be6b2283855560801b119e9e9f3342855b8f280a
[linux-2.6-microblaze.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28
29 #include <asm/interrupt.h>
30 #include <asm/paca.h>
31 #include <asm/nmi.h>
32
33 /*
34  * The powerpc watchdog ensures that each CPU is able to service timers.
35  * The watchdog sets up a simple timer on each CPU to run once per timer
36  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
37  * the heartbeat.
38  *
39  * Then there are two systems to check that the heartbeat is still running.
40  * The local soft-NMI, and the SMP checker.
41  *
42  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
43  * are disabled with local_irq_disable(), platforms that use soft-masking
44  * can leave hardware interrupts enabled and handle them with a masked
45  * interrupt handler. The masked handler can send the timer interrupt to the
46  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
47  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
48  *
49  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
50  * with the current time, and take action if the difference exceeds the
51  * watchdog threshold.
52  *
53  * The limitation of the soft-NMI watchdog is that it does not work when
54  * interrupts are hard disabled or otherwise not being serviced. This is
55  * solved by also having a SMP watchdog where all CPUs check all other
56  * CPUs heartbeat.
57  *
58  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
59  * cpumask is kept, containing all CPUs which enable the watchdog. Each
60  * CPU clears their pending bit in their heartbeat timer. When the bitmask
61  * becomes empty, the last CPU to clear its pending bit updates a global
62  * timestamp and refills the pending bitmask.
63  *
64  * In the heartbeat timer, if any CPU notices that the global timestamp has
65  * not been updated for a period exceeding the watchdog threshold, then it
66  * means the CPU(s) with their bit still set in the pending mask have had
67  * their heartbeat stop, and action is taken.
68  *
69  * Some platforms implement true NMI IPIs, which can be used by the SMP
70  * watchdog to detect an unresponsive CPU and pull it out of its stuck
71  * state with the NMI IPI, to get crash/debug data from it. This way the
72  * SMP watchdog can detect hardware interrupts off lockups.
73  */
74
75 static cpumask_t wd_cpus_enabled __read_mostly;
76
77 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
78 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
79
80 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
81
82 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
83 static DEFINE_PER_CPU(u64, wd_timer_tb);
84
85 /* SMP checker bits */
86 static unsigned long __wd_smp_lock;
87 static cpumask_t wd_smp_cpus_pending;
88 static cpumask_t wd_smp_cpus_stuck;
89 static u64 wd_smp_last_reset_tb;
90
91 static inline void wd_smp_lock(unsigned long *flags)
92 {
93         /*
94          * Avoid locking layers if possible.
95          * This may be called from low level interrupt handlers at some
96          * point in future.
97          */
98         raw_local_irq_save(*flags);
99         hard_irq_disable(); /* Make it soft-NMI safe */
100         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
101                 raw_local_irq_restore(*flags);
102                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
103                 raw_local_irq_save(*flags);
104                 hard_irq_disable();
105         }
106 }
107
108 static inline void wd_smp_unlock(unsigned long *flags)
109 {
110         clear_bit_unlock(0, &__wd_smp_lock);
111         raw_local_irq_restore(*flags);
112 }
113
114 static void wd_lockup_ipi(struct pt_regs *regs)
115 {
116         int cpu = raw_smp_processor_id();
117         u64 tb = get_tb();
118
119         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
120         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
121                  cpu, tb, per_cpu(wd_timer_tb, cpu),
122                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
123         print_modules();
124         print_irqtrace_events(current);
125         if (regs)
126                 show_regs(regs);
127         else
128                 dump_stack();
129
130         /* Do not panic from here because that can recurse into NMI IPI layer */
131 }
132
133 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
134 {
135         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
136         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
137         if (cpumask_empty(&wd_smp_cpus_pending)) {
138                 wd_smp_last_reset_tb = tb;
139                 cpumask_andnot(&wd_smp_cpus_pending,
140                                 &wd_cpus_enabled,
141                                 &wd_smp_cpus_stuck);
142         }
143 }
144 static void set_cpu_stuck(int cpu, u64 tb)
145 {
146         set_cpumask_stuck(cpumask_of(cpu), tb);
147 }
148
149 static void watchdog_smp_panic(int cpu, u64 tb)
150 {
151         unsigned long flags;
152         int c;
153
154         wd_smp_lock(&flags);
155         /* Double check some things under lock */
156         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
157                 goto out;
158         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
159                 goto out;
160         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
161                 goto out;
162
163         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
164                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
165         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
166                  cpu, tb, wd_smp_last_reset_tb,
167                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
168
169         if (!sysctl_hardlockup_all_cpu_backtrace) {
170                 /*
171                  * Try to trigger the stuck CPUs, unless we are going to
172                  * get a backtrace on all of them anyway.
173                  */
174                 for_each_cpu(c, &wd_smp_cpus_pending) {
175                         if (c == cpu)
176                                 continue;
177                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
178                 }
179         }
180
181         /* Take the stuck CPUs out of the watch group */
182         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
183
184         wd_smp_unlock(&flags);
185
186         printk_safe_flush();
187         /*
188          * printk_safe_flush() seems to require another print
189          * before anything actually goes out to console.
