE;
2109                 }
2110         }
2111
2112         vc->lpcr = new_lpcr;
2113
2114         spin_unlock(&vc->lock);
2115 }
2116
2117 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2118                                  union kvmppc_one_reg *val)
2119 {
2120         int r = 0;
2121         long int i;
2122
2123         switch (id) {
2124         case KVM_REG_PPC_DEBUG_INST:
2125                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2126                 break;
2127         case KVM_REG_PPC_HIOR:
2128                 *val = get_reg_val(id, 0);
2129                 break;
2130         case KVM_REG_PPC_DABR:
2131                 *val = get_reg_val(id, vcpu->arch.dabr);
2132                 break;
2133         case KVM_REG_PPC_DABRX:
2134                 *val = get_reg_val(id, vcpu->arch.dabrx);
2135                 break;
2136         case KVM_REG_PPC_DSCR:
2137                 *val = get_reg_val(id, vcpu->arch.dscr);
2138                 break;
2139         case KVM_REG_PPC_PURR:
2140                 *val = get_reg_val(id, vcpu->arch.purr);
2141                 break;
2142         case KVM_REG_PPC_SPURR:
2143                 *val = get_reg_val(id, vcpu->arch.spurr);
2144                 break;
2145         case KVM_REG_PPC_AMR:
2146                 *val = get_reg_val(id, vcpu->arch.amr);
2147                 break;
2148         case KVM_REG_PPC_UAMOR:
2149                 *val = get_reg_val(id, vcpu->arch.uamor);
2150                 break;
2151         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2152                 i = id - KVM_REG_PPC_MMCR0;
2153                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2154                 break;
2155         case KVM_REG_PPC_MMCR2:
2156                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2157                 break;
2158         case KVM_REG_PPC_MMCRA:
2159                 *val = get_reg_val(id, vcpu->arch.mmcra);
2160                 break;
2161         case KVM_REG_PPC_MMCRS:
2162                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2163                 break;
2164         case KVM_REG_PPC_MMCR3:
2165                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2166                 break;
2167         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2168                 i = id - KVM_REG_PPC_PMC1;
2169                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2170                 break;
2171         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2172                 i = id - KVM_REG_PPC_SPMC1;
2173                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2174                 break;
2175         case KVM_REG_PPC_SIAR:
2176                 *val = get_reg_val(id, vcpu->arch.siar);
2177                 break;
2178         case KVM_REG_PPC_SDAR:
2179                 *val = get_reg_val(id, vcpu->arch.sdar);
2180                 break;
2181         case KVM_REG_PPC_SIER:
2182                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2183                 break;
2184         case KVM_REG_PPC_SIER2:
2185                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2186                 break;
2187         case KVM_REG_PPC_SIER3:
2188                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2189                 break;
2190         case KVM_REG_PPC_IAMR:
2191                 *val = get_reg_val(id, vcpu->arch.iamr);
2192                 break;
2193         case KVM_REG_PPC_PSPB:
2194                 *val = get_reg_val(id, vcpu->arch.pspb);
2195                 break;
2196         case KVM_REG_PPC_DPDES:
2197                 /*
2198                  * On POWER9, where we are emulating msgsndp etc.,
2199                  * we return 1 bit for each vcpu, which can come from
2200                  * either vcore->dpdes or doorbell_request.
2201                  * On POWER8, doorbell_request is 0.
2202                  */
2203                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2204                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2205                 else
2206                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2207                 break;
2208         case KVM_REG_PPC_VTB:
2209                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2210                 break;
2211         case KVM_REG_PPC_DAWR:
2212                 *val = get_reg_val(id, vcpu->arch.dawr0);
2213                 break;
2214         case KVM_REG_PPC_DAWRX:
2215                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2216                 break;
2217         case KVM_REG_PPC_DAWR1:
2218                 *val = get_reg_val(id, vcpu->arch.dawr1);
2219                 break;
2220         case KVM_REG_PPC_DAWRX1:
2221                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2222                 break;
2223         case KVM_REG_PPC_CIABR:
2224                 *val = get_reg_val(id, vcpu->arch.ciabr);
2225                 break;
2226         case KVM_REG_PPC_CSIGR:
2227                 *val = get_reg_val(id, vcpu->arch.csigr);
2228                 break;
2229         case KVM_REG_PPC_TACR:
2230                 *val = get_reg_val(id, vcpu->arch.tacr);
2231                 break;
2232         case KVM_REG_PPC_TCSCR:
2233                 *val = get_reg_val(id, vcpu->arch.tcscr);
2234                 break;
2235         case KVM_REG_PPC_PID:
2236                 *val = get_reg_val(id, vcpu->arch.pid);
2237                 break;
2238         case KVM_REG_PPC_ACOP:
2239                 *val = get_reg_val(id, vcpu->arch.acop);
2240                 break;
2241         case KVM_REG_PPC_WORT:
2242                 *val = get_reg_val(id, vcpu->arch.wort);
2243                 break;
2244         case KVM_REG_PPC_TIDR:
2245                 *val = get_reg_val(id, vcpu->arch.tid);
2246                 break;
2247         case KVM_REG_PPC_PSSCR:
2248                 *val = get_reg_val(id, vcpu->arch.psscr);
2249                 break;
2250         case KVM_REG_PPC_VPA_ADDR:
2251                 spin_lock(&vcpu->arch.vpa_update_lock);
2252                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2253                 spin_unlock(&vcpu->arch.vpa_update_lock);
2254                 break;
2255         case KVM_REG_PPC_VPA_SLB:
2256                 spin_lock(&vcpu->arch.vpa_update_lock);
2257                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2258                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2259                 spin_unlock(&vcpu->arch.vpa_update_lock);
2260                 break;
2261         case KVM_REG_PPC_VPA_DTL:
2262                 spin_lock(&vcpu->arch.vpa_update_lock);
2263                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2264                 val->vpaval.length = vcpu->arch.dtl.len;
2265                 spin_unlock(&vcpu->arch.vpa_update_lock);
2266                 break;
2267         case KVM_REG_PPC_TB_OFFSET:
2268                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2269                 break;
2270         case KVM_REG_PPC_LPCR:
2271         case KVM_REG_PPC_LPCR_64:
2272                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2273                 break;
2274         case KVM_REG_PPC_PPR:
2275                 *val = get_reg_val(id, vcpu->arch.ppr);
2276                 break;
2277 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2278         case KVM_REG_PPC_TFHAR:
2279                 *val = get_reg_val(id, vcpu->arch.tfhar);
2280                 break;
2281         case KVM_REG_PPC_TFIAR:
2282                 *val = get_reg_val(id, vcpu->arch.tfiar);
2283                 break;
2284         case KVM_REG_PPC_TEXASR:
2285                 *val = get_reg_val(id, vcpu->arch.texasr);
2286                 break;
2287         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2288                 i = id - KVM_REG_PPC_TM_GPR0;
2289                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2290                 break;
2291         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2292         {
2293                 int j;
2294                 i = id - KVM_REG_PPC_TM_VSR0;
2295                 if (i < 32)
2296                         for (j = 0; j < TS_FPRWIDTH; j++)
2297                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2298                 else {
2299                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2300                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2301                         else
2302                                 r = -ENXIO;
2303                 }
2304                 break;
2305         }
2306         case KVM_REG_PPC_TM_CR:
2307                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2308                 break;
2309         case KVM_REG_PPC_TM_XER:
2310                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2311                 break;
2312         case KVM_REG_PPC_TM_LR:
2313                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2314                 break;
2315         case KVM_REG_PPC_TM_CTR:
2316                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2317                 break;
2318         case KVM_REG_PPC_TM_FPSCR:
2319                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2320                 break;
2321         case KVM_REG_PPC_TM_AMR:
2322                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2323                 break;
2324         case KVM_REG_PPC_TM_PPR:
2325                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2326                 break;
2327         case KVM_REG_PPC_TM_VRSAVE:
2328                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2329                 break;
2330         case KVM_REG_PPC_TM_VSCR:
2331                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2332                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2333                 else
2334                         r = -ENXIO;
2335                 break;
2336         case KVM_REG_PPC_TM_DSCR:
2337                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2338                 break;
2339         case KVM_REG_PPC_TM_TAR:
2340                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2341                 break;
2342 #endif
2343         case KVM_REG_PPC_ARCH_COMPAT:
2344                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2345                 break;
2346         case KVM_REG_PPC_DEC_EXPIRY:
2347                 *val = get_reg_val(id, vcpu->arch.dec_expires);
2348                 break;
2349         case KVM_REG_PPC_ONLINE:
2350                 *val = get_reg_val(id, vcpu->arch.online);
2351                 break;
2352         case KVM_REG_PPC_PTCR:
2353                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2354                 break;
2355         default:
2356                 r = -EINVAL;
2357                 break;
2358         }
2359
2360         return r;
2361 }
2362
2363 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2364                                  union kvmppc_one_reg *val)
2365 {
2366         int r = 0;
2367         long int i;
2368         unsigned long addr, len;
2369
2370         switch (id) {
2371         case KVM_REG_PPC_HIOR:
2372                 /* Only allow this to be set to zero */
2373                 if (set_reg_val(id, *val))
2374                         r = -EINVAL;
2375                 break;
2376         case KVM_REG_PPC_DABR:
2377                 vcpu->arch.dabr = set_reg_val(id, *val);
2378                 break;
2379         case KVM_REG_PPC_DABRX:
2380                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2381                 break;
2382         case KVM_REG_PPC_DSCR:
2383                 vcpu->arch.dscr = set_reg_val(id, *val);
2384                 break;
2385         case KVM_REG_PPC_PURR:
2386                 vcpu->arch.purr = set_reg_val(id, *val);
2387                 break;
2388         case KVM_REG_PPC_SPURR:
2389                 vcpu->arch.spurr = set_reg_val(id, *val);
2390                 break;
2391         case KVM_REG_PPC_AMR:
2392                 vcpu->arch.amr = set_reg_val(id, *val);
2393                 break;
2394         case KVM_REG_PPC_UAMOR:
2395                 vcpu->arch.uamor = set_reg_val(id, *val);
2396                 break;
2397         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2398                 i = id - KVM_REG_PPC_MMCR0;
2399                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2400                 break;
2401         case KVM_REG_PPC_MMCR2:
2402                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2403                 break;
2404         case KVM_REG_PPC_MMCRA:
2405                 vcpu->arch.mmcra = set_reg_val(id, *val);
2406                 break;
2407         case KVM_REG_PPC_MMCRS:
2408                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2409                 break;
2410         case KVM_REG_PPC_MMCR3:
2411                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2412                 break;
2413         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2414                 i = id - KVM_REG_PPC_PMC1;
2415                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2416                 break;
2417         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2418                 i = id - KVM_REG_PPC_SPMC1;
2419                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2420                 break;
2421         case KVM_REG_PPC_SIAR:
2422                 vcpu->arch.siar = set_reg_val(id, *val);
2423                 break;
2424         case KVM_REG_PPC_SDAR:
2425                 vcpu->arch.sdar = set_reg_val(id, *val);
2426                 break;
2427         case KVM_REG_PPC_SIER:
2428                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2429                 break;
2430         case KVM_REG_PPC_SIER2:
2431                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2432                 break;
2433         case KVM_REG_PPC_SIER3:
2434                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2435                 break;
2436         case KVM_REG_PPC_IAMR:
2437                 vcpu->arch.iamr = set_reg_val(id, *val);
2438                 break;
2439         case KVM_REG_PPC_PSPB:
2440                 vcpu->arch.pspb = set_reg_val(id, *val);
2441                 break;
2442         case KVM_REG_PPC_DPDES:
2443                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2444                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2445                 else
2446                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2447                 break;
2448         case KVM_REG_PPC_VTB:
2449                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2450                 break;
2451         case KVM_REG_PPC_DAWR:
2452                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2453                 break;
2454         case KVM_REG_PPC_DAWRX:
2455                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2456                 break;
2457         case KVM_REG_PPC_DAWR1:
2458                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2459                 break;
2460         case KVM_REG_PPC_DAWRX1:
2461                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2462                 break;
2463         case KVM_REG_PPC_CIABR:
2464                 vcpu->arch.ciabr = set_reg_val(id, *val);
2465                 /* Don't allow setting breakpoints in hypervisor code */
2466                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2467                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2468                 break;
2469         case KVM_REG_PPC_CSIGR:
2470                 vcpu->arch.csigr = set_reg_val(id, *val);
2471                 break;
2472         case KVM_REG_PPC_TACR:
2473                 vcpu->arch.tacr = set_reg_val(id, *val);
2474                 break;
2475         case KVM_REG_PPC_TCSCR:
2476                 vcpu->arch.tcscr = set_reg_val(id, *val);
2477                 break;
2478         case KVM_REG_PPC_PID:
2479                 vcpu->arch.pid = set_reg_val(id, *val);
2480                 break;
2481         case KVM_REG_PPC_ACOP:
2482                 vcpu->arch.acop = set_reg_val(id, *val);
2483                 break;
2484         case KVM_REG_PPC_WORT:
2485                 vcpu->arch.wort = set_reg_val(id, *val);
2486                 break;
2487         case KVM_REG_PPC_TIDR:
2488                 vcpu->arch.tid = set_reg_val(id, *val);
2489                 break;
2490         case KVM_REG_PPC_PSSCR:
2491                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2492                 break;
2493         case KVM_REG_PPC_VPA_ADDR:
2494                 addr = set_reg_val(id, *val);
2495                 r = -EINVAL;
2496                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2497                               vcpu->arch.dtl.next_gpa))
2498                         break;
2499                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2500                 break;
2501         case KVM_REG_PPC_VPA_SLB:
2502                 addr = val->vpaval.addr;
2503                 len = val->vpaval.length;
2504                 r = -EINVAL;
2505                 if (addr && !vcpu->arch.vpa.next_gpa)
2506                         break;
2507                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2508                 break;
2509         case KVM_REG_PPC_VPA_DTL:
2510                 addr = val->vpaval.addr;
2511                 len = val->vpaval.length;
2512                 r = -EINVAL;
2513                 if (addr && (len < sizeof(struct dtl_entry) ||
2514                              !vcpu->arch.vpa.next_gpa))
2515                         break;
2516                 len -= len % sizeof(struct dtl_entry);
2517                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2518                 break;
2519         case KVM_REG_PPC_TB_OFFSET:
2520                 /* round up to multiple of 2^24 */
2521                 vcpu->arch.vcore->tb_offset =
2522                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2523                 break;
2524         case KVM_REG_PPC_LPCR:
2525                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2526                 break;
2527         case KVM_REG_PPC_LPCR_64:
2528                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2529                 break;
2530         case KVM_REG_PPC_PPR:
2531                 vcpu->arch.ppr = set_reg_val(id, *val);
2532                 break;
2533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2534         case KVM_REG_PPC_TFHAR:
2535                 vcpu->arch.tfhar = set_reg_val(id, *val);
2536                 break;
2537         case KVM_REG_PPC_TFIAR:
2538                 vcpu->arch.tfiar = set_reg_val(id, *val);
2539                 break;
2540         case KVM_REG_PPC_TEXASR:
2541                 vcpu->arch.texasr = set_reg_val(id, *val);
2542                 break;
2543         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2544                 i = id - KVM_REG_PPC_TM_GPR0;
2545                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2546                 break;
2547         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2548         {
2549                 int j;
2550                 i = id - KVM_REG_PPC_TM_VSR0;
2551                 if (i < 32)
2552                         for (j = 0; j < TS_FPRWIDTH; j++)
2553                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2554                 else
2555                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2556                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2557                         else
2558                                 r = -ENXIO;
2559                 break;
2560         }
2561         case KVM_REG_PPC_TM_CR:
2562                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2563                 break;
2564         case KVM_REG_PPC_TM_XER:
2565                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2566                 break;
2567         case KVM_REG_PPC_TM_LR:
2568                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2569                 break;
2570         case KVM_REG_PPC_TM_CTR:
2571                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2572                 break;
2573         case KVM_REG_PPC_TM_FPSCR:
2574                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2575                 break;
2576         case KVM_REG_PPC_TM_AMR:
2577                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2578                 break;
2579         case KVM_REG_PPC_TM_PPR:
2580                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2581                 break;
2582         case KVM_REG_PPC_TM_VRSAVE:
2583                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2584                 break;
2585         case KVM_REG_PPC_TM_VSCR:
2586                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2587                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2588                 else
2589                         r = - ENXIO;
2590                 break;
2591         case KVM_REG_PPC_TM_DSCR:
2592                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2593                 break;
2594         case KVM_REG_PPC_TM_TAR:
2595                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2596                 break;
2597 #endif
2598         case KVM_REG_PPC_ARCH_COMPAT:
2599                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2600                 break;
2601         case KVM_REG_PPC_DEC_EXPIRY:
2602                 vcpu->arch.dec_expires = set_reg_val(id, *val);
2603                 break;
2604         case KVM_REG_PPC_ONLINE:
2605                 i = set_reg_val(id, *val);
2606                 if (i && !vcpu->arch.online)
2607                         atomic_inc(&vcpu->arch.vcore->online_count);
2608                 else if (!i && vcpu->arch.online)
2609                         atomic_dec(&vcpu->arch.vcore->online_count);
2610                 vcpu->arch.online = i;
2611                 break;
2612         case KVM_REG_PPC_PTCR:
2613                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2614                 break;
2615         default:
2616                 r = -EINVAL;
2617                 break;
2618         }
2619
2620         return r;
2621 }
2622
2623 /*
2624  * On POWER9, threads are independent and can be in different partitions.
