Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28
29 #include <asm/paca.h>
30
31 /*
32  * The powerpc watchdog ensures that each CPU is able to service timers.
33  * The watchdog sets up a simple timer on each CPU to run once per timer
34  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35  * the heartbeat.
36  *
37  * Then there are two systems to check that the heartbeat is still running.
38  * The local soft-NMI, and the SMP checker.
39  *
40  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41  * are disabled with local_irq_disable(), platforms that use soft-masking
42  * can leave hardware interrupts enabled and handle them with a masked
43  * interrupt handler. The masked handler can send the timer interrupt to the
44  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46  *
47  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48  * with the current time, and take action if the difference exceeds the
49  * watchdog threshold.
50  *
51  * The limitation of the soft-NMI watchdog is that it does not work when
52  * interrupts are hard disabled or otherwise not being serviced. This is
53  * solved by also having a SMP watchdog where all CPUs check all other
54  * CPUs heartbeat.
55  *
56  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57  * cpumask is kept, containing all CPUs which enable the watchdog. Each
58  * CPU clears their pending bit in their heartbeat timer. When the bitmask
59  * becomes empty, the last CPU to clear its pending bit updates a global
60  * timestamp and refills the pending bitmask.
61  *
62  * In the heartbeat timer, if any CPU notices that the global timestamp has
63  * not been updated for a period exceeding the watchdog threshold, then it
64  * means the CPU(s) with their bit still set in the pending mask have had
65  * their heartbeat stop, and action is taken.
66  *
67  * Some platforms implement true NMI IPIs, which can by used by the SMP
68  * watchdog to detect an unresponsive CPU and pull it out of its stuck
69  * state with the NMI IPI, to get crash/debug data from it. This way the
70  * SMP watchdog can detect hardware interrupts off lockups.
71  */
72
73 static cpumask_t wd_cpus_enabled __read_mostly;
74
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77
78 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
79
80 static DEFINE_PER_CPU(struct timer_list, wd_timer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88
89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91         /*
92          * Avoid locking layers if possible.
93          * This may be called from low level interrupt handlers at some
94          * point in future.
95          */
96         raw_local_irq_save(*flags);
97         hard_irq_disable(); /* Make it soft-NMI safe */
98         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99                 raw_local_irq_restore(*flags);
100                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101                 raw_local_irq_save(*flags);
102                 hard_irq_disable();
103         }
104 }
105
106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108         clear_bit_unlock(0, &__wd_smp_lock);
109         raw_local_irq_restore(*flags);
110 }
111
112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114         pr_emerg("CPU %d Hard LOCKUP\n", raw_smp_processor_id());
115         print_modules();
116         print_irqtrace_events(current);
117         if (regs)
118                 show_regs(regs);
119         else
120                 dump_stack();
121
122         /* Do not panic from here because that can recurse into NMI IPI layer */
123 }
124
125 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
126 {
127         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
128         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
129         if (cpumask_empty(&wd_smp_cpus_pending)) {
130                 wd_smp_last_reset_tb = tb;
131                 cpumask_andnot(&wd_smp_cpus_pending,
132                                 &wd_cpus_enabled,
133                                 &wd_smp_cpus_stuck);
134         }
135 }
136 static void set_cpu_stuck(int cpu, u64 tb)
137 {
138         set_cpumask_stuck(cpumask_of(cpu), tb);
139 }
140
141 static void watchdog_smp_panic(int cpu, u64 tb)
142 {
143         unsigned long flags;
144         int c;
145
146         wd_smp_lock(&flags);
147         /* Double check some things under lock */
148         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
149                 goto out;
150         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
151                 goto out;
152         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
153                 goto out;
154
155         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
156                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
157
158         if (!sysctl_hardlockup_all_cpu_backtrace) {
159                 /*
160                  * Try to trigger the stuck CPUs, unless we are going to
161                  * get a backtrace on all of them anyway.
162                  */
163                 for_each_cpu(c, &wd_smp_cpus_pending) {
164                         if (c == cpu)
165                                 continue;
166                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
167                 }
168                 smp_flush_nmi_ipi(1000000);
169         }
170
171         /* Take the stuck CPUs out of the watch group */
172         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
173
174         wd_smp_unlock(&flags);
175
176         printk_safe_flush();
177         /*
178          * printk_safe_flush() seems to require another print
179          * before anything actually goes out to console.
