Merge tag 'actions-arm-dt-for-4.15' of ssh://gitolite.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / powerpc / kernel / ptrace.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/m68k/kernel/ptrace.c"
6  *  Copyright (C) 1994 by Hamish Macdonald
7  *  Taken from linux/kernel/ptrace.c and modified for M680x0.
8  *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9  *
10  * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11  * and Paul Mackerras (paulus@samba.org).
12  *
13  * This file is subject to the terms and conditions of the GNU General
14  * Public License.  See the file README.legal in the main directory of
15  * this archive for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 /*
48  * The parameter save area on the stack is used to store arguments being passed
49  * to callee function and is located at fixed offset from stack pointer.
50  */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET      24  /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET      48  /* bytes */
55 #endif
56
57 struct pt_regs_offset {
58         const char *name;
59         int offset;
60 };
61
62 #define STR(s)  #s                      /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num)    \
65         {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66         {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f)  (offsetof(struct thread_struct, f))
72
73 static const struct pt_regs_offset regoffset_table[] = {
74         GPR_OFFSET_NAME(0),
75         GPR_OFFSET_NAME(1),
76         GPR_OFFSET_NAME(2),
77         GPR_OFFSET_NAME(3),
78         GPR_OFFSET_NAME(4),
79         GPR_OFFSET_NAME(5),
80         GPR_OFFSET_NAME(6),
81         GPR_OFFSET_NAME(7),
82         GPR_OFFSET_NAME(8),
83         GPR_OFFSET_NAME(9),
84         GPR_OFFSET_NAME(10),
85         GPR_OFFSET_NAME(11),
86         GPR_OFFSET_NAME(12),
87         GPR_OFFSET_NAME(13),
88         GPR_OFFSET_NAME(14),
89         GPR_OFFSET_NAME(15),
90         GPR_OFFSET_NAME(16),
91         GPR_OFFSET_NAME(17),
92         GPR_OFFSET_NAME(18),
93         GPR_OFFSET_NAME(19),
94         GPR_OFFSET_NAME(20),
95         GPR_OFFSET_NAME(21),
96         GPR_OFFSET_NAME(22),
97         GPR_OFFSET_NAME(23),
98         GPR_OFFSET_NAME(24),
99         GPR_OFFSET_NAME(25),
100         GPR_OFFSET_NAME(26),
101         GPR_OFFSET_NAME(27),
102         GPR_OFFSET_NAME(28),
103         GPR_OFFSET_NAME(29),
104         GPR_OFFSET_NAME(30),
105         GPR_OFFSET_NAME(31),
106         REG_OFFSET_NAME(nip),
107         REG_OFFSET_NAME(msr),
108         REG_OFFSET_NAME(ctr),
109         REG_OFFSET_NAME(link),
110         REG_OFFSET_NAME(xer),
111         REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113         REG_OFFSET_NAME(softe),
114 #else
115         REG_OFFSET_NAME(mq),
116 #endif
117         REG_OFFSET_NAME(trap),
118         REG_OFFSET_NAME(dar),
119         REG_OFFSET_NAME(dsisr),
120         REG_OFFSET_END,
121 };
122
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126         /*
127          * If task is not current, it will have been flushed already to
128          * it's thread_struct during __switch_to().
129          *
130          * A reclaim flushes ALL the state or if not in TM save TM SPRs
131          * in the appropriate thread structures from live.
132          */
133
134         if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
135                 return;
136
137         if (MSR_TM_SUSPENDED(mfmsr())) {
138                 tm_reclaim_current(TM_CAUSE_SIGNAL);
139         } else {
140                 tm_enable();
141                 tm_save_sprs(&(tsk->thread));
142         }
143 }
144 #else
145 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
146 #endif
147
148 /**
149  * regs_query_register_offset() - query register offset from its name
150  * @name:       the name of a register
151  *
152  * regs_query_register_offset() returns the offset of a register in struct
153  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
154  */
155 int regs_query_register_offset(const char *name)
156 {
157         const struct pt_regs_offset *roff;
158         for (roff = regoffset_table; roff->name != NULL; roff++)
159                 if (!strcmp(roff->name, name))
160                         return roff->offset;
161         return -EINVAL;
162 }
163
164 /**
165  * regs_query_register_name() - query register name from its offset
166  * @offset:     the offset of a register in struct pt_regs.
167  *
168  * regs_query_register_name() returns the name of a register from its
169  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
170  */
171 const char *regs_query_register_name(unsigned int offset)
172 {
173         const struct pt_regs_offset *roff;
174         for (roff = regoffset_table; roff->name != NULL; roff++)
175                 if (roff->offset == offset)
176                         return roff->name;
177         return NULL;
178 }
179
180 /*
181  * does not yet catch signals sent when the child dies.
182  * in exit.c or in signal.c.
183  */
184
185 /*
186  * Set of msr bits that gdb can change on behalf of a process.
187  */
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE 0
190 #else
191 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
192 #endif
193
194 /*
195  * Max register writeable via put_reg
196  */
197 #ifdef CONFIG_PPC32
198 #define PT_MAX_PUT_REG  PT_MQ
199 #else
200 #define PT_MAX_PUT_REG  PT_CCR
201 #endif
202
203 static unsigned long get_user_msr(struct task_struct *task)
204 {
205         return task->thread.regs->msr | task->thread.fpexc_mode;
206 }
207
208 static int set_user_msr(struct task_struct *task, unsigned long msr)
209 {
210         task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
211         task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
212         return 0;
213 }
214
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
216 static unsigned long get_user_ckpt_msr(struct task_struct *task)
217 {
218         return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
219 }
220
221 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
222 {
223         task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
224         task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
225         return 0;
226 }
227
228 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
229 {
230         task->thread.ckpt_regs.trap = trap & 0xfff0;
231         return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 static int get_user_dscr(struct task_struct *task, unsigned long *data)
237 {
238         *data = task->thread.dscr;
239         return 0;
240 }
241
242 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
243 {
244         task->thread.dscr = dscr;
245         task->thread.dscr_inherit = 1;
246         return 0;
247 }
248 #else
249 static int get_user_dscr(struct task_struct *task, unsigned long *data)
250 {
251         return -EIO;
252 }
253
254 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
255 {
256         return -EIO;
257 }
258 #endif
259
260 /*
261  * We prevent mucking around with the reserved area of trap
262  * which are used internally by the kernel.
263  */
264 static int set_user_trap(struct task_struct *task, unsigned long trap)
265 {
266         task->thread.regs->trap = trap & 0xfff0;
267         return 0;
268 }
269
270 /*
271  * Get contents of register REGNO in task TASK.
272  */
273 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
274 {
275         if ((task->thread.regs == NULL) || !data)
276                 return -EIO;
277
278         if (regno == PT_MSR) {
279                 *data = get_user_msr(task);
280                 return 0;
281         }
282
283         if (regno == PT_DSCR)
284                 return get_user_dscr(task, data);
285
286         if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
287                 *data = ((unsigned long *)task->thread.regs)[regno];
288                 return 0;
289         }
290
291         return -EIO;
292 }
293
294 /*
295  * Write contents of register REGNO in task TASK.
296  */
297 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
298 {
299         if (task->thread.regs == NULL)
300                 return -EIO;
301
302         if (regno == PT_MSR)
303                 return set_user_msr(task, data);
304         if (regno == PT_TRAP)
305                 return set_user_trap(task, data);
306         if (regno == PT_DSCR)
307                 return set_user_dscr(task, data);
308
309         if (regno <= PT_MAX_PUT_REG) {
310                 ((unsigned long *)task->thread.regs)[regno] = data;
311                 return 0;
312         }
313         return -EIO;
314 }
315
316 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
317                    unsigned int pos, unsigned int count,
318                    void *kbuf, void __user *ubuf)
319 {
320         int i, ret;
321
322         if (target->thread.regs == NULL)
323                 return -EIO;
324
325         if (!FULL_REGS(target->thread.regs)) {
326                 /* We have a partial register set.  Fill 14-31 with bogus values */
327                 for (i = 14; i < 32; i++)
328                         target->thread.regs->gpr[i] = NV_REG_POISON;
329         }
330
331         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
332                                   target->thread.regs,
333                                   0, offsetof(struct pt_regs, msr));
334         if (!ret) {
335                 unsigned long msr = get_user_msr(target);
336                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
337                                           offsetof(struct pt_regs, msr),
338                                           offsetof(struct pt_regs, msr) +
339                                           sizeof(msr));
340         }
341
342         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
343                      offsetof(struct pt_regs, msr) + sizeof(long));
344
345         if (!ret)
346                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
347                                           &target->thread.regs->orig_gpr3,
348                                           offsetof(struct pt_regs, orig_gpr3),
349                                           sizeof(struct pt_regs));
350         if (!ret)
351                 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
352                                                sizeof(struct pt_regs), -1);
353
354         return ret;
355 }
356
357 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
358                    unsigned int pos, unsigned int count,
359                    const void *kbuf, const void __user *ubuf)
360 {
361         unsigned long reg;
362         int ret;
363
364         if (target->thread.regs == NULL)
365                 return -EIO;
366
367         CHECK_FULL_REGS(target->thread.regs);
368
369         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
370                                  target->thread.regs,
371                                  0, PT_MSR * sizeof(reg));
372
373         if (!ret && count > 0) {
374                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
375                                          PT_MSR * sizeof(reg),
376                                          (PT_MSR + 1) * sizeof(reg));
377                 if (!ret)
378                         ret = set_user_msr(target, reg);
379         }
380
381         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
382                      offsetof(struct pt_regs, msr) + sizeof(long));
383
384         if (!ret)
385                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
386                                          &target->thread.regs->orig_gpr3,
387                                          PT_ORIG_R3 * sizeof(reg),
388                                          (PT_MAX_PUT_REG + 1) * sizeof(reg));
389
390         if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
391                 ret = user_regset_copyin_ignore(
392                         &pos, &count, &kbuf, &ubuf,
393                         (PT_MAX_PUT_REG + 1) * sizeof(reg),
394                         PT_TRAP * sizeof(reg));
395
396         if (!ret && count > 0) {
397                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
398                                          PT_TRAP * sizeof(reg),
399                                          (PT_TRAP + 1) * sizeof(reg));
400                 if (!ret)
401                         ret = set_user_trap(target, reg);
402         }
403
404         if (!ret)
405                 ret = user_regset_copyin_ignore(
406                         &pos, &count, &kbuf, &ubuf,
407                         (PT_TRAP + 1) * sizeof(reg), -1);
408
409         return ret;
410 }
411
412 /*
413  * Regardless of transactions, 'fp_state' holds the current running
414  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415  * value of all FPR registers for the current transaction.
416  *
417  * Userspace interface buffer layout:
418  *
419  * struct data {
420  *      u64     fpr[32];
421  *      u64     fpscr;
422  * };
423  */
424 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
425                    unsigned int pos, unsigned int count,
426                    void *kbuf, void __user *ubuf)
427 {
428 #ifdef CONFIG_VSX
429         u64 buf[33];
430         int i;
431
432         flush_fp_to_thread(target);
433
434         /* copy to local buffer then write that out */
435         for (i = 0; i < 32 ; i++)
436                 buf[i] = target->thread.TS_FPR(i);
437         buf[32] = target->thread.fp_state.fpscr;
438         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
439 #else
440         BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
441                      offsetof(struct thread_fp_state, fpr[32]));
442
443         flush_fp_to_thread(target);
444
445         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
446                                    &target->thread.fp_state, 0, -1);
447 #endif
448 }
449
450 /*
451  * Regardless of transactions, 'fp_state' holds the current running
452  * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453  * value of all FPR registers for the current transaction.