2625  * Therefore we consider each thread to be a subcore.
2626  * There is a restriction that all threads have to be in the same
2627  * MMU mode (radix or HPT), unfortunately, but since we only support
2628  * HPT guests on a HPT host so far, that isn't an impediment yet.
2629  */
2630 static int threads_per_vcore(struct kvm *kvm)
2631 {
2632         if (cpu_has_feature(CPU_FTR_ARCH_300))
2633                 return 1;
2634         return threads_per_subcore;
2635 }
2636
2637 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2638 {
2639         struct kvmppc_vcore *vcore;
2640
2641         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2642
2643         if (vcore == NULL)
2644                 return NULL;
2645
2646         spin_lock_init(&vcore->lock);
2647         spin_lock_init(&vcore->stoltb_lock);
2648         rcuwait_init(&vcore->wait);
2649         vcore->preempt_tb = TB_NIL;
2650         vcore->lpcr = kvm->arch.lpcr;
2651         vcore->first_vcpuid = id;
2652         vcore->kvm = kvm;
2653         INIT_LIST_HEAD(&vcore->preempt_list);
2654
2655         return vcore;
2656 }
2657
2658 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2659 static struct debugfs_timings_element {
2660         const char *name;
2661         size_t offset;
2662 } timings[] = {
2663 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2664         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2665         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2666         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2667         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2668         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2669 #else
2670         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2671         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2672         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2673         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2674         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2675 #endif
2676 };
2677
2678 #define N_TIMINGS       (ARRAY_SIZE(timings))
2679
2680 struct debugfs_timings_state {
2681         struct kvm_vcpu *vcpu;
2682         unsigned int    buflen;
2683         char            buf[N_TIMINGS * 100];
2684 };
2685
2686 static int debugfs_timings_open(struct inode *inode, struct file *file)
2687 {
2688         struct kvm_vcpu *vcpu = inode->i_private;
2689         struct debugfs_timings_state *p;
2690
2691         p = kzalloc(sizeof(*p), GFP_KERNEL);
2692         if (!p)
2693                 return -ENOMEM;
2694
2695         kvm_get_kvm(vcpu->kvm);
2696         p->vcpu = vcpu;
2697         file->private_data = p;
2698
2699         return nonseekable_open(inode, file);
2700 }
2701
2702 static int debugfs_timings_release(struct inode *inode, struct file *file)
2703 {
2704         struct debugfs_timings_state *p = file->private_data;
2705
2706         kvm_put_kvm(p->vcpu->kvm);
2707         kfree(p);
2708         return 0;
2709 }
2710
2711 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2712                                     size_t len, loff_t *ppos)
2713 {
2714         struct debugfs_timings_state *p = file->private_data;
2715         struct kvm_vcpu *vcpu = p->vcpu;
2716         char *s, *buf_end;
2717         struct kvmhv_tb_accumulator tb;
2718         u64 count;
2719         loff_t pos;
2720         ssize_t n;
2721         int i, loops;
2722         bool ok;
2723
2724         if (!p->buflen) {
2725                 s = p->buf;
2726                 buf_end = s + sizeof(p->buf);
2727                 for (i = 0; i < N_TIMINGS; ++i) {
2728                         struct kvmhv_tb_accumulator *acc;
2729
2730                         acc = (struct kvmhv_tb_accumulator *)
2731                                 ((unsigned long)vcpu + timings[i].offset);
2732                         ok = false;
2733                         for (loops = 0; loops < 1000; ++loops) {
2734                                 count = acc->seqcount;
2735                                 if (!(count & 1)) {
2736                                         smp_rmb();
2737                                         tb = *acc;
2738                                         smp_rmb();
2739                                         if (count == acc->seqcount) {
2740                                                 ok = true;
2741                                                 break;
2742                                         }
2743                                 }
2744                                 udelay(1);
2745                         }
2746                         if (!ok)
2747                                 snprintf(s, buf_end - s, "%s: stuck\n",
2748                                         timings[i].name);
2749                         else
2750                                 snprintf(s, buf_end - s,
2751                                         "%s: %llu %llu %llu %llu\n",
2752                                         timings[i].name, count / 2,
2753                                         tb_to_ns(tb.tb_total),
2754                                         tb_to_ns(tb.tb_min),
2755                                         tb_to_ns(tb.tb_max));
2756                         s += strlen(s);
2757                 }
2758                 p->buflen = s - p->buf;
2759         }
2760
2761         pos = *ppos;
2762         if (pos >= p->buflen)
2763                 return 0;
2764         if (len > p->buflen - pos)
2765                 len = p->buflen - pos;
2766         n = copy_to_user(buf, p->buf + pos, len);
2767         if (n) {
2768                 if (n == len)
2769                         return -EFAULT;
2770                 len -= n;
2771         }
2772         *ppos = pos + len;
2773         return len;
2774 }
2775
2776 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2777                                      size_t len, loff_t *ppos)
2778 {
2779         return -EACCES;
2780 }
2781
2782 static const struct file_operations debugfs_timings_ops = {
2783         .owner   = THIS_MODULE,
2784         .open    = debugfs_timings_open,
2785         .release = debugfs_timings_release,
2786         .read    = debugfs_timings_read,
2787         .write   = debugfs_timings_write,
2788         .llseek  = generic_file_llseek,
2789 };
2790
2791 /* Create a debugfs directory for the vcpu */
2792 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2793 {
2794         if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2795                 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2796                                     &debugfs_timings_ops);
2797         return 0;
2798 }
2799
2800 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2801 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2802 {
2803         return 0;
2804 }
2805 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2806
2807 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2808 {
2809         int err;
2810         int core;
2811         struct kvmppc_vcore *vcore;
2812         struct kvm *kvm;
2813         unsigned int id;
2814
2815         kvm = vcpu->kvm;
2816         id = vcpu->vcpu_id;
2817
2818         vcpu->arch.shared = &vcpu->arch.shregs;
2819 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2820         /*
2821          * The shared struct is never shared on HV,
2822          * so we can always use host endianness
2823          */
2824 #ifdef __BIG_ENDIAN__
2825         vcpu->arch.shared_big_endian = true;
2826 #else
2827         vcpu->arch.shared_big_endian = false;
2828 #endif
2829 #endif
2830         vcpu->arch.mmcr[0] = MMCR0_FC;
2831         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2832                 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2833                 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2834         }
2835
2836         vcpu->arch.ctrl = CTRL_RUNLATCH;
2837         /* default to host PVR, since we can't spoof it */
2838         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2839         spin_lock_init(&vcpu->arch.vpa_update_lock);
2840         spin_lock_init(&vcpu->arch.tbacct_lock);
2841         vcpu->arch.busy_preempt = TB_NIL;
2842         vcpu->arch.shregs.msr = MSR_ME;
2843         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2844
2845         /*
2846          * Set the default HFSCR for the guest from the host value.
2847          * This value is only used on POWER9.
2848          * On POWER9, we want to virtualize the doorbell facility, so we
2849          * don't set the HFSCR_MSGP bit, and that causes those instructions
2850          * to trap and then we emulate them.
2851          */
2852         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2853                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2854         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2855                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2857                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2858                         vcpu->arch.hfscr |= HFSCR_TM;
2859 #endif
2860         }
2861         if (cpu_has_feature(CPU_FTR_TM_COMP))
2862                 vcpu->arch.hfscr |= HFSCR_TM;
2863
2864         vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2865
2866         /*
2867          * PM, EBB, TM are demand-faulted so start with it clear.
2868          */
2869         vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2870
2871         kvmppc_mmu_book3s_hv_init(vcpu);
2872
2873         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2874
2875         init_waitqueue_head(&vcpu->arch.cpu_run);
2876
2877         mutex_lock(&kvm->lock);
2878         vcore = NULL;
2879         err = -EINVAL;
2880         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2881                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2882                         pr_devel("KVM: VCPU ID too high\n");
2883                         core = KVM_MAX_VCORES;
2884                 } else {
2885                         BUG_ON(kvm->arch.smt_mode != 1);
2886                         core = kvmppc_pack_vcpu_id(kvm, id);
2887                 }
2888         } else {
2889                 core = id / kvm->arch.smt_mode;
2890         }
2891         if (core < KVM_MAX_VCORES) {
2892                 vcore = kvm->arch.vcores[core];
2893                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2894                         pr_devel("KVM: collision on id %u", id);
2895                         vcore = NULL;
2896                 } else if (!vcore) {
2897                         /*
2898                          * Take mmu_setup_lock for mutual exclusion
2899                          * with kvmppc_update_lpcr().
2900                          */
2901                         err = -ENOMEM;
2902                         vcore = kvmppc_vcore_create(kvm,
2903                                         id & ~(kvm->arch.smt_mode - 1));
2904                         mutex_lock(&kvm->arch.mmu_setup_lock);
2905                         kvm->arch.vcores[core] = vcore;
2906                         kvm->arch.online_vcores++;
2907                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2908                 }
2909         }
2910         mutex_unlock(&kvm->lock);
2911
2912         if (!vcore)
2913                 return err;
2914
2915         spin_lock(&vcore->lock);
2916         ++vcore->num_threads;
2917         spin_unlock(&vcore->lock);
2918         vcpu->arch.vcore = vcore;
2919         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2920         vcpu->arch.thread_cpu = -1;
2921         vcpu->arch.prev_cpu = -1;
2922
2923         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2924         kvmppc_sanity_check(vcpu);
2925
2926         return 0;
2927 }
2928
2929 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2930                               unsigned long flags)
2931 {
2932         int err;
2933         int esmt = 0;
2934
2935         if (flags)
2936                 return -EINVAL;
2937         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2938                 return -EINVAL;
2939         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2940                 /*
2941                  * On POWER8 (or POWER7), the threading mode is "strict",
2942                  * so we pack smt_mode vcpus per vcore.
2943                  */
2944                 if (smt_mode > threads_per_subcore)
2945                         return -EINVAL;
2946         } else {
2947                 /*
2948                  * On POWER9, the threading mode is "loose",
2949                  * so each vcpu gets its own vcore.
2950                  */
2951                 esmt = smt_mode;
2952                 smt_mode = 1;
2953         }
2954         mutex_lock(&kvm->lock);
2955         err = -EBUSY;
2956         if (!kvm->arch.online_vcores) {
2957                 kvm->arch.smt_mode = smt_mode;
2958                 kvm->arch.emul_smt_mode = esmt;
2959                 err = 0;
2960         }
2961         mutex_unlock(&kvm->lock);
2962
2963         return err;
2964 }
2965
2966 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2967 {
2968         if (vpa->pinned_addr)
2969                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2970                                         vpa->dirty);
2971 }
2972
2973 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2974 {
2975         spin_lock(&vcpu->arch.vpa_update_lock);
2976         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2977         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2978         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2979         spin_unlock(&vcpu->arch.vpa_update_lock);
2980 }
2981
2982 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2983 {
2984         /* Indicate we want to get back into the guest */
2985         return 1;
2986 }
2987
2988 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2989 {
2990         unsigned long dec_nsec, now;
2991
2992         now = get_tb();
2993         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2994                 /* decrementer has already gone negative */
2995                 kvmppc_core_queue_dec(vcpu);
2996                 kvmppc_core_prepare_to_enter(vcpu);
2997                 return;
2998         }
2999         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3000         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3001         vcpu->arch.timer_running = 1;
3002 }
3003
3004 extern int __kvmppc_vcore_entry(void);
3005
3006 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3007                                    struct kvm_vcpu *vcpu, u64 tb)
3008 {
3009         u64 now;
3010
3011         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3012                 return;
3013         spin_lock_irq(&vcpu->arch.tbacct_lock);
3014         now = tb;
3015         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3016                 vcpu->arch.stolen_logged;
3017         vcpu->arch.busy_preempt = now;
3018         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3019         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3020         --vc->n_runnable;
3021         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3022 }
3023
3024 static int kvmppc_grab_hwthread(int cpu)
3025 {
3026         struct paca_struct *tpaca;
3027         long timeout = 10000;
3028
3029         tpaca = paca_ptrs[cpu];
3030
3031         /* Ensure the thread won't go into the kernel if it wakes */
3032         tpaca->kvm_hstate.kvm_vcpu = NULL;
3033         tpaca->kvm_hstate.kvm_vcore = NULL;
3034         tpaca->kvm_hstate.napping = 0;
3035         smp_wmb();
3036         tpaca->kvm_hstate.hwthread_req = 1;
3037
3038         /*
3039          * If the thread is already executing in the kernel (e.g. handling
3040          * a stray interrupt), wait for it to get back to nap mode.
3041          * The smp_mb() is to ensure that our setting of hwthread_req
3042          * is visible before we look at hwthread_state, so if this
3043          * races with the code at system_reset_pSeries and the thread
3044          * misses our setting of hwthread_req, we are sure to see its
3045          * setting of hwthread_state, and vice versa.
3046          */
3047         smp_mb();
3048         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3049                 if (--timeout <= 0) {
3050                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3051                         return -EBUSY;
3052                 }
3053                 udelay(1);
3054         }
3055         return 0;
3056 }
3057
3058 static void kvmppc_release_hwthread(int cpu)
3059 {
3060         struct paca_struct *tpaca;
3061
3062         tpaca = paca_ptrs[cpu];
3063         tpaca->kvm_hstate.hwthread_req = 0;
3064         tpaca->kvm_hstate.kvm_vcpu = NULL;
3065         tpaca->kvm_hstate.kvm_vcore = NULL;
3066         tpaca->kvm_hstate.kvm_split_mode = NULL;
3067 }
3068
3069 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3070
3071 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3072 {
3073         struct kvm_nested_guest *nested = vcpu->arch.nested;
3074         cpumask_t *need_tlb_flush;
3075         int i;
3076
3077         if (nested)
3078                 need_tlb_flush = &nested->need_tlb_flush;
3079         else
3080                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3081
3082         cpu = cpu_first_tlb_thread_sibling(cpu);
3083         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3084                                         i += cpu_tlb_thread_sibling_step())
3085                 cpumask_set_cpu(i, need_tlb_flush);
3086
3087         /*
3088          * Make sure setting of bit in need_tlb_flush precedes testing of
3089          * cpu_in_guest. The matching barrier on the other side is hwsync
3090          * when switching to guest MMU mode, which happens between
3091          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3092          * being tested.
3093          */
3094         smp_mb();
3095
3096         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3097                                         i += cpu_tlb_thread_sibling_step()) {
3098                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3099
3100                 if (running == kvm)
3101                         smp_call_function_single(i, do_nothing, NULL, 1);
3102         }
3103 }
3104
3105 static void do_migrate_away_vcpu(void *arg)
3106 {
3107         struct kvm_vcpu *vcpu = arg;
3108         struct kvm *kvm = vcpu->kvm;
3109
3110         /*
3111          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3112          * ptesync sequence on the old CPU before migrating to a new one, in
3113          * case we interrupted the guest between a tlbie ; eieio ;
3114          * tlbsync; ptesync sequence.
