Merge 5.16-rc3 into char-misc-next
[linux-2.6-microblaze.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75
76 static cpumask_t wd_cpus_enabled __read_mostly;
77
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static cpumask_t wd_smp_cpus_pending;
89 static cpumask_t wd_smp_cpus_stuck;
90 static u64 wd_smp_last_reset_tb;
91
92 static inline void wd_smp_lock(unsigned long *flags)
93 {
94         /*
95          * Avoid locking layers if possible.
96          * This may be called from low level interrupt handlers at some
97          * point in future.
98          */
99         raw_local_irq_save(*flags);
100         hard_irq_disable(); /* Make it soft-NMI safe */
101         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
102                 raw_local_irq_restore(*flags);
103                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
104                 raw_local_irq_save(*flags);
105                 hard_irq_disable();
106         }
107 }
108
109 static inline void wd_smp_unlock(unsigned long *flags)
110 {
111         clear_bit_unlock(0, &__wd_smp_lock);
112         raw_local_irq_restore(*flags);
113 }
114
115 static void wd_lockup_ipi(struct pt_regs *regs)
116 {
117         int cpu = raw_smp_processor_id();
118         u64 tb = get_tb();
119
120         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
121         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
122                  cpu, tb, per_cpu(wd_timer_tb, cpu),
123                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
124         print_modules();
125         print_irqtrace_events(current);
126         if (regs)
127                 show_regs(regs);
128         else
129                 dump_stack();
130
131         /* Do not panic from here because that can recurse into NMI IPI layer */
132 }
133
134 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
135 {
136         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
137         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
138         if (cpumask_empty(&wd_smp_cpus_pending)) {
139                 wd_smp_last_reset_tb = tb;
140                 cpumask_andnot(&wd_smp_cpus_pending,
141                                 &wd_cpus_enabled,
142                                 &wd_smp_cpus_stuck);
143         }
144 }
145 static void set_cpu_stuck(int cpu, u64 tb)
146 {
147         set_cpumask_stuck(cpumask_of(cpu), tb);
148 }
149
150 static void watchdog_smp_panic(int cpu, u64 tb)
151 {
152         unsigned long flags;
153         int c;
154
155         wd_smp_lock(&flags);
156         /* Double check some things under lock */
157         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
158                 goto out;
159         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
160                 goto out;
161         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
162                 goto out;
163
164         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
165                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
166         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
167                  cpu, tb, wd_smp_last_reset_tb,
168                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
169
170         if (!sysctl_hardlockup_all_cpu_backtrace) {
171                 /*
172                  * Try to trigger the stuck CPUs, unless we are going to
173                  * get a backtrace on all of them anyway.
174                  */
175                 for_each_cpu(c, &wd_smp_cpus_pending) {
176                         if (c == cpu)
177                                 continue;
178                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
179                 }
180         }
181
182         /* Take the stuck CPUs out of the watch group */
183         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
184
185         wd_smp_unlock(&flags);
186
187         if (sysctl_hardlockup_all_cpu_backtrace)
188                 trigger_allbutself_cpu_backtrace();
189
190         /*
191          * Force flush any remote buffers that might be stuck in IRQ context
192          * and therefore could not run their irq_work.
193          */
194         printk_trigger_flush();
195
196         if (hardlockup_panic)
197                 nmi_panic(NULL, "Hard LOCKUP");
198
199         return;
200
201 out:
202         wd_smp_unlock(&flags);
203 }
204
205 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
206 {
207         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
208                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
209                         struct pt_regs *regs = get_irq_regs();
210                         unsigned long flags;
211
212                         wd_smp_lock(&flags);
213
214                         pr_emerg("CPU %d became unstuck TB:%lld\n",
215                                  cpu, tb);
216                         print_irqtrace_events(current);
217                         if (regs)
218                                 show_regs(regs);
219                         else
220                                 dump_stack();
221
222                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
223                         wd_smp_unlock(&flags);
224                 }
225                 return;
226         }
227         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
228         if (cpumask_empty(&wd_smp_cpus_pending)) {
229                 unsigned long flags;
230
231                 wd_smp_lock(&flags);
232                 if (cpumask_empty(&wd_smp_cpus_pending)) {
233                         wd_smp_last_reset_tb = tb;
234                         cpumask_andnot(&wd_smp_cpus_pending,
235                                         &wd_cpus_enabled,
236                                         &wd_smp_cpus_stuck);
237                 }
238                 wd_smp_unlock(&flags);
239         }
240 }
241
242 static void watchdog_timer_interrupt(int cpu)
243 {
244         u64 tb = get_tb();
245
246         per_cpu(wd_timer_tb, cpu) = tb;
247
248         wd_smp_clear_cpu_pending(cpu, tb);
249