454  *
455  * Userspace interface buffer layout:
456  *
457  * struct data {
458  *      u64     fpr[32];
459  *      u64     fpscr;
460  * };
461  *
462  */
463 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
464                    unsigned int pos, unsigned int count,
465                    const void *kbuf, const void __user *ubuf)
466 {
467 #ifdef CONFIG_VSX
468         u64 buf[33];
469         int i;
470
471         flush_fp_to_thread(target);
472
473         for (i = 0; i < 32 ; i++)
474                 buf[i] = target->thread.TS_FPR(i);
475         buf[32] = target->thread.fp_state.fpscr;
476
477         /* copy to local buffer then write that out */
478         i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
479         if (i)
480                 return i;
481
482         for (i = 0; i < 32 ; i++)
483                 target->thread.TS_FPR(i) = buf[i];
484         target->thread.fp_state.fpscr = buf[32];
485         return 0;
486 #else
487         BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
488                      offsetof(struct thread_fp_state, fpr[32]));
489
490         flush_fp_to_thread(target);
491
492         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
493                                   &target->thread.fp_state, 0, -1);
494 #endif
495 }
496
497 #ifdef CONFIG_ALTIVEC
498 /*
499  * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500  * The transfer totals 34 quadword.  Quadwords 0-31 contain the
501  * corresponding vector registers.  Quadword 32 contains the vscr as the
502  * last word (offset 12) within that quadword.  Quadword 33 contains the
503  * vrsave as the first word (offset 0) within the quadword.
504  *
505  * This definition of the VMX state is compatible with the current PPC32
506  * ptrace interface.  This allows signal handling and ptrace to use the
507  * same structures.  This also simplifies the implementation of a bi-arch
508  * (combined (32- and 64-bit) gdb.
509  */
510
511 static int vr_active(struct task_struct *target,
512                      const struct user_regset *regset)
513 {
514         flush_altivec_to_thread(target);
515         return target->thread.used_vr ? regset->n : 0;
516 }
517
518 /*
519  * Regardless of transactions, 'vr_state' holds the current running
520  * value of all the VMX registers and 'ckvr_state' holds the last
521  * checkpointed value of all the VMX registers for the current
522  * transaction to fall back on in case it aborts.
523  *
524  * Userspace interface buffer layout:
525  *
526  * struct data {
527  *      vector128       vr[32];
528  *      vector128       vscr;
529  *      vector128       vrsave;
530  * };
531  */
532 static int vr_get(struct task_struct *target, const struct user_regset *regset,
533                   unsigned int pos, unsigned int count,
534                   void *kbuf, void __user *ubuf)
535 {
536         int ret;
537
538         flush_altivec_to_thread(target);
539
540         BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
541                      offsetof(struct thread_vr_state, vr[32]));
542
543         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
544                                   &target->thread.vr_state, 0,
545                                   33 * sizeof(vector128));
546         if (!ret) {
547                 /*
548                  * Copy out only the low-order word of vrsave.
549                  */
550                 union {
551                         elf_vrreg_t reg;
552                         u32 word;
553                 } vrsave;
554                 memset(&vrsave, 0, sizeof(vrsave));
555
556                 vrsave.word = target->thread.vrsave;
557
558                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
559                                           33 * sizeof(vector128), -1);
560         }
561
562         return ret;
563 }
564
565 /*
566  * Regardless of transactions, 'vr_state' holds the current running
567  * value of all the VMX registers and 'ckvr_state' holds the last
568  * checkpointed value of all the VMX registers for the current
569  * transaction to fall back on in case it aborts.
570  *
571  * Userspace interface buffer layout:
572  *
573  * struct data {
574  *      vector128       vr[32];
575  *      vector128       vscr;
576  *      vector128       vrsave;
577  * };
578  */
579 static int vr_set(struct task_struct *target, const struct user_regset *regset,
580                   unsigned int pos, unsigned int count,
581                   const void *kbuf, const void __user *ubuf)
582 {
583         int ret;
584
585         flush_altivec_to_thread(target);
586
587         BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
588                      offsetof(struct thread_vr_state, vr[32]));
589
590         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591                                  &target->thread.vr_state, 0,
592                                  33 * sizeof(vector128));
593         if (!ret && count > 0) {
594                 /*
595                  * We use only the first word of vrsave.
596                  */
597                 union {
598                         elf_vrreg_t reg;
599                         u32 word;
600                 } vrsave;
601                 memset(&vrsave, 0, sizeof(vrsave));
602
603                 vrsave.word = target->thread.vrsave;
604
605                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
606                                          33 * sizeof(vector128), -1);
607                 if (!ret)
608                         target->thread.vrsave = vrsave.word;
609         }
610
611         return ret;
612 }
613 #endif /* CONFIG_ALTIVEC */
614
615 #ifdef CONFIG_VSX
616 /*
617  * Currently to set and and get all the vsx state, you need to call
618  * the fp and VMX calls as well.  This only get/sets the lower 32
619  * 128bit VSX registers.
620  */
621
622 static int vsr_active(struct task_struct *target,
623                       const struct user_regset *regset)
624 {
625         flush_vsx_to_thread(target);
626         return target->thread.used_vsr ? regset->n : 0;
627 }
628
629 /*
630  * Regardless of transactions, 'fp_state' holds the current running
631  * value of all FPR registers and 'ckfp_state' holds the last
632  * checkpointed value of all FPR registers for the current
633  * transaction.
634  *
635  * Userspace interface buffer layout:
636  *
637  * struct data {
638  *      u64     vsx[32];
639  * };
640  */
641 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
642                    unsigned int pos, unsigned int count,
643                    void *kbuf, void __user *ubuf)
644 {
645         u64 buf[32];
646         int ret, i;
647
648         flush_tmregs_to_thread(target);
649         flush_fp_to_thread(target);
650         flush_altivec_to_thread(target);
651         flush_vsx_to_thread(target);
652
653         for (i = 0; i < 32 ; i++)
654                 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
655
656         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
657                                   buf, 0, 32 * sizeof(double));
658
659         return ret;
660 }
661
662 /*
663  * Regardless of transactions, 'fp_state' holds the current running
664  * value of all FPR registers and 'ckfp_state' holds the last
665  * checkpointed value of all FPR registers for the current
666  * transaction.
667  *
668  * Userspace interface buffer layout:
669  *
670  * struct data {
671  *      u64     vsx[32];
672  * };
673  */
674 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
675                    unsigned int pos, unsigned int count,
676                    const void *kbuf, const void __user *ubuf)
677 {
678         u64 buf[32];
679         int ret,i;
680
681         flush_tmregs_to_thread(target);
682         flush_fp_to_thread(target);
683         flush_altivec_to_thread(target);
684         flush_vsx_to_thread(target);
685
686         for (i = 0; i < 32 ; i++)
687                 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
688
689         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
690                                  buf, 0, 32 * sizeof(double));
691         if (!ret)
692                 for (i = 0; i < 32 ; i++)
693                         target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
694
695         return ret;
696 }
697 #endif /* CONFIG_VSX */
698
699 #ifdef CONFIG_SPE
700
701 /*
702  * For get_evrregs/set_evrregs functions 'data' has the following layout:
703  *
704  * struct {
705  *   u32 evr[32];
706  *   u64 acc;
707  *   u32 spefscr;
708  * }
709  */
710
711 static int evr_active(struct task_struct *target,
712                       const struct user_regset *regset)
713 {
714         flush_spe_to_thread(target);
715         return target->thread.used_spe ? regset->n : 0;
716 }
717
718 static int evr_get(struct task_struct *target, const struct user_regset *regset,
719                    unsigned int pos, unsigned int count,
720                    void *kbuf, void __user *ubuf)
721 {
722         int ret;
723
724         flush_spe_to_thread(target);
725
726         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
727                                   &target->thread.evr,
728                                   0, sizeof(target->thread.evr));
729
730         BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
731                      offsetof(struct thread_struct, spefscr));
732
733         if (!ret)
734                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735                                           &target->thread.acc,
736                                           sizeof(target->thread.evr), -1);
737
738         return ret;
739 }
740
741 static int evr_set(struct task_struct *target, const struct user_regset *regset,
742                    unsigned int pos, unsigned int count,
743                    const void *kbuf, const void __user *ubuf)
744 {
745         int ret;
746
747         flush_spe_to_thread(target);
748
749         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
750                                  &target->thread.evr,
751                                  0, sizeof(target->thread.evr));
752
753         BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
754                      offsetof(struct thread_struct, spefscr));
755
756         if (!ret)
757                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
758                                          &target->thread.acc,
759                                          sizeof(target->thread.evr), -1);
760
761         return ret;
762 }
763 #endif /* CONFIG_SPE */
764
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
766 /**
767  * tm_cgpr_active - get active number of registers in CGPR
768  * @target:     The target task.
769  * @regset:     The user regset structure.
770  *
771  * This function checks for the active number of available
772  * regisers in transaction checkpointed GPR category.
773  */
774 static int tm_cgpr_active(struct task_struct *target,
775                           const struct user_regset *regset)
776 {
777         if (!cpu_has_feature(CPU_FTR_TM))
778                 return -ENODEV;
779
780         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
781                 return 0;
782
783         return regset->n;
784 }
785
786 /**
787  * tm_cgpr_get - get CGPR registers
788  * @target:     The target task.
789  * @regset:     The user regset structure.
790  * @pos:        The buffer position.
791  * @count:      Number of bytes to copy.
792  * @kbuf:       Kernel buffer to copy from.
793  * @ubuf:       User buffer to copy into.
794  *
795  * This function gets transaction checkpointed GPR registers.
796  *
797  * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798  * GPR register values for the current transaction to fall back on if it
799  * aborts in between. This function gets those checkpointed GPR registers.
800  * The userspace interface buffer layout is as follows.
801  *
802  * struct data {
803  *      struct pt_regs ckpt_regs;
804  * };
805  */
806 static int tm_cgpr_get(struct task_struct *target,
807                         const struct user_regset *regset,
808                         unsigned int pos, unsigned int count,
809                         void *kbuf, void __user *ubuf)
810 {
811         int ret;
812
813         if (!cpu_has_feature(CPU_FTR_TM))
814                 return -ENODEV;
815
816         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
817                 return -ENODATA;
818
819         flush_tmregs_to_thread(target);
820         flush_fp_to_thread(target);
821         flush_altivec_to_thread(target);
822
823         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
824                                   &target->thread.ckpt_regs,
825                                   0, offsetof(struct pt_regs, msr));
826         if (!ret) {
827                 unsigned long msr = get_user_ckpt_msr(target);
828
829                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
830                                           offsetof(struct pt_regs, msr),
831                                           offsetof(struct pt_regs, msr) +
832                                           sizeof(msr));
833         }
834
835         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
836                      offsetof(struct pt_regs, msr) + sizeof(long));
837
838         if (!ret)
839                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840                                           &target->thread.ckpt_regs.orig_gpr3,
841                                           offsetof(struct pt_regs, orig_gpr3),
842                                           sizeof(struct pt_regs));
843         if (!ret)
844                 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
845                                                sizeof(struct pt_regs), -1);
846
847         return ret;
848 }
849
850 /*
851  * tm_cgpr_set - set the CGPR registers
852  * @target:     The target task.
853  * @regset:     The user regset structure.
854  * @pos:        The buffer position.
855  * @count:      Number of bytes to copy.
856  * @kbuf:       Kernel buffer to copy into.
857  * @ubuf:       User buffer to copy from.
858  *
859  * This function sets in transaction checkpointed GPR registers.
860  *
861  * When the transaction is active, 'ckpt_regs' holds the checkpointed
862  * GPR register values for the current transaction to fall back on if it
863  * aborts in between. This function sets those checkpointed GPR registers.
864  * The userspace interface buffer layout is as follows.
865  *
866  * struct data {
867  *      struct pt_regs ckpt_regs;
868  * };
869  */
870 static int tm_cgpr_set(struct task_struct *target,
871                         const struct user_regset *regset,
872                         unsigned int pos, unsigned int count,
873                         const void *kbuf, const void __user *ubuf)
874 {
875         unsigned long reg;
876         int ret;
877
878         if (!cpu_has_feature(CPU_FTR_TM))
879                 return -ENODEV;
880
881         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
882                 return -ENODATA;
883
884         flush_tmregs_to_thread(target);
885         flush_fp_to_thread(target);
886         flush_altivec_to_thread(target);
887
888         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
889                                  &target->thread.ckpt_regs,
890                                  0, PT_MSR * sizeof(reg));
891
892         if (!ret && count > 0) {
893                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
894                                          PT_MSR * sizeof(reg),
895                                          (PT_MSR + 1) * sizeof(reg));
896                 if (!ret)
897                         ret = set_user_ckpt_msr(target, reg);
898         }
899
900         BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
901                      offsetof(struct pt_regs, msr) + sizeof(long));
902
903         if (!ret)
904                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
905                                          &target->thread.ckpt_regs.orig_gpr3,
906                                          PT_ORIG_R3 * sizeof(reg),
907                                          (PT_MAX_PUT_REG + 1) * sizeof(reg));
908
909         if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
910                 ret = user_regset_copyin_ignore(
911                         &pos, &count, &kbuf, &ubuf,
912                         (PT_MAX_PUT_REG + 1) * sizeof(reg),
913                         PT_TRAP * sizeof(reg));
914
915         if (!ret && count > 0) {
916                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
917                                          PT_TRAP * sizeof(reg),
918                                          (PT_TRAP + 1) * sizeof(reg));
919                 if (!ret)
920                         ret = set_user_ckpt_trap(target, reg);
921         }
922
923         if (!ret)
924                 ret = user_regset_copyin_ignore(
925                         &pos, &count, &kbuf, &ubuf,
926                         (PT_TRAP + 1) * sizeof(reg), -1);
927
928         return ret;
929 }
930
931 /**
932  * tm_cfpr_active - get active number of registers in CFPR
933  * @target:     The target task.