3115          *
3116          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3117          */
3118         if (kvm->arch.lpcr & LPCR_GTSE)
3119                 asm volatile("eieio; tlbsync; ptesync");
3120         else
3121                 asm volatile("ptesync");
3122 }
3123
3124 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3125 {
3126         struct kvm_nested_guest *nested = vcpu->arch.nested;
3127         struct kvm *kvm = vcpu->kvm;
3128         int prev_cpu;
3129
3130         if (!cpu_has_feature(CPU_FTR_HVMODE))
3131                 return;
3132
3133         if (nested)
3134                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3135         else
3136                 prev_cpu = vcpu->arch.prev_cpu;
3137
3138         /*
3139          * With radix, the guest can do TLB invalidations itself,
3140          * and it could choose to use the local form (tlbiel) if
3141          * it is invalidating a translation that has only ever been
3142          * used on one vcpu.  However, that doesn't mean it has
3143          * only ever been used on one physical cpu, since vcpus
3144          * can move around between pcpus.  To cope with this, when
3145          * a vcpu moves from one pcpu to another, we need to tell
3146          * any vcpus running on the same core as this vcpu previously
3147          * ran to flush the TLB.
3148          */
3149         if (prev_cpu != pcpu) {
3150                 if (prev_cpu >= 0) {
3151                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3152                             cpu_first_tlb_thread_sibling(pcpu))
3153                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3154
3155                         smp_call_function_single(prev_cpu,
3156                                         do_migrate_away_vcpu, vcpu, 1);
3157                 }
3158                 if (nested)
3159                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3160                 else
3161                         vcpu->arch.prev_cpu = pcpu;
3162         }
3163 }
3164
3165 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3166 {
3167         int cpu;
3168         struct paca_struct *tpaca;
3169
3170         cpu = vc->pcpu;
3171         if (vcpu) {
3172                 if (vcpu->arch.timer_running) {
3173                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3174                         vcpu->arch.timer_running = 0;
3175                 }
3176                 cpu += vcpu->arch.ptid;
3177                 vcpu->cpu = vc->pcpu;
3178                 vcpu->arch.thread_cpu = cpu;
3179         }
3180         tpaca = paca_ptrs[cpu];
3181         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3182         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3183         tpaca->kvm_hstate.fake_suspend = 0;
3184         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3185         smp_wmb();
3186         tpaca->kvm_hstate.kvm_vcore = vc;
3187         if (cpu != smp_processor_id())
3188                 kvmppc_ipi_thread(cpu);
3189 }
3190
3191 static void kvmppc_wait_for_nap(int n_threads)
3192 {
3193         int cpu = smp_processor_id();
3194         int i, loops;
3195
3196         if (n_threads <= 1)
3197                 return;
3198         for (loops = 0; loops < 1000000; ++loops) {
3199                 /*
3200                  * Check if all threads are finished.
3201                  * We set the vcore pointer when starting a thread
3202                  * and the thread clears it when finished, so we look
3203                  * for any threads that still have a non-NULL vcore ptr.
3204                  */
3205                 for (i = 1; i < n_threads; ++i)
3206                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3207                                 break;
3208                 if (i == n_threads) {
3209                         HMT_medium();
3210                         return;
3211                 }
3212                 HMT_low();
3213         }
3214         HMT_medium();
3215         for (i = 1; i < n_threads; ++i)
3216                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3217                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3218 }
3219
3220 /*
3221  * Check that we are on thread 0 and that any other threads in
3222  * this core are off-line.  Then grab the threads so they can't
3223  * enter the kernel.
3224  */
3225 static int on_primary_thread(void)
3226 {
3227         int cpu = smp_processor_id();
3228         int thr;
3229
3230         /* Are we on a primary subcore? */
3231         if (cpu_thread_in_subcore(cpu))
3232                 return 0;
3233
3234         thr = 0;
3235         while (++thr < threads_per_subcore)
3236                 if (cpu_online(cpu + thr))
3237                         return 0;
3238
3239         /* Grab all hw threads so they can't go into the kernel */
3240         for (thr = 1; thr < threads_per_subcore; ++thr) {
3241                 if (kvmppc_grab_hwthread(cpu + thr)) {
3242                         /* Couldn't grab one; let the others go */
3243                         do {
3244                                 kvmppc_release_hwthread(cpu + thr);
3245                         } while (--thr > 0);
3246                         return 0;
3247                 }
3248         }
3249         return 1;
3250 }
3251
3252 /*
3253  * A list of virtual cores for each physical CPU.
3254  * These are vcores that could run but their runner VCPU tasks are
3255  * (or may be) preempted.
3256  */
3257 struct preempted_vcore_list {
3258         struct list_head        list;
3259         spinlock_t              lock;
3260 };
3261
3262 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3263
3264 static void init_vcore_lists(void)
3265 {
3266         int cpu;
3267
3268         for_each_possible_cpu(cpu) {
3269                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3270                 spin_lock_init(&lp->lock);
3271                 INIT_LIST_HEAD(&lp->list);
3272         }
3273 }
3274
3275 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3276 {
3277         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3278
3279         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3280
3281         vc->vcore_state = VCORE_PREEMPT;
3282         vc->pcpu = smp_processor_id();
3283         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3284                 spin_lock(&lp->lock);
3285                 list_add_tail(&vc->preempt_list, &lp->list);
3286                 spin_unlock(&lp->lock);
3287         }
3288
3289         /* Start accumulating stolen time */
3290         kvmppc_core_start_stolen(vc, mftb());
3291 }
3292
3293 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3294 {
3295         struct preempted_vcore_list *lp;
3296
3297         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3298
3299         kvmppc_core_end_stolen(vc, mftb());
3300         if (!list_empty(&vc->preempt_list)) {
3301                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3302                 spin_lock(&lp->lock);
3303                 list_del_init(&vc->preempt_list);
3304                 spin_unlock(&lp->lock);
3305         }
3306         vc->vcore_state = VCORE_INACTIVE;
3307 }
3308
3309 /*
3310  * This stores information about the virtual cores currently
3311  * assigned to a physical core.
3312  */
3313 struct core_info {
3314         int             n_subcores;
3315         int             max_subcore_threads;
3316         int             total_threads;
3317         int             subcore_threads[MAX_SUBCORES];
3318         struct kvmppc_vcore *vc[MAX_SUBCORES];
3319 };
3320
3321 /*
3322  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3323  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3324  */
3325 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3326
3327 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3328 {
3329         memset(cip, 0, sizeof(*cip));
3330         cip->n_subcores = 1;
3331         cip->max_subcore_threads = vc->num_threads;
3332         cip->total_threads = vc->num_threads;
3333         cip->subcore_threads[0] = vc->num_threads;
3334         cip->vc[0] = vc;
3335 }
3336
3337 static bool subcore_config_ok(int n_subcores, int n_threads)
3338 {
3339         /*
3340          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3341          * split-core mode, with one thread per subcore.
3342          */
3343         if (cpu_has_feature(CPU_FTR_ARCH_300))
3344                 return n_subcores <= 4 && n_threads == 1;
3345
3346         /* On POWER8, can only dynamically split if unsplit to begin with */
3347         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3348                 return false;
3349         if (n_subcores > MAX_SUBCORES)
3350                 return false;
3351         if (n_subcores > 1) {
3352                 if (!(dynamic_mt_modes & 2))
3353                         n_subcores = 4;
3354                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3355                         return false;
3356         }
3357
3358         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3359 }
3360
3361 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3362 {
3363         vc->entry_exit_map = 0;
3364         vc->in_guest = 0;
3365         vc->napping_threads = 0;
3366         vc->conferring_threads = 0;
3367         vc->tb_offset_applied = 0;
3368 }
3369
3370 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3371 {
3372         int n_threads = vc->num_threads;
3373         int sub;
3374
3375         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3376                 return false;
3377
3378         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3379         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3380                 return false;
3381
3382         if (n_threads < cip->max_subcore_threads)
3383                 n_threads = cip->max_subcore_threads;
3384         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3385                 return false;
3386         cip->max_subcore_threads = n_threads;
3387
3388         sub = cip->n_subcores;
3389         ++cip->n_subcores;
3390         cip->total_threads += vc->num_threads;
3391         cip->subcore_threads[sub] = vc->num_threads;
3392         cip->vc[sub] = vc;
3393         init_vcore_to_run(vc);
3394         list_del_init(&vc->preempt_list);
3395
3396         return true;
3397 }
3398
3399 /*
3400  * Work out whether it is possible to piggyback the execution of
3401  * vcore *pvc onto the execution of the other vcores described in *cip.
3402  */
3403 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3404                           int target_threads)
3405 {
3406         if (cip->total_threads + pvc->num_threads > target_threads)
3407                 return false;
3408
3409         return can_dynamic_split(pvc, cip);
3410 }
3411
3412 static void prepare_threads(struct kvmppc_vcore *vc)
3413 {
3414         int i;
3415         struct kvm_vcpu *vcpu;
3416
3417         for_each_runnable_thread(i, vcpu, vc) {
3418                 if (signal_pending(vcpu->arch.run_task))
3419                         vcpu->arch.ret = -EINTR;
3420                 else if (vcpu->arch.vpa.update_pending ||
3421                          vcpu->arch.slb_shadow.update_pending ||
3422                          vcpu->arch.dtl.update_pending)
3423                         vcpu->arch.ret = RESUME_GUEST;
3424                 else
3425                         continue;
3426                 kvmppc_remove_runnable(vc, vcpu, mftb());
3427                 wake_up(&vcpu->arch.cpu_run);
3428         }
3429 }
3430
3431 static void collect_piggybacks(struct core_info *cip, int target_threads)
3432 {
3433         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3434         struct kvmppc_vcore *pvc, *vcnext;
3435
3436         spin_lock(&lp->lock);
3437         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3438                 if (!spin_trylock(&pvc->lock))
3439                         continue;
3440                 prepare_threads(pvc);
3441                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3442                         list_del_init(&pvc->preempt_list);
3443                         if (pvc->runner == NULL) {
3444                                 pvc->vcore_state = VCORE_INACTIVE;
3445                                 kvmppc_core_end_stolen(pvc, mftb());
3446                         }
3447                         spin_unlock(&pvc->lock);
3448                         continue;
3449                 }
3450                 if (!can_piggyback(pvc, cip, target_threads)) {
3451                         spin_unlock(&pvc->lock);
3452                         continue;
3453                 }
3454                 kvmppc_core_end_stolen(pvc, mftb());
3455                 pvc->vcore_state = VCORE_PIGGYBACK;
3456                 if (cip->total_threads >= target_threads)
3457                         break;
3458         }
3459         spin_unlock(&lp->lock);
3460 }
3461
3462 static bool recheck_signals_and_mmu(struct core_info *cip)
3463 {
3464         int sub, i;
3465         struct kvm_vcpu *vcpu;
3466         struct kvmppc_vcore *vc;
3467
3468         for (sub = 0; sub < cip->n_subcores; ++sub) {
3469                 vc = cip->vc[sub];
3470                 if (!vc->kvm->arch.mmu_ready)
3471                         return true;
3472                 for_each_runnable_thread(i, vcpu, vc)
3473                         if (signal_pending(vcpu->arch.run_task))
3474                                 return true;
3475         }
3476         return false;
3477 }
3478
3479 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3480 {
3481         int still_running = 0, i;
3482         u64 now;
3483         long ret;
3484         struct kvm_vcpu *vcpu;
3485
3486         spin_lock(&vc->lock);
3487         now = get_tb();
3488         for_each_runnable_thread(i, vcpu, vc) {
3489                 /*
3490                  * It's safe to unlock the vcore in the loop here, because
3491                  * for_each_runnable_thread() is safe against removal of
3492                  * the vcpu, and the vcore state is VCORE_EXITING here,
3493                  * so any vcpus becoming runnable will have their arch.trap
3494                  * set to zero and can't actually run in the guest.
3495                  */
3496                 spin_unlock(&vc->lock);
3497                 /* cancel pending dec exception if dec is positive */
3498                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3499                     kvmppc_core_pending_dec(vcpu))
3500                         kvmppc_core_dequeue_dec(vcpu);
3501
3502                 trace_kvm_guest_exit(vcpu);
3503
3504                 ret = RESUME_GUEST;
3505                 if (vcpu->arch.trap)
3506                         ret = kvmppc_handle_exit_hv(vcpu,
3507                                                     vcpu->arch.run_task);
3508
3509                 vcpu->arch.ret = ret;
3510                 vcpu->arch.trap = 0;
3511
3512                 spin_lock(&vc->lock);
3513                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3514                         if (vcpu->arch.pending_exceptions)
3515                                 kvmppc_core_prepare_to_enter(vcpu);
3516                         if (vcpu->arch.ceded)
3517                                 kvmppc_set_timer(vcpu);
3518                         else
3519                                 ++still_running;
3520                 } else {
3521                         kvmppc_remove_runnable(vc, vcpu, mftb());
3522                         wake_up(&vcpu->arch.cpu_run);
3523                 }
3524         }
3525         if (!is_master) {
3526                 if (still_running > 0) {
3527                         kvmppc_vcore_preempt(vc);
3528                 } else if (vc->runner) {
3529                         vc->vcore_state = VCORE_PREEMPT;
3530                         kvmppc_core_start_stolen(vc, mftb());
3531                 } else {
3532                         vc->vcore_state = VCORE_INACTIVE;
3533                 }
3534                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3535                         /* make sure there's a candidate runner awake */
3536                         i = -1;
3537                         vcpu = next_runnable_thread(vc, &i);
3538                         wake_up(&vcpu->arch.cpu_run);
3539                 }
3540         }
3541         spin_unlock(&vc->lock);
3542 }
3543
3544 /*
3545  * Clear core from the list of active host cores as we are about to
3546  * enter the guest. Only do this if it is the primary thread of the
3547  * core (not if a subcore) that is entering the guest.
3548  */
3549 static inline int kvmppc_clear_host_core(unsigned int cpu)
3550 {
3551         int core;
3552
3553         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3554                 return 0;
3555         /*
3556          * Memory barrier can be omitted here as we will do a smp_wmb()
3557          * later in kvmppc_start_thread and we need ensure that state is
3558          * visible to other CPUs only after we enter guest.
3559          */
3560         core = cpu >> threads_shift;
3561         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3562         return 0;
3563 }
3564
3565 /*
3566  * Advertise this core as an active host core since we exited the guest
3567  * Only need to do this if it is the primary thread of the core that is
3568  * exiting.
3569  */
3570 static inline int kvmppc_set_host_core(unsigned int cpu)
3571 {
3572         int core;
3573
3574         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3575                 return 0;
3576
3577         /*
3578          * Memory barrier can be omitted here because we do a spin_unlock
3579          * immediately after this which provides the memory barrier.
3580          */
3581         core = cpu >> threads_shift;
3582         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3583         return 0;
3584 }
3585
3586 static void set_irq_happened(int trap)
3587 {
3588         switch (trap) {
3589         case BOOK3S_INTERRUPT_EXTERNAL:
3590                 local_paca->irq_happened |= PACA_IRQ_EE;
3591                 break;
3592         case BOOK3S_INTERRUPT_H_DOORBELL:
3593                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3594                 break;
3595         case BOOK3S_INTERRUPT_HMI:
3596                 local_paca->irq_happened |= PACA_IRQ_HMI;
3597                 break;
3598         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3599                 replay_system_reset();
3600                 break;
3601         }
3602 }
3603
3604 /*
3605  * Run a set of guest threads on a physical core.
3606  * Called with vc->lock held.
3607  */
3608 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3609 {
3610         struct kvm_vcpu *vcpu;
3611         int i;
3612         int srcu_idx;
3613         struct core_info core_info;
3614         struct kvmppc_vcore *pvc;
3615         struct kvm_split_mode split_info, *sip;
3616         int split, subcore_size, active;
3617         int sub;
3618         bool thr0_done;
3619         unsigned long cmd_bit, stat_bit;
3620         int pcpu, thr;
3621         int target_threads;
3622         int controlled_threads;
3623         int trap;
3624         bool is_power8;
3625
3626         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3627                 return;
3628
3629         /*
3630          * Remove from the list any threads that have a signal pending
3631          * or need a VPA update done
3632          */
3633         prepare_threads(vc);
3634
3635         /* if the runner is no longer runnable, let the caller pick a new one */
3636         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3637                 return;
3638
3639         /*
3640          * Initialize *vc.
