Merge tag 'samsung-soc-5.10' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
110 static int __init enable_strict_msr_control(char *str)
111 {
112         strict_msr_control = true;
113         pr_info("Enabling strict facility control\n");
114
115         return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr | bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr |= MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134
135         return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr &= ~MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160         unsigned long msr;
161
162         save_fpu(tsk);
163         msr = tsk->thread.regs->msr;
164         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX))
167                 msr &= ~MSR_VSX;
168 #endif
169         tsk->thread.regs->msr = msr;
170 }
171
172 void giveup_fpu(struct task_struct *tsk)
173 {
174         check_if_tm_restore_required(tsk);
175
176         msr_check_and_set(MSR_FP);
177         __giveup_fpu(tsk);
178         msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188         if (tsk->thread.regs) {
189                 /*
190                  * We need to disable preemption here because if we didn't,
191                  * another process could get scheduled after the regs->msr
192                  * test but before we have finished saving the FP registers
193                  * to the thread_struct.  That process could take over the
194                  * FPU, and then when we get scheduled again we would store
195                  * bogus values for the remaining FP registers.
196                  */
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_FP) {
199                         /*
200                          * This should only ever be called for current or
201                          * for a stopped child process.  Since we save away
202                          * the FP register state on context switch,
203                          * there is something wrong if a stopped child appears
204                          * to still have its FP state in the CPU registers.
205                          */
206                         BUG_ON(tsk != current);
207                         giveup_fpu(tsk);
208                 }
209                 preempt_enable();
210         }
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214 void enable_kernel_fp(void)
215 {
216         unsigned long cpumsr;
217
218         WARN_ON(preemptible());
219
220         cpumsr = msr_check_and_set(MSR_FP);
221
222         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223                 check_if_tm_restore_required(current);
224                 /*
225                  * If a thread has already been reclaimed then the
226                  * checkpointed registers are on the CPU but have definitely
227                  * been saved by the reclaim code. Don't need to and *cannot*
228                  * giveup as this would save  to the 'live' structure not the
229                  * checkpointed structure.
230                  */
231                 if (!MSR_TM_ACTIVE(cpumsr) &&
232                      MSR_TM_ACTIVE(current->thread.regs->msr))
233                         return;
234                 __giveup_fpu(current);
235         }
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243         unsigned long msr;
244
245         save_altivec(tsk);
246         msr = tsk->thread.regs->msr;
247         msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249         if (cpu_has_feature(CPU_FTR_VSX))
250                 msr &= ~MSR_VSX;
251 #endif
252         tsk->thread.regs->msr = msr;
253 }
254
255 void giveup_altivec(struct task_struct *tsk)
256 {
257         check_if_tm_restore_required(tsk);
258
259         msr_check_and_set(MSR_VEC);
260         __giveup_altivec(tsk);
261         msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264
265 void enable_kernel_altivec(void)
266 {
267         unsigned long cpumsr;
268
269         WARN_ON(preemptible());
270
271         cpumsr = msr_check_and_set(MSR_VEC);
272
273         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274                 check_if_tm_restore_required(current);
275                 /*
276                  * If a thread has already been reclaimed then the
277                  * checkpointed registers are on the CPU but have definitely
278                  * been saved by the reclaim code. Don't need to and *cannot*
279                  * giveup as this would save  to the 'live' structure not the
280                  * checkpointed structure.