190          */
191         if (sysctl_hardlockup_all_cpu_backtrace)
192                 trigger_allbutself_cpu_backtrace();
193
194         if (hardlockup_panic)
195                 nmi_panic(NULL, "Hard LOCKUP");
196
197         return;
198
199 out:
200         wd_smp_unlock(&flags);
201 }
202
203 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
204 {
205         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
206                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
207                         struct pt_regs *regs = get_irq_regs();
208                         unsigned long flags;
209
210                         wd_smp_lock(&flags);
211
212                         pr_emerg("CPU %d became unstuck TB:%lld\n",
213                                  cpu, tb);
214                         print_irqtrace_events(current);
215                         if (regs)
216                                 show_regs(regs);
217                         else
218                                 dump_stack();
219
220                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
221                         wd_smp_unlock(&flags);
222                 }
223                 return;
224         }
225         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
226         if (cpumask_empty(&wd_smp_cpus_pending)) {
227                 unsigned long flags;
228
229                 wd_smp_lock(&flags);
230                 if (cpumask_empty(&wd_smp_cpus_pending)) {
231                         wd_smp_last_reset_tb = tb;
232                         cpumask_andnot(&wd_smp_cpus_pending,
233                                         &wd_cpus_enabled,
234                                         &wd_smp_cpus_stuck);
235                 }
236                 wd_smp_unlock(&flags);
237         }
238 }
239
240 static void watchdog_timer_interrupt(int cpu)
241 {
242         u64 tb = get_tb();
243
244         per_cpu(wd_timer_tb, cpu) = tb;
245
246         wd_smp_clear_cpu_pending(cpu, tb);
247
248         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
249                 watchdog_smp_panic(cpu, tb);
250 }
251
252 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
253 {
254         unsigned long flags;
255         int cpu = raw_smp_processor_id();
256         u64 tb;
257
258         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
259                 return 0;
260
261         nmi_enter();
262
263         __this_cpu_inc(irq_stat.soft_nmi_irqs);
264
265         tb = get_tb();
266         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
267                 wd_smp_lock(&flags);
268                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
269                         wd_smp_unlock(&flags);
270                         goto out;
271                 }
272                 set_cpu_stuck(cpu, tb);
273
274                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
275                          cpu, (void *)regs->nip);
276                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
277                          cpu, tb, per_cpu(wd_timer_tb, cpu),
278                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
279                 print_modules();
280                 print_irqtrace_events(current);
281                 show_regs(regs);
282
283                 wd_smp_unlock(&flags);
284
285                 if (sysctl_hardlockup_all_cpu_backtrace)
286                         trigger_allbutself_cpu_backtrace();
287
288                 if (hardlockup_panic)
289                         nmi_panic(regs, "Hard LOCKUP");
290         }
291         if (wd_panic_timeout_tb < 0x7fffffff)
292                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
293
294 out:
295         nmi_exit();
296
297         return 0;
298 }
299
300 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
301 {
302         int cpu = smp_processor_id();
303
304         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
305                 return HRTIMER_NORESTART;
306
307         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
308                 return HRTIMER_NORESTART;
309
310         watchdog_timer_interrupt(cpu);
311
312         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
313
314         return HRTIMER_RESTART;
315 }
316
317 void arch_touch_nmi_watchdog(void)
318 {
319         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
320         int cpu = smp_processor_id();
321         u64 tb = get_tb();
322
323         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
324                 per_cpu(wd_timer_tb, cpu) = tb;
325                 wd_smp_clear_cpu_pending(cpu, tb);
326         }
327 }
328 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
329
330 static void start_watchdog(void *arg)
331 {
332         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
333         int cpu = smp_processor_id();
334         unsigned long flags;
335
336         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
337                 WARN_ON(1);
338                 return;
339         }
340
341         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
342                 return;
343
344         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
345                 return;
346
347         wd_smp_lock(&flags);
348         cpumask_set_cpu(cpu, &wd_cpus_enabled);
349         if (cpumask_weight(&wd_cpus_enabled) == 1) {
350                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
351                 wd_smp_last_reset_tb = get_tb();
352         }
353         wd_smp_unlock(&flags);
354
355         *this_cpu_ptr(&wd_timer_tb) = get_tb();
356
357         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
358         hrtimer->function = watchdog_timer_fn;
359         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
360                       HRTIMER_MODE_REL_PINNED);
361 }
362
363 static int start_watchdog_on_cpu(unsigned int cpu)
364 {
365         return smp_call_function_single(cpu, start_watchdog, NULL, true);
366 }
367
368 static void stop_watchdog(void *arg)
369 {
370         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
371         int cpu = smp_processor_id();
372         unsigned long flags;
373
374         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
375                 return; /* Can happen in CPU unplug case */
376
377         hrtimer_cancel(hrtimer);
378
379         wd_smp_lock(&flags);
380         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
381         wd_smp_unlock(&flags);
382
383         wd_smp_clear_cpu_pending(cpu, get_tb());
384 }
385
386 static int stop_watchdog_on_cpu(unsigned int cpu)
387 {
388         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
389 }
390
391 static void watchdog_calc_timeouts(void)
392 {
393         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
394
395         /* Have the SMP detector trigger a bit later */
396         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
397
398         /* 2/5 is the factor that the perf based detector uses */
399         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
400 }
401
402 void watchdog_nmi_stop(void)
403 {
404         int cpu;
405
406         for_each_cpu(cpu, &wd_cpus_enabled)
407                 stop_watchdog_on_cpu(cpu);
408 }
409
410 void watchdog_nmi_start(void)
411 {
412         int cpu;
413
414         watchdog_calc_timeouts();
415         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
416                 start_watchdog_on_cpu(cpu);
417 }
418
419 /*
420  * Invoked from core watchdog init.
421  */
422 int __init watchdog_nmi_probe(void)
423 {
424         int err;
425
426         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
427                                         "powerpc/watchdog:online",
428                                         start_watchdog_on_cpu,
429                                         stop_watchdog_on_cpu);
430         if (err < 0) {
431                 pr_warn("could not be initialized");
432                 return err;
433         }
434         return 0;
435 }