3641          */
3642         init_vcore_to_run(vc);
3643         vc->preempt_tb = TB_NIL;
3644
3645         /*
3646          * Number of threads that we will be controlling: the same as
3647          * the number of threads per subcore, except on POWER9,
3648          * where it's 1 because the threads are (mostly) independent.
3649          */
3650         controlled_threads = threads_per_vcore(vc->kvm);
3651
3652         /*
3653          * Make sure we are running on primary threads, and that secondary
3654          * threads are offline.  Also check if the number of threads in this
3655          * guest are greater than the current system threads per guest.
3656          */
3657         if ((controlled_threads > 1) &&
3658             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3659                 for_each_runnable_thread(i, vcpu, vc) {
3660                         vcpu->arch.ret = -EBUSY;
3661                         kvmppc_remove_runnable(vc, vcpu, mftb());
3662                         wake_up(&vcpu->arch.cpu_run);
3663                 }
3664                 goto out;
3665         }
3666
3667         /*
3668          * See if we could run any other vcores on the physical core
3669          * along with this one.
3670          */
3671         init_core_info(&core_info, vc);
3672         pcpu = smp_processor_id();
3673         target_threads = controlled_threads;
3674         if (target_smt_mode && target_smt_mode < target_threads)
3675                 target_threads = target_smt_mode;
3676         if (vc->num_threads < target_threads)
3677                 collect_piggybacks(&core_info, target_threads);
3678
3679         /*
3680          * Hard-disable interrupts, and check resched flag and signals.
3681          * If we need to reschedule or deliver a signal, clean up
3682          * and return without going into the guest(s).
3683          * If the mmu_ready flag has been cleared, don't go into the
3684          * guest because that means a HPT resize operation is in progress.
3685          */
3686         local_irq_disable();
3687         hard_irq_disable();
3688         if (lazy_irq_pending() || need_resched() ||
3689             recheck_signals_and_mmu(&core_info)) {
3690                 local_irq_enable();
3691                 vc->vcore_state = VCORE_INACTIVE;
3692                 /* Unlock all except the primary vcore */
3693                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3694                         pvc = core_info.vc[sub];
3695                         /* Put back on to the preempted vcores list */
3696                         kvmppc_vcore_preempt(pvc);
3697                         spin_unlock(&pvc->lock);
3698                 }
3699                 for (i = 0; i < controlled_threads; ++i)
3700                         kvmppc_release_hwthread(pcpu + i);
3701                 return;
3702         }
3703
3704         kvmppc_clear_host_core(pcpu);
3705
3706         /* Decide on micro-threading (split-core) mode */
3707         subcore_size = threads_per_subcore;
3708         cmd_bit = stat_bit = 0;
3709         split = core_info.n_subcores;
3710         sip = NULL;
3711         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3712
3713         if (split > 1) {
3714                 sip = &split_info;
3715                 memset(&split_info, 0, sizeof(split_info));
3716                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3717                         split_info.vc[sub] = core_info.vc[sub];
3718
3719                 if (is_power8) {
3720                         if (split == 2 && (dynamic_mt_modes & 2)) {
3721                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3722                                 stat_bit = HID0_POWER8_2LPARMODE;
3723                         } else {
3724                                 split = 4;
3725                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3726                                 stat_bit = HID0_POWER8_4LPARMODE;
3727                         }
3728                         subcore_size = MAX_SMT_THREADS / split;
3729                         split_info.rpr = mfspr(SPRN_RPR);
3730                         split_info.pmmar = mfspr(SPRN_PMMAR);
3731                         split_info.ldbar = mfspr(SPRN_LDBAR);
3732                         split_info.subcore_size = subcore_size;
3733                 } else {
3734                         split_info.subcore_size = 1;
3735                 }
3736
3737                 /* order writes to split_info before kvm_split_mode pointer */
3738                 smp_wmb();
3739         }
3740
3741         for (thr = 0; thr < controlled_threads; ++thr) {
3742                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3743
3744                 paca->kvm_hstate.napping = 0;
3745                 paca->kvm_hstate.kvm_split_mode = sip;
3746         }
3747
3748         /* Initiate micro-threading (split-core) on POWER8 if required */
3749         if (cmd_bit) {
3750                 unsigned long hid0 = mfspr(SPRN_HID0);
3751
3752                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3753                 mb();
3754                 mtspr(SPRN_HID0, hid0);
3755                 isync();
3756                 for (;;) {
3757                         hid0 = mfspr(SPRN_HID0);
3758                         if (hid0 & stat_bit)
3759                                 break;
3760                         cpu_relax();
3761                 }
3762         }
3763
3764         /*
3765          * On POWER8, set RWMR register.
3766          * Since it only affects PURR and SPURR, it doesn't affect
3767          * the host, so we don't save/restore the host value.
3768          */
3769         if (is_power8) {
3770                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3771                 int n_online = atomic_read(&vc->online_count);
3772
3773                 /*
3774                  * Use the 8-thread value if we're doing split-core
3775                  * or if the vcore's online count looks bogus.
3776                  */
3777                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3778                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3779                         rwmr_val = p8_rwmr_values[n_online];
3780                 mtspr(SPRN_RWMR, rwmr_val);
3781         }
3782
3783         /* Start all the threads */
3784         active = 0;
3785         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3786                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3787                 thr0_done = false;
3788                 active |= 1 << thr;
3789                 pvc = core_info.vc[sub];
3790                 pvc->pcpu = pcpu + thr;
3791                 for_each_runnable_thread(i, vcpu, pvc) {
3792                         /*
3793                          * XXX: is kvmppc_start_thread called too late here?
3794                          * It updates vcpu->cpu and vcpu->arch.thread_cpu
3795                          * which are used by kvmppc_fast_vcpu_kick_hv(), but
3796                          * kick is called after new exceptions become available
3797                          * and exceptions are checked earlier than here, by
3798                          * kvmppc_core_prepare_to_enter.
3799                          */
3800                         kvmppc_start_thread(vcpu, pvc);
3801                         kvmppc_create_dtl_entry(vcpu, pvc);
3802                         trace_kvm_guest_enter(vcpu);
3803                         if (!vcpu->arch.ptid)
3804                                 thr0_done = true;
3805                         active |= 1 << (thr + vcpu->arch.ptid);
3806                 }
3807                 /*
3808                  * We need to start the first thread of each subcore
3809                  * even if it doesn't have a vcpu.
3810                  */
3811                 if (!thr0_done)
3812                         kvmppc_start_thread(NULL, pvc);
3813         }
3814
3815         /*
3816          * Ensure that split_info.do_nap is set after setting
3817          * the vcore pointer in the PACA of the secondaries.
3818          */
3819         smp_mb();
3820
3821         /*
3822          * When doing micro-threading, poke the inactive threads as well.
3823          * This gets them to the nap instruction after kvm_do_nap,
3824          * which reduces the time taken to unsplit later.
3825          */
3826         if (cmd_bit) {
3827                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3828                 for (thr = 1; thr < threads_per_subcore; ++thr)
3829                         if (!(active & (1 << thr)))
3830                                 kvmppc_ipi_thread(pcpu + thr);
3831         }
3832
3833         vc->vcore_state = VCORE_RUNNING;
3834         preempt_disable();
3835
3836         trace_kvmppc_run_core(vc, 0);
3837
3838         for (sub = 0; sub < core_info.n_subcores; ++sub)
3839                 spin_unlock(&core_info.vc[sub]->lock);
3840
3841         guest_enter_irqoff();
3842
3843         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3844
3845         this_cpu_disable_ftrace();
3846
3847         /*
3848          * Interrupts will be enabled once we get into the guest,
3849          * so tell lockdep that we're about to enable interrupts.
3850          */
3851         trace_hardirqs_on();
3852
3853         trap = __kvmppc_vcore_entry();
3854
3855         trace_hardirqs_off();
3856
3857         this_cpu_enable_ftrace();
3858
3859         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3860
3861         set_irq_happened(trap);
3862
3863         spin_lock(&vc->lock);
3864         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3865         vc->vcore_state = VCORE_EXITING;
3866
3867         /* wait for secondary threads to finish writing their state to memory */
3868         kvmppc_wait_for_nap(controlled_threads);
3869
3870         /* Return to whole-core mode if we split the core earlier */
3871         if (cmd_bit) {
3872                 unsigned long hid0 = mfspr(SPRN_HID0);
3873                 unsigned long loops = 0;
3874
3875                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3876                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3877                 mb();
3878                 mtspr(SPRN_HID0, hid0);
3879                 isync();
3880                 for (;;) {
3881                         hid0 = mfspr(SPRN_HID0);
3882                         if (!(hid0 & stat_bit))
3883                                 break;
3884                         cpu_relax();
3885                         ++loops;
3886                 }
3887                 split_info.do_nap = 0;
3888         }
3889
3890         kvmppc_set_host_core(pcpu);
3891
3892         context_tracking_guest_exit();
3893         if (!vtime_accounting_enabled_this_cpu()) {
3894                 local_irq_enable();
3895                 /*
3896                  * Service IRQs here before vtime_account_guest_exit() so any
3897                  * ticks that occurred while running the guest are accounted to
3898                  * the guest. If vtime accounting is enabled, accounting uses
3899                  * TB rather than ticks, so it can be done without enabling
3900                  * interrupts here, which has the problem that it accounts
3901                  * interrupt processing overhead to the host.
3902                  */
3903                 local_irq_disable();
3904         }
3905         vtime_account_guest_exit();
3906
3907         local_irq_enable();
3908
3909         /* Let secondaries go back to the offline loop */
3910         for (i = 0; i < controlled_threads; ++i) {
3911                 kvmppc_release_hwthread(pcpu + i);
3912                 if (sip && sip->napped[i])
3913                         kvmppc_ipi_thread(pcpu + i);
3914         }
3915
3916         spin_unlock(&vc->lock);
3917
3918         /* make sure updates to secondary vcpu structs are visible now */
3919         smp_mb();
3920
3921         preempt_enable();
3922
3923         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3924                 pvc = core_info.vc[sub];
3925                 post_guest_process(pvc, pvc == vc);
3926         }
3927
3928         spin_lock(&vc->lock);
3929
3930  out:
3931         vc->vcore_state = VCORE_INACTIVE;
3932         trace_kvmppc_run_core(vc, 1);
3933 }
3934
3935 static inline bool hcall_is_xics(unsigned long req)
3936 {
3937         return req == H_EOI || req == H_CPPR || req == H_IPI ||
3938                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3939 }
3940
3941 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3942 {
3943         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3944         if (lp) {
3945                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3946                 lp->yield_count = cpu_to_be32(yield_count);
3947                 vcpu->arch.vpa.dirty = 1;
3948         }
3949 }
3950
3951 /* call our hypervisor to load up HV regs and go */
3952 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3953 {
3954         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3955         unsigned long host_psscr;
3956         unsigned long msr;
3957         struct hv_guest_state hvregs;
3958         struct p9_host_os_sprs host_os_sprs;
3959         s64 dec;
3960         int trap;
3961
3962         msr = mfmsr();
3963
3964         save_p9_host_os_sprs(&host_os_sprs);
3965
3966         /*
3967          * We need to save and restore the guest visible part of the
3968          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3969          * doesn't do this for us. Note only required if pseries since
3970          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3971          */
3972         host_psscr = mfspr(SPRN_PSSCR_PR);
3973
3974         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3975         if (lazy_irq_pending())
3976                 return 0;
3977
3978         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3979                 msr = mfmsr(); /* TM restore can update msr */
3980
3981         if (vcpu->arch.psscr != host_psscr)
3982                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3983
3984         kvmhv_save_hv_regs(vcpu, &hvregs);
3985         hvregs.lpcr = lpcr;
3986         hvregs.amor = ~0;
3987         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3988         hvregs.version = HV_GUEST_STATE_VERSION;
3989         if (vcpu->arch.nested) {
3990                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3991                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3992         } else {
3993                 hvregs.lpid = vcpu->kvm->arch.lpid;
3994                 hvregs.vcpu_token = vcpu->vcpu_id;
3995         }
3996         hvregs.hdec_expiry = time_limit;
3997
3998         /*
3999          * When setting DEC, we must always deal with irq_work_raise
4000          * via NMI vs setting DEC. The problem occurs right as we
4001          * switch into guest mode if a NMI hits and sets pending work
4002          * and sets DEC, then that will apply to the guest and not
4003          * bring us back to the host.
4004          *
4005          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4006          * for example) and set HDEC to 1? That wouldn't solve the
4007          * nested hv case which needs to abort the hcall or zero the
4008          * time limit.
4009          *
4010          * XXX: Another day's problem.
4011          */
4012         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4013
4014         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4015         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4016         switch_pmu_to_guest(vcpu, &host_os_sprs);
4017         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4018                                   __pa(&vcpu->arch.regs));
4019         kvmhv_restore_hv_return_state(vcpu, &hvregs);
4020         switch_pmu_to_host(vcpu, &host_os_sprs);
4021         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4022         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4023         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4024         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4025
4026         store_vcpu_state(vcpu);
4027
4028         dec = mfspr(SPRN_DEC);
4029         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4030                 dec = (s32) dec;
4031         *tb = mftb();
4032         vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4033
4034         timer_rearm_host_dec(*tb);
4035
4036         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4037         if (vcpu->arch.psscr != host_psscr)
4038                 mtspr(SPRN_PSSCR_PR, host_psscr);
4039
4040         return trap;
4041 }
4042
4043 /*
4044  * Guest entry for POWER9 and later CPUs.
4045  */
4046 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4047                          unsigned long lpcr, u64 *tb)
4048 {
4049         struct kvm *kvm = vcpu->kvm;
4050         struct kvm_nested_guest *nested = vcpu->arch.nested;
4051         u64 next_timer;
4052         int trap;
4053
4054         next_timer = timer_get_next_tb();
4055         if (*tb >= next_timer)
4056                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4057         if (next_timer < time_limit)
4058                 time_limit = next_timer;
4059         else if (*tb >= time_limit) /* nested time limit */
4060                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4061
4062         vcpu->arch.ceded = 0;
4063
4064         vcpu_vpa_increment_dispatch(vcpu);
4065
4066         if (kvmhv_on_pseries()) {
4067                 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4068
4069                 /* H_CEDE has to be handled now, not later */
4070                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4071                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4072                         kvmppc_cede(vcpu);
4073                         kvmppc_set_gpr(vcpu, 3, 0);
4074                         trap = 0;
4075                 }
4076
4077         } else if (nested) {
4078                 __this_cpu_write(cpu_in_guest, kvm);
4079                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4080                 __this_cpu_write(cpu_in_guest, NULL);
4081
4082         } else {
4083                 kvmppc_xive_push_vcpu(vcpu);
4084
4085                 __this_cpu_write(cpu_in_guest, kvm);
4086                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4087                 __this_cpu_write(cpu_in_guest, NULL);
4088
4089                 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4090                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4091                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4092
4093                         /*
4094                          * XIVE rearm and XICS hcalls must be handled
4095                          * before xive context is pulled (is this
4096                          * true?)
4097                          */
4098                         if (req == H_CEDE) {
4099                                 /* H_CEDE has to be handled now */
4100                                 kvmppc_cede(vcpu);
4101                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4102                                         /*
4103                                          * Pending escalation so abort
4104                                          * the cede.
4105                                          */
4106                                         vcpu->arch.ceded = 0;
4107                                 }
4108                                 kvmppc_set_gpr(vcpu, 3, 0);
4109                                 trap = 0;
4110
4111                         } else if (req == H_ENTER_NESTED) {
4112                                 /*
4113                                  * L2 should not run with the L1
4114                                  * context so rearm and pull it.
4115                                  */
4116                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4117                                         /*
4118                                          * Pending escalation so abort
4119                                          * H_ENTER_NESTED.
4120                                          */
4121                                         kvmppc_set_gpr(vcpu, 3, 0);
4122                                         trap = 0;
4123                                 }
4124
4125                         } else if (hcall_is_xics(req)) {
4126                                 int ret;
4127
4128                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4129                                 if (ret != H_TOO_HARD) {
4130                                         kvmppc_set_gpr(vcpu, 3, ret);
4131                                         trap = 0;
4132                                 }
4133                         }
4134                 }
4135                 kvmppc_xive_pull_vcpu(vcpu);
4136
4137                 if (kvm_is_radix(kvm))
4138                         vcpu->arch.slb_max = 0;
4139         }
4140
4141         vcpu_vpa_increment_dispatch(vcpu);
4142
4143         return trap;
4144 }
4145
4146 /*
4147  * Wait for some other vcpu thread to execute us, and
4148  * wake us up when we need to handle something in the host.