934  * @regset:     The user regset structure.
935  *
936  * This function checks for the active number of available
937  * regisers in transaction checkpointed FPR category.
938  */
939 static int tm_cfpr_active(struct task_struct *target,
940                                 const struct user_regset *regset)
941 {
942         if (!cpu_has_feature(CPU_FTR_TM))
943                 return -ENODEV;
944
945         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
946                 return 0;
947
948         return regset->n;
949 }
950
951 /**
952  * tm_cfpr_get - get CFPR registers
953  * @target:     The target task.
954  * @regset:     The user regset structure.
955  * @pos:        The buffer position.
956  * @count:      Number of bytes to copy.
957  * @kbuf:       Kernel buffer to copy from.
958  * @ubuf:       User buffer to copy into.
959  *
960  * This function gets in transaction checkpointed FPR registers.
961  *
962  * When the transaction is active 'ckfp_state' holds the checkpointed
963  * values for the current transaction to fall back on if it aborts
964  * in between. This function gets those checkpointed FPR registers.
965  * The userspace interface buffer layout is as follows.
966  *
967  * struct data {
968  *      u64     fpr[32];
969  *      u64     fpscr;
970  *};
971  */
972 static int tm_cfpr_get(struct task_struct *target,
973                         const struct user_regset *regset,
974                         unsigned int pos, unsigned int count,
975                         void *kbuf, void __user *ubuf)
976 {
977         u64 buf[33];
978         int i;
979
980         if (!cpu_has_feature(CPU_FTR_TM))
981                 return -ENODEV;
982
983         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
984                 return -ENODATA;
985
986         flush_tmregs_to_thread(target);
987         flush_fp_to_thread(target);
988         flush_altivec_to_thread(target);
989
990         /* copy to local buffer then write that out */
991         for (i = 0; i < 32 ; i++)
992                 buf[i] = target->thread.TS_CKFPR(i);
993         buf[32] = target->thread.ckfp_state.fpscr;
994         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
995 }
996
997 /**
998  * tm_cfpr_set - set CFPR registers
999  * @target:     The target task.
1000  * @regset:     The user regset structure.
1001  * @pos:        The buffer position.
1002  * @count:      Number of bytes to copy.
1003  * @kbuf:       Kernel buffer to copy into.
1004  * @ubuf:       User buffer to copy from.
1005  *
1006  * This function sets in transaction checkpointed FPR registers.
1007  *
1008  * When the transaction is active 'ckfp_state' holds the checkpointed
1009  * FPR register values for the current transaction to fall back on
1010  * if it aborts in between. This function sets these checkpointed
1011  * FPR registers. The userspace interface buffer layout is as follows.
1012  *
1013  * struct data {
1014  *      u64     fpr[32];
1015  *      u64     fpscr;
1016  *};
1017  */
1018 static int tm_cfpr_set(struct task_struct *target,
1019                         const struct user_regset *regset,
1020                         unsigned int pos, unsigned int count,
1021                         const void *kbuf, const void __user *ubuf)
1022 {
1023         u64 buf[33];
1024         int i;
1025
1026         if (!cpu_has_feature(CPU_FTR_TM))
1027                 return -ENODEV;
1028
1029         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1030                 return -ENODATA;
1031
1032         flush_tmregs_to_thread(target);
1033         flush_fp_to_thread(target);
1034         flush_altivec_to_thread(target);
1035
1036         for (i = 0; i < 32; i++)
1037                 buf[i] = target->thread.TS_CKFPR(i);
1038         buf[32] = target->thread.ckfp_state.fpscr;
1039
1040         /* copy to local buffer then write that out */
1041         i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1042         if (i)
1043                 return i;
1044         for (i = 0; i < 32 ; i++)
1045                 target->thread.TS_CKFPR(i) = buf[i];
1046         target->thread.ckfp_state.fpscr = buf[32];
1047         return 0;
1048 }
1049
1050 /**
1051  * tm_cvmx_active - get active number of registers in CVMX
1052  * @target:     The target task.
1053  * @regset:     The user regset structure.
1054  *
1055  * This function checks for the active number of available
1056  * regisers in checkpointed VMX category.
1057  */
1058 static int tm_cvmx_active(struct task_struct *target,
1059                                 const struct user_regset *regset)
1060 {
1061         if (!cpu_has_feature(CPU_FTR_TM))
1062                 return -ENODEV;
1063
1064         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1065                 return 0;
1066
1067         return regset->n;
1068 }
1069
1070 /**
1071  * tm_cvmx_get - get CMVX registers
1072  * @target:     The target task.
1073  * @regset:     The user regset structure.
1074  * @pos:        The buffer position.
1075  * @count:      Number of bytes to copy.
1076  * @kbuf:       Kernel buffer to copy from.
1077  * @ubuf:       User buffer to copy into.
1078  *
1079  * This function gets in transaction checkpointed VMX registers.
1080  *
1081  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082  * the checkpointed values for the current transaction to fall
1083  * back on if it aborts in between. The userspace interface buffer
1084  * layout is as follows.
1085  *
1086  * struct data {
1087  *      vector128       vr[32];
1088  *      vector128       vscr;
1089  *      vector128       vrsave;
1090  *};
1091  */
1092 static int tm_cvmx_get(struct task_struct *target,
1093                         const struct user_regset *regset,
1094                         unsigned int pos, unsigned int count,
1095                         void *kbuf, void __user *ubuf)
1096 {
1097         int ret;
1098
1099         BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1100
1101         if (!cpu_has_feature(CPU_FTR_TM))
1102                 return -ENODEV;
1103
1104         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1105                 return -ENODATA;
1106
1107         /* Flush the state */
1108         flush_tmregs_to_thread(target);
1109         flush_fp_to_thread(target);
1110         flush_altivec_to_thread(target);
1111
1112         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113                                         &target->thread.ckvr_state, 0,
1114                                         33 * sizeof(vector128));
1115         if (!ret) {
1116                 /*
1117                  * Copy out only the low-order word of vrsave.
1118                  */
1119                 union {
1120                         elf_vrreg_t reg;
1121                         u32 word;
1122                 } vrsave;
1123                 memset(&vrsave, 0, sizeof(vrsave));
1124                 vrsave.word = target->thread.ckvrsave;
1125                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1126                                                 33 * sizeof(vector128), -1);
1127         }
1128
1129         return ret;
1130 }
1131
1132 /**
1133  * tm_cvmx_set - set CMVX registers
1134  * @target:     The target task.
1135  * @regset:     The user regset structure.
1136  * @pos:        The buffer position.
1137  * @count:      Number of bytes to copy.
1138  * @kbuf:       Kernel buffer to copy into.
1139  * @ubuf:       User buffer to copy from.
1140  *
1141  * This function sets in transaction checkpointed VMX registers.
1142  *
1143  * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144  * the checkpointed values for the current transaction to fall
1145  * back on if it aborts in between. The userspace interface buffer
1146  * layout is as follows.
1147  *
1148  * struct data {
1149  *      vector128       vr[32];
1150  *      vector128       vscr;
1151  *      vector128       vrsave;
1152  *};
1153  */
1154 static int tm_cvmx_set(struct task_struct *target,
1155                         const struct user_regset *regset,
1156                         unsigned int pos, unsigned int count,
1157                         const void *kbuf, const void __user *ubuf)
1158 {
1159         int ret;
1160
1161         BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1162
1163         if (!cpu_has_feature(CPU_FTR_TM))
1164                 return -ENODEV;
1165
1166         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1167                 return -ENODATA;
1168
1169         flush_tmregs_to_thread(target);
1170         flush_fp_to_thread(target);
1171         flush_altivec_to_thread(target);
1172
1173         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1174                                         &target->thread.ckvr_state, 0,
1175                                         33 * sizeof(vector128));
1176         if (!ret && count > 0) {
1177                 /*
1178                  * We use only the low-order word of vrsave.
1179                  */
1180                 union {
1181                         elf_vrreg_t reg;
1182                         u32 word;
1183                 } vrsave;
1184                 memset(&vrsave, 0, sizeof(vrsave));
1185                 vrsave.word = target->thread.ckvrsave;
1186                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1187                                                 33 * sizeof(vector128), -1);
1188                 if (!ret)
1189                         target->thread.ckvrsave = vrsave.word;
1190         }
1191
1192         return ret;
1193 }
1194
1195 /**
1196  * tm_cvsx_active - get active number of registers in CVSX
1197  * @target:     The target task.
1198  * @regset:     The user regset structure.
1199  *
1200  * This function checks for the active number of available
1201  * regisers in transaction checkpointed VSX category.
1202  */
1203 static int tm_cvsx_active(struct task_struct *target,
1204                                 const struct user_regset *regset)
1205 {
1206         if (!cpu_has_feature(CPU_FTR_TM))
1207                 return -ENODEV;
1208
1209         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210                 return 0;
1211
1212         flush_vsx_to_thread(target);
1213         return target->thread.used_vsr ? regset->n : 0;
1214 }
1215
1216 /**
1217  * tm_cvsx_get - get CVSX registers
1218  * @target:     The target task.
1219  * @regset:     The user regset structure.
1220  * @pos:        The buffer position.
1221  * @count:      Number of bytes to copy.
1222  * @kbuf:       Kernel buffer to copy from.
1223  * @ubuf:       User buffer to copy into.
1224  *
1225  * This function gets in transaction checkpointed VSX registers.
1226  *
1227  * When the transaction is active 'ckfp_state' holds the checkpointed
1228  * values for the current transaction to fall back on if it aborts
1229  * in between. This function gets those checkpointed VSX registers.
1230  * The userspace interface buffer layout is as follows.
1231  *
1232  * struct data {
1233  *      u64     vsx[32];
1234  *};
1235  */
1236 static int tm_cvsx_get(struct task_struct *target,
1237                         const struct user_regset *regset,
1238                         unsigned int pos, unsigned int count,
1239                         void *kbuf, void __user *ubuf)
1240 {
1241         u64 buf[32];
1242         int ret, i;
1243
1244         if (!cpu_has_feature(CPU_FTR_TM))
1245                 return -ENODEV;
1246
1247         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1248                 return -ENODATA;
1249
1250         /* Flush the state */
1251         flush_tmregs_to_thread(target);
1252         flush_fp_to_thread(target);
1253         flush_altivec_to_thread(target);
1254         flush_vsx_to_thread(target);
1255
1256         for (i = 0; i < 32 ; i++)
1257                 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1258         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1259                                   buf, 0, 32 * sizeof(double));
1260
1261         return ret;
1262 }
1263
1264 /**
1265  * tm_cvsx_set - set CFPR registers
1266  * @target:     The target task.
1267  * @regset:     The user regset structure.
1268  * @pos:        The buffer position.
1269  * @count:      Number of bytes to copy.
1270  * @kbuf:       Kernel buffer to copy into.
1271  * @ubuf:       User buffer to copy from.
1272  *
1273  * This function sets in transaction checkpointed VSX registers.
1274  *
1275  * When the transaction is active 'ckfp_state' holds the checkpointed
1276  * VSX register values for the current transaction to fall back on
1277  * if it aborts in between. This function sets these checkpointed
1278  * FPR registers. The userspace interface buffer layout is as follows.
