bf8e136316e24b3c37811883e8745c51fe5f52b2
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <linux/kprobes.h>
58 #include <linux/kdebug.h>
59
60 /* Transactional Memory debug */
61 #ifdef TM_DEBUG_SW
62 #define TM_DEBUG(x...) printk(KERN_INFO x)
63 #else
64 #define TM_DEBUG(x...) do { } while(0)
65 #endif
66
67 extern unsigned long _get_SP(void);
68
69 #ifndef CONFIG_SMP
70 struct task_struct *last_task_used_math = NULL;
71 struct task_struct *last_task_used_altivec = NULL;
72 struct task_struct *last_task_used_vsx = NULL;
73 struct task_struct *last_task_used_spe = NULL;
74 #endif
75
76 #ifdef CONFIG_PPC_FPU
77 /*
78  * Make sure the floating-point register state in the
79  * the thread_struct is up to date for task tsk.
80  */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83         if (tsk->thread.regs) {
84                 /*
85                  * We need to disable preemption here because if we didn't,
86                  * another process could get scheduled after the regs->msr
87                  * test but before we have finished saving the FP registers
88                  * to the thread_struct.  That process could take over the
89                  * FPU, and then when we get scheduled again we would store
90                  * bogus values for the remaining FP registers.
91                  */
92                 preempt_disable();
93                 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95                         /*
96                          * This should only ever be called for current or
97                          * for a stopped child process.  Since we save away
98                          * the FP register state on context switch on SMP,
99                          * there is something wrong if a stopped child appears
100                          * to still have its FP state in the CPU registers.
101                          */
102                         BUG_ON(tsk != current);
103 #endif
104                         giveup_fpu(tsk);
105                 }
106                 preempt_enable();
107         }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110 #endif
111
112 void enable_kernel_fp(void)
113 {
114         WARN_ON(preemptible());
115
116 #ifdef CONFIG_SMP
117         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
118                 giveup_fpu(current);
119         else
120                 giveup_fpu(NULL);       /* just enables FP for kernel */
121 #else
122         giveup_fpu(last_task_used_math);
123 #endif /* CONFIG_SMP */
124 }
125 EXPORT_SYMBOL(enable_kernel_fp);
126
127 #ifdef CONFIG_ALTIVEC
128 void enable_kernel_altivec(void)
129 {
130         WARN_ON(preemptible());
131
132 #ifdef CONFIG_SMP
133         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
134                 giveup_altivec(current);
135         else
136                 giveup_altivec_notask();
137 #else
138         giveup_altivec(last_task_used_altivec);
139 #endif /* CONFIG_SMP */
140 }
141 EXPORT_SYMBOL(enable_kernel_altivec);
142
143 /*
144  * Make sure the VMX/Altivec register state in the
145  * the thread_struct is up to date for task tsk.
146  */
147 void flush_altivec_to_thread(struct task_struct *tsk)
148 {
149         if (tsk->thread.regs) {
150                 preempt_disable();
151                 if (tsk->thread.regs->msr & MSR_VEC) {
152 #ifdef CONFIG_SMP
153                         BUG_ON(tsk != current);
154 #endif
155                         giveup_altivec(tsk);
156                 }
157                 preempt_enable();
158         }
159 }
160 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
161 #endif /* CONFIG_ALTIVEC */
162
163 #ifdef CONFIG_VSX
164 #if 0
165 /* not currently used, but some crazy RAID module might want to later */
166 void enable_kernel_vsx(void)
167 {
168         WARN_ON(preemptible());
169
170 #ifdef CONFIG_SMP
171         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
172                 giveup_vsx(current);
173         else
174                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
175 #else
176         giveup_vsx(last_task_used_vsx);
177 #endif /* CONFIG_SMP */
178 }
179 EXPORT_SYMBOL(enable_kernel_vsx);
180 #endif
181
182 void giveup_vsx(struct task_struct *tsk)
183 {
184         giveup_fpu(tsk);
185         giveup_altivec(tsk);
186         __giveup_vsx(tsk);
187 }
188
189 void flush_vsx_to_thread(struct task_struct *tsk)
190 {
191         if (tsk->thread.regs) {
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_VSX) {
194 #ifdef CONFIG_SMP
195                         BUG_ON(tsk != current);
196 #endif
197                         giveup_vsx(tsk);
198                 }
199                 preempt_enable();
200         }
201 }
202 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
203 #endif /* CONFIG_VSX */
204
205 #ifdef CONFIG_SPE
206
207 void enable_kernel_spe(void)
208 {
209         WARN_ON(preemptible());
210
211 #ifdef CONFIG_SMP
212         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
213                 giveup_spe(current);
214         else
215                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
216 #else
217         giveup_spe(last_task_used_spe);
218 #endif /* __SMP __ */
219 }
220 EXPORT_SYMBOL(enable_kernel_spe);
221
222 void flush_spe_to_thread(struct task_struct *tsk)
223 {
224         if (tsk->thread.regs) {
225                 preempt_disable();
226                 if (tsk->thread.regs->msr & MSR_SPE) {
227 #ifdef CONFIG_SMP
228                         BUG_ON(tsk != current);
229 #endif
230                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
231                         giveup_spe(tsk);
232                 }
233                 preempt_enable();
234         }
235 }
236 #endif /* CONFIG_SPE */
237
238 #ifndef CONFIG_SMP
239 /*
240  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
241  * and the current task has some state, discard it.