4149  */
4150 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4151                                  struct kvm_vcpu *vcpu, int wait_state)
4152 {
4153         DEFINE_WAIT(wait);
4154
4155         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4156         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4157                 spin_unlock(&vc->lock);
4158                 schedule();
4159                 spin_lock(&vc->lock);
4160         }
4161         finish_wait(&vcpu->arch.cpu_run, &wait);
4162 }
4163
4164 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4165 {
4166         if (!halt_poll_ns_grow)
4167                 return;
4168
4169         vc->halt_poll_ns *= halt_poll_ns_grow;
4170         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4171                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4172 }
4173
4174 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4175 {
4176         if (halt_poll_ns_shrink == 0)
4177                 vc->halt_poll_ns = 0;
4178         else
4179                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4180 }
4181
4182 #ifdef CONFIG_KVM_XICS
4183 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4184 {
4185         if (!xics_on_xive())
4186                 return false;
4187         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4188                 vcpu->arch.xive_saved_state.cppr;
4189 }
4190 #else
4191 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4192 {
4193         return false;
4194 }
4195 #endif /* CONFIG_KVM_XICS */
4196
4197 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4198 {
4199         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4200             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4201                 return true;
4202
4203         return false;
4204 }
4205
4206 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4207 {
4208         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4209                 return true;
4210         return false;
4211 }
4212
4213 /*
4214  * Check to see if any of the runnable vcpus on the vcore have pending
4215  * exceptions or are no longer ceded
4216  */
4217 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4218 {
4219         struct kvm_vcpu *vcpu;
4220         int i;
4221
4222         for_each_runnable_thread(i, vcpu, vc) {
4223                 if (kvmppc_vcpu_check_block(vcpu))
4224                         return 1;
4225         }
4226
4227         return 0;
4228 }
4229
4230 /*
4231  * All the vcpus in this vcore are idle, so wait for a decrementer
4232  * or external interrupt to one of the vcpus.  vc->lock is held.
4233  */
4234 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4235 {
4236         ktime_t cur, start_poll, start_wait;
4237         int do_sleep = 1;
4238         u64 block_ns;
4239
4240         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4241
4242         /* Poll for pending exceptions and ceded state */
4243         cur = start_poll = ktime_get();
4244         if (vc->halt_poll_ns) {
4245                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4246                 ++vc->runner->stat.generic.halt_attempted_poll;
4247
4248                 vc->vcore_state = VCORE_POLLING;
4249                 spin_unlock(&vc->lock);
4250
4251                 do {
4252                         if (kvmppc_vcore_check_block(vc)) {
4253                                 do_sleep = 0;
4254                                 break;
4255                         }
4256                         cur = ktime_get();
4257                 } while (kvm_vcpu_can_poll(cur, stop));
4258
4259                 spin_lock(&vc->lock);
4260                 vc->vcore_state = VCORE_INACTIVE;
4261
4262                 if (!do_sleep) {
4263                         ++vc->runner->stat.generic.halt_successful_poll;
4264                         goto out;
4265                 }
4266         }
4267
4268         prepare_to_rcuwait(&vc->wait);
4269         set_current_state(TASK_INTERRUPTIBLE);
4270         if (kvmppc_vcore_check_block(vc)) {
4271                 finish_rcuwait(&vc->wait);
4272                 do_sleep = 0;
4273                 /* If we polled, count this as a successful poll */
4274                 if (vc->halt_poll_ns)
4275                         ++vc->runner->stat.generic.halt_successful_poll;
4276                 goto out;
4277         }
4278
4279         start_wait = ktime_get();
4280
4281         vc->vcore_state = VCORE_SLEEPING;
4282         trace_kvmppc_vcore_blocked(vc->runner, 0);
4283         spin_unlock(&vc->lock);
4284         schedule();
4285         finish_rcuwait(&vc->wait);
4286         spin_lock(&vc->lock);
4287         vc->vcore_state = VCORE_INACTIVE;
4288         trace_kvmppc_vcore_blocked(vc->runner, 1);
4289         ++vc->runner->stat.halt_successful_wait;
4290
4291         cur = ktime_get();
4292
4293 out:
4294         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4295
4296         /* Attribute wait time */
4297         if (do_sleep) {
4298                 vc->runner->stat.generic.halt_wait_ns +=
4299                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4300                 KVM_STATS_LOG_HIST_UPDATE(
4301                                 vc->runner->stat.generic.halt_wait_hist,
4302                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4303                 /* Attribute failed poll time */
4304                 if (vc->halt_poll_ns) {
4305                         vc->runner->stat.generic.halt_poll_fail_ns +=
4306                                 ktime_to_ns(start_wait) -
4307                                 ktime_to_ns(start_poll);
4308                         KVM_STATS_LOG_HIST_UPDATE(
4309                                 vc->runner->stat.generic.halt_poll_fail_hist,
4310                                 ktime_to_ns(start_wait) -
4311                                 ktime_to_ns(start_poll));
4312                 }
4313         } else {
4314                 /* Attribute successful poll time */
4315                 if (vc->halt_poll_ns) {
4316                         vc->runner->stat.generic.halt_poll_success_ns +=
4317                                 ktime_to_ns(cur) -
4318                                 ktime_to_ns(start_poll);
4319                         KVM_STATS_LOG_HIST_UPDATE(
4320                                 vc->runner->stat.generic.halt_poll_success_hist,
4321                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4322                 }
4323         }
4324
4325         /* Adjust poll time */
4326         if (halt_poll_ns) {
4327                 if (block_ns <= vc->halt_poll_ns)
4328                         ;
4329                 /* We slept and blocked for longer than the max halt time */
4330                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4331                         shrink_halt_poll_ns(vc);
4332                 /* We slept and our poll time is too small */
4333                 else if (vc->halt_poll_ns < halt_poll_ns &&
4334                                 block_ns < halt_poll_ns)
4335                         grow_halt_poll_ns(vc);
4336                 if (vc->halt_poll_ns > halt_poll_ns)
4337                         vc->halt_poll_ns = halt_poll_ns;
4338         } else
4339                 vc->halt_poll_ns = 0;
4340
4341         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4342 }
4343
4344 /*
4345  * This never fails for a radix guest, as none of the operations it does
4346  * for a radix guest can fail or have a way to report failure.
4347  */
4348 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4349 {
4350         int r = 0;
4351         struct kvm *kvm = vcpu->kvm;
4352
4353         mutex_lock(&kvm->arch.mmu_setup_lock);
4354         if (!kvm->arch.mmu_ready) {
4355                 if (!kvm_is_radix(kvm))
4356                         r = kvmppc_hv_setup_htab_rma(vcpu);
4357                 if (!r) {
4358                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4359                                 kvmppc_setup_partition_table(kvm);
4360                         kvm->arch.mmu_ready = 1;
4361                 }
4362         }
4363         mutex_unlock(&kvm->arch.mmu_setup_lock);
4364         return r;
4365 }
4366
4367 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4368 {
4369         struct kvm_run *run = vcpu->run;
4370         int n_ceded, i, r;
4371         struct kvmppc_vcore *vc;
4372         struct kvm_vcpu *v;
4373
4374         trace_kvmppc_run_vcpu_enter(vcpu);
4375
4376         run->exit_reason = 0;
4377         vcpu->arch.ret = RESUME_GUEST;
4378         vcpu->arch.trap = 0;
4379         kvmppc_update_vpas(vcpu);
4380
4381         /*
4382          * Synchronize with other threads in this virtual core
4383          */
4384         vc = vcpu->arch.vcore;
4385         spin_lock(&vc->lock);
4386         vcpu->arch.ceded = 0;
4387         vcpu->arch.run_task = current;
4388         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4389         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4390         vcpu->arch.busy_preempt = TB_NIL;
4391         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4392         ++vc->n_runnable;
4393
4394         /*
4395          * This happens the first time this is called for a vcpu.
4396          * If the vcore is already running, we may be able to start
4397          * this thread straight away and have it join in.
4398          */
4399         if (!signal_pending(current)) {
4400                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4401                      vc->vcore_state == VCORE_RUNNING) &&
4402                            !VCORE_IS_EXITING(vc)) {
4403                         kvmppc_create_dtl_entry(vcpu, vc);
4404                         kvmppc_start_thread(vcpu, vc);
4405                         trace_kvm_guest_enter(vcpu);
4406                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4407                         rcuwait_wake_up(&vc->wait);
4408                 }
4409
4410         }
4411
4412         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4413                !signal_pending(current)) {
4414                 /* See if the MMU is ready to go */
4415                 if (!vcpu->kvm->arch.mmu_ready) {
4416                         spin_unlock(&vc->lock);
4417                         r = kvmhv_setup_mmu(vcpu);
4418                         spin_lock(&vc->lock);
4419                         if (r) {
4420                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4421                                 run->fail_entry.
4422                                         hardware_entry_failure_reason = 0;
4423                                 vcpu->arch.ret = r;
4424                                 break;
4425                         }
4426                 }
4427
4428                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4429                         kvmppc_vcore_end_preempt(vc);
4430
4431                 if (vc->vcore_state != VCORE_INACTIVE) {
4432                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4433                         continue;
4434                 }
4435                 for_each_runnable_thread(i, v, vc) {
4436                         kvmppc_core_prepare_to_enter(v);
4437                         if (signal_pending(v->arch.run_task)) {
4438                                 kvmppc_remove_runnable(vc, v, mftb());
4439                                 v->stat.signal_exits++;
4440                                 v->run->exit_reason = KVM_EXIT_INTR;
4441                                 v->arch.ret = -EINTR;
4442                                 wake_up(&v->arch.cpu_run);
4443                         }
4444                 }
4445                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4446                         break;
4447                 n_ceded = 0;
4448                 for_each_runnable_thread(i, v, vc) {
4449                         if (!kvmppc_vcpu_woken(v))
4450                                 n_ceded += v->arch.ceded;
4451                         else
4452                                 v->arch.ceded = 0;
4453                 }
4454                 vc->runner = vcpu;
4455                 if (n_ceded == vc->n_runnable) {
4456                         kvmppc_vcore_blocked(vc);
4457                 } else if (need_resched()) {
4458                         kvmppc_vcore_preempt(vc);
4459                         /* Let something else run */
4460                         cond_resched_lock(&vc->lock);
4461                         if (vc->vcore_state == VCORE_PREEMPT)
4462                                 kvmppc_vcore_end_preempt(vc);
4463                 } else {
4464                         kvmppc_run_core(vc);
4465                 }
4466                 vc->runner = NULL;
4467         }
4468
4469         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4470                (vc->vcore_state == VCORE_RUNNING ||
4471                 vc->vcore_state == VCORE_EXITING ||
4472                 vc->vcore_state == VCORE_PIGGYBACK))
4473                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4474
4475         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4476                 kvmppc_vcore_end_preempt(vc);
4477
4478         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4479                 kvmppc_remove_runnable(vc, vcpu, mftb());
4480                 vcpu->stat.signal_exits++;
4481                 run->exit_reason = KVM_EXIT_INTR;
4482                 vcpu->arch.ret = -EINTR;
4483         }
4484
4485         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4486                 /* Wake up some vcpu to run the core */
4487                 i = -1;
4488                 v = next_runnable_thread(vc, &i);
4489                 wake_up(&v->arch.cpu_run);
4490         }
4491
4492         trace_kvmppc_run_vcpu_exit(vcpu);
4493         spin_unlock(&vc->lock);
4494         return vcpu->arch.ret;
4495 }
4496
4497 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4498                           unsigned long lpcr)
4499 {
4500         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4501         struct kvm_run *run = vcpu->run;
4502         int trap, r, pcpu;
4503         int srcu_idx;
4504         struct kvmppc_vcore *vc;
4505         struct kvm *kvm = vcpu->kvm;
4506         struct kvm_nested_guest *nested = vcpu->arch.nested;
4507         unsigned long flags;
4508         u64 tb;
4509
4510         trace_kvmppc_run_vcpu_enter(vcpu);
4511
4512         run->exit_reason = 0;
4513         vcpu->arch.ret = RESUME_GUEST;
4514         vcpu->arch.trap = 0;
4515
4516         vc = vcpu->arch.vcore;
4517         vcpu->arch.ceded = 0;
4518         vcpu->arch.run_task = current;
4519         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4520         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4521
4522         /* See if the MMU is ready to go */
4523         if (unlikely(!kvm->arch.mmu_ready)) {
4524                 r = kvmhv_setup_mmu(vcpu);
4525                 if (r) {
4526                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4527                         run->fail_entry.hardware_entry_failure_reason = 0;
4528                         vcpu->arch.ret = r;
4529                         return r;
4530                 }
4531         }
4532
4533         if (need_resched())
4534                 cond_resched();
4535
4536         kvmppc_update_vpas(vcpu);
4537
4538         preempt_disable();
4539         pcpu = smp_processor_id();
4540         if (kvm_is_radix(kvm))
4541                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4542
4543         /* flags save not required, but irq_pmu has no disable/enable API */
4544         powerpc_local_irq_pmu_save(flags);
4545
4546         if (signal_pending(current))
4547                 goto sigpend;
4548         if (need_resched() || !kvm->arch.mmu_ready)
4549                 goto out;
4550
4551         vcpu->cpu = pcpu;
4552         vcpu->arch.thread_cpu = pcpu;
4553         vc->pcpu = pcpu;
4554         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4555         local_paca->kvm_hstate.ptid = 0;
4556         local_paca->kvm_hstate.fake_suspend = 0;
4557
4558         /*
4559          * Orders set cpu/thread_cpu vs testing for pending interrupts and
4560          * doorbells below. The other side is when these fields are set vs
4561          * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4562          * kick a vCPU to notice the pending interrupt.
4563          */
4564         smp_mb();
4565
4566         if (!nested) {
4567                 kvmppc_core_prepare_to_enter(vcpu);
4568                 if (vcpu->arch.shregs.msr & MSR_EE) {
4569                         if (xive_interrupt_pending(vcpu))
4570                                 kvmppc_inject_interrupt_hv(vcpu,
4571                                                 BOOK3S_INTERRUPT_EXTERNAL, 0);
4572                 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4573                              &vcpu->arch.pending_exceptions)) {
4574                         lpcr |= LPCR_MER;
4575                 }
4576         } else if (vcpu->arch.pending_exceptions ||
4577                    vcpu->arch.doorbell_request ||
4578                    xive_interrupt_pending(vcpu)) {
4579                 vcpu->arch.ret = RESUME_HOST;
4580                 goto out;
4581         }
4582
4583         if (vcpu->arch.timer_running) {
4584                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4585                 vcpu->arch.timer_running = 0;
4586         }
4587
4588         tb = mftb();
4589
4590         __kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4591
4592         trace_kvm_guest_enter(vcpu);
4593
4594         guest_enter_irqoff();
4595
4596         srcu_idx = srcu_read_lock(&kvm->srcu);
4597
4598         this_cpu_disable_ftrace();
4599
4600         /* Tell lockdep that we're about to enable interrupts */
4601         trace_hardirqs_on();
4602
4603         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4604         vcpu->arch.trap = trap;
4605
4606         trace_hardirqs_off();
4607
4608         this_cpu_enable_ftrace();
4609
4610         srcu_read_unlock(&kvm->srcu, srcu_idx);
4611
4612         set_irq_happened(trap);
4613
4614         context_tracking_guest_exit();
4615         if (!vtime_accounting_enabled_this_cpu()) {
4616                 local_irq_enable();
4617                 /*
4618                  * Service IRQs here before vtime_account_guest_exit() so any
4619                  * ticks that occurred while running the guest are accounted to
4620                  * the guest. If vtime accounting is enabled, accounting uses
4621                  * TB rather than ticks, so it can be done without enabling
4622                  * interrupts here, which has the problem that it accounts
4623                  * interrupt processing overhead to the host.