281                  */
282                 if (!MSR_TM_ACTIVE(cpumsr) &&
283                      MSR_TM_ACTIVE(current->thread.regs->msr))
284                         return;
285                 __giveup_altivec(current);
286         }
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296         if (tsk->thread.regs) {
297                 preempt_disable();
298                 if (tsk->thread.regs->msr & MSR_VEC) {
299                         BUG_ON(tsk != current);
300                         giveup_altivec(tsk);
301                 }
302                 preempt_enable();
303         }
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311         unsigned long msr = tsk->thread.regs->msr;
312
313         /*
314          * We should never be ssetting MSR_VSX without also setting
315          * MSR_FP and MSR_VEC
316          */
317         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318
319         /* __giveup_fpu will clear MSR_VSX */
320         if (msr & MSR_FP)
321                 __giveup_fpu(tsk);
322         if (msr & MSR_VEC)
323                 __giveup_altivec(tsk);
324 }
325
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328         check_if_tm_restore_required(tsk);
329
330         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331         __giveup_vsx(tsk);
332         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334
335 void enable_kernel_vsx(void)
336 {
337         unsigned long cpumsr;
338
339         WARN_ON(preemptible());
340
341         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342
343         if (current->thread.regs &&
344             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345                 check_if_tm_restore_required(current);
346                 /*
347                  * If a thread has already been reclaimed then the
348                  * checkpointed registers are on the CPU but have definitely
349                  * been saved by the reclaim code. Don't need to and *cannot*
350                  * giveup as this would save  to the 'live' structure not the
351                  * checkpointed structure.
352                  */
353                 if (!MSR_TM_ACTIVE(cpumsr) &&
354                      MSR_TM_ACTIVE(current->thread.regs->msr))
355                         return;
356                 __giveup_vsx(current);
357         }
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363         if (tsk->thread.regs) {
364                 preempt_disable();
365                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366                         BUG_ON(tsk != current);
367                         giveup_vsx(tsk);
368                 }
369                 preempt_enable();
370         }
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378         check_if_tm_restore_required(tsk);
379
380         msr_check_and_set(MSR_SPE);
381         __giveup_spe(tsk);
382         msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385
386 void enable_kernel_spe(void)
387 {
388         WARN_ON(preemptible());
389
390         msr_check_and_set(MSR_SPE);
391
392         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393                 check_if_tm_restore_required(current);
394                 __giveup_spe(current);
395         }
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401         if (tsk->thread.regs) {
402                 preempt_disable();
403                 if (tsk->thread.regs->msr & MSR_SPE) {
404                         BUG_ON(tsk != current);
405                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406                         giveup_spe(tsk);
407                 }
408                 preempt_enable();
409         }
410 }
411 #endif /* CONFIG_SPE */
412
413 static unsigned long msr_all_available;
414
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418         msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421         if (cpu_has_feature(CPU_FTR_ALTIVEC))
422                 msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425         if (cpu_has_feature(CPU_FTR_VSX))
426                 msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429         if (cpu_has_feature(CPU_FTR_SPE))
430                 msr_all_available |= MSR_SPE;
431 #endif
432
433         return 0;
434 }
435 early_initcall(init_msr_all_available);
436
437 void giveup_all(struct task_struct *tsk)
438 {
439         unsigned long usermsr;
440
441         if (!tsk->thread.regs)
442                 return;
443
444         check_if_tm_restore_required(tsk);
445
446         usermsr = tsk->thread.regs->msr;
447
448         if ((usermsr & msr_all_available) == 0)
449                 return;
450
451         msr_check_and_set(msr_all_available);
452
453         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454
455 #ifdef CONFIG_PPC_FPU
456         if (usermsr & MSR_FP)
457                 __giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460         if (usermsr & MSR_VEC)
461                 __giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464         if (usermsr & MSR_SPE)
465                 __giveup_spe(tsk);
466 #endif
467
468         msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static bool should_restore_fp(void)
475 {
476         if (current->thread.load_fp) {
477                 current->thread.load_fp++;
478                 return true;
479         }
480         return false;
481 }
482
483 static void do_restore_fp(void)
484 {
485         load_fp_state(&current->thread.fp_state);
486 }
487 #else
488 static bool should_restore_fp(void) { return false; }
489 static void do_restore_fp(void) { }
490 #endif /* CONFIG_PPC_FPU */
491
492 #ifdef CONFIG_ALTIVEC
493 static bool should_restore_altivec(void)
494 {
495         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
496                 current->thread.load_vec++;
497                 return true;
498         }
499         return false;
500 }
501
502 static void do_restore_altivec(void)
503 {
504         load_vr_state(&current->thread.vr_state);
505         current->thread.used_vr = 1;
506 }
507 #else
508 static bool should_restore_altivec(void) { return false