1279  *
1280  * struct data {
1281  *      u64     vsx[32];
1282  *};
1283  */
1284 static int tm_cvsx_set(struct task_struct *target,
1285                         const struct user_regset *regset,
1286                         unsigned int pos, unsigned int count,
1287                         const void *kbuf, const void __user *ubuf)
1288 {
1289         u64 buf[32];
1290         int ret, i;
1291
1292         if (!cpu_has_feature(CPU_FTR_TM))
1293                 return -ENODEV;
1294
1295         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1296                 return -ENODATA;
1297
1298         /* Flush the state */
1299         flush_tmregs_to_thread(target);
1300         flush_fp_to_thread(target);
1301         flush_altivec_to_thread(target);
1302         flush_vsx_to_thread(target);
1303
1304         for (i = 0; i < 32 ; i++)
1305                 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1306
1307         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1308                                  buf, 0, 32 * sizeof(double));
1309         if (!ret)
1310                 for (i = 0; i < 32 ; i++)
1311                         target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1312
1313         return ret;
1314 }
1315
1316 /**
1317  * tm_spr_active - get active number of registers in TM SPR
1318  * @target:     The target task.
1319  * @regset:     The user regset structure.
1320  *
1321  * This function checks the active number of available
1322  * regisers in the transactional memory SPR category.
1323  */
1324 static int tm_spr_active(struct task_struct *target,
1325                          const struct user_regset *regset)
1326 {
1327         if (!cpu_has_feature(CPU_FTR_TM))
1328                 return -ENODEV;
1329
1330         return regset->n;
1331 }
1332
1333 /**
1334  * tm_spr_get - get the TM related SPR registers
1335  * @target:     The target task.
1336  * @regset:     The user regset structure.
1337  * @pos:        The buffer position.
1338  * @count:      Number of bytes to copy.
1339  * @kbuf:       Kernel buffer to copy from.
1340  * @ubuf:       User buffer to copy into.
1341  *
1342  * This function gets transactional memory related SPR registers.
1343  * The userspace interface buffer layout is as follows.
1344  *
1345  * struct {
1346  *      u64             tm_tfhar;
1347  *      u64             tm_texasr;
1348  *      u64             tm_tfiar;
1349  * };
1350  */
1351 static int tm_spr_get(struct task_struct *target,
1352                       const struct user_regset *regset,
1353                       unsigned int pos, unsigned int count,
1354                       void *kbuf, void __user *ubuf)
1355 {
1356         int ret;
1357
1358         /* Build tests */
1359         BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1360         BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1361         BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1362
1363         if (!cpu_has_feature(CPU_FTR_TM))
1364                 return -ENODEV;
1365
1366         /* Flush the states */
1367         flush_tmregs_to_thread(target);
1368         flush_fp_to_thread(target);
1369         flush_altivec_to_thread(target);
1370
1371         /* TFHAR register */
1372         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1373                                 &target->thread.tm_tfhar, 0, sizeof(u64));
1374
1375         /* TEXASR register */
1376         if (!ret)
1377                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1378                                 &target->thread.tm_texasr, sizeof(u64),
1379                                 2 * sizeof(u64));
1380
1381         /* TFIAR register */
1382         if (!ret)
1383                 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1384                                 &target->thread.tm_tfiar,
1385                                 2 * sizeof(u64), 3 * sizeof(u64));
1386         return ret;
1387 }
1388
1389 /**
1390  * tm_spr_set - set the TM related SPR registers
1391  * @target:     The target task.
1392  * @regset:     The user regset structure.
1393  * @pos:        The buffer position.
1394  * @count:      Number of bytes to copy.
1395  * @kbuf:       Kernel buffer to copy into.
1396  * @ubuf:       User buffer to copy from.
1397  *
1398  * This function sets transactional memory related SPR registers.
1399  * The userspace interface buffer layout is as follows.
1400  *
1401  * struct {
1402  *      u64             tm_tfhar;
1403  *      u64             tm_texasr;
1404  *      u64             tm_tfiar;
1405  * };
1406  */
1407 static int tm_spr_set(struct task_struct *target,
1408                       const struct user_regset *regset,
1409                       unsigned int pos, unsigned int count,
1410                       const void *kbuf, const void __user *ubuf)
1411 {
1412         int ret;
1413
1414         /* Build tests */
1415         BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1416         BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1417         BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1418
1419         if (!cpu_has_feature(CPU_FTR_TM))
1420                 return -ENODEV;
1421
1422         /* Flush the states */
1423         flush_tmregs_to_thread(target);
1424         flush_fp_to_thread(target);
1425         flush_altivec_to_thread(target);
1426
1427         /* TFHAR register */
1428         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429                                 &target->thread.tm_tfhar, 0, sizeof(u64));
1430
1431         /* TEXASR register */
1432         if (!ret)
1433                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1434                                 &target->thread.tm_texasr, sizeof(u64),
1435                                 2 * sizeof(u64));
1436
1437         /* TFIAR register */
1438         if (!ret)
1439                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1440                                 &target->thread.tm_tfiar,
1441                                  2 * sizeof(u64), 3 * sizeof(u64));
1442         return ret;
1443 }
1444
1445 static int tm_tar_active(struct task_struct *target,
1446                          const struct user_regset *regset)
1447 {
1448         if (!cpu_has_feature(CPU_FTR_TM))
1449                 return -ENODEV;
1450
1451         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1452                 return regset->n;
1453
1454         return 0;
1455 }
1456
1457 static int tm_tar_get(struct task_struct *target,
1458                       const struct user_regset *regset,
1459                       unsigned int pos, unsigned int count,
1460                       void *kbuf, void __user *ubuf)
1461 {
1462         int ret;
1463
1464         if (!cpu_has_feature(CPU_FTR_TM))
1465                 return -ENODEV;
1466
1467         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1468                 return -ENODATA;
1469
1470         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1471                                 &target->thread.tm_tar, 0, sizeof(u64));
1472         return ret;
1473 }
1474
1475 static int tm_tar_set(struct task_struct *target,
1476                       const struct user_regset *regset,
1477                       unsigned int pos, unsigned int count,
1478                       const void *kbuf, const void __user *ubuf)
1479 {
1480         int ret;
1481
1482         if (!cpu_has_feature(CPU_FTR_TM))
1483                 return -ENODEV;
1484
1485         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1486                 return -ENODATA;
1487
1488         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1489                                 &target->thread.tm_tar, 0, sizeof(u64));
1490         return ret;
1491 }
1492
1493 static int tm_ppr_active(struct task_struct *target,
1494                          const struct user_regset *regset)
1495 {
1496         if (!cpu_has_feature(CPU_FTR_TM))
1497                 return -ENODEV;
1498
1499         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1500                 return regset->n;
1501
1502         return 0;
1503 }
1504
1505
1506 static int tm_ppr_get(struct task_struct *target,
1507                       const struct user_regset *regset,
1508                       unsigned int pos, unsigned int count,
1509                       void *kbuf, void __user *ubuf)
1510 {
1511         int ret;
1512
1513         if (!cpu_has_feature(CPU_FTR_TM))
1514                 return -ENODEV;
1515
1516         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1517                 return -ENODATA;
1518
1519         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1520                                 &target->thread.tm_ppr, 0, sizeof(u64));
1521         return ret;
1522 }
1523
1524 static int tm_ppr_set(struct task_struct *target,
1525                       const struct user_regset *regset,
1526                       unsigned int pos, unsigned int count,
1527                       const void *kbuf, const void __user *ubuf)
1528 {
1529         int ret;
1530
1531         if (!cpu_has_feature(CPU_FTR_TM))
1532                 return -ENODEV;
1533
1534         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1535                 return -ENODATA;
1536
1537         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1538                                 &target->thread.tm_ppr, 0, sizeof(u64));
1539         return ret;
1540 }
1541
1542 static int tm_dscr_active(struct task_struct *target,
1543                          const struct user_regset *regset)
1544 {
1545         if (!cpu_has_feature(CPU_FTR_TM))
1546                 return -ENODEV;
1547
1548         if (MSR_TM_ACTIVE(target->thread.regs->msr))
1549                 return regset->n;
1550
1551         return 0;
1552 }
1553
1554 static int tm_dscr_get(struct task_struct *target,
1555                       const struct user_regset *regset,
1556                       unsigned int pos, unsigned int count,
1557                       void *kbuf, void __user *ubuf)
1558 {
1559         int ret;
1560
1561         if (!cpu_has_feature(CPU_FTR_TM))
1562                 return -ENODEV;
1563
1564         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1565                 return -ENODATA;
1566
1567         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1568                                 &target->thread.tm_dscr, 0, sizeof(u64));
1569         return ret;
1570 }
1571
1572 static int tm_dscr_set(struct task_struct *target,
1573                       const struct user_regset *regset,
1574                       unsigned int pos, unsigned int count,
1575                       const void *kbuf, const void __user *ubuf)
1576 {
1577         int ret;
1578
1579         if (!cpu_has_feature(CPU_FTR_TM))
1580                 return -ENODEV;
1581
1582         if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1583                 return -ENODATA;
1584
1585         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1586                                 &target->thread.tm_dscr, 0, sizeof(u64));
1587         return ret;
1588 }
1589 #endif  /* CONFIG_PPC_TRANSACTIONAL_MEM */
1590
1591 #ifdef CONFIG_PPC64
1592 static int ppr_get(struct task_struct *target,
1593                       const struct user_regset *regset,
1594                       unsigned int pos, unsigned int count,
1595                       void *kbuf, void __user *ubuf)
1596 {
1597         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1598                                    &target->thread.ppr, 0, sizeof(u64));
1599 }
1600
1601 static int ppr_set(struct task_struct *target,
1602                       const struct user_regset *regset,
1603                       unsigned int pos, unsigned int count,
1604                       const void *kbuf, const void __user *ubuf)
1605 {
1606         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1607                                   &target->thread.ppr, 0, sizeof(u64));
1608 }
1609
1610 static int dscr_get(struct task_struct *target,
1611                       const struct user_regset *regset,
1612                       unsigned int pos, unsigned int count,
1613                       void *kbuf, void __user *ubuf)
1614 {
1615         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1616                                    &target->thread.dscr, 0, sizeof(u64));
1617 }
1618 static int dscr_set(struct task_struct *target,
1619                       const struct user_regset *regset,
1620                       unsigned int pos, unsigned int count,
1621                       const void *kbuf, const void __user *ubuf)
1622 {
1623         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1624                                   &target->thread.dscr, 0, sizeof(u64));
1625 }
1626 #endif
1627 #ifdef CONFIG_PPC_BOOK3S_64
1628 static int tar_get(struct task_struct *target,
1629                       const struct user_regset *regset,
1630                       unsigned int pos, unsigned int count,
1631                       void *kbuf, void __user *ubuf)
1632 {
1633         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1634                                    &target->thread.tar, 0, sizeof(u64));
1635 }
1636 static int tar_set(struct task_struct *target,
1637                       const struct user_regset *regset,
1638                       unsigned int pos, unsigned int count,
1639                       const void *kbuf, const void __user *ubuf)
1640 {
1641         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1642                                   &target->thread.tar, 0, sizeof(u64));
1643 }
1644
1645 static int ebb_active(struct task_struct *target,
1646                          const struct user_regset *regset)
1647 {
1648         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1649                 return -ENODEV;
1650
1651         if (target->thread.used_ebb)
1652                 return regset->n;
1653
1654         return 0;
1655 }
1656
1657 static int ebb_get(struct task_struct *target,
1658                       const struct user_regset *regset,
1659                       unsigned int pos, unsigned int count,
1660                       void *kbuf, void __user *ubuf)
1661 {
1662         /* Build tests */
1663         BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1664         BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1665
1666         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1667                 return -ENODEV;
1668
1669         if (!target->thread.used_ebb)
1670                 return -ENODATA;
1671
1672         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1673                         &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1674 }
1675
1676 static int ebb_set(struct task_struct *target,
1677                       const struct user_regset *regset,
1678                       unsigned int pos, unsigned int count,
1679                       const void *kbuf, const void __user *ubuf)
1680 {
1681         int ret = 0;
1682
1683         /* Build tests */
1684         BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1685         BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1686
1687         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1688                 return -ENODEV;
1689
1690         if (target->thread.used_ebb)
1691                 return -ENODATA;
1692
1693         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1694                         &target->thread.ebbrr, 0, sizeof(unsigned long));
1695
1696         if (!ret)
1697                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1698                         &target->thread.ebbhr, sizeof(unsigned long),
1699                         2 * sizeof(unsigned long));
1700
1701         if (!ret)
1702                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1703                         &target->thread.bescr,
1704                         2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1705
1706         return ret;
1707 }
1708 static int pmu_active(struct task_struct *target,
1709                          const struct user_regset *regset)
1710 {
1711         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1712                 return -ENODEV;
1713
1714         return regset->n;
1715 }
1716
1717 static int pmu_get(struct task_struct *target,
1718                       const struct user_regset *regset,
1719                       unsigned int pos, unsigned int count,
1720                       void *kbuf, void __user *ubuf)
1721 {
1722         /* Build tests */
1723         BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1724         BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1725         BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1726         BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1727
1728         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1729                 return -ENODEV;
1730
1731         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1732                         &target->thread.siar, 0,
1733                         5 * sizeof(unsigned long));
1734 }
1735
1736 static int pmu_set(struct task_struct *target,
1737                       const struct user_regset *regset,
1738                       unsigned int pos, unsigned int count,
1739                       const void *kbuf, const void __user *ubuf)
1740 {
1741         int ret = 0;
1742
1743         /* Build tests */
1744         BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1745         BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1746         BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1747         BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1748
1749         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1750                 return -ENODEV;
1751
1752         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1753                         &target->thread.siar, 0,
1754                         sizeof(unsigned long));
1755
1756         if (!ret)
1757                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1758                         &target->thread.sdar, sizeof(unsigned long),
1759                         2 * sizeof(unsigned long));
1760
1761         if (!ret)
1762                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1763                         &target->thread.sier, 2 * sizeof(unsigned long),
1764                         3 * sizeof(unsigned long));
1765
1766         if (!ret)
1767                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1768                         &target->thread.mmcr2, 3 * sizeof(unsigned long),
1769                         4 * sizeof(unsigned long));
1770
1771         if (!ret)
1772                 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1773                         &target->thread.mmcr0, 4 * sizeof(unsigned long),
1774                         5 * sizeof(unsigned long));
1775         return ret;
1776 }
1777 #endif
1778 /*
1779  * These are our native regset flavors.