4624                  */
4625                 local_irq_disable();
4626         }
4627         vtime_account_guest_exit();
4628
4629         vcpu->cpu = -1;
4630         vcpu->arch.thread_cpu = -1;
4631
4632         powerpc_local_irq_pmu_restore(flags);
4633
4634         preempt_enable();
4635
4636         /*
4637          * cancel pending decrementer exception if DEC is now positive, or if
4638          * entering a nested guest in which case the decrementer is now owned
4639          * by L2 and the L1 decrementer is provided in hdec_expires
4640          */
4641         if (kvmppc_core_pending_dec(vcpu) &&
4642                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4643                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4644                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4645                 kvmppc_core_dequeue_dec(vcpu);
4646
4647         trace_kvm_guest_exit(vcpu);
4648         r = RESUME_GUEST;
4649         if (trap) {
4650                 if (!nested)
4651                         r = kvmppc_handle_exit_hv(vcpu, current);
4652                 else
4653                         r = kvmppc_handle_nested_exit(vcpu);
4654         }
4655         vcpu->arch.ret = r;
4656
4657         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4658                 kvmppc_set_timer(vcpu);
4659
4660                 prepare_to_rcuwait(wait);
4661                 for (;;) {
4662                         set_current_state(TASK_INTERRUPTIBLE);
4663                         if (signal_pending(current)) {
4664                                 vcpu->stat.signal_exits++;
4665                                 run->exit_reason = KVM_EXIT_INTR;
4666                                 vcpu->arch.ret = -EINTR;
4667                                 break;
4668                         }
4669
4670                         if (kvmppc_vcpu_check_block(vcpu))
4671                                 break;
4672
4673                         trace_kvmppc_vcore_blocked(vcpu, 0);
4674                         schedule();
4675                         trace_kvmppc_vcore_blocked(vcpu, 1);
4676                 }
4677                 finish_rcuwait(wait);
4678         }
4679         vcpu->arch.ceded = 0;
4680
4681  done:
4682         trace_kvmppc_run_vcpu_exit(vcpu);
4683
4684         return vcpu->arch.ret;
4685
4686  sigpend:
4687         vcpu->stat.signal_exits++;
4688         run->exit_reason = KVM_EXIT_INTR;
4689         vcpu->arch.ret = -EINTR;
4690  out:
4691         vcpu->cpu = -1;
4692         vcpu->arch.thread_cpu = -1;
4693         powerpc_local_irq_pmu_restore(flags);
4694         preempt_enable();
4695         goto done;
4696 }
4697
4698 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4699 {
4700         struct kvm_run *run = vcpu->run;
4701         int r;
4702         int srcu_idx;
4703         struct kvm *kvm;
4704         unsigned long msr;
4705
4706         if (!vcpu->arch.sane) {
4707                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4708                 return -EINVAL;
4709         }
4710
4711         /* No need to go into the guest when all we'll do is come back out */
4712         if (signal_pending(current)) {
4713                 run->exit_reason = KVM_EXIT_INTR;
4714                 return -EINTR;
4715         }
4716
4717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4718         /*
4719          * Don't allow entry with a suspended transaction, because
4720          * the guest entry/exit code will lose it.
4721          */
4722         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4723             (current->thread.regs->msr & MSR_TM)) {
4724                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4725                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4726                         run->fail_entry.hardware_entry_failure_reason = 0;
4727                         return -EINVAL;
4728                 }
4729         }
4730 #endif
4731
4732         /*
4733          * Force online to 1 for the sake of old userspace which doesn't
4734          * set it.
4735          */
4736         if (!vcpu->arch.online) {
4737                 atomic_inc(&vcpu->arch.vcore->online_count);
4738                 vcpu->arch.online = 1;
4739         }
4740
4741         kvmppc_core_prepare_to_enter(vcpu);
4742
4743         kvm = vcpu->kvm;
4744         atomic_inc(&kvm->arch.vcpus_running);
4745         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4746         smp_mb();
4747
4748         msr = 0;
4749         if (IS_ENABLED(CONFIG_PPC_FPU))
4750                 msr |= MSR_FP;
4751         if (cpu_has_feature(CPU_FTR_ALTIVEC))
4752                 msr |= MSR_VEC;
4753         if (cpu_has_feature(CPU_FTR_VSX))
4754                 msr |= MSR_VSX;
4755         if ((cpu_has_feature(CPU_FTR_TM) ||
4756             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4757                         (vcpu->arch.hfscr & HFSCR_TM))
4758                 msr |= MSR_TM;
4759         msr = msr_check_and_set(msr);
4760
4761         kvmppc_save_user_regs();
4762
4763         kvmppc_save_current_sprs();
4764
4765         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4766                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4767         vcpu->arch.pgdir = kvm->mm->pgd;
4768         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4769
4770         do {
4771                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4772                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4773                                                   vcpu->arch.vcore->lpcr);
4774                 else
4775                         r = kvmppc_run_vcpu(vcpu);
4776
4777                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4778                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4779                                 /*
4780                                  * These should have been caught reflected
4781                                  * into the guest by now. Final sanity check:
4782                                  * don't allow userspace to execute hcalls in
4783                                  * the hypervisor.
4784                                  */
4785                                 r = RESUME_GUEST;
4786                                 continue;
4787                         }
4788                         trace_kvm_hcall_enter(vcpu);
4789                         r = kvmppc_pseries_do_hcall(vcpu);
4790                         trace_kvm_hcall_exit(vcpu, r);
4791                         kvmppc_core_prepare_to_enter(vcpu);
4792                 } else if (r == RESUME_PAGE_FAULT) {
4793                         srcu_idx = srcu_read_lock(&kvm->srcu);
4794                         r = kvmppc_book3s_hv_page_fault(vcpu,
4795                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4796                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4797                 } else if (r == RESUME_PASSTHROUGH) {
4798                         if (WARN_ON(xics_on_xive()))
4799                                 r = H_SUCCESS;
4800                         else
4801                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4802                 }
4803         } while (is_kvmppc_resume_guest(r));
4804
4805         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4806         atomic_dec(&kvm->arch.vcpus_running);
4807
4808         srr_regs_clobbered();
4809
4810         return r;
4811 }
4812
4813 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4814                                      int shift, int sllp)
4815 {
4816         (*sps)->page_shift = shift;
4817         (*sps)->slb_enc = sllp;
4818         (*sps)->enc[0].page_shift = shift;
4819         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4820         /*
4821          * Add 16MB MPSS support (may get filtered out by userspace)
4822          */
4823         if (shift != 24) {
4824                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4825                 if (penc != -1) {
4826                         (*sps)->enc[1].page_shift = 24;
4827                         (*sps)->enc[1].pte_enc = penc;
4828                 }
4829         }
4830         (*sps)++;
4831 }
4832
4833 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4834                                          struct kvm_ppc_smmu_info *info)
4835 {
4836         struct kvm_ppc_one_seg_page_size *sps;
4837
4838         /*
4839          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4840          * POWER7 doesn't support keys for instruction accesses,
4841          * POWER8 and POWER9 do.
4842          */
4843         info->data_keys = 32;
4844         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4845
4846         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4847         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4848         info->slb_size = 32;
4849
4850         /* We only support these sizes for now, and no muti-size segments */
4851         sps = &info->sps[0];
4852         kvmppc_add_seg_page_size(&sps, 12, 0);
4853         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4854         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4855
4856         /* If running as a nested hypervisor, we don't support HPT guests */
4857         if (kvmhv_on_pseries())
4858                 info->flags |= KVM_PPC_NO_HASH;
4859
4860         return 0;
4861 }
4862
4863 /*
4864  * Get (and clear) the dirty memory log for a memory slot.
4865  */
4866 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4867                                          struct kvm_dirty_log *log)
4868 {
4869         struct kvm_memslots *slots;
4870         struct kvm_memory_slot *memslot;
4871         int r;
4872         unsigned long n, i;
4873         unsigned long *buf, *p;
4874         struct kvm_vcpu *vcpu;
4875
4876         mutex_lock(&kvm->slots_lock);
4877
4878         r = -EINVAL;
4879         if (log->slot >= KVM_USER_MEM_SLOTS)
4880                 goto out;
4881
4882         slots = kvm_memslots(kvm);
4883         memslot = id_to_memslot(slots, log->slot);
4884         r = -ENOENT;
4885         if (!memslot || !memslot->dirty_bitmap)
4886                 goto out;
4887
4888         /*
4889          * Use second half of bitmap area because both HPT and radix
4890          * accumulate bits in the first half.
4891          */
4892         n = kvm_dirty_bitmap_bytes(memslot);
4893         buf = memslot->dirty_bitmap + n / sizeof(long);
4894         memset(buf, 0, n);
4895
4896         if (kvm_is_radix(kvm))
4897                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4898         else
4899                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4900         if (r)
4901                 goto out;
4902
4903         /*
4904          * We accumulate dirty bits in the first half of the
4905          * memslot's dirty_bitmap area, for when pages are paged
4906          * out or modified by the host directly.  Pick up these
4907          * bits and add them to the map.
4908          */
4909         p = memslot->dirty_bitmap;
4910         for (i = 0; i < n / sizeof(long); ++i)
4911                 buf[i] |= xchg(&p[i], 0);
4912
4913         /* Harvest dirty bits from VPA and DTL updates */
4914         /* Note: we never modify the SLB shadow buffer areas */
4915         kvm_for_each_vcpu(i, vcpu, kvm) {
4916                 spin_lock(&vcpu->arch.vpa_update_lock);
4917                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4918                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4919                 spin_unlock(&vcpu->arch.vpa_update_lock);
4920         }
4921
4922         r = -EFAULT;
4923         if (copy_to_user(log->dirty_bitmap, buf, n))
4924                 goto out;
4925
4926         r = 0;
4927 out:
4928         mutex_unlock(&kvm->slots_lock);
4929         return r;
4930 }
4931
4932 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4933 {
4934         vfree(slot->arch.rmap);
4935         slot->arch.rmap = NULL;
4936 }
4937
4938 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4939                                 const struct kvm_memory_slot *old,
4940                                 struct kvm_memory_slot *new,
4941                                 enum kvm_mr_change change)
4942 {
4943         if (change == KVM_MR_CREATE) {
4944                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
4945
4946                 if ((size >> PAGE_SHIFT) > totalram_pages())
4947                         return -ENOMEM;
4948
4949                 new->arch.rmap = vzalloc(size);
4950                 if (!new->arch.rmap)
4951                         return -ENOMEM;
4952         } else if (change != KVM_MR_DELETE) {
4953                 new->arch.rmap = old->arch.rmap;
4954         }
4955
4956         return 0;
4957 }
4958
4959 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4960                                 struct kvm_memory_slot *old,
4961                                 const struct kvm_memory_slot *new,
4962                                 enum kvm_mr_change change)
4963 {
4964         /*
4965          * If we are creating or modifying a memslot, it might make
4966          * some address that was previously cached as emulated
4967          * MMIO be no longer emulated MMIO, so invalidate
4968          * all the caches of emulated MMIO translations.
4969          */
4970         if (change != KVM_MR_DELETE)
4971                 atomic64_inc(&kvm->arch.mmio_update);
4972
4973         /*
4974          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4975          * have already called kvm_arch_flush_shadow_memslot() to
4976          * flush shadow mappings.  For KVM_MR_CREATE we have no
4977          * previous mappings.  So the only case to handle is
4978          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4979          * has been changed.
4980          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4981          * to get rid of any THP PTEs in the partition-scoped page tables
4982          * so we can track dirtiness at the page level; we flush when
4983          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4984          * using THP PTEs.
4985          */
4986         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4987             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4988                 kvmppc_radix_flush_memslot(kvm, old);
4989         /*
4990          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4991          */
4992         if (!kvm->arch.secure_guest)
4993                 return;
4994
4995         switch (change) {
4996         case KVM_MR_CREATE:
4997                 /*
4998                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4999                  * return error. Fix this.
5000                  */
5001                 kvmppc_uvmem_memslot_create(kvm, new);
5002                 break;
5003         case KVM_MR_DELETE:
5004                 kvmppc_uvmem_memslot_delete(kvm, old);
5005                 break;
5006         default:
5007                 /* TODO: Handle KVM_MR_MOVE */
5008                 break;
5009         }
5010 }
5011
5012 /*
5013  * Update LPCR values in kvm->arch and in vcores.
5014  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5015  * of kvm->arch.lpcr update).
5016  */
5017 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5018 {
5019         long int i;
5020         u32 cores_done = 0;
5021
5022         if ((kvm->arch.lpcr & mask) == lpcr)
5023                 return;
5024
5025         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5026
5027         for (i = 0; i < KVM_MAX_VCORES; ++i) {
5028                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5029                 if (!vc)
5030                         continue;
5031
5032                 spin_lock(&vc->lock);
5033                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5034                 verify_lpcr(kvm, vc->lpcr);
5035                 spin_unlock(&vc->lock);
5036                 if (++cores_done >= kvm->arch.online_vcores)
5037                         break;
5038         }
5039 }
5040
5041 void kvmppc_setup_partition_table(struct kvm *kvm)
5042 {
5043         unsigned long dw0, dw1;
5044
5045         if (!kvm_is_radix(kvm)) {
5046                 /* PS field - page size for VRMA */
5047                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5048                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5049                 /* HTABSIZE and HTABORG fields */
5050                 dw0 |= kvm->arch.sdr1;
5051
5052                 /* Second dword as set by userspace */
5053                 dw1 = kvm->arch.process_table;
5054         } else {
5055                 dw0 = PATB_HR | radix__get_tree_size() |
5056                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5057                 dw1 = PATB_GR | kvm->arch.process_table;
5058         }
5059         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5060 }
5061
5062 /*
5063  * Set up HPT (hashed page table) and RMA (real-mode area).
5064  * Must be called with kvm->arch.mmu_setup_lock held.
5065  */
5066 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5067 {
5068         int err = 0;
5069         struct kvm *kvm = vcpu->kvm;
5070         unsigned long hva;
5071         struct kvm_memory_slot *memslot;
5072         struct vm_area_struct *vma;
5073         unsigned long lpcr = 0, senc;
5074         unsigned long psize, porder;
5075         int srcu_idx;
5076
5077         /* Allocate hashed page table (if not done already) and reset it */
5078         if (!kvm->arch.hpt.virt) {
5079                 int order = KVM_DEFAULT_HPT_ORDER;
5080                 struct kvm_hpt_info info;
5081
5082                 err = kvmppc_allocate_hpt(&info, order);
5083                 /* If we get here, it means userspace didn't specify a
5084                  * size explicitly.  So, try successively smaller
5085                  * sizes if the default failed. */
5086                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5087                         err  = kvmppc_allocate_hpt(&info, order);
5088
5089                 if (err < 0) {
5090                         pr_err("KVM: Couldn't alloc HPT\n");
5091                         goto out;
5092                 }
5093
5094                 kvmppc_set_hpt(kvm, &info);
5095         }
5096
5097         /* Look up the memslot for guest physical address 0 */
5098         srcu_idx = srcu_read_lock(&kvm->srcu);
5099         memslot = gfn_to_memslot(kvm, 0);
5100
5101         /* We must have some memory at 0 by now */
5102         err = -EINVAL;
5103         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5104                 goto out_srcu;
5105
5106         /* Look up the VMA for the start of this memory slot */
5107         hva = memslot->userspace_addr;
5108         mmap_read_lock(kvm->mm);
5109         vma = vma_lookup(kvm->mm, hva);
5110         if (!vma || (vma->vm_flags & VM_IO))
5111                 goto up_out;
5112
5113         psize = vma_kernel_pagesize(vma);
5114
5115         mmap_read_unlock(kvm->mm);
5116
5117         /* We can handle 4k, 64k or 16M pages in the VRMA */
5118         if (psize >= 0x1000000)
5119                 psize = 0x1000000;
5120         else if (psize >= 0x10000)
5121                 psize = 0x10000;
5122         else
5123                 psize = 0x1000;
5124         porder = __ilog2(psize);
5125
5126         senc = slb_pgsize_encoding(psize);
5127         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5128                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5129         /* Create HPTEs in the hash page table for the VRMA */
5130         kvmppc_map_vrma(vcpu, memslot, porder);
5131
5132         /* Update VRMASD field in the LPCR */
5133         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5134                 /* the -4 is to account for senc values starting at 0x10 */
5135                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5136                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5137         }
5138
5139         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5140         smp_wmb();
5141         err = 0;
5142  out_srcu:
5143         srcu_read_unlock(&kvm->srcu, srcu_idx);
5144  out:
5145         return err;
5146
5147  up_out:
5148         mmap_read_unlock(kvm->mm);
5149         goto out_srcu;
5150 }
5151
5152 /*
5153  * Must be called with kvm->arch.mmu_setup_lock held and
5154  * mmu_ready = 0 and no vcpus running.