180          */
181         if (sysctl_hardlockup_all_cpu_backtrace)
182                 trigger_allbutself_cpu_backtrace();
183
184         if (hardlockup_panic)
185                 nmi_panic(NULL, "Hard LOCKUP");
186
187         return;
188
189 out:
190         wd_smp_unlock(&flags);
191 }
192
193 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
194 {
195         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
196                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
197                         unsigned long flags;
198
199                         pr_emerg("CPU %d became unstuck\n", cpu);
200                         wd_smp_lock(&flags);
201                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
202                         wd_smp_unlock(&flags);
203                 }
204                 return;
205         }
206         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
207         if (cpumask_empty(&wd_smp_cpus_pending)) {
208                 unsigned long flags;
209
210                 wd_smp_lock(&flags);
211                 if (cpumask_empty(&wd_smp_cpus_pending)) {
212                         wd_smp_last_reset_tb = tb;
213                         cpumask_andnot(&wd_smp_cpus_pending,
214                                         &wd_cpus_enabled,
215                                         &wd_smp_cpus_stuck);
216                 }
217                 wd_smp_unlock(&flags);
218         }
219 }
220
221 static void watchdog_timer_interrupt(int cpu)
222 {
223         u64 tb = get_tb();
224
225         per_cpu(wd_timer_tb, cpu) = tb;
226
227         wd_smp_clear_cpu_pending(cpu, tb);
228
229         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
230                 watchdog_smp_panic(cpu, tb);
231 }
232
233 void soft_nmi_interrupt(struct pt_regs *regs)
234 {
235         unsigned long flags;
236         int cpu = raw_smp_processor_id();
237         u64 tb;
238
239         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
240                 return;
241
242         nmi_enter();
243
244         __this_cpu_inc(irq_stat.soft_nmi_irqs);
245
246         tb = get_tb();
247         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
248                 per_cpu(wd_timer_tb, cpu) = tb;
249
250                 wd_smp_lock(&flags);
251                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
252                         wd_smp_unlock(&flags);
253                         goto out;
254                 }
255                 set_cpu_stuck(cpu, tb);
256
257                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", cpu, (void *)regs->nip);
258                 print_modules();
259                 print_irqtrace_events(current);
260                 show_regs(regs);
261
262                 wd_smp_unlock(&flags);
263
264                 if (sysctl_hardlockup_all_cpu_backtrace)
265                         trigger_allbutself_cpu_backtrace();
266
267                 if (hardlockup_panic)
268                         nmi_panic(regs, "Hard LOCKUP");
269         }
270         if (wd_panic_timeout_tb < 0x7fffffff)
271                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
272
273 out:
274         nmi_exit();
275 }
276
277 static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
278 {
279         t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
280         if (wd_timer_period_ms > 1000)
281                 t->expires = __round_jiffies_up(t->expires, cpu);
282         add_timer_on(t, cpu);
283 }
284
285 static void wd_timer_fn(struct timer_list *t)
286 {
287         int cpu = smp_processor_id();
288
289         watchdog_timer_interrupt(cpu);
290
291         wd_timer_reset(cpu, t);
292 }
293
294 void arch_touch_nmi_watchdog(void)
295 {
296         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
297         int cpu = smp_processor_id();
298         u64 tb = get_tb();
299
300         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
301                 per_cpu(wd_timer_tb, cpu) = tb;
302                 wd_smp_clear_cpu_pending(cpu, tb);
303         }
304 }
305 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
306
307 static void start_watchdog_timer_on(unsigned int cpu)
308 {
309         struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
310
311         per_cpu(wd_timer_tb, cpu) = get_tb();
312
313         timer_setup(t, wd_timer_fn, TIMER_PINNED);
314         wd_timer_reset(cpu, t);
315 }
316
317 static void stop_watchdog_timer_on(unsigned int cpu)
318 {
319         struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
320
321         del_timer_sync(t);
322 }
323
324 static int start_wd_on_cpu(unsigned int cpu)
325 {
326         unsigned long flags;
327
328         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
329                 WARN_ON(1);
330                 return 0;
331         }
332
333         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
334                 return 0;
335
336         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
337                 return 0;
338
339         wd_smp_lock(&flags);
340         cpumask_set_cpu(cpu, &wd_cpus_enabled);
341         if (cpumask_weight(&wd_cpus_enabled) == 1) {
342                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
343                 wd_smp_last_reset_tb = get_tb();
344         }
345         wd_smp_unlock(&flags);
346
347         start_watchdog_timer_on(cpu);
348
349         return 0;
350 }
351
352 static int stop_wd_on_cpu(unsigned int cpu)
353 {
354         unsigned long flags;
355
356         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
357                 return 0; /* Can happen in CPU unplug case */
358
359         stop_watchdog_timer_on(cpu);
360
361         wd_smp_lock(&flags);
362         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
363         wd_smp_unlock(&flags);
364
365         wd_smp_clear_cpu_pending(cpu, get_tb());
366
367         return 0;
368 }
369
370 static void watchdog_calc_timeouts(void)
371 {
372         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
373
374         /* Have the SMP detector trigger a bit later */
375         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
376
377         /* 2/5 is the factor that the perf based detector uses */
378         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
379 }
380
381 void watchdog_nmi_stop(void)
382 {
383         int cpu;
384
385         for_each_cpu(cpu, &wd_cpus_enabled)
386                 stop_wd_on_cpu(cpu);
387 }
388
389 void watchdog_nmi_start(void)
390 {
391         int cpu;
392
393         watchdog_calc_timeouts();
394         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
395                 start_wd_on_cpu(cpu);
396 }
397
398 /*
399  * Invoked from core watchdog init.
400  */
401 int __init watchdog_nmi_probe(void)
402 {
403         int err;
404
405         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
406                                         "powerpc/watchdog:online",
407                                         start_wd_on_cpu, stop_wd_on_cpu);
408         if (err < 0) {
409                 pr_warn("could not be initialized");
410                 return err;
411         }
412         return 0;
413 }