250         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
251                 watchdog_smp_panic(cpu, tb);
252 }
253
254 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
255 {
256         unsigned long flags;
257         int cpu = raw_smp_processor_id();
258         u64 tb;
259
260         /* should only arrive from kernel, with irqs disabled */
261         WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
262
263         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
264                 return 0;
265
266         __this_cpu_inc(irq_stat.soft_nmi_irqs);
267
268         tb = get_tb();
269         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
270                 wd_smp_lock(&flags);
271                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
272                         wd_smp_unlock(&flags);
273                         return 0;
274                 }
275                 set_cpu_stuck(cpu, tb);
276
277                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
278                          cpu, (void *)regs->nip);
279                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
280                          cpu, tb, per_cpu(wd_timer_tb, cpu),
281                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
282                 print_modules();
283                 print_irqtrace_events(current);
284                 show_regs(regs);
285
286                 wd_smp_unlock(&flags);
287
288                 if (sysctl_hardlockup_all_cpu_backtrace)
289                         trigger_allbutself_cpu_backtrace();
290
291                 if (hardlockup_panic)
292                         nmi_panic(regs, "Hard LOCKUP");
293         }
294         if (wd_panic_timeout_tb < 0x7fffffff)
295                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
296
297         return 0;
298 }
299
300 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
301 {
302         int cpu = smp_processor_id();
303
304         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
305                 return HRTIMER_NORESTART;
306
307         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
308                 return HRTIMER_NORESTART;
309
310         watchdog_timer_interrupt(cpu);
311
312         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
313
314         return HRTIMER_RESTART;
315 }
316
317 void arch_touch_nmi_watchdog(void)
318 {
319         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
320         int cpu = smp_processor_id();
321         u64 tb = get_tb();
322
323         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
324                 per_cpu(wd_timer_tb, cpu) = tb;
325                 wd_smp_clear_cpu_pending(cpu, tb);
326         }
327 }
328 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
329
330 static void start_watchdog(void *arg)
331 {
332         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
333         int cpu = smp_processor_id();
334         unsigned long flags;
335
336         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
337                 WARN_ON(1);
338                 return;
339         }
340
341         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
342                 return;
343
344         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
345                 return;
346
347         wd_smp_lock(&flags);
348         cpumask_set_cpu(cpu, &wd_cpus_enabled);
349         if (cpumask_weight(&wd_cpus_enabled) == 1) {
350                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
351                 wd_smp_last_reset_tb = get_tb();
352         }
353         wd_smp_unlock(&flags);
354
355         *this_cpu_ptr(&wd_timer_tb) = get_tb();
356
357         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
358         hrtimer->function = watchdog_timer_fn;
359         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
360                       HRTIMER_MODE_REL_PINNED);
361 }
362
363 static int start_watchdog_on_cpu(unsigned int cpu)
364 {
365         return smp_call_function_single(cpu, start_watchdog, NULL, true);
366 }
367
368 static void stop_watchdog(void *arg)
369 {
370         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
371         int cpu = smp_processor_id();
372         unsigned long flags;
373
374         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
375                 return; /* Can happen in CPU unplug case */
376
377         hrtimer_cancel(hrtimer);
378
379         wd_smp_lock(&flags);
380         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
381         wd_smp_unlock(&flags);
382
383         wd_smp_clear_cpu_pending(cpu, get_tb());
384 }
385
386 static int stop_watchdog_on_cpu(unsigned int cpu)
387 {
388         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
389 }
390
391 static void watchdog_calc_timeouts(void)
392 {
393         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
394
395         /* Have the SMP detector trigger a bit later */
396         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
397
398         /* 2/5 is the factor that the perf based detector uses */
399         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
400 }
401
402 void watchdog_nmi_stop(void)
403 {
404         int cpu;
405
406         for_each_cpu(cpu, &wd_cpus_enabled)
407                 stop_watchdog_on_cpu(cpu);
408 }
409
410 void watchdog_nmi_start(void)
411 {
412         int cpu;
413
414         watchdog_calc_timeouts();
415         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
416                 start_watchdog_on_cpu(cpu);
417 }
418
419 /*
420  * Invoked from core watchdog init.
421  */
422 int __init watchdog_nmi_probe(void)
423 {
424         int err;
425
426         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
427                                         "powerpc/watchdog:online",
428                                         start_watchdog_on_cpu,
429                                         stop_watchdog_on_cpu);
430         if (err < 0) {
431                 pr_warn("could not be initialized");
432                 return err;
433         }
434         return 0;
435 }