5155  */
5156 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5157 {
5158         unsigned long lpcr, lpcr_mask;
5159
5160         if (nesting_enabled(kvm))
5161                 kvmhv_release_all_nested(kvm);
5162         kvmppc_rmap_reset(kvm);
5163         kvm->arch.process_table = 0;
5164         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5165         spin_lock(&kvm->mmu_lock);
5166         kvm->arch.radix = 0;
5167         spin_unlock(&kvm->mmu_lock);
5168         kvmppc_free_radix(kvm);
5169
5170         lpcr = LPCR_VPM1;
5171         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5172         if (cpu_has_feature(CPU_FTR_ARCH_31))
5173                 lpcr_mask |= LPCR_HAIL;
5174         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5175
5176         return 0;
5177 }
5178
5179 /*
5180  * Must be called with kvm->arch.mmu_setup_lock held and
5181  * mmu_ready = 0 and no vcpus running.
5182  */
5183 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5184 {
5185         unsigned long lpcr, lpcr_mask;
5186         int err;
5187
5188         err = kvmppc_init_vm_radix(kvm);
5189         if (err)
5190                 return err;
5191         kvmppc_rmap_reset(kvm);
5192         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5193         spin_lock(&kvm->mmu_lock);
5194         kvm->arch.radix = 1;
5195         spin_unlock(&kvm->mmu_lock);
5196         kvmppc_free_hpt(&kvm->arch.hpt);
5197
5198         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5199         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5200         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5201                 lpcr_mask |= LPCR_HAIL;
5202                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5203                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5204                         lpcr |= LPCR_HAIL;
5205         }
5206         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5207
5208         return 0;
5209 }
5210
5211 #ifdef CONFIG_KVM_XICS
5212 /*
5213  * Allocate a per-core structure for managing state about which cores are
5214  * running in the host versus the guest and for exchanging data between
5215  * real mode KVM and CPU running in the host.
5216  * This is only done for the first VM.
5217  * The allocated structure stays even if all VMs have stopped.
5218  * It is only freed when the kvm-hv module is unloaded.
5219  * It's OK for this routine to fail, we just don't support host
5220  * core operations like redirecting H_IPI wakeups.
5221  */
5222 void kvmppc_alloc_host_rm_ops(void)
5223 {
5224         struct kvmppc_host_rm_ops *ops;
5225         unsigned long l_ops;
5226         int cpu, core;
5227         int size;
5228
5229         if (cpu_has_feature(CPU_FTR_ARCH_300))
5230                 return;
5231
5232         /* Not the first time here ? */
5233         if (kvmppc_host_rm_ops_hv != NULL)
5234                 return;
5235
5236         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5237         if (!ops)
5238                 return;
5239
5240         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5241         ops->rm_core = kzalloc(size, GFP_KERNEL);
5242
5243         if (!ops->rm_core) {
5244                 kfree(ops);
5245                 return;
5246         }
5247
5248         cpus_read_lock();
5249
5250         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5251                 if (!cpu_online(cpu))
5252                         continue;
5253
5254                 core = cpu >> threads_shift;
5255                 ops->rm_core[core].rm_state.in_host = 1;
5256         }
5257
5258         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5259
5260         /*
5261          * Make the contents of the kvmppc_host_rm_ops structure visible
5262          * to other CPUs before we assign it to the global variable.
5263          * Do an atomic assignment (no locks used here), but if someone
5264          * beats us to it, just free our copy and return.
5265          */
5266         smp_wmb();
5267         l_ops = (unsigned long) ops;
5268
5269         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5270                 cpus_read_unlock();
5271                 kfree(ops->rm_core);
5272                 kfree(ops);
5273                 return;
5274         }
5275
5276         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5277                                              "ppc/kvm_book3s:prepare",
5278                                              kvmppc_set_host_core,
5279                                              kvmppc_clear_host_core);
5280         cpus_read_unlock();
5281 }
5282
5283 void kvmppc_free_host_rm_ops(void)
5284 {
5285         if (kvmppc_host_rm_ops_hv) {
5286                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5287                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5288                 kfree(kvmppc_host_rm_ops_hv);
5289                 kvmppc_host_rm_ops_hv = NULL;
5290         }
5291 }
5292 #endif
5293
5294 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5295 {
5296         unsigned long lpcr, lpid;
5297         int ret;
5298
5299         mutex_init(&kvm->arch.uvmem_lock);
5300         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5301         mutex_init(&kvm->arch.mmu_setup_lock);
5302
5303         /* Allocate the guest's logical partition ID */
5304
5305         lpid = kvmppc_alloc_lpid();
5306         if ((long)lpid < 0)
5307                 return -ENOMEM;
5308         kvm->arch.lpid = lpid;
5309
5310         kvmppc_alloc_host_rm_ops();
5311
5312         kvmhv_vm_nested_init(kvm);
5313
5314         /*
5315          * Since we don't flush the TLB when tearing down a VM,
5316          * and this lpid might have previously been used,
5317          * make sure we flush on each core before running the new VM.
5318          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5319          * does this flush for us.
5320          */
5321         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5322                 cpumask_setall(&kvm->arch.need_tlb_flush);
5323
5324         /* Start out with the default set of hcalls enabled */
5325         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5326                sizeof(kvm->arch.enabled_hcalls));
5327
5328         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5329                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5330
5331         /* Init LPCR for virtual RMA mode */
5332         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5333                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5334                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5335                 lpcr &= LPCR_PECE | LPCR_LPES;
5336         } else {
5337                 /*
5338                  * The L2 LPES mode will be set by the L0 according to whether
5339                  * or not it needs to take external interrupts in HV mode.
5340                  */
5341                 lpcr = 0;
5342         }
5343         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5344                 LPCR_VPM0 | LPCR_VPM1;
5345         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5346                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5347         /* On POWER8 turn on online bit to enable PURR/SPURR */
5348         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5349                 lpcr |= LPCR_ONL;
5350         /*
5351          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5352          * Set HVICE bit to enable hypervisor virtualization interrupts.
5353          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5354          * be unnecessary but better safe than sorry in case we re-enable
5355          * EE in HV mode with this LPCR still set)
5356          */
5357         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5358                 lpcr &= ~LPCR_VPM0;
5359                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5360
5361                 /*
5362                  * If xive is enabled, we route 0x500 interrupts directly
5363                  * to the guest.
5364                  */
5365                 if (xics_on_xive())
5366                         lpcr |= LPCR_LPES;
5367         }
5368
5369         /*
5370          * If the host uses radix, the guest starts out as radix.
5371          */
5372         if (radix_enabled()) {
5373                 kvm->arch.radix = 1;
5374                 kvm->arch.mmu_ready = 1;
5375                 lpcr &= ~LPCR_VPM1;
5376                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5377                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5378                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5379                     (kvm->arch.host_lpcr & LPCR_HAIL))
5380                         lpcr |= LPCR_HAIL;
5381                 ret = kvmppc_init_vm_radix(kvm);
5382                 if (ret) {
5383                         kvmppc_free_lpid(kvm->arch.lpid);
5384                         return ret;
5385                 }
5386                 kvmppc_setup_partition_table(kvm);
5387         }
5388
5389         verify_lpcr(kvm, lpcr);
5390         kvm->arch.lpcr = lpcr;
5391
5392         /* Initialization for future HPT resizes */
5393         kvm->arch.resize_hpt = NULL;
5394
5395         /*
5396          * Work out how many sets the TLB has, for the use of
5397          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5398          */
5399         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5400                 /*
5401                  * P10 will flush all the congruence class with a single tlbiel
5402                  */
5403                 kvm->arch.tlb_sets = 1;
5404         } else if (radix_enabled())
5405                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5406         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5407                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5408         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5409                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5410         else
5411                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5412
5413         /*
5414          * Track that we now have a HV mode VM active. This blocks secondary
5415          * CPU threads from coming online.
5416          */
5417         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5418                 kvm_hv_vm_activated();
5419
5420         /*
5421          * Initialize smt_mode depending on processor.
5422          * POWER8 and earlier have to use "strict" threading, where
5423          * all vCPUs in a vcore have to run on the same (sub)core,
5424          * whereas on POWER9 the threads can each run a different
5425          * guest.
5426          */
5427         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5428                 kvm->arch.smt_mode = threads_per_subcore;
5429         else
5430                 kvm->arch.smt_mode = 1;
5431         kvm->arch.emul_smt_mode = 1;
5432
5433         return 0;
5434 }
5435
5436 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5437 {
5438         kvmppc_mmu_debugfs_init(kvm);
5439         if (radix_enabled())
5440                 kvmhv_radix_debugfs_init(kvm);
5441         return 0;
5442 }
5443
5444 static void kvmppc_free_vcores(struct kvm *kvm)
5445 {
5446         long int i;
5447
5448         for (i = 0; i < KVM_MAX_VCORES; ++i)
5449                 kfree(kvm->arch.vcores[i]);
5450         kvm->arch.online_vcores = 0;
5451 }
5452
5453 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5454 {
5455         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5456                 kvm_hv_vm_deactivated();
5457
5458         kvmppc_free_vcores(kvm);
5459
5460
5461         if (kvm_is_radix(kvm))
5462                 kvmppc_free_radix(kvm);
5463         else
5464                 kvmppc_free_hpt(&kvm->arch.hpt);
5465
5466         /* Perform global invalidation and return lpid to the pool */
5467         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5468                 if (nesting_enabled(kvm))
5469                         kvmhv_release_all_nested(kvm);
5470                 kvm->arch.process_table = 0;
5471                 if (kvm->arch.secure_guest)
5472                         uv_svm_terminate(kvm->arch.lpid);
5473                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5474         }
5475
5476         kvmppc_free_lpid(kvm->arch.lpid);
5477
5478         kvmppc_free_pimap(kvm);
5479 }
5480
5481 /* We don't need to emulate any privileged instructions or dcbz */
5482 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5483                                      unsigned int inst, int *advance)
5484 {
5485         return EMULATE_FAIL;
5486 }
5487
5488 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5489                                         ulong spr_val)
5490 {
5491         return EMULATE_FAIL;
5492 }
5493
5494 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5495                                         ulong *spr_val)
5496 {
5497         return EMULATE_FAIL;
5498 }
5499
5500 static int kvmppc_core_check_processor_compat_hv(void)
5501 {
5502         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5503             cpu_has_feature(CPU_FTR_ARCH_206))
5504                 return 0;
5505
5506         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5507         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5508                 return 0;
5509
5510         return -EIO;
5511 }
5512
5513 #ifdef CONFIG_KVM_XICS
5514
5515 void kvmppc_free_pimap(struct kvm *kvm)
5516 {
5517         kfree(kvm->arch.pimap);
5518 }
5519
5520 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5521 {
5522         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5523 }
5524
5525 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5526 {
5527         struct irq_desc *desc;
5528         struct kvmppc_irq_map *irq_map;
5529         struct kvmppc_passthru_irqmap *pimap;
5530         struct irq_chip *chip;
5531         int i, rc = 0;
5532         struct irq_data *host_data;
5533
5534         if (!kvm_irq_bypass)
5535                 return 1;
5536
5537         desc = irq_to_desc(host_irq);
5538         if (!desc)
5539                 return -EIO;
5540
5541         mutex_lock(&kvm->lock);
5542
5543         pimap = kvm->arch.pimap;
5544         if (pimap == NULL) {
5545                 /* First call, allocate structure to hold IRQ map */
5546                 pimap = kvmppc_alloc_pimap();
5547                 if (pimap == NULL) {
5548                         mutex_unlock(&kvm->lock);
5549                         return -ENOMEM;
5550                 }
5551                 kvm->arch.pimap = pimap;
5552         }
5553
5554         /*
5555          * For now, we only support interrupts for which the EOI operation
5556          * is an OPAL call followed by a write to XIRR, since that's
5557          * what our real-mode EOI code does, or a XIVE interrupt
5558          */
5559         chip = irq_data_get_irq_chip(&desc->irq_data);
5560         if (!chip || !is_pnv_opal_msi(chip)) {
5561                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5562                         host_irq, guest_gsi);
5563                 mutex_unlock(&kvm->lock);
5564                 return -ENOENT;
5565         }
5566
5567         /*
5568          * See if we already have an entry for this guest IRQ number.
5569          * If it's mapped to a hardware IRQ number, that's an error,
5570          * otherwise re-use this entry.
5571          */
5572         for (i = 0; i < pimap->n_mapped; i++) {
5573                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5574                         if (pimap->mapped[i].r_hwirq) {
5575                                 mutex_unlock(&kvm->lock);
5576                                 return -EINVAL;
5577                         }
5578                         break;
5579                 }
5580         }
5581
5582         if (i == KVMPPC_PIRQ_MAPPED) {
5583                 mutex_unlock(&kvm->lock);
5584                 return -EAGAIN;         /* table is full */
5585         }
5586
5587         irq_map = &pimap->mapped[i];
5588
5589         irq_map->v_hwirq = guest_gsi;
5590         irq_map->desc = desc;
5591
5592         /*
5593          * Order the above two stores before the next to serialize with
5594          * the KVM real mode handler.
5595          */
5596         smp_wmb();
5597
5598         /*
5599          * The 'host_irq' number is mapped in the PCI-MSI domain but
5600          * the underlying calls, which will EOI the interrupt in real
5601          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5602          */
5603         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5604         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5605
5606         if (i == pimap->n_mapped)
5607                 pimap->n_mapped++;
5608
5609         if (xics_on_xive())
5610                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5611         else
5612                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5613         if (rc)
5614                 irq_map->r_hwirq = 0;
5615
5616         mutex_unlock(&kvm->lock);
5617
5618         return 0;
5619 }
5620
5621 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5622 {
5623         struct irq_desc *desc;
5624         struct kvmppc_passthru_irqmap *pimap;
5625         int i, rc = 0;
5626
5627         if (!kvm_irq_bypass)
5628                 return 0;
5629
5630         desc = irq_to_desc(host_irq);
5631         if (!desc)
5632                 return -EIO;
5633
5634         mutex_lock(&kvm->lock);
5635         if (!kvm->arch.pimap)
5636                 goto unlock;
5637
5638         pimap = kvm->arch.pimap;
5639
5640         for (i = 0; i < pimap->n_mapped; i++) {
5641                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5642                         break;
5643         }
5644
5645         if (i == pimap->n_mapped) {
5646                 mutex_unlock(&kvm->lock);
5647                 return -ENODEV;
5648         }
5649
5650         if (xics_on_xive())
5651                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5652         else
5653                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5654
5655         /* invalidate the entry (what do do on error from the above ?) */
5656         pimap->mapped[i].r_hwirq = 0;
5657
5658         /*
5659          * We don't free this structure even when the count goes to
5660          * zero. The structure is freed when we destroy the VM.
5661          */
5662  unlock:
5663         mutex_unlock(&kvm->lock);
5664         return rc;
5665 }
5666
5667 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5668                                              struct irq_bypass_producer *prod)
5669 {
5670         int ret = 0;
5671         struct kvm_kernel_irqfd *irqfd =
5672                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5673
5674         irqfd->producer = prod;
5675
5676         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5677         if (ret)
5678                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5679                         prod->irq, irqfd->gsi, ret);
5680
5681         return ret;
5682 }
5683
5684 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5685                                               struct irq_bypass_producer *prod)
5686 {
5687         int ret;
5688         struct kvm_kernel_irqfd *irqfd =
5689                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5690
5691         irqfd->producer = NULL;
5692
5693         /*
5694          * When producer of consumer is unregistered, we change back to
5695          * default external interrupt handling mode - KVM real mode
5696          * will switch back to host.