1780  */
1781 enum powerpc_regset {
1782         REGSET_GPR,
1783         REGSET_FPR,
1784 #ifdef CONFIG_ALTIVEC
1785         REGSET_VMX,
1786 #endif
1787 #ifdef CONFIG_VSX
1788         REGSET_VSX,
1789 #endif
1790 #ifdef CONFIG_SPE
1791         REGSET_SPE,
1792 #endif
1793 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1794         REGSET_TM_CGPR,         /* TM checkpointed GPR registers */
1795         REGSET_TM_CFPR,         /* TM checkpointed FPR registers */
1796         REGSET_TM_CVMX,         /* TM checkpointed VMX registers */
1797         REGSET_TM_CVSX,         /* TM checkpointed VSX registers */
1798         REGSET_TM_SPR,          /* TM specific SPR registers */
1799         REGSET_TM_CTAR,         /* TM checkpointed TAR register */
1800         REGSET_TM_CPPR,         /* TM checkpointed PPR register */
1801         REGSET_TM_CDSCR,        /* TM checkpointed DSCR register */
1802 #endif
1803 #ifdef CONFIG_PPC64
1804         REGSET_PPR,             /* PPR register */
1805         REGSET_DSCR,            /* DSCR register */
1806 #endif
1807 #ifdef CONFIG_PPC_BOOK3S_64
1808         REGSET_TAR,             /* TAR register */
1809         REGSET_EBB,             /* EBB registers */
1810         REGSET_PMR,             /* Performance Monitor Registers */
1811 #endif
1812 };
1813
1814 static const struct user_regset native_regsets[] = {
1815         [REGSET_GPR] = {
1816                 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1817                 .size = sizeof(long), .align = sizeof(long),
1818                 .get = gpr_get, .set = gpr_set
1819         },
1820         [REGSET_FPR] = {
1821                 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1822                 .size = sizeof(double), .align = sizeof(double),
1823                 .get = fpr_get, .set = fpr_set
1824         },
1825 #ifdef CONFIG_ALTIVEC
1826         [REGSET_VMX] = {
1827                 .core_note_type = NT_PPC_VMX, .n = 34,
1828                 .size = sizeof(vector128), .align = sizeof(vector128),
1829                 .active = vr_active, .get = vr_get, .set = vr_set
1830         },
1831 #endif
1832 #ifdef CONFIG_VSX
1833         [REGSET_VSX] = {
1834                 .core_note_type = NT_PPC_VSX, .n = 32,
1835                 .size = sizeof(double), .align = sizeof(double),
1836                 .active = vsr_active, .get = vsr_get, .set = vsr_set
1837         },
1838 #endif
1839 #ifdef CONFIG_SPE
1840         [REGSET_SPE] = {
1841                 .core_note_type = NT_PPC_SPE, .n = 35,
1842                 .size = sizeof(u32), .align = sizeof(u32),
1843                 .active = evr_active, .get = evr_get, .set = evr_set
1844         },
1845 #endif
1846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1847         [REGSET_TM_CGPR] = {
1848                 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1849                 .size = sizeof(long), .align = sizeof(long),
1850                 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1851         },
1852         [REGSET_TM_CFPR] = {
1853                 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1854                 .size = sizeof(double), .align = sizeof(double),
1855                 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1856         },
1857         [REGSET_TM_CVMX] = {
1858                 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1859                 .size = sizeof(vector128), .align = sizeof(vector128),
1860                 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1861         },
1862         [REGSET_TM_CVSX] = {
1863                 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1864                 .size = sizeof(double), .align = sizeof(double),
1865                 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1866         },
1867         [REGSET_TM_SPR] = {
1868                 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1869                 .size = sizeof(u64), .align = sizeof(u64),
1870                 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1871         },
1872         [REGSET_TM_CTAR] = {
1873                 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1874                 .size = sizeof(u64), .align = sizeof(u64),
1875                 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1876         },
1877         [REGSET_TM_CPPR] = {
1878                 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1879                 .size = sizeof(u64), .align = sizeof(u64),
1880                 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1881         },
1882         [REGSET_TM_CDSCR] = {
1883                 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1884                 .size = sizeof(u64), .align = sizeof(u64),
1885                 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1886         },
1887 #endif
1888 #ifdef CONFIG_PPC64
1889         [REGSET_PPR] = {
1890                 .core_note_type = NT_PPC_PPR, .n = 1,
1891                 .size = sizeof(u64), .align = sizeof(u64),
1892                 .get = ppr_get, .set = ppr_set
1893         },
1894         [REGSET_DSCR] = {
1895                 .core_note_type = NT_PPC_DSCR, .n = 1,
1896                 .size = sizeof(u64), .align = sizeof(u64),
1897                 .get = dscr_get, .set = dscr_set
1898         },
1899 #endif
1900 #ifdef CONFIG_PPC_BOOK3S_64
1901         [REGSET_TAR] = {
1902                 .core_note_type = NT_PPC_TAR, .n = 1,
1903                 .size = sizeof(u64), .align = sizeof(u64),
1904                 .get = tar_get, .set = tar_set
1905         },
1906         [REGSET_EBB] = {
1907                 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1908                 .size = sizeof(u64), .align = sizeof(u64),
1909                 .active = ebb_active, .get = ebb_get, .set = ebb_set
1910         },
1911         [REGSET_PMR] = {
1912                 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1913                 .size = sizeof(u64), .align = sizeof(u64),
1914                 .active = pmu_active, .get = pmu_get, .set = pmu_set
1915         },
1916 #endif
1917 };
1918
1919 static const struct user_regset_view user_ppc_native_view = {
1920         .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1921         .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1922 };
1923
1924 #ifdef CONFIG_PPC64
1925 #include <linux/compat.h>
1926
1927 static int gpr32_get_common(struct task_struct *target,
1928                      const struct user_regset *regset,
1929                      unsigned int pos, unsigned int count,
1930                             void *kbuf, void __user *ubuf,
1931                             unsigned long *regs)
1932 {
1933         compat_ulong_t *k = kbuf;
1934         compat_ulong_t __user *u = ubuf;
1935         compat_ulong_t reg;
1936
1937         pos /= sizeof(reg);
1938         count /= sizeof(reg);
1939
1940         if (kbuf)
1941                 for (; count > 0 && pos < PT_MSR; --count)
1942                         *k++ = regs[pos++];
1943         else
1944                 for (; count > 0 && pos < PT_MSR; --count)
1945                         if (__put_user((compat_ulong_t) regs[pos++], u++))
1946                                 return -EFAULT;
1947
1948         if (count > 0 && pos == PT_MSR) {
1949                 reg = get_user_msr(target);
1950                 if (kbuf)
1951                         *k++ = reg;
1952                 else if (__put_user(reg, u++))
1953                         return -EFAULT;
1954                 ++pos;
1955                 --count;
1956         }
1957
1958         if (kbuf)
1959                 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1960                         *k++ = regs[pos++];
1961         else
1962                 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1963                         if (__put_user((compat_ulong_t) regs[pos++], u++))
1964                                 return -EFAULT;
1965
1966         kbuf = k;
1967         ubuf = u;
1968         pos *= sizeof(reg);
1969         count *= sizeof(reg);
1970         return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1971                                         PT_REGS_COUNT * sizeof(reg), -1);
1972 }
1973
1974 static int gpr32_set_common(struct task_struct *target,
1975                      const struct user_regset *regset,
1976                      unsigned int pos, unsigned int count,
1977                      const void *kbuf, const void __user *ubuf,
1978                      unsigned long *regs)
1979 {
1980         const compat_ulong_t *k = kbuf;
1981         const compat_ulong_t __user *u = ubuf;
1982         compat_ulong_t reg;
1983
1984         pos /= sizeof(reg);
1985         count /= sizeof(reg);
1986
1987         if (kbuf)
1988                 for (; count > 0 && pos < PT_MSR; --count)
1989                         regs[pos++] = *k++;
1990         else
1991                 for (; count > 0 && pos < PT_MSR; --count) {
1992                         if (__get_user(reg, u++))
1993                                 return -EFAULT;
1994                         regs[pos++] = reg;
1995                 }
1996
1997
1998         if (count > 0 && pos == PT_MSR) {
1999                 if (kbuf)
2000                         reg = *k++;
2001                 else if (__get_user(reg, u++))
2002                         return -EFAULT;
2003                 set_user_msr(target, reg);
2004                 ++pos;
2005                 --count;
2006         }
2007
2008         if (kbuf) {
2009                 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2010                         regs[pos++] = *k++;
2011                 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2012                         ++k;
2013         } else {
2014                 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2015                         if (__get_user(reg, u++))
2016                                 return -EFAULT;
2017                         regs[pos++] = reg;
2018                 }
2019                 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2020                         if (__get_user(reg, u++))
2021                                 return -EFAULT;
2022         }
2023
2024         if (count > 0 && pos == PT_TRAP) {
2025                 if (kbuf)
2026                         reg = *k++;
2027                 else if (__get_user(reg, u++))
2028                         return -EFAULT;
2029                 set_user_trap(target, reg);
2030                 ++pos;
2031                 --count;
2032         }
2033
2034         kbuf = k;
2035         ubuf = u;
2036         pos *= sizeof(reg);
2037         count *= sizeof(reg);
2038         return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2039                                          (PT_TRAP + 1) * sizeof(reg), -1);
2040 }
2041
2042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2043 static int tm_cgpr32_get(struct task_struct *target,
2044                      const struct user_regset *regset,
2045                      unsigned int pos, unsigned int count,
2046                      void *kbuf, void __user *ubuf)
2047 {
2048         return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2049                         &target->thread.ckpt_regs.gpr[0]);
2050 }
2051
2052 static int tm_cgpr32_set(struct task_struct *target,
2053                      const struct user_regset *regset,
2054                      unsigned int pos, unsigned int count,
2055                      const void *kbuf, const void __user *ubuf)
2056 {
2057         return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2058                         &target->thread.ckpt_regs.gpr[0]);
2059 }
2060 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2061
2062 static int gpr32_get(struct task_struct *target,
2063                      const struct user_regset *regset,
2064                      unsigned int pos, unsigned int count,
2065                      void *kbuf, void __user *ubuf)
2066 {
2067         int i;
2068
2069         if (target->thread.regs == NULL)
2070                 return -EIO;
2071
2072         if (!FULL_REGS(target->thread.regs)) {
2073                 /*
2074                  * We have a partial register set.
2075                  * Fill 14-31 with bogus values.