242  */
243 void discard_lazy_cpu_state(void)
244 {
245         preempt_disable();
246         if (last_task_used_math == current)
247                 last_task_used_math = NULL;
248 #ifdef CONFIG_ALTIVEC
249         if (last_task_used_altivec == current)
250                 last_task_used_altivec = NULL;
251 #endif /* CONFIG_ALTIVEC */
252 #ifdef CONFIG_VSX
253         if (last_task_used_vsx == current)
254                 last_task_used_vsx = NULL;
255 #endif /* CONFIG_VSX */
256 #ifdef CONFIG_SPE
257         if (last_task_used_spe == current)
258                 last_task_used_spe = NULL;
259 #endif
260         preempt_enable();
261 }
262 #endif /* CONFIG_SMP */
263
264 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
265 void do_send_trap(struct pt_regs *regs, unsigned long address,
266                   unsigned long error_code, int signal_code, int breakpt)
267 {
268         siginfo_t info;
269
270         current->thread.trap_nr = signal_code;
271         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
272                         11, SIGSEGV) == NOTIFY_STOP)
273                 return;
274
275         /* Deliver the signal to userspace */
276         info.si_signo = SIGTRAP;
277         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
278         info.si_code = signal_code;
279         info.si_addr = (void __user *)address;
280         force_sig_info(SIGTRAP, &info, current);
281 }
282 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
283 void do_break (struct pt_regs *regs, unsigned long address,
284                     unsigned long error_code)
285 {
286         siginfo_t info;
287
288         current->thread.trap_nr = TRAP_HWBKPT;
289         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
290                         11, SIGSEGV) == NOTIFY_STOP)
291                 return;
292
293         if (debugger_break_match(regs))
294                 return;
295
296         /* Clear the breakpoint */
297         hw_breakpoint_disable();
298
299         /* Deliver the signal to userspace */
300         info.si_signo = SIGTRAP;
301         info.si_errno = 0;
302         info.si_code = TRAP_HWBKPT;
303         info.si_addr = (void __user *)address;
304         force_sig_info(SIGTRAP, &info, current);
305 }
306 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
307
308 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
309
310 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
311 /*
312  * Set the debug registers back to their default "safe" values.
313  */
314 static void set_debug_reg_defaults(struct thread_struct *thread)
315 {
316         thread->debug.iac1 = thread->debug.iac2 = 0;
317 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
318         thread->debug.iac3 = thread->debug.iac4 = 0;
319 #endif
320         thread->debug.dac1 = thread->debug.dac2 = 0;
321 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
322         thread->debug.dvc1 = thread->debug.dvc2 = 0;
323 #endif
324         thread->debug.dbcr0 = 0;
325 #ifdef CONFIG_BOOKE
326         /*
327          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
328          */
329         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
330                         DBCR1_IAC3US | DBCR1_IAC4US;
331         /*
332          * Force Data Address Compare User/Supervisor bits to be User-only
333          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
334          */
335         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
336 #else
337         thread->debug.dbcr1 = 0;
338 #endif
339 }
340
341 static void prime_debug_regs(struct thread_struct *thread)
342 {
343         /*
344          * We could have inherited MSR_DE from userspace, since
345          * it doesn't get cleared on exception entry.  Make sure
346          * MSR_DE is clear before we enable any debug events.
347          */
348         mtmsr(mfmsr() & ~MSR_DE);
349
350         mtspr(SPRN_IAC1, thread->debug.iac1);
351         mtspr(SPRN_IAC2, thread->debug.iac2);
352 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
353         mtspr(SPRN_IAC3, thread->debug.iac3);
354         mtspr(SPRN_IAC4, thread->debug.iac4);
355 #endif
356         mtspr(SPRN_DAC1, thread->debug.dac1);
357         mtspr(SPRN_DAC2, thread->debug.dac2);
358 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
359         mtspr(SPRN_DVC1, thread->debug.dvc1);
360         mtspr(SPRN_DVC2, thread->debug.dvc2);
361 #endif
362         mtspr(SPRN_DBCR0, thread->debug.dbcr0);
363         mtspr(SPRN_DBCR1, thread->debug.dbcr1);
364 #ifdef CONFIG_BOOKE
365         mtspr(SPRN_DBCR2, thread->debug.dbcr2);
366 #endif
367 }
368 /*
369  * Unless neither the old or new thread are making use of the
370  * debug registers, set the debug registers from the values
371  * stored in the new thread.
372  */
373 void switch_booke_debug_regs(struct thread_struct *new_thread)
374 {
375         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
376                 || (new_thread->debug.dbcr0 & DBCR0_IDM))
377                         prime_debug_regs(new_thread);
378 }
379 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
380 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
381 #ifndef CONFIG_HAVE_HW_BREAKPOINT
382 static void set_debug_reg_defaults(struct thread_struct *thread)
383 {
384         thread->hw_brk.address = 0;
385         thread->hw_brk.type = 0;
386         set_breakpoint(&thread->hw_brk);
387 }
388 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
389 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
390
391 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394         mtspr(SPRN_DAC1, dabr);
395 #ifdef CONFIG_PPC_47x
396         isync();
397 #endif
398         return 0;
399 }
400 #elif defined(CONFIG_PPC_BOOK3S)
401 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
402 {
403         mtspr(SPRN_DABR, dabr);
404         if (cpu_has_feature(CPU_FTR_DABRX))
405                 mtspr(SPRN_DABRX, dabrx);
406         return 0;
407 }
408 #else
409 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
410 {
411         return -EINVAL;
412 }
413 #endif
414
415 static inline int set_dabr(struct arch_hw_breakpoint *brk)
416 {
417         unsigned long dabr, dabrx;
418
419         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
420         dabrx = ((brk->type >> 3) & 0x7);
421
422         if (ppc_md.set_dabr)
423                 return ppc_md.set_dabr(dabr, dabrx);
424
425         return __set_dabr(dabr, dabrx);
426 }
427
428 static inline int set_dawr(struct arch_hw_breakpoint *brk)
429 {
430         unsigned long dawr, dawrx, mrd;
431
432         dawr = brk->address;
433
434         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
435                                    << (63 - 58); //* read/write bits */
436         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
437                                    << (63 - 59); //* translate */
438         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
439                                    >> 3; //* PRIM bits */
440         /* dawr length is stored in field MDR bits 48:53.  Matches range in
441            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
442            0b111111=64DW.