5697          */
5698         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5699         if (ret)
5700                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5701                         prod->irq, irqfd->gsi, ret);
5702 }
5703 #endif
5704
5705 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5706                                  unsigned int ioctl, unsigned long arg)
5707 {
5708         struct kvm *kvm __maybe_unused = filp->private_data;
5709         void __user *argp = (void __user *)arg;
5710         long r;
5711
5712         switch (ioctl) {
5713
5714         case KVM_PPC_ALLOCATE_HTAB: {
5715                 u32 htab_order;
5716
5717                 /* If we're a nested hypervisor, we currently only support radix */
5718                 if (kvmhv_on_pseries()) {
5719                         r = -EOPNOTSUPP;
5720                         break;
5721                 }
5722
5723                 r = -EFAULT;
5724                 if (get_user(htab_order, (u32 __user *)argp))
5725                         break;
5726                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5727                 if (r)
5728                         break;
5729                 r = 0;
5730                 break;
5731         }
5732
5733         case KVM_PPC_GET_HTAB_FD: {
5734                 struct kvm_get_htab_fd ghf;
5735
5736                 r = -EFAULT;
5737                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5738                         break;
5739                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5740                 break;
5741         }
5742
5743         case KVM_PPC_RESIZE_HPT_PREPARE: {
5744                 struct kvm_ppc_resize_hpt rhpt;
5745
5746                 r = -EFAULT;
5747                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5748                         break;
5749
5750                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5751                 break;
5752         }
5753
5754         case KVM_PPC_RESIZE_HPT_COMMIT: {
5755                 struct kvm_ppc_resize_hpt rhpt;
5756
5757                 r = -EFAULT;
5758                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5759                         break;
5760
5761                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5762                 break;
5763         }
5764
5765         default:
5766                 r = -ENOTTY;
5767         }
5768
5769         return r;
5770 }
5771
5772 /*
5773  * List of hcall numbers to enable by default.
5774  * For compatibility with old userspace, we enable by default
5775  * all hcalls that were implemented before the hcall-enabling
5776  * facility was added.  Note this list should not include H_RTAS.
5777  */
5778 static unsigned int default_hcall_list[] = {
5779         H_REMOVE,
5780         H_ENTER,
5781         H_READ,
5782         H_PROTECT,
5783         H_BULK_REMOVE,
5784 #ifdef CONFIG_SPAPR_TCE_IOMMU
5785         H_GET_TCE,
5786         H_PUT_TCE,
5787 #endif
5788         H_SET_DABR,
5789         H_SET_XDABR,
5790         H_CEDE,
5791         H_PROD,
5792         H_CONFER,
5793         H_REGISTER_VPA,
5794 #ifdef CONFIG_KVM_XICS
5795         H_EOI,
5796         H_CPPR,
5797         H_IPI,
5798         H_IPOLL,
5799         H_XIRR,
5800         H_XIRR_X,
5801 #endif
5802         0
5803 };
5804
5805 static void init_default_hcalls(void)
5806 {
5807         int i;
5808         unsigned int hcall;
5809
5810         for (i = 0; default_hcall_list[i]; ++i) {
5811                 hcall = default_hcall_list[i];
5812                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5813                 __set_bit(hcall / 4, default_enabled_hcalls);
5814         }
5815 }
5816
5817 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5818 {
5819         unsigned long lpcr;
5820         int radix;
5821         int err;
5822
5823         /* If not on a POWER9, reject it */
5824         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5825                 return -ENODEV;
5826
5827         /* If any unknown flags set, reject it */
5828         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5829                 return -EINVAL;
5830
5831         /* GR (guest radix) bit in process_table field must match */
5832         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5833         if (!!(cfg->process_table & PATB_GR) != radix)
5834                 return -EINVAL;
5835
5836         /* Process table size field must be reasonable, i.e. <= 24 */
5837         if ((cfg->process_table & PRTS_MASK) > 24)
5838                 return -EINVAL;
5839
5840         /* We can change a guest to/from radix now, if the host is radix */
5841         if (radix && !radix_enabled())
5842                 return -EINVAL;
5843
5844         /* If we're a nested hypervisor, we currently only support radix */
5845         if (kvmhv_on_pseries() && !radix)
5846                 return -EINVAL;
5847
5848         mutex_lock(&kvm->arch.mmu_setup_lock);
5849         if (radix != kvm_is_radix(kvm)) {
5850                 if (kvm->arch.mmu_ready) {
5851                         kvm->arch.mmu_ready = 0;
5852                         /* order mmu_ready vs. vcpus_running */
5853                         smp_mb();
5854                         if (atomic_read(&kvm->arch.vcpus_running)) {
5855                                 kvm->arch.mmu_ready = 1;
5856                                 err = -EBUSY;
5857                                 goto out_unlock;
5858                         }
5859                 }
5860                 if (radix)
5861                         err = kvmppc_switch_mmu_to_radix(kvm);
5862                 else
5863                         err = kvmppc_switch_mmu_to_hpt(kvm);
5864                 if (err)
5865                         goto out_unlock;
5866         }
5867
5868         kvm->arch.process_table = cfg->process_table;
5869         kvmppc_setup_partition_table(kvm);
5870
5871         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5872         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5873         err = 0;
5874
5875  out_unlock:
5876         mutex_unlock(&kvm->arch.mmu_setup_lock);
5877         return err;
5878 }
5879
5880 static int kvmhv_enable_nested(struct kvm *kvm)
5881 {
5882         if (!nested)
5883                 return -EPERM;
5884         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5885                 return -ENODEV;
5886         if (!radix_enabled())
5887                 return -ENODEV;
5888
5889         /* kvm == NULL means the caller is testing if the capability exists */
5890         if (kvm)
5891                 kvm->arch.nested_enable = true;
5892         return 0;
5893 }
5894
5895 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5896                                  int size)
5897 {
5898         int rc = -EINVAL;
5899
5900         if (kvmhv_vcpu_is_radix(vcpu)) {
5901                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5902
5903                 if (rc > 0)
5904                         rc = -EINVAL;
5905         }
5906
5907         /* For now quadrants are the only way to access nested guest memory */
5908         if (rc && vcpu->arch.nested)
5909                 rc = -EAGAIN;
5910
5911         return rc;
5912 }
5913
5914 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5915                                 int size)
5916 {
5917         int rc = -EINVAL;
5918
5919         if (kvmhv_vcpu_is_radix(vcpu)) {
5920                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5921
5922                 if (rc > 0)
5923                         rc = -EINVAL;
5924         }
5925
5926         /* For now quadrants are the only way to access nested guest memory */
5927         if (rc && vcpu->arch.nested)
5928                 rc = -EAGAIN;
5929
5930         return rc;
5931 }
5932
5933 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5934 {
5935         unpin_vpa(kvm, vpa);
5936         vpa->gpa = 0;
5937         vpa->pinned_addr = NULL;
5938         vpa->dirty = false;
5939         vpa->update_pending = 0;
5940 }
5941
5942 /*
5943  * Enable a guest to become a secure VM, or test whether
5944  * that could be enabled.
5945  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5946  * tested (kvm == NULL) or enabled (kvm != NULL).
5947  */
5948 static int kvmhv_enable_svm(struct kvm *kvm)
5949 {
5950         if (!kvmppc_uvmem_available())
5951                 return -EINVAL;
5952         if (kvm)
5953                 kvm->arch.svm_enabled = 1;
5954         return 0;
5955 }
5956
5957 /*
5958  *  IOCTL handler to turn off secure mode of guest
5959  *
5960  * - Release all device pages
5961  * - Issue ucall to terminate the guest on the UV side
5962  * - Unpin the VPA pages.
5963  * - Reinit the partition scoped page tables
5964  */
5965 static int kvmhv_svm_off(struct kvm *kvm)
5966 {
5967         struct kvm_vcpu *vcpu;
5968         int mmu_was_ready;
5969         int srcu_idx;
5970         int ret = 0;
5971         unsigned long i;
5972
5973         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5974                 return ret;
5975
5976         mutex_lock(&kvm->arch.mmu_setup_lock);
5977         mmu_was_ready = kvm->arch.mmu_ready;
5978         if (kvm->arch.mmu_ready) {
5979                 kvm->arch.mmu_ready = 0;
5980                 /* order mmu_ready vs. vcpus_running */
5981                 smp_mb();
5982                 if (atomic_read(&kvm->arch.vcpus_running)) {
5983                         kvm->arch.mmu_ready = 1;
5984                         ret = -EBUSY;
5985                         goto out;
5986                 }
5987         }
5988
5989         srcu_idx = srcu_read_lock(&kvm->srcu);
5990         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5991                 struct kvm_memory_slot *memslot;
5992                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5993                 int bkt;
5994
5995                 if (!slots)
5996                         continue;
5997
5998                 kvm_for_each_memslot(memslot, bkt, slots) {
5999                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
6000                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6001                 }
6002         }
6003         srcu_read_unlock(&kvm->srcu, srcu_idx);
6004
6005         ret = uv_svm_terminate(kvm->arch.lpid);
6006         if (ret != U_SUCCESS) {
6007                 ret = -EINVAL;
6008                 goto out;
6009         }
6010
6011         /*
6012          * When secure guest is reset, all the guest pages are sent
6013          * to UV via UV_PAGE_IN before the non-boot vcpus get a
6014          * chance to run and unpin their VPA pages. Unpinning of all
6015          * VPA pages is done here explicitly so that VPA pages
6016          * can be migrated to the secure side.
6017          *
6018          * This is required to for the secure SMP guest to reboot
6019          * correctly.
6020          */
6021         kvm_for_each_vcpu(i, vcpu, kvm) {
6022                 spin_lock(&vcpu->arch.vpa_update_lock);
6023                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6024                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6025                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6026                 spin_unlock(&vcpu->arch.vpa_update_lock);
6027         }
6028
6029         kvmppc_setup_partition_table(kvm);
6030         kvm->arch.secure_guest = 0;
6031         kvm->arch.mmu_ready = mmu_was_ready;
6032 out:
6033         mutex_unlock(&kvm->arch.mmu_setup_lock);
6034         return ret;
6035 }
6036
6037 static int kvmhv_enable_dawr1(struct kvm *kvm)
6038 {
6039         if (!cpu_has_feature(CPU_FTR_DAWR1))
6040                 return -ENODEV;
6041
6042         /* kvm == NULL means the caller is testing if the capability exists */
6043         if (kvm)
6044                 kvm->arch.dawr1_enabled = true;
6045         return 0;
6046 }
6047
6048 static bool kvmppc_hash_v3_possible(void)
6049 {
6050         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6051                 return false;
6052
6053         if (!cpu_has_feature(CPU_FTR_HVMODE))
6054                 return false;
6055
6056         /*
6057          * POWER9 chips before version 2.02 can't have some threads in
6058          * HPT mode and some in radix mode on the same core.
6059          */
6060         if (radix_enabled()) {
6061                 unsigned int pvr = mfspr(SPRN_PVR);
6062                 if ((pvr >> 16) == PVR_POWER9 &&
6063                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6064                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6065                         return false;
6066         }
6067
6068         return true;
6069 }
6070
6071 static struct kvmppc_ops kvm_ops_hv = {
6072         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6073         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6074         .get_one_reg = kvmppc_get_one_reg_hv,
6075         .set_one_reg = kvmppc_set_one_reg_hv,
6076         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6077         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6078         .inject_interrupt = kvmppc_inject_interrupt_hv,
6079         .set_msr     = kvmppc_set_msr_hv,
6080         .vcpu_run    = kvmppc_vcpu_run_hv,
6081         .vcpu_create = kvmppc_core_vcpu_create_hv,
6082         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6083         .check_requests = kvmppc_core_check_requests_hv,
6084         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6085         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6086         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6087         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6088         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6089         .age_gfn = kvm_age_gfn_hv,
6090         .test_age_gfn = kvm_test_age_gfn_hv,
6091         .set_spte_gfn = kvm_set_spte_gfn_hv,
6092         .free_memslot = kvmppc_core_free_memslot_hv,
6093         .init_vm =  kvmppc_core_init_vm_hv,
6094         .destroy_vm = kvmppc_core_destroy_vm_hv,
6095         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6096         .emulate_op = kvmppc_core_emulate_op_hv,
6097         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6098         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6099         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6100         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6101         .hcall_implemented = kvmppc_hcall_impl_hv,
6102 #ifdef CONFIG_KVM_XICS
6103         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6104         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6105 #endif
6106         .configure_mmu = kvmhv_configure_mmu,
6107         .get_rmmu_info = kvmhv_get_rmmu_info,
6108         .set_smt_mode = kvmhv_set_smt_mode,
6109         .enable_nested = kvmhv_enable_nested,
6110         .load_from_eaddr = kvmhv_load_from_eaddr,
6111         .store_to_eaddr = kvmhv_store_to_eaddr,
6112         .enable_svm = kvmhv_enable_svm,
6113         .svm_off = kvmhv_svm_off,
6114         .enable_dawr1 = kvmhv_enable_dawr1,
6115         .hash_v3_possible = kvmppc_hash_v3_possible,
6116         .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6117         .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6118 };
6119
6120 static int kvm_init_subcore_bitmap(void)
6121 {
6122         int i, j;
6123         int nr_cores = cpu_nr_cores();
6124         struct sibling_subcore_state *sibling_subcore_state;
6125
6126         for (i = 0; i < nr_cores; i++) {
6127                 int first_cpu = i * threads_per_core;
6128                 int node = cpu_to_node(first_cpu);
6129
6130                 /* Ignore if it is already allocated. */
6131                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6132                         continue;
6133
6134                 sibling_subcore_state =
6135                         kzalloc_node(sizeof(struct sibling_subcore_state),
6136                                                         GFP_KERNEL, node);
6137                 if (!sibling_subcore_state)
6138                         return -ENOMEM;
6139
6140
6141                 for (j = 0; j < threads_per_core; j++) {
6142                         int cpu = first_cpu + j;
6143
6144                         paca_ptrs[cpu]->sibling_subcore_state =
6145                                                 sibling_subcore_state;
6146                 }
6147         }
6148         return 0;
6149 }
6150
6151 static int kvmppc_radix_possible(void)
6152 {
6153         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6154 }
6155
6156 static int kvmppc_book3s_init_hv(void)
6157 {
6158         int r;
6159
6160         if (!tlbie_capable) {
6161                 pr_err("KVM-HV: Host does not support TLBIE\n");
6162                 return -ENODEV;
6163         }
6164
6165         /*
6166          * FIXME!! Do we need to check on all cpus ?
6167          */
6168         r = kvmppc_core_check_processor_compat_hv();
6169         if (r < 0)
6170                 return -ENODEV;
6171
6172         r = kvmhv_nested_init();
6173         if (r)
6174                 return r;
6175
6176         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6177                 r = kvm_init_subcore_bitmap();
6178                 if (r)
6179                         goto err;
6180         }
6181
6182         /*
6183          * We need a way of accessing the XICS interrupt controller,
6184          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6185          * indirectly, via OPAL.
6186          */
6187 #ifdef CONFIG_SMP
6188         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6189             !local_paca->kvm_hstate.xics_phys) {
6190                 struct device_node *np;
6191
6192                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6193                 if (!np) {
6194                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6195                         r = -ENODEV;
6196                         goto err;
6197                 }
6198                 /* presence of intc confirmed - node can be dropped again */
6199                 of_node_put(np);
6200         }
6201 #endif
6202
6203         init_default_hcalls();
6204
6205         init_vcore_lists();
6206
6207         r = kvmppc_mmu_hv_init();
6208         if (r)
6209                 goto err;
6210
6211         if (kvmppc_radix_possible()) {
6212                 r = kvmppc_radix_init();
6213                 if (r)
6214                         goto err;
6215         }
6216
6217         r = kvmppc_uvmem_init();
6218         if (r < 0) {
6219                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6220                 return r;
6221         }
6222
6223         kvm_ops_hv.owner = THIS_MODULE;
6224         kvmppc_hv_ops = &kvm_ops_hv;
6225
6226         return 0;
6227
6228 err:
6229         kvmhv_nested_exit();
6230         kvmppc_radix_exit();
6231
6232         return r;
6233 }
6234
6235 static void kvmppc_book3s_exit_hv(void)
6236 {
6237         kvmppc_uvmem_free();
6238         kvmppc_free_host_rm_ops();
6239         if (kvmppc_radix_possible())
6240                 kvmppc_radix_exit();
6241         kvmppc_hv_ops = NULL;
6242         kvmhv_nested_exit();
6243 }
6244
6245 module_init(kvmppc_book3s_init_hv);
6246 module_exit(kvmppc_book3s_exit_hv);
6247 MODULE_LICENSE("GPL");
6248 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6249 MODULE_ALIAS("devname:kvm");