Merge tag 'mips_5.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28
29 #include <asm/paca.h>
30
31 /*
32  * The powerpc watchdog ensures that each CPU is able to service timers.
33  * The watchdog sets up a simple timer on each CPU to run once per timer
34  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35  * the heartbeat.
36  *
37  * Then there are two systems to check that the heartbeat is still running.
38  * The local soft-NMI, and the SMP checker.
39  *
40  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41  * are disabled with local_irq_disable(), platforms that use soft-masking
42  * can leave hardware interrupts enabled and handle them with a masked
43  * interrupt handler. The masked handler can send the timer interrupt to the
44  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46  *
47  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48  * with the current time, and take action if the difference exceeds the
49  * watchdog threshold.
50  *
51  * The limitation of the soft-NMI watchdog is that it does not work when
52  * interrupts are hard disabled or otherwise not being serviced. This is
53  * solved by also having a SMP watchdog where all CPUs check all other
54  * CPUs heartbeat.
55  *
56  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57  * cpumask is kept, containing all CPUs which enable the watchdog. Each
58  * CPU clears their pending bit in their heartbeat timer. When the bitmask
59  * becomes empty, the last CPU to clear its pending bit updates a global
60  * timestamp and refills the pending bitmask.
61  *
62  * In the heartbeat timer, if any CPU notices that the global timestamp has
63  * not been updated for a period exceeding the watchdog threshold, then it
64  * means the CPU(s) with their bit still set in the pending mask have had
65  * their heartbeat stop, and action is taken.
66  *
67  * Some platforms implement true NMI IPIs, which can be used by the SMP
68  * watchdog to detect an unresponsive CPU and pull it out of its stuck
69  * state with the NMI IPI, to get crash/debug data from it. This way the
70  * SMP watchdog can detect hardware interrupts off lockups.
71  */
72
73 static cpumask_t wd_cpus_enabled __read_mostly;
74
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77
78 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
79
80 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88
89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91         /*
92          * Avoid locking layers if possible.
93          * This may be called from low level interrupt handlers at some
94          * point in future.
95          */
96         raw_local_irq_save(*flags);
97         hard_irq_disable(); /* Make it soft-NMI safe */
98         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99                 raw_local_irq_restore(*flags);
100                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101                 raw_local_irq_save(*flags);
102                 hard_irq_disable();
103         }
104 }
105
106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108         clear_bit_unlock(0, &__wd_smp_lock);
109         raw_local_irq_restore(*flags);
110 }
111
112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114         int cpu = raw_smp_processor_id();
115         u64 tb = get_tb();
116
117         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
118         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119                  cpu, tb, per_cpu(wd_timer_tb, cpu),
120                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
121         print_modules();
122         print_irqtrace_events(current);
123         if (regs)
124                 show_regs(regs);
125         else
126                 dump_stack();
127
128         /* Do not panic from here because that can recurse into NMI IPI layer */
129 }
130
131 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
132 {
133         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
134         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
135         if (cpumask_empty(&wd_smp_cpus_pending)) {
136                 wd_smp_last_reset_tb = tb;
137                 cpumask_andnot(&wd_smp_cpus_pending,
138                                 &wd_cpus_enabled,
139                                 &wd_smp_cpus_stuck);
140         }
141 }
142 static void set_cpu_stuck(int cpu, u64 tb)
143 {
144         set_cpumask_stuck(cpumask_of(cpu), tb);
145 }
146
147 static void watchdog_smp_panic(int cpu, u64 tb)
148 {
149         unsigned long flags;
150         int c;
151
152         wd_smp_lock(&flags);
153         /* Double check some things under lock */
154         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
155                 goto out;
156         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
157                 goto out;
158         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
159                 goto out;
160
161         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
162                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
163         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
164                  cpu, tb, wd_smp_last_reset_tb,
165                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
166
167         if (!sysctl_hardlockup_all_cpu_backtrace) {
168                 /*
169                  * Try to trigger the stuck CPUs, unless we are going to
170                  * get a backtrace on all of them anyway.
171                  */
172                 for_each_cpu(c, &wd_smp_cpus_pending) {
173                         if (c == cpu)
174                                 continue;
175                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
176                 }
177         }
178
179         /* Take the stuck CPUs out of the watch group */
180         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
181
182         wd_smp_unlock(&flags);
183
184         printk_safe_flush();
185         /*
186          * printk_safe_flush() seems to require another print
187          * before anything actually goes out to console.