443            brk->len is in bytes.
444            This aligns up to double word size, shifts and does the bias.
445         */
446         mrd = ((brk->len + 7) >> 3) - 1;
447         dawrx |= (mrd & 0x3f) << (63 - 53);
448
449         if (ppc_md.set_dawr)
450                 return ppc_md.set_dawr(dawr, dawrx);
451         mtspr(SPRN_DAWR, dawr);
452         mtspr(SPRN_DAWRX, dawrx);
453         return 0;
454 }
455
456 int set_breakpoint(struct arch_hw_breakpoint *brk)
457 {
458         __get_cpu_var(current_brk) = *brk;
459
460         if (cpu_has_feature(CPU_FTR_DAWR))
461                 return set_dawr(brk);
462
463         return set_dabr(brk);
464 }
465
466 #ifdef CONFIG_PPC64
467 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
468 #endif
469
470 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
471                               struct arch_hw_breakpoint *b)
472 {
473         if (a->address != b->address)
474                 return false;
475         if (a->type != b->type)
476                 return false;
477         if (a->len != b->len)
478                 return false;
479         return true;
480 }
481 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
482 static inline void tm_reclaim_task(struct task_struct *tsk)
483 {
484         /* We have to work out if we're switching from/to a task that's in the
485          * middle of a transaction.
486          *
487          * In switching we need to maintain a 2nd register state as
488          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
489          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
490          * (current) FPRs into oldtask->thread.transact_fpr[].
491          *
492          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
493          */
494         struct thread_struct *thr = &tsk->thread;
495
496         if (!thr->regs)
497                 return;
498
499         if (!MSR_TM_ACTIVE(thr->regs->msr))
500                 goto out_and_saveregs;
501
502         /* Stash the original thread MSR, as giveup_fpu et al will
503          * modify it.  We hold onto it to see whether the task used
504          * FP & vector regs.
505          */
506         thr->tm_orig_msr = thr->regs->msr;
507
508         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
509                  "ccr=%lx, msr=%lx, trap=%lx)\n",
510                  tsk->pid, thr->regs->nip,
511                  thr->regs->ccr, thr->regs->msr,
512                  thr->regs->trap);
513
514         tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
515
516         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
517                  tsk->pid);
518
519 out_and_saveregs:
520         /* Always save the regs here, even if a transaction's not active.
521          * This context-switches a thread's TM info SPRs.  We do it here to
522          * be consistent with the restore path (in recheckpoint) which
523          * cannot happen later in _switch().
524          */
525         tm_save_sprs(thr);
526 }
527
528 static inline void tm_recheckpoint_new_task(struct task_struct *new)
529 {
530         unsigned long msr;
531
532         if (!cpu_has_feature(CPU_FTR_TM))
533                 return;
534
535         /* Recheckpoint the registers of the thread we're about to switch to.
536          *
537          * If the task was using FP, we non-lazily reload both the original and
538          * the speculative FP register states.  This is because the kernel
539          * doesn't see if/when a TM rollback occurs, so if we take an FP
540          * unavoidable later, we are unable to determine which set of FP regs
541          * need to be restored.
542          */
543         if (!new->thread.regs)
544                 return;
545
546         /* The TM SPRs are restored here, so that TEXASR.FS can be set
547          * before the trecheckpoint and no explosion occurs.
548          */
549         tm_restore_sprs(&new->thread);
550
551         if (!MSR_TM_ACTIVE(new->thread.regs->msr))
552                 return;
553         msr = new->thread.tm_orig_msr;
554         /* Recheckpoint to restore original checkpointed register state. */
555         TM_DEBUG("*** tm_recheckpoint of pid %d "
556                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
557                  new->pid, new->thread.regs->msr, msr);
558
559         /* This loads the checkpointed FP/VEC state, if used */
560         tm_recheckpoint(&new->thread, msr);
561
562         /* This loads the speculative FP/VEC state, if used */
563         if (msr & MSR_FP) {
564                 do_load_up_transact_fpu(&new->thread);
565                 new->thread.regs->msr |=
566                         (MSR_FP | new->thread.fpexc_mode);
567         }
568 #ifdef CONFIG_ALTIVEC
569         if (msr & MSR_VEC) {
570                 do_load_up_transact_altivec(&new->thread);
571                 new->thread.regs->msr |= MSR_VEC;
572         }
573 #endif
574         /* We may as well turn on VSX too since all the state is restored now */
575         if (msr & MSR_VSX)
576                 new->thread.regs->msr |= MSR_VSX;
577
578         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
579                  "(kernel msr 0x%lx)\n",
580                  new->pid, mfmsr());
581 }
582
583 static inline void __switch_to_tm(struct task_struct *prev)
584 {
585         if (cpu_has_feature(CPU_FTR_TM)) {
586                 tm_enable();
587                 tm_reclaim_task(prev);
588         }
589 }
590 #else
591 #define tm_recheckpoint_new_task(new)
592 #define __switch_to_tm(prev)
593 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
594
595 struct task_struct *__switch_to(struct task_struct *prev,
596         struct task_struct *new)
597 {
598         struct thread_struct *new_thread, *old_thread;
599         struct task_struct *last;
600 #ifdef CONFIG_PPC_BOOK3S_64
601         struct ppc64_tlb_batch *batch;
602 #endif
603
604         WARN_ON(!irqs_disabled());
605
606         /* Back up the TAR across context switches.