2076                  */
2077                 for (i = 14; i < 32; i++)
2078                         target->thread.regs->gpr[i] = NV_REG_POISON;
2079         }
2080         return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2081                         &target->thread.regs->gpr[0]);
2082 }
2083
2084 static int gpr32_set(struct task_struct *target,
2085                      const struct user_regset *regset,
2086                      unsigned int pos, unsigned int count,
2087                      const void *kbuf, const void __user *ubuf)
2088 {
2089         if (target->thread.regs == NULL)
2090                 return -EIO;
2091
2092         CHECK_FULL_REGS(target->thread.regs);
2093         return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2094                         &target->thread.regs->gpr[0]);
2095 }
2096
2097 /*
2098  * These are the regset flavors matching the CONFIG_PPC32 native set.
2099  */
2100 static const struct user_regset compat_regsets[] = {
2101         [REGSET_GPR] = {
2102                 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2103                 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2104                 .get = gpr32_get, .set = gpr32_set
2105         },
2106         [REGSET_FPR] = {
2107                 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2108                 .size = sizeof(double), .align = sizeof(double),
2109                 .get = fpr_get, .set = fpr_set
2110         },
2111 #ifdef CONFIG_ALTIVEC
2112         [REGSET_VMX] = {
2113                 .core_note_type = NT_PPC_VMX, .n = 34,
2114                 .size = sizeof(vector128), .align = sizeof(vector128),
2115                 .active = vr_active, .get = vr_get, .set = vr_set
2116         },
2117 #endif
2118 #ifdef CONFIG_SPE
2119         [REGSET_SPE] = {
2120                 .core_note_type = NT_PPC_SPE, .n = 35,
2121                 .size = sizeof(u32), .align = sizeof(u32),
2122                 .active = evr_active, .get = evr_get, .set = evr_set
2123         },
2124 #endif
2125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2126         [REGSET_TM_CGPR] = {
2127                 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2128                 .size = sizeof(long), .align = sizeof(long),
2129                 .active = tm_cgpr_active,
2130                 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2131         },
2132         [REGSET_TM_CFPR] = {
2133                 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2134                 .size = sizeof(double), .align = sizeof(double),
2135                 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2136         },
2137         [REGSET_TM_CVMX] = {
2138                 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2139                 .size = sizeof(vector128), .align = sizeof(vector128),
2140                 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2141         },
2142         [REGSET_TM_CVSX] = {
2143                 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2144                 .size = sizeof(double), .align = sizeof(double),
2145                 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2146         },
2147         [REGSET_TM_SPR] = {
2148                 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2149                 .size = sizeof(u64), .align = sizeof(u64),
2150                 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2151         },
2152         [REGSET_TM_CTAR] = {
2153                 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2154                 .size = sizeof(u64), .align = sizeof(u64),
2155                 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2156         },
2157         [REGSET_TM_CPPR] = {
2158                 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2159                 .size = sizeof(u64), .align = sizeof(u64),
2160                 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2161         },
2162         [REGSET_TM_CDSCR] = {
2163                 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2164                 .size = sizeof(u64), .align = sizeof(u64),
2165                 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2166         },
2167 #endif
2168 #ifdef CONFIG_PPC64
2169         [REGSET_PPR] = {
2170                 .core_note_type = NT_PPC_PPR, .n = 1,
2171                 .size = sizeof(u64), .align = sizeof(u64),
2172                 .get = ppr_get, .set = ppr_set
2173         },
2174         [REGSET_DSCR] = {
2175                 .core_note_type = NT_PPC_DSCR, .n = 1,
2176                 .size = sizeof(u64), .align = sizeof(u64),
2177                 .get = dscr_get, .set = dscr_set
2178         },
2179 #endif
2180 #ifdef CONFIG_PPC_BOOK3S_64
2181         [REGSET_TAR] = {
2182                 .core_note_type = NT_PPC_TAR, .n = 1,
2183                 .size = sizeof(u64), .align = sizeof(u64),
2184                 .get = tar_get, .set = tar_set
2185         },
2186         [REGSET_EBB] = {
2187                 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2188                 .size = sizeof(u64), .align = sizeof(u64),
2189                 .active = ebb_active, .get = ebb_get, .set = ebb_set
2190         },
2191 #endif
2192 };
2193
2194 static const struct user_regset_view user_ppc_compat_view = {
2195         .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2196         .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2197 };
2198 #endif  /* CONFIG_PPC64 */
2199
2200 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2201 {
2202 #ifdef CONFIG_PPC64
2203         if (test_tsk_thread_flag(task, TIF_32BIT))
2204                 return &user_ppc_compat_view;
2205 #endif
2206         return &user_ppc_native_view;
2207 }
2208
2209
2210 void user_enable_single_step(struct task_struct *task)
2211 {
2212         struct pt_regs *regs = task->thread.regs;
2213
2214         if (regs != NULL) {
2215 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2216                 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2217                 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2218                 regs->msr |= MSR_DE;
2219 #else
2220                 regs->msr &= ~MSR_BE;
2221                 regs->msr |= MSR_SE;
2222 #endif
2223         }
2224         set_tsk_thread_flag(task, TIF_SINGLESTEP);
2225 }
2226
2227 void user_enable_block_step(struct task_struct *task)
2228 {
2229         struct pt_regs *regs = task->thread.regs;
2230
2231         if (regs != NULL) {
2232 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2233                 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2234                 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2235                 regs->msr |= MSR_DE;
2236 #else
2237                 regs->msr &= ~MSR_SE;
2238                 regs->msr |= MSR_BE;
2239 #endif
2240         }
2241         set_tsk_thread_flag(task, TIF_SINGLESTEP);
2242 }
2243
2244 void user_disable_single_step(struct task_struct *task)
2245 {
2246         struct pt_regs *regs = task->thread.regs;
2247
2248         if (regs != NULL) {
2249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2250                 /*
2251                  * The logic to disable single stepping should be as
2252                  * simple as turning off the Instruction Complete flag.
2253                  * And, after doing so, if all debug flags are off, turn
2254                  * off DBCR0(IDM) and MSR(DE) .... Torez
2255                  */
2256                 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2257                 /*
2258                  * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2259                  */
2260                 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2261                                         task->thread.debug.dbcr1)) {
2262                         /*
2263                          * All debug events were off.....
2264                          */
2265                         task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2266                         regs->msr &= ~MSR_DE;
2267                 }
2268 #else
2269                 regs->msr &= ~(MSR_SE | MSR_BE);
2270 #endif
2271         }
2272         clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2273 }
2274
2275 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2276 void ptrace_triggered(struct perf_event *bp,
2277                       struct perf_sample_data *data, struct pt_regs *regs)
2278 {
2279         struct perf_event_attr attr;
2280
2281         /*
2282          * Disable the breakpoint request here since ptrace has defined a
2283          * one-shot behaviour for breakpoint exceptions in PPC64.
2284          * The SIGTRAP signal is generated automatically for us in do_dabr().
2285          * We don't have to do anything about that here
2286          */
2287         attr = bp->attr;
2288         attr.disabled = true;
2289         modify_user_hw_breakpoint(bp, &attr);
2290 }
2291 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2292
2293 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2294                                unsigned long data)
2295 {
2296 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2297         int ret;
2298         struct thread_struct *thread = &(task->thread);
2299         struct perf_event *bp;
2300         struct perf_event_attr attr;
2301 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2302 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2303         struct arch_hw_breakpoint hw_brk;
2304 #endif
2305
2306         /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2307          *  For embedded processors we support one DAC and no IAC's at the
2308          *  moment.
2309          */
2310         if (addr > 0)
2311                 return -EINVAL;
2312
2313         /* The bottom 3 bits in dabr are flags */
2314         if ((data & ~0x7UL) >= TASK_SIZE)
2315                 return -EIO;
2316
2317 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2318         /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2319          *  It was assumed, on previous implementations, that 3 bits were
2320          *  passed together with the data address, fitting the design of the
2321          *  DABR register, as follows:
2322          *
2323          *  bit 0: Read flag
2324          *  bit 1: Write flag
2325          *  bit 2: Breakpoint translation
2326          *
2327          *  Thus, we use them here as so.
2328          */
2329
2330         /* Ensure breakpoint translation bit is set */
2331         if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2332                 return -EIO;
2333         hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2334         hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2335         hw_brk.len = 8;
2336 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2337         bp = thread->ptrace_bps[0];
2338         if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2339                 if (bp) {
2340                         unregister_hw_breakpoint(bp);
2341                         thread->ptrace_bps[0] = NULL;
2342                 }
2343                 return 0;
2344         }
2345         if (bp) {
2346                 attr = bp->attr;
2347                 attr.bp_addr = hw_brk.address;
2348                 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2349
2350                 /* Enable breakpoint */
2351                 attr.disabled = false;
2352
2353                 ret =  modify_user_hw_breakpoint(bp, &attr);
2354                 if (ret) {
2355                         return ret;
2356                 }
2357                 thread->ptrace_bps[0] = bp;
2358                 thread->hw_brk = hw_brk;
2359                 return 0;
2360         }
2361
2362         /* Create a new breakpoint request if one doesn't exist already */
2363         hw_breakpoint_init(&attr);
2364         attr.bp_addr = hw_brk.address;
2365         arch_bp_generic_fields(hw_brk.type,
2366                                &attr.bp_type);
2367
2368         thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2369                                                ptrace_triggered, NULL, task);
2370         if (IS_ERR(bp)) {
2371                 thread->ptrace_bps[0] = NULL;
2372                 return PTR_ERR(bp);
2373         }
2374
2375 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2376         task->thread.hw_brk = hw_brk;
2377 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2378         /* As described above, it was assumed 3 bits were passed with the data
2379          *  address, but we will assume only the mode bits will be passed
2380          *  as to not cause alignment restrictions for DAC-based processors.
2381          */
2382
2383         /* DAC's hold the whole address without any mode flags */
2384         task->thread.debug.dac1 = data & ~0x3UL;
2385
2386         if (task->thread.debug.dac1 == 0) {
2387                 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2388                 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2389                                         task->thread.debug.dbcr1)) {
2390                         task->thread.regs->msr &= ~MSR_DE;
2391                         task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2392                 }
2393                 return 0;
2394         }
2395
2396         /* Read or Write bits must be set */
2397
2398         if (!(data & 0x3UL))
2399                 return -EINVAL;
2400
2401         /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2402            register */
2403         task->thread.debug.dbcr0 |= DBCR0_IDM;
2404
2405         /* Check for write and read flags and set DBCR0
2406            accordingly */
2407         dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2408         if (data & 0x1UL)
2409                 dbcr_dac(task) |= DBCR_DAC1R;
2410         if (data & 0x2UL)
2411                 dbcr_dac(task) |= DBCR_DAC1W;
2412         task->thread.regs->msr |= MSR_DE;
2413 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2414         return 0;
2415 }
2416
2417 /*
2418  * Called by kernel/ptrace.c when detaching..
2419  *
2420  * Make sure single step bits etc are not set.
2421  */
2422 void ptrace_disable(struct task_struct *child)
2423 {
2424         /* make sure the single step bit is not set. */
2425         user_disable_single_step(child);
2426 }
2427
2428 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2429 static long set_instruction_bp(struct task_struct *child,
2430                               struct ppc_hw_breakpoint *bp_info)
2431 {
2432         int slot;
2433         int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2434         int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2435         int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2436         int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2437
2438         if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2439                 slot2_in_use = 1;
2440         if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2441                 slot4_in_use = 1;
2442
2443         if (bp_info->addr >= TASK_SIZE)
2444                 return -EIO;
2445
2446         if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2447
2448                 /* Make sure range is valid. */
2449                 if (bp_info->addr2 >= TASK_SIZE)
2450                         return -EIO;
2451
2452                 /* We need a pair of IAC regsisters */
2453                 if ((!slot1_in_use) && (!slot2_in_use)) {
2454                         slot = 1;
2455                         child->thread.debug.iac1 = bp_info->addr;
2456                         child->thread.debug.iac2 = bp_info->addr2;
2457                         child->thread.debug.dbcr0 |= DBCR0_IAC1;
2458                         if (bp_info->addr_mode ==
2459                                         PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2460                                 dbcr_iac_range(child) |= DBCR_IAC12X;
2461                         else
2462                                 dbcr_iac_range(child) |= DBCR_IAC12I;
2463 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2464                 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2465                         slot = 3;
2466                         child->thread.debug.iac3 = bp_info->addr;
2467                         child->thread.debug.iac4 = bp_info->addr2;
2468                         child->thread.debug.dbcr0 |= DBCR0_IAC3;
2469                         if (bp_info->addr_mode ==
2470                                         PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2471                                 dbcr_iac_range(child) |= DBCR_IAC34X;
2472                         else
2473                                 dbcr_iac_range(child) |= DBCR_IAC34I;
2474 #endif
2475                 } else
2476                         return -ENOSPC;
2477         } else {
2478                 /* We only need one.  If possible leave a pair free in
2479                  * case a range is needed later
2480                  */
2481                 if (!slot1_in_use) {
2482                         /*
2483                          * Don't use iac1 if iac1-iac2 are free and either
2484                          * iac3 or iac4 (but not both) are free
2485                          */
2486                         if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2487                                 slot = 1;
2488                                 child->thread.debug.iac1 = bp_info->addr;
2489                                 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2490                                 goto out;
2491                         }
2492                 }
2493                 if (!slot2_in_use) {
2494                         slot = 2;
2495                         child->thread.debug.iac2 = bp_info->addr;
2496                         child->thread.debug.dbcr0 |= DBCR0_IAC2;
2497 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2498                 } else if (!slot3_in_use) {
2499                         slot = 3;
2500                         child->thread.debug.iac3 = bp_info->addr;
2501                         child->thread.debug.dbcr0 |= DBCR0_IAC3;
2502                 } else if (!slot4_in_use) {
2503                         slot = 4;
2504                         child->thread.debug.iac4 = bp_info->addr;
2505                         child->thread.debug.dbcr0 |= DBCR0_IAC4;
2506 #endif
2507                 } else
2508                         return -ENOSPC;
2509         }
2510 out:
2511         child->thread.debug.dbcr0 |= DBCR0_IDM;
2512         child->thread.regs->msr |= MSR_DE;
2513
2514         return slot;
2515 }
2516
2517 static int del_instruction_bp(struct task_struct *child, int slot)
2518 {
2519         switch (slot) {
2520         case 1:
2521                 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2522                         return -ENOENT;
2523
2524                 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2525                         /* address range - clear slots 1 & 2 */
2526                         child->thread.debug.iac2 = 0;
2527                         dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2528                 }
2529                 child->thread.debug.iac1 = 0;
2530                 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2531                 break;
2532         case 2:
2533                 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2534                         return -ENOENT;
2535
2536                 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2537                         /* used in a range */
2538                         return -EINVAL;
2539                 child->thread.debug.iac2 = 0;
2540                 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2541                 break;
2542 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2543         case 3:
2544                 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2545                         return -ENOENT;
2546
2547                 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2548                         /* address range - clear slots 3 & 4 */
2549                         child->thread.debug.iac4 = 0;
2550                         dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2551                 }
2552                 child->thread.debug.iac3 = 0;
2553                 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2554                 break;
2555         case 4:
2556                 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2557                         return -ENOENT;
2558
2559                 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2560                         /* Used in a range */
2561                         return -EINVAL;
2562                 child->thread.debug.iac4 = 0;
2563                 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2564                 break;
2565 #endif
2566         default:
2567                 return -EINVAL;
2568         }
2569         return 0;
2570 }
2571
2572 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2573 {
2574         int byte_enable =
2575                 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2576                 & 0xf;
2577         int condition_mode =
2578                 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2579         int slot;
2580
2581         if (byte_enable && (condition_mode == 0))
2582                 return -EINVAL;
2583
2584         if (bp_info->addr >= TASK_SIZE)
2585                 return -EIO;
2586
2587         if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2588                 slot = 1;
2589                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2590                         dbcr_dac(child) |= DBCR_DAC1R;
2591                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2592                         dbcr_dac(child) |= DBCR_DAC1W;
2593                 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2594 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2595                 if (byte_enable) {
2596                         child->thread.debug.dvc1 =
2597                                 (unsigned long)bp_info->condition_value;
2598                         child->thread.debug.dbcr2 |=
2599                                 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2600                                  (condition_mode << DBCR2_DVC1M_SHIFT));
2601                 }
2602 #endif
2603 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2604         } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2605                 /* Both dac1 and dac2 are part of a range */
2606                 return -ENOSPC;
2607 #endif
2608         } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2609                 slot = 2;
2610                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2611                         dbcr_dac(child) |= DBCR_DAC2R;
2612                 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2613                         dbcr_dac(child) |= DBCR_DAC2W;
2614                 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2615 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2616                 if (byte_enable) {
2617                         child->thread.debug.dvc2 =
2618                                 (unsigned long)bp_info->condition_value;
2619                         child->thread.debug.dbcr2 |=
2620                                 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2621                                  (condition_mode << DBCR2_DVC2M_SHIFT));
2622                 }
2623 #endif
2624         } else
2625                 return -ENOSPC;
2626         child->thread.debug.dbcr0 |= DBCR0_IDM;
2627         child->thread.regs->msr |= MSR_DE;
2628
2629         return slot + 4;
2630 }
2631
2632 static int del_dac(struct task_struct *child, int slot)
2633 {
2634         if (slot == 1) {
2635                 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2636                         return -ENOENT;
2637
2638                 child->thread.debug.dac1 = 0;
2639                 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2640 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2641                 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2642                         child->thread.debug.dac2 = 0;
2643                         child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2644                 }
2645                 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2646 #endif
2647 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2648                 child->thread.debug.dvc1 = 0;
2649 #endif
2650         } else if (slot == 2) {
2651                 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2652                         return -ENOENT;
2653
2654 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2655                 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2656                         /* Part of a range */
2657                         return -EINVAL;
2658                 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2659 #endif
2660 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2661                 child->thread.debug.dvc2 = 0;
2662 #endif
2663                 child->thread.debug.dac2 = 0;
2664                 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2665         } else
2666                 return -EINVAL;
2667
2668         return 0;
2669 }
2670 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2671
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673 static int set_dac_range(struct task_struct *child,
2674                          struct ppc_hw_breakpoint *bp_info)
2675 {
2676         int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2677
2678         /* We don't allow range watchpoints to be used with DVC */
2679         if (bp_info->condition_mode)
2680                 return -EINVAL;
2681
2682         /*
2683          * Best effort to verify the address range.  The user/supervisor bits
2684          * prevent trapping in kernel space, but let's fail on an obvious bad
2685          * range.  The simple test on the mask is not fool-proof, and any
2686          * exclusive range will spill over into kernel space.
2687          */
2688         if (bp_info->addr >= TASK_SIZE)
2689                 return -EIO;
2690         if (mode == PPC_BREAKPOINT_MODE_MASK) {
2691                 /*
2692                  * dac2 is a bitmask.  Don't allow a mask that makes a
2693                  * kernel space address from a valid dac1 value
2694                  */
2695                 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2696                         return -EIO;
2697         } else {
2698                 /*
2699                  * For range breakpoints, addr2 must also be a valid address
2700                  */
2701                 if (bp_info->addr2 >= TASK_SIZE)
2702                         return -EIO;
2703         }
2704
2705         if (child->thread.debug.dbcr0 &
2706             (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2707                 return -ENOSPC;
2708
2709         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2710                 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2711         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2712                 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2713         child->thread.debug.dac1 = bp_info->addr;
2714         child->thread.debug.dac2 = bp_info->addr2;
2715         if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2716                 child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2717         else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2718                 child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2719         else    /* PPC_BREAKPOINT_MODE_MASK */
2720                 child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2721         child->thread.regs->msr |= MSR_DE;
2722
2723         return 5;
2724 }
2725 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2726
2727 static long ppc_set_hwdebug(struct task_struct *child,
2728                      struct ppc_hw_breakpoint *bp_info)
2729 {
2730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2731         int len = 0;
2732         struct thread_struct *thread = &(child->thread);
2733         struct perf_event *bp;
2734         struct perf_event_attr attr;
2735 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2736 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2737         struct arch_hw_breakpoint brk;
2738 #endif
2739
2740         if (bp_info->version != 1)
2741                 return -ENOTSUPP;
2742 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2743         /*
2744          * Check for invalid flags and combinations
2745          */
2746         if ((bp_info->trigger_type == 0) ||
2747             (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2748                                        PPC_BREAKPOINT_TRIGGER_RW)) ||
2749             (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2750             (bp_info->condition_mode &
2751              ~(PPC_BREAKPOINT_CONDITION_MODE |
2752                PPC_BREAKPOINT_CONDITION_BE_ALL)))
2753                 return -EINVAL;
2754 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2755         if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2756                 return -EINVAL;
2757 #endif
2758
2759         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2760                 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2761                     (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2762                         return -EINVAL;
2763                 return set_instruction_bp(child, bp_info);
2764         }
2765         if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2766                 return set_dac(child, bp_info);
2767
2768 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2769         return set_dac_range(child, bp_info);
2770 #else
2771         return -EINVAL;
2772 #endif
2773 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2774         /*
2775          * We only support one data breakpoint
2776          */
2777         if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2778             (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2779             bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2780                 return -EINVAL;
2781
2782         if ((unsigned long)bp_info->addr >= TASK_SIZE)
2783                 return -EIO;
2784
2785         brk.address = bp_info->addr & ~7UL;
2786         brk.type = HW_BRK_TYPE_TRANSLATE;
2787         brk.len = 8;
2788         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2789                 brk.type |= HW_BRK_TYPE_READ;
2790         if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2791                 brk.type |= HW_BRK_TYPE_WRITE;
2792 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2793         /*
2794          * Check if the request is for 'range' breakpoints. We can
2795          * support it if range < 8 bytes.
2796          */
2797         if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2798                 len = bp_info->addr2 - bp_info->addr;
2799         else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2800                 len = 1;
2801         else
2802                 return -EINVAL;
2803         bp = thread->ptrace_bps[0];
2804         if (bp)
2805                 return -ENOSPC;
2806
2807         /* Create a new breakpoint request if one doesn't exist already */
2808         hw_breakpoint_init(&attr);
2809         attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2810         attr.bp_len = len;
2811         arch_bp_generic_fields(brk.type, &attr.bp_type);
2812
2813         thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2814                                                ptrace_triggered, NULL, child);
2815         if (IS_ERR(bp)) {
2816                 thread->ptrace_bps[0] = NULL;
2817                 return PTR_ERR(bp);
2818         }
2819
2820         return 1;
2821 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2822
2823         if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2824                 return -EINVAL;
2825
2826         if (child->thread.hw_brk.address)
2827                 return -ENOSPC;
2828
2829         child->thread.hw_brk = brk;
2830
2831         return 1;
2832 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2833 }
2834
2835 static long ppc_del_hwdebug(struct task_struct *child, long data)
2836 {
2837 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2838         int ret = 0;
2839         struct thread_struct *thread = &(child->thread);
2840         struct perf_event *bp;
2841 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2842 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2843         int rc;
2844
2845         if (data <= 4)
2846                 rc = del_instruction_bp(child, (int)data);
2847         else
2848                 rc = del_dac(child, (int)data - 4);
2849
2850         if (!rc) {
2851                 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2852                                         child->thread.debug.dbcr1)) {
2853                         child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2854                         child->thread.regs->msr &= ~MSR_DE;
2855                 }
2856         }
2857         return rc;
2858 #else
2859         if (data != 1)
2860                 return -EINVAL;
2861
2862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2863         bp = thread->ptrace_bps[0];
2864         if (bp) {
2865                 unregister_hw_breakpoint(bp);
2866                 thread->ptrace_bps[0] = NULL;
2867         } else
2868                 ret = -ENOENT;
2869         return ret;
2870 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2871         if (child->thread.hw_brk.address == 0)
2872                 return -ENOENT;
2873
2874         child->thread.hw_brk.address = 0;
2875         child->thread.hw_brk.type = 0;
2876 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2877
2878         return 0;
2879 #endif
2880 }
2881
2882 long arch_ptrace(struct task_struct *child, long request,
2883                  unsigned long addr, unsigned long data)
2884 {
2885         int ret = -EPERM;
2886         void __user *datavp = (void __user *) data;
2887         unsigned long __user *datalp = datavp;
2888
2889         switch (request) {
2890         /* read the word at location addr in the USER area. */
2891         case PTRACE_PEEKUSR: {
2892                 unsigned long index, tmp;
2893
2894                 ret = -EIO;
2895                 /* convert to index and check */
2896 #ifdef CONFIG_PPC32
2897                 index = addr >> 2;
2898                 if ((addr & 3) || (index > PT_FPSCR)
2899                     || (child->thread.regs == NULL))
2900 #else
2901                 index = addr >> 3;
2902                 if ((addr & 7) || (index > PT_FPSCR))
2903 #endif
2904                         break;
2905
2906                 CHECK_FULL_REGS(child->thread.regs);
2907                 if (index < PT_FPR0) {
2908                         ret = ptrace_get_reg(child, (int) index, &tmp);
2909                         if (ret)
2910                                 break;
2911                 } else {
2912                         unsigned int fpidx = index - PT_FPR0;
2913
2914                         flush_fp_to_thread(child);
2915                         if (fpidx < (PT_FPSCR - PT_FPR0))
2916                                 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2917                                        sizeof(long));
2918                         else
2919                                 tmp = child->thread.fp_state.fpscr;
2920                 }
2921                 ret = put_user(tmp, datalp);
2922                 break;
2923         }
2924
2925         /* write the word at location addr in the USER area */
2926         case PTRACE_POKEUSR: {
2927                 unsigned long index;
2928
2929                 ret = -EIO;
2930                 /* convert to index and check */
2931 #ifdef CONFIG_PPC32
2932                 index = addr >> 2;
2933                 if ((addr & 3) || (index > PT_FPSCR)
2934                     || (child->thread.regs == NULL))
2935 #else
2936                 index = addr >> 3;
2937                 if ((addr & 7) || (index > PT_FPSCR))
2938 #endif
2939                         break;
2940
2941                 CHECK_FULL_REGS(child->thread.regs);
2942                 if (index < PT_FPR0) {
2943                         ret = ptrace_put_reg(child, index, data);
2944                 } else {
2945                         unsigned int fpidx = index - PT_FPR0;
2946
2947                         flush_fp_to_thread(child);
2948                         if (fpidx < (PT_FPSCR - PT_FPR0))
2949                                 memcpy(&child->thread.TS_FPR(fpidx), &data,
2950                                        sizeof(long));
2951                         else
2952                                 child->thread.fp_state.fpscr = data;
2953                         ret = 0;
2954                 }
2955                 break;
2956         }
2957
2958         case PPC_PTRACE_GETHWDBGINFO: {
2959                 struct ppc_debug_info dbginfo;
2960
2961                 dbginfo.version = 1;
2962 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2963                 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2964                 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2965                 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2966                 dbginfo.data_bp_alignment = 4;
2967                 dbginfo.sizeof_condition = 4;
2968                 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2969                                    PPC_DEBUG_FEATURE_INSN_BP_MASK;
2970 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2971                 dbginfo.features |=
2972                                    PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2973                                    PPC_DEBUG_FEATURE_DATA_BP_MASK;
2974 #endif
2975 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2976                 dbginfo.num_instruction_bps = 0;
2977                 dbginfo.num_data_bps = 1;
2978                 dbginfo.num_condition_regs = 0;
2979 #ifdef CONFIG_PPC64
2980                 dbginfo.data_bp_alignment = 8;
2981 #else
2982                 dbginfo.data_bp_alignment = 4;
2983 #endif
2984                 dbginfo.sizeof_condition = 0;
2985 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2986                 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2987                 if (cpu_has_feature(CPU_FTR_DAWR))
2988                         dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
2989 #else
2990                 dbginfo.features = 0;
2991 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2992 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2993
2994                 if (!access_ok(VERIFY_WRITE, datavp,
2995                                sizeof(struct ppc_debug_info)))
2996                         return -EFAULT;
2997                 ret = __copy_to_user(datavp, &dbginfo,
2998                                      sizeof(struct ppc_debug_info)) ?
2999                       -EFAULT : 0;
3000                 break;
3001         }
3002
3003         case PPC_PTRACE_SETHWDEBUG: {
3004                 struct ppc_hw_breakpoint bp_info;
3005
3006                 if (!access_ok(VERIFY_READ, datavp,
3007                                sizeof(struct ppc_hw_breakpoint)))
3008                         return -EFAULT;
3009                 ret = __copy_from_user(&bp_info, datavp,
3010                                        sizeof(struct ppc_hw_breakpoint)) ?
3011                       -EFAULT : 0;
3012                 if (!ret)
3013                         ret = ppc_set_hwdebug(child, &bp_info);
3014                 break;
3015         }
3016
3017         case PPC_PTRACE_DELHWDEBUG: {
3018                 ret = ppc_del_hwdebug(child, data);
3019                 break;
3020         }
3021
3022         case PTRACE_GET_DEBUGREG: {
3023 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3024                 unsigned long dabr_fake;
3025 #endif
3026                 ret = -EINVAL;
3027                 /* We only support one DABR and no IABRS at the moment */
3028                 if (addr > 0)
3029                         break;
3030 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3031                 ret = put_user(child->thread.debug.dac1, datalp);
3032 #else
3033                 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3034                              (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3035                 ret = put_user(dabr_fake, datalp);
3036 #endif
3037                 break;
3038         }
3039
3040         case PTRACE_SET_DEBUGREG:
3041                 ret = ptrace_set_debugreg(child, addr, data);
3042                 break;
3043
3044 #ifdef CONFIG_PPC64
3045         case PTRACE_GETREGS64:
3046 #endif
3047         case PTRACE_GETREGS:    /* Get all pt_regs from the child. */
3048                 return copy_regset_to_user(child, &user_ppc_native_view,
3049                                            REGSET_GPR,
3050                                            0, sizeof(struct pt_regs),
3051                                            datavp);
3052
3053 #ifdef CONFIG_PPC64
3054         case PTRACE_SETREGS64:
3055 #endif
3056         case PTRACE_SETREGS:    /* Set all gp regs in the child. */
3057                 return copy_regset_from_user(child, &user_ppc_native_view,
3058                                              REGSET_GPR,
3059                                              0, sizeof(struct pt_regs),
3060                                              datavp);
3061
3062         case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3063                 return copy_regset_to_user(child, &user_ppc_native_view,
3064                                            REGSET_FPR,
3065                                            0, sizeof(elf_fpregset_t),
3066                                            datavp);
3067
3068         case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3069                 return copy_regset_from_user(child, &user_ppc_native_view,
3070                                              REGSET_FPR,
3071                                              0, sizeof(elf_fpregset_t),
3072                                              datavp);
3073
3074 #ifdef CONFIG_ALTIVEC
3075         case PTRACE_GETVRREGS:
3076                 return copy_regset_to_user(child, &user_ppc_native_view,
3077                                            REGSET_VMX,
3078                                            0, (33 * sizeof(vector128) +
3079                                                sizeof(u32)),
3080                                            datavp);
3081
3082         case PTRACE_SETVRREGS:
3083                 return copy_regset_from_user(child, &user_ppc_native_view,
3084                                              REGSET_VMX,
3085                                              0, (33 * sizeof(vector128) +
3086                                                  sizeof(u32)),
3087                                              datavp);
3088 #endif
3089 #ifdef CONFIG_VSX
3090         case PTRACE_GETVSRREGS:
3091                 return copy_regset_to_user(child, &user_ppc_native_view,
3092                                            REGSET_VSX,
3093                                            0, 32 * sizeof(double),
3094                                            datavp);
3095
3096         case PTRACE_SETVSRREGS:
3097                 return copy_regset_from_user(child, &user_ppc_native_view,
3098                                              REGSET_VSX,
3099                                              0, 32 * sizeof(double),
3100                                              datavp);
3101 #endif
3102 #ifdef CONFIG_SPE
3103         case PTRACE_GETEVRREGS:
3104                 /* Get the child spe register state. */
3105                 return copy_regset_to_user(child, &user_ppc_native_view,
3106                                            REGSET_SPE, 0, 35 * sizeof(u32),
3107                                            datavp);
3108
3109         case PTRACE_SETEVRREGS:
3110                 /* Set the child spe register state. */
3111                 return copy_regset_from_user(child, &user_ppc_native_view,
3112                                              REGSET_SPE, 0, 35 * sizeof(u32),
3113                                              datavp);
3114 #endif
3115
3116         default:
3117                 ret = ptrace_request(child, request, addr, data);
3118                 break;
3119         }
3120         return ret;
3121 }
3122
3123 #ifdef CONFIG_SECCOMP
3124 static int do_seccomp(struct pt_regs *regs)
3125 {
3126         if (!test_thread_flag(TIF_SECCOMP))
3127                 return 0;
3128
3129         /*
3130          * The ABI we present to seccomp tracers is that r3 contains
3131          * the syscall return value and orig_gpr3 contains the first
3132          * syscall parameter. This is different to the ptrace ABI where
3133          * both r3 and orig_gpr3 contain the first syscall parameter.
3134          */
3135         regs->gpr[3] = -ENOSYS;
3136
3137         /*
3138          * We use the __ version here because we have already checked
3139          * TIF_SECCOMP. If this fails, there is nothing left to do, we
3140          * have already loaded -ENOSYS into r3, or seccomp has put
3141          * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3142          */
3143         if (__secure_computing(NULL))
3144                 return -1;
3145
3146         /*
3147          * The syscall was allowed by seccomp, restore the register
3148          * state to what audit expects.
3149          * Note that we use orig_gpr3, which means a seccomp tracer can
3150          * modify the first syscall parameter (in orig_gpr3) and also
3151          * allow the syscall to proceed.
3152          */
3153         regs->gpr[3] = regs->orig_gpr3;
3154
3155         return 0;
3156 }
3157 #else
3158 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3159 #endif /* CONFIG_SECCOMP */
3160
3161 /**
3162  * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3163  * @regs: the pt_regs of the task to trace (current)
3164  *
3165  * Performs various types of tracing on syscall entry. This includes seccomp,
3166  * ptrace, syscall tracepoints and audit.
3167  *
3168  * The pt_regs are potentially visible to userspace via ptrace, so their
3169  * contents is ABI.
3170  *
3171  * One or more of the tracers may modify the contents of pt_regs, in particular
3172  * to modify arguments or even the syscall number itself.
3173  *
3174  * It's also possible that a tracer can choose to reject the system call. In
3175  * that case this function will return an illegal syscall number, and will put
3176  * an appropriate return value in regs->r3.
3177  *
3178  * Return: the (possibly changed) syscall number.
3179  */
3180 long do_syscall_trace_enter(struct pt_regs *regs)
3181 {
3182         user_exit();
3183
3184         /*
3185          * The tracer may decide to abort the syscall, if so tracehook
3186          * will return !0. Note that the tracer may also just change
3187          * regs->gpr[0] to an invalid syscall number, that is handled
3188          * below on the exit path.
3189          */
3190         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3191             tracehook_report_syscall_entry(regs))
3192                 goto skip;
3193
3194         /* Run seccomp after ptrace; allow it to set gpr[3]. */
3195         if (do_seccomp(regs))
3196                 return -1;
3197
3198         /* Avoid trace and audit when syscall is invalid. */
3199         if (regs->gpr[0] >= NR_syscalls)
3200                 goto skip;
3201
3202         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3203                 trace_sys_enter(regs, regs->gpr[0]);
3204
3205 #ifdef CONFIG_PPC64
3206         if (!is_32bit_task())
3207                 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3208                                     regs->gpr[5], regs->gpr[6]);
3209         else
3210 #endif
3211                 audit_syscall_entry(regs->gpr[0],
3212                                     regs->gpr[3] & 0xffffffff,
3213                                     regs->gpr[4] & 0xffffffff,
3214                                     regs->gpr[5] & 0xffffffff,
3215                                     regs->gpr[6] & 0xffffffff);
3216
3217         /* Return the possibly modified but valid syscall number */
3218         return regs->gpr[0];
3219
3220 skip:
3221         /*
3222          * If we are aborting explicitly, or if the syscall number is
3223          * now invalid, set the return value to -ENOSYS.
3224          */
3225         regs->gpr[3] = -ENOSYS;
3226         return -1;
3227 }
3228
3229 void do_syscall_trace_leave(struct pt_regs *regs)
3230 {
3231         int step;
3232
3233         audit_syscall_exit(regs);
3234
3235         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3236                 trace_sys_exit(regs, regs->result);
3237
3238         step = test_thread_flag(TIF_SINGLESTEP);
3239         if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3240                 tracehook_report_syscall_exit(regs, step);
3241
3242         user_enter();
3243 }