188          */
189         if (sysctl_hardlockup_all_cpu_backtrace)
190                 trigger_allbutself_cpu_backtrace();
191
192         if (hardlockup_panic)
193                 nmi_panic(NULL, "Hard LOCKUP");
194
195         return;
196
197 out:
198         wd_smp_unlock(&flags);
199 }
200
201 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
202 {
203         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
204                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
205                         struct pt_regs *regs = get_irq_regs();
206                         unsigned long flags;
207
208                         wd_smp_lock(&flags);
209
210                         pr_emerg("CPU %d became unstuck TB:%lld\n",
211                                  cpu, tb);
212                         print_irqtrace_events(current);
213                         if (regs)
214                                 show_regs(regs);
215                         else
216                                 dump_stack();
217
218                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
219                         wd_smp_unlock(&flags);
220                 }
221                 return;
222         }
223         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
224         if (cpumask_empty(&wd_smp_cpus_pending)) {
225                 unsigned long flags;
226
227                 wd_smp_lock(&flags);
228                 if (cpumask_empty(&wd_smp_cpus_pending)) {
229                         wd_smp_last_reset_tb = tb;
230                         cpumask_andnot(&wd_smp_cpus_pending,
231                                         &wd_cpus_enabled,
232                                         &wd_smp_cpus_stuck);
233                 }
234                 wd_smp_unlock(&flags);
235         }
236 }
237
238 static void watchdog_timer_interrupt(int cpu)
239 {
240         u64 tb = get_tb();
241
242         per_cpu(wd_timer_tb, cpu) = tb;
243
244         wd_smp_clear_cpu_pending(cpu, tb);
245
246         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
247                 watchdog_smp_panic(cpu, tb);
248 }
249
250 void soft_nmi_interrupt(struct pt_regs *regs)
251 {
252         unsigned long flags;
253         int cpu = raw_smp_processor_id();
254         u64 tb;
255
256         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
257                 return;
258
259         nmi_enter();
260
261         __this_cpu_inc(irq_stat.soft_nmi_irqs);
262
263         tb = get_tb();
264         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
265                 wd_smp_lock(&flags);
266                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
267                         wd_smp_unlock(&flags);
268                         goto out;
269                 }
270                 set_cpu_stuck(cpu, tb);
271
272                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
273                          cpu, (void *)regs->nip);
274                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
275                          cpu, tb, per_cpu(wd_timer_tb, cpu),
276                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
277                 print_modules();
278                 print_irqtrace_events(current);
279                 show_regs(regs);
280
281                 wd_smp_unlock(&flags);
282
283                 if (sysctl_hardlockup_all_cpu_backtrace)
284                         trigger_allbutself_cpu_backtrace();
285
286                 if (hardlockup_panic)
287                         nmi_panic(regs, "Hard LOCKUP");
288         }
289         if (wd_panic_timeout_tb < 0x7fffffff)
290                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
291
292 out:
293         nmi_exit();
294 }
295
296 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
297 {
298         int cpu = smp_processor_id();
299
300         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
301                 return HRTIMER_NORESTART;
302
303         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
304                 return HRTIMER_NORESTART;
305
306         watchdog_timer_interrupt(cpu);
307
308         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
309
310         return HRTIMER_RESTART;
311 }
312
313 void arch_touch_nmi_watchdog(void)
314 {
315         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
316         int cpu = smp_processor_id();
317         u64 tb = get_tb();
318
319         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
320                 per_cpu(wd_timer_tb, cpu) = tb;
321                 wd_smp_clear_cpu_pending(cpu, tb);
322         }
323 }
324 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
325
326 static void start_watchdog(void *arg)
327 {
328         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
329         int cpu = smp_processor_id();
330         unsigned long flags;
331
332         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
333                 WARN_ON(1);
334                 return;
335         }
336
337         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
338                 return;
339
340         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
341                 return;
342
343         wd_smp_lock(&flags);
344         cpumask_set_cpu(cpu, &wd_cpus_enabled);
345         if (cpumask_weight(&wd_cpus_enabled) == 1) {
346                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
347                 wd_smp_last_reset_tb = get_tb();
348         }
349         wd_smp_unlock(&flags);
350
351         *this_cpu_ptr(&wd_timer_tb) = get_tb();
352
353         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
354         hrtimer->function = watchdog_timer_fn;
355         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
356                       HRTIMER_MODE_REL_PINNED);
357 }
358
359 static int start_watchdog_on_cpu(unsigned int cpu)
360 {
361         return smp_call_function_single(cpu, start_watchdog, NULL, true);
362 }
363
364 static void stop_watchdog(void *arg)
365 {
366         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
367         int cpu = smp_processor_id();
368         unsigned long flags;
369
370         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
371                 return; /* Can happen in CPU unplug case */
372
373         hrtimer_cancel(hrtimer);
374
375         wd_smp_lock(&flags);
376         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
377         wd_smp_unlock(&flags);
378
379         wd_smp_clear_cpu_pending(cpu, get_tb());
380 }
381
382 static int stop_watchdog_on_cpu(unsigned int cpu)
383 {
384         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
385 }
386
387 static void watchdog_calc_timeouts(void)
388 {
389         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
390
391         /* Have the SMP detector trigger a bit later */
392         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
393
394         /* 2/5 is the factor that the perf based detector uses */
395         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
396 }
397
398 void watchdog_nmi_stop(void)
399 {
400         int cpu;
401
402         for_each_cpu(cpu, &wd_cpus_enabled)
403                 stop_watchdog_on_cpu(cpu);
404 }
405
406 void watchdog_nmi_start(void)
407 {
408         int cpu;
409
410         watchdog_calc_timeouts();
411         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
412                 start_watchdog_on_cpu(cpu);
413 }
414
415 /*
416  * Invoked from core watchdog init.
417  */
418 int __init watchdog_nmi_probe(void)
419 {
420         int err;
421
422         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
423                                         "powerpc/watchdog:online",
424                                         start_watchdog_on_cpu,
425                                         stop_watchdog_on_cpu);
426         if (err < 0) {
427                 pr_warn("could not be initialized");
428                 return err;
429         }
430         return 0;
431 }