607          * Note that the TAR is not available for use in the kernel.  (To
608          * provide this, the TAR should be backed up/restored on exception
609          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
610          * pt_regs anyway (for debug).)
611          * Save the TAR here before we do treclaim/trecheckpoint as these
612          * will change the TAR.
613          */
614         save_tar(&prev->thread);
615
616         __switch_to_tm(prev);
617
618 #ifdef CONFIG_SMP
619         /* avoid complexity of lazy save/restore of fpu
620          * by just saving it every time we switch out if
621          * this task used the fpu during the last quantum.
622          *
623          * If it tries to use the fpu again, it'll trap and
624          * reload its fp regs.  So we don't have to do a restore
625          * every switch, just a save.
626          *  -- Cort
627          */
628         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
629                 giveup_fpu(prev);
630 #ifdef CONFIG_ALTIVEC
631         /*
632          * If the previous thread used altivec in the last quantum
633          * (thus changing altivec regs) then save them.
634          * We used to check the VRSAVE register but not all apps
635          * set it, so we don't rely on it now (and in fact we need
636          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
637          *
638          * On SMP we always save/restore altivec regs just to avoid the
639          * complexity of changing processors.
640          *  -- Cort
641          */
642         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
643                 giveup_altivec(prev);
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_VSX
646         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
647                 /* VMX and FPU registers are already save here */
648                 __giveup_vsx(prev);
649 #endif /* CONFIG_VSX */
650 #ifdef CONFIG_SPE
651         /*
652          * If the previous thread used spe in the last quantum
653          * (thus changing spe regs) then save them.
654          *
655          * On SMP we always save/restore spe regs just to avoid the
656          * complexity of changing processors.
657          */
658         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
659                 giveup_spe(prev);
660 #endif /* CONFIG_SPE */
661
662 #else  /* CONFIG_SMP */
663 #ifdef CONFIG_ALTIVEC
664         /* Avoid the trap.  On smp this this never happens since
665          * we don't set last_task_used_altivec -- Cort
666          */
667         if (new->thread.regs && last_task_used_altivec == new)
668                 new->thread.regs->msr |= MSR_VEC;
669 #endif /* CONFIG_ALTIVEC */
670 #ifdef CONFIG_VSX
671         if (new->thread.regs && last_task_used_vsx == new)
672                 new->thread.regs->msr |= MSR_VSX;
673 #endif /* CONFIG_VSX */
674 #ifdef CONFIG_SPE
675         /* Avoid the trap.  On smp this this never happens since
676          * we don't set last_task_used_spe
677          */
678         if (new->thread.regs && last_task_used_spe == new)
679                 new->thread.regs->msr |= MSR_SPE;
680 #endif /* CONFIG_SPE */
681
682 #endif /* CONFIG_SMP */
683
684 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
685         switch_booke_debug_regs(&new->thread);
686 #else
687 /*
688  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
689  * schedule DABR
690  */
691 #ifndef CONFIG_HAVE_HW_BREAKPOINT
692         if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
693                 set_breakpoint(&new->thread.hw_brk);
694 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
695 #endif
696
697
698         new_thread = &new->thread;
699         old_thread = &current->thread;
700
701 #ifdef CONFIG_PPC64
702         /*
703          * Collect processor utilization data per process
704          */
705         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
706                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
707                 long unsigned start_tb, current_tb;
708                 start_tb = old_thread->start_tb;
709                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
710                 old_thread->accum_tb += (current_tb - start_tb);
711                 new_thread->start_tb = current_tb;
712         }
713 #endif /* CONFIG_PPC64 */
714
715 #ifdef CONFIG_PPC_BOOK3S_64
716         batch = &__get_cpu_var(ppc64_tlb_batch);
717         if (batch->active) {
718                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
719                 if (batch->index)
720                         __flush_tlb_pending(batch);
721                 batch->active = 0;
722         }
723 #endif /* CONFIG_PPC_BOOK3S_64 */
724
725         /*
726          * We can't take a PMU exception inside _switch() since there is a
727          * window where the kernel stack SLB and the kernel stack are out
728          * of sync. Hard disable here.
729          */
730         hard_irq_disable();
731
732         tm_recheckpoint_new_task(new);
733
734         last = _switch(old_thread, new_thread);
735
736 #ifdef CONFIG_PPC_BOOK3S_64
737         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
738                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
739                 batch = &__get_cpu_var(ppc64_tlb_batch);
740                 batch->active = 1;
741         }
742 #endif /* CONFIG_PPC_BOOK3S_64 */
743
744         return last;
745 }
746
747 static int instructions_to_print = 16;
748
749 static void show_instructions(struct pt_regs *regs)
750 {
751         int i;
752         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
753                         sizeof(int));
754
755         printk("Instruction dump:");
756
757         for (i = 0; i < instructions_to_print; i++) {
758                 int instr;
759
760                 if (!(i % 8))
761                         printk("\n");
762
763 #if !defined(CONFIG_BOOKE)
764                 /* If executing with the IMMU off, adjust pc rather
765                  * than print XXXXXXXX.
766                  */
767                 if (!(regs->msr & MSR_IR))
768                         pc = (unsigned long)phys_to_virt(pc);
769 #endif
770
771                 /* We use __get_user here *only* to avoid an OOPS on a
772                  * bad address because the pc *should* only be a
773                  * kernel address.
774                  */
775                 if (!__kernel_text_address(pc) ||
776                      __get_user(instr, (unsigned int __user *)pc)) {
777                         printk(KERN_CONT "XXXXXXXX ");
778                 } else {
779                         if (regs->nip == pc)
780                                 printk(KERN_CONT "<%08x> ", instr);
781                         else
782                                 printk(KERN_CONT "%08x ", instr);
783                 }
784
785                 pc += sizeof(int);
786         }
787
788         printk("\n");
789 }
790
791 static struct regbit {
792         unsigned long bit;
793         const char *name;
794 } msr_bits[] = {
795 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
796         {MSR_SF,        "SF"},
797         {MSR_HV,        "HV"},
798 #endif
799         {MSR_VEC,       "VEC"},
800         {MSR_VSX,       "VSX"},
801 #ifdef CONFIG_BOOKE
802         {MSR_CE,        "CE"},
803 #endif
804         {MSR_EE,        "EE"},
805         {MSR_PR,        "PR"},
806         {MSR_FP,        "FP"},
807         {MSR_ME,        "ME"},
808 #ifdef CONFIG_BOOKE
809         {MSR_DE,        "DE"},
810 #else
811         {MSR_SE,        "SE"},
812         {MSR_BE,        "BE"},
813 #endif
814         {MSR_IR,        "IR"},
815         {MSR_DR,        "DR"},
816         {MSR_PMM,       "PMM"},
817 #ifndef CONFIG_BOOKE
818         {MSR_RI,        "RI"},
819         {MSR_LE,        "LE"},
820 #endif
821         {0,             NULL}
822 };
823
824 static void printbits(unsigned long val, struct regbit *bits)
825 {
826         const char *sep = "";
827
828         printk("<");
829         for (; bits->bit; ++bits)
830                 if (val & bits->bit) {
831                         printk("%s%s", sep, bits->name);
832                         sep = ",";
833                 }
834         printk(">");
835 }
836
837 #ifdef CONFIG_PPC64
838 #define REG             "%016lx"
839 #define REGS_PER_LINE   4
840 #define LAST_VOLATILE   13
841 #else
842 #define REG             "%08lx"
843 #define REGS_PER_LINE   8
844 #define LAST_VOLATILE   12
845 #endif
846
847 void show_regs(struct pt_regs * regs)
848 {
849         int i, trap;
850
851         show_regs_print_info(KERN_DEFAULT);
852
853         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
854                regs->nip, regs->link, regs->ctr);
855         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
856                regs, regs->trap, print_tainted(), init_utsname()->release);
857         printk("MSR: "REG" ", regs->msr);
858         printbits(regs->msr, msr_bits);
859         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
860         trap = TRAP(regs);
861         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
862                 printk("CFAR: "REG" ", regs->orig_gpr3);
863         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
864 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
865                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
866 #else
867                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
868 #endif
869 #ifdef CONFIG_PPC64
870         printk("SOFTE: %ld ", regs->softe);
871 #endif
872 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
873         if (MSR_TM_ACTIVE(regs->msr))
874                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
875 #endif
876
877         for (i = 0;  i < 32;  i++) {
878                 if ((i % REGS_PER_LINE) == 0)
879                         printk("\nGPR%02d: ", i);
880                 printk(REG " ", regs->gpr[i]);
881                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
882                         break;
883         }
884         printk("\n");
885 #ifdef CONFIG_KALLSYMS
886         /*
887          * Lookup NIP late so we have the best change of getting the
888          * above info out without failing
889          */
890         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
891         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
892 #endif
893         show_stack(current, (unsigned long *) regs->gpr[1]);
894         if (!user_mode(regs))
895                 show_instructions(regs);
896 }
897
898 void exit_thread(void)
899 {
900         discard_lazy_cpu_state();
901 }
902
903 void flush_thread(void)
904 {
905         discard_lazy_cpu_state();
906
907 #ifdef CONFIG_HAVE_HW_BREAKPOINT
908         flush_ptrace_hw_breakpoint(current);
909 #else /* CONFIG_HAVE_HW_BREAKPOINT */
910         set_debug_reg_defaults(&current->thread);
911 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
912 }
913
914 void
915 release_thread(struct task_struct *t)
916 {
917 }
918
919 /*
920  * this gets called so that we can store coprocessor state into memory and
921  * copy the current task into the new thread.
922  */
923 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
924 {
925         flush_fp_to_thread(src);
926         flush_altivec_to_thread(src);
927         flush_vsx_to_thread(src);
928         flush_spe_to_thread(src);
929
930         *dst = *src;
931
932         clear_task_ebb(dst);
933
934         return 0;
935 }
936
937 /*
938  * Copy a thread..
939  */
940 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
941
942 int copy_thread(unsigned long clone_flags, unsigned long usp,
943                 unsigned long arg, struct task_struct *p)
944 {
945         struct pt_regs *childregs, *kregs;
946         extern void ret_from_fork(void);
947         extern void ret_from_kernel_thread(void);
948         void (*f)(void);
949         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
950
951         /* Copy registers */
952         sp -= sizeof(struct pt_regs);
953         childregs = (struct pt_regs *) sp;
954         if (unlikely(p->flags & PF_KTHREAD)) {
955                 struct thread_info *ti = (void *)task_stack_page(p);
956                 memset(childregs, 0, sizeof(struct pt_regs));
957                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
958                 childregs->gpr[14] = usp;       /* function */
959 #ifdef CONFIG_PPC64
960                 clear_tsk_thread_flag(p, TIF_32BIT);
961                 childregs->softe = 1;
962 #endif
963                 childregs->gpr[15] = arg;
964                 p->thread.regs = NULL;  /* no user register state */
965                 ti->flags |= _TIF_RESTOREALL;
966                 f = ret_from_kernel_thread;
967         } else {
968                 struct pt_regs *regs = current_pt_regs();
969                 CHECK_FULL_REGS(regs);
970                 *childregs = *regs;
971                 if (usp)
972                         childregs->gpr[1] = usp;
973                 p->thread.regs = childregs;
974                 childregs->gpr[3] = 0;  /* Result from fork() */
975                 if (clone_flags & CLONE_SETTLS) {
976 #ifdef CONFIG_PPC64
977                         if (!is_32bit_task())
978                                 childregs->gpr[13] = childregs->gpr[6];
979                         else
980 #endif
981                                 childregs->gpr[2] = childregs->gpr[6];
982                 }
983
984                 f = ret_from_fork;
985         }
986         sp -= STACK_FRAME_OVERHEAD;
987
988         /*
989          * The way this works is that at some point in the future
990          * some task will call _switch to switch to the new task.
991          * That will pop off the stack frame created below and start
992          * the new task running at ret_from_fork.  The new task will
993          * do some house keeping and then return from the fork or clone
994          * system call, using the stack frame created above.
995          */
996         ((unsigned long *)sp)[0] = 0;
997         sp -= sizeof(struct pt_regs);
998         kregs = (struct pt_regs *) sp;
999         sp -= STACK_FRAME_OVERHEAD;
1000         p->thread.ksp = sp;
1001 #ifdef CONFIG_PPC32
1002         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1003                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1004 #endif
1005 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1006         p->thread.ptrace_bps[0] = NULL;
1007 #endif
1008
1009         p->thread.fp_save_area = NULL;
1010 #ifdef CONFIG_ALTIVEC
1011         p->thread.vr_save_area = NULL;
1012 #endif
1013
1014 #ifdef CONFIG_PPC_STD_MMU_64
1015         if (mmu_has_feature(MMU_FTR_SLB)) {
1016                 unsigned long sp_vsid;
1017                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1018
1019                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1020                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1021                                 << SLB_VSID_SHIFT_1T;
1022                 else
1023                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1024                                 << SLB_VSID_SHIFT;
1025                 sp_vsid |= SLB_VSID_KERNEL | llp;
1026                 p->thread.ksp_vsid = sp_vsid;
1027         }
1028 #endif /* CONFIG_PPC_STD_MMU_64 */
1029 #ifdef CONFIG_PPC64 
1030         if (cpu_has_feature(CPU_FTR_DSCR)) {
1031                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1032                 p->thread.dscr = current->thread.dscr;
1033         }
1034         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1035                 p->thread.ppr = INIT_PPR;
1036 #endif
1037         /*
1038          * The PPC64 ABI makes use of a TOC to contain function 
1039          * pointers.  The function (ret_from_except) is actually a pointer
1040          * to the TOC entry.  The first entry is a pointer to the actual
1041          * function.
1042          */
1043 #ifdef CONFIG_PPC64
1044         kregs->nip = *((unsigned long *)f);
1045 #else
1046         kregs->nip = (unsigned long)f;
1047 #endif
1048         return 0;
1049 }
1050
1051 /*
1052  * Set up a thread for executing a new program
1053  */
1054 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1055 {
1056 #ifdef CONFIG_PPC64
1057         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1058 #endif
1059
1060         /*
1061          * If we exec out of a kernel thread then thread.regs will not be
1062          * set.  Do it now.
1063          */
1064         if (!current->thread.regs) {
1065                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1066                 current->thread.regs = regs - 1;
1067         }
1068
1069         memset(regs->gpr, 0, sizeof(regs->gpr));
1070         regs->ctr = 0;
1071         regs->link = 0;
1072         regs->xer = 0;
1073         regs->ccr = 0;
1074         regs->gpr[1] = sp;
1075
1076         /*
1077          * We have just cleared all the nonvolatile GPRs, so make
1078          * FULL_REGS(regs) return true.  This is necessary to allow
1079          * ptrace to examine the thread immediately after exec.
1080          */
1081         regs->trap &= ~1UL;
1082
1083 #ifdef CONFIG_PPC32
1084         regs->mq = 0;
1085         regs->nip = start;
1086         regs->msr = MSR_USER;
1087 #else
1088         if (!is_32bit_task()) {
1089                 unsigned long entry;
1090
1091                 if (is_elf2_task()) {
1092                         /* Look ma, no function descriptors! */
1093                         entry = start;
1094
1095                         /*
1096                          * Ulrich says:
1097                          *   The latest iteration of the ABI requires that when
1098                          *   calling a function (at its global entry point),
1099                          *   the caller must ensure r12 holds the entry point
1100                          *   address (so that the function can quickly
1101                          *   establish addressability).
1102                          */
1103                         regs->gpr[12] = start;
1104                         /* Make sure that's restored on entry to userspace. */
1105                         set_thread_flag(TIF_RESTOREALL);
1106                 } else {
1107                         unsigned long toc;
1108
1109                         /* start is a relocated pointer to the function
1110                          * descriptor for the elf _start routine.  The first
1111                          * entry in the function descriptor is the entry
1112                          * address of _start and the second entry is the TOC
1113                          * value we need to use.
1114                          */
1115                         __get_user(entry, (unsigned long __user *)start);
1116                         __get_user(toc, (unsigned long __user *)start+1);
1117
1118                         /* Check whether the e_entry function descriptor entries
1119                          * need to be relocated before we can use them.
1120                          */
1121                         if (load_addr != 0) {
1122                                 entry += load_addr;
1123                                 toc   += load_addr;
1124                         }
1125                         regs->gpr[2] = toc;
1126                 }
1127                 regs->nip = entry;
1128                 regs->msr = MSR_USER64;
1129         } else {
1130                 regs->nip = start;
1131                 regs->gpr[2] = 0;
1132                 regs->msr = MSR_USER32;
1133         }
1134 #endif
1135         discard_lazy_cpu_state();
1136 #ifdef CONFIG_VSX
1137         current->thread.used_vsr = 0;
1138 #endif
1139         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1140         current->thread.fp_save_area = NULL;
1141 #ifdef CONFIG_ALTIVEC
1142         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1143         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1144         current->thread.vr_save_area = NULL;
1145         current->thread.vrsave = 0;
1146         current->thread.used_vr = 0;
1147 #endif /* CONFIG_ALTIVEC */
1148 #ifdef CONFIG_SPE
1149         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1150         current->thread.acc = 0;
1151         current->thread.spefscr = 0;
1152         current->thread.used_spe = 0;
1153 #endif /* CONFIG_SPE */
1154 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1155         if (cpu_has_feature(CPU_FTR_TM))
1156                 regs->msr |= MSR_TM;
1157         current->thread.tm_tfhar = 0;
1158         current->thread.tm_texasr = 0;
1159         current->thread.tm_tfiar = 0;
1160 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1161 }
1162
1163 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1164                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1165
1166 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1167 {
1168         struct pt_regs *regs = tsk->thread.regs;
1169
1170         /* This is a bit hairy.  If we are an SPE enabled  processor
1171          * (have embedded fp) we store the IEEE exception enable flags in
1172          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1173          * mode (asyn, precise, disabled) for 'Classic' FP. */
1174         if (val & PR_FP_EXC_SW_ENABLE) {
1175 #ifdef CONFIG_SPE
1176                 if (cpu_has_feature(CPU_FTR_SPE)) {
1177                         tsk->thread.fpexc_mode = val &
1178                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1179                         return 0;
1180                 } else {
1181                         return -EINVAL;
1182                 }
1183 #else
1184                 return -EINVAL;
1185 #endif
1186         }
1187
1188         /* on a CONFIG_SPE this does not hurt us.  The bits that
1189          * __pack_fe01 use do not overlap with bits used for
1190          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1191          * on CONFIG_SPE implementations are reserved so writing to
1192          * them does not change anything */
1193         if (val > PR_FP_EXC_PRECISE)
1194                 return -EINVAL;
1195         tsk->thread.fpexc_mode = __pack_fe01(val);
1196         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1197                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1198                         | tsk->thread.fpexc_mode;
1199         return 0;
1200 }
1201
1202 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1203 {
1204         unsigned int val;
1205
1206         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1207 #ifdef CONFIG_SPE
1208                 if (cpu_has_feature(CPU_FTR_SPE))
1209                         val = tsk->thread.fpexc_mode;
1210                 else
1211                         return -EINVAL;
1212 #else
1213                 return -EINVAL;
1214 #endif
1215         else
1216                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1217         return put_user(val, (unsigned int __user *) adr);
1218 }
1219
1220 int set_endian(struct task_struct *tsk, unsigned int val)
1221 {
1222         struct pt_regs *regs = tsk->thread.regs;
1223
1224         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1225             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1226                 return -EINVAL;
1227
1228         if (regs == NULL)
1229                 return -EINVAL;
1230
1231         if (val == PR_ENDIAN_BIG)
1232                 regs->msr &= ~MSR_LE;
1233         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1234                 regs->msr |= MSR_LE;
1235         else
1236                 return -EINVAL;
1237
1238         return 0;
1239 }
1240
1241 int get_endian(struct task_struct *tsk, unsigned long adr)
1242 {
1243         struct pt_regs *regs = tsk->thread.regs;
1244         unsigned int val;
1245
1246         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1247             !cpu_has_feature(CPU_FTR_REAL_LE))
1248                 return -EINVAL;
1249
1250         if (regs == NULL)
1251                 return -EINVAL;
1252
1253         if (regs->msr & MSR_LE) {
1254                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1255                         val = PR_ENDIAN_LITTLE;
1256                 else
1257                         val = PR_ENDIAN_PPC_LITTLE;
1258         } else
1259                 val = PR_ENDIAN_BIG;
1260
1261         return put_user(val, (unsigned int __user *)adr);
1262 }
1263
1264 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1265 {
1266         tsk->thread.align_ctl = val;
1267         return 0;
1268 }
1269
1270 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1271 {
1272         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1273 }
1274
1275 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1276                                   unsigned long nbytes)
1277 {
1278         unsigned long stack_page;
1279         unsigned long cpu = task_cpu(p);
1280
1281         /*
1282          * Avoid crashing if the stack has overflowed and corrupted
1283          * task_cpu(p), which is in the thread_info struct.
1284          */
1285         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1286                 stack_page = (unsigned long) hardirq_ctx[cpu];
1287                 if (sp >= stack_page + sizeof(struct thread_struct)
1288                     && sp <= stack_page + THREAD_SIZE - nbytes)
1289                         return 1;
1290
1291                 stack_page = (unsigned long) softirq_ctx[cpu];
1292                 if (sp >= stack_page + sizeof(struct thread_struct)
1293                     && sp <= stack_page + THREAD_SIZE - nbytes)
1294                         return 1;
1295         }
1296         return 0;
1297 }
1298
1299 int validate_sp(unsigned long sp, struct task_struct *p,
1300                        unsigned long nbytes)
1301 {
1302         unsigned long stack_page = (unsigned long)task_stack_page(p);
1303
1304         if (sp >= stack_page + sizeof(struct thread_struct)
1305             && sp <= stack_page + THREAD_SIZE - nbytes)
1306                 return 1;
1307
1308         return valid_irq_stack(sp, p, nbytes);
1309 }
1310
1311 EXPORT_SYMBOL(validate_sp);
1312
1313 unsigned long get_wchan(struct task_struct *p)
1314 {
1315         unsigned long ip, sp;
1316         int count = 0;
1317
1318         if (!p || p == current || p->state == TASK_RUNNING)
1319                 return 0;
1320
1321         sp = p->thread.ksp;
1322         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1323                 return 0;
1324
1325         do {
1326                 sp = *(unsigned long *)sp;
1327                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1328                         return 0;
1329                 if (count > 0) {
1330                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1331                         if (!in_sched_functions(ip))
1332                                 return ip;
1333                 }
1334         } while (count++ < 16);
1335         return 0;
1336 }
1337
1338 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1339
1340 void show_stack(struct task_struct *tsk, unsigned long *stack)
1341 {
1342         unsigned long sp, ip, lr, newsp;
1343         int count = 0;
1344         int firstframe = 1;
1345 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1346         int curr_frame = current->curr_ret_stack;
1347         extern void return_to_handler(void);
1348         unsigned long rth = (unsigned long)return_to_handler;
1349         unsigned long mrth = -1;
1350 #ifdef CONFIG_PPC64
1351         extern void mod_return_to_handler(void);
1352         rth = *(unsigned long *)rth;
1353         mrth = (unsigned long)mod_return_to_handler;
1354         mrth = *(unsigned long *)mrth;
1355 #endif
1356 #endif
1357
1358         sp = (unsigned long) stack;
1359         if (tsk == NULL)
1360                 tsk = current;
1361         if (sp == 0) {
1362                 if (tsk == current)
1363                         asm("mr %0,1" : "=r" (sp));
1364                 else
1365                         sp = tsk->thread.ksp;
1366         }
1367
1368         lr = 0;
1369         printk("Call Trace:\n");
1370         do {
1371                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1372                         return;
1373
1374                 stack = (unsigned long *) sp;
1375                 newsp = stack[0];
1376                 ip = stack[STACK_FRAME_LR_SAVE];
1377                 if (!firstframe || ip != lr) {
1378                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1379 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1381                                 printk(" (%pS)",
1382                                        (void *)current->ret_stack[curr_frame].ret);
1383                                 curr_frame--;
1384                         }
1385 #endif
1386                         if (firstframe)
1387                                 printk(" (unreliable)");
1388                         printk("\n");
1389                 }
1390                 firstframe = 0;
1391
1392                 /*
1393                  * See if this is an exception frame.
1394                  * We look for the "regshere" marker in the current frame.
1395                  */
1396                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1397                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1398                         struct pt_regs *regs = (struct pt_regs *)
1399                                 (sp + STACK_FRAME_OVERHEAD);
1400                         lr = regs->link;
1401                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1402                                regs->trap, (void *)regs->nip, (void *)lr);
1403                         firstframe = 1;
1404                 }
1405
1406                 sp = newsp;
1407         } while (count++ < kstack_depth_to_print);
1408 }
1409
1410 #ifdef CONFIG_PPC64
1411 /* Called with hard IRQs off */
1412 void notrace __ppc64_runlatch_on(void)
1413 {
1414         struct thread_info *ti = current_thread_info();
1415         unsigned long ctrl;
1416
1417         ctrl = mfspr(SPRN_CTRLF);
1418         ctrl |= CTRL_RUNLATCH;
1419         mtspr(SPRN_CTRLT, ctrl);
1420
1421         ti->local_flags |= _TLF_RUNLATCH;
1422 }
1423
1424 /* Called with hard IRQs off */
1425 void notrace __ppc64_runlatch_off(void)
1426 {
1427         struct thread_info *ti = current_thread_info();
1428         unsigned long ctrl;
1429
1430         ti->local_flags &= ~_TLF_RUNLATCH;
1431
1432         ctrl = mfspr(SPRN_CTRLF);
1433         ctrl &= ~CTRL_RUNLATCH;
1434         mtspr(SPRN_CTRLT, ctrl);
1435 }
1436 #endif /* CONFIG_PPC64 */
1437
1438 unsigned long arch_align_stack(unsigned long sp)
1439 {
1440         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1441                 sp -= get_random_int() & ~PAGE_MASK;
1442         return sp & ~0xf;
1443 }
1444
1445 static inline unsigned long brk_rnd(void)
1446 {
1447         unsigned long rnd = 0;
1448
1449         /* 8MB for 32bit, 1GB for 64bit */
1450         if (is_32bit_task())
1451                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1452         else
1453                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1454
1455         return rnd << PAGE_SHIFT;
1456 }
1457
1458 unsigned long arch_randomize_brk(struct mm_struct *mm)
1459 {
1460         unsigned long base = mm->brk;
1461         unsigned long ret;
1462
1463 #ifdef CONFIG_PPC_STD_MMU_64
1464         /*
1465          * If we are using 1TB segments and we are allowed to randomise
1466          * the heap, we can put it above 1TB so it is backed by a 1TB
1467          * segment. Otherwise the heap will be in the bottom 1TB
1468          * which always uses 256MB segments and this may result in a
1469          * performance penalty.
1470          */
1471         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1472                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1473 #endif
1474
1475         ret = PAGE_ALIGN(base + brk_rnd());
1476
1477         if (ret < mm->brk)
1478                 return mm->brk;
1479
1480         return ret;
1481 }
1482
1483 unsigned long randomize_et_dyn(unsigned long base)
1484 {
1485         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1486
1487         if (ret < base)
1488                 return base;
1489
1490         return ret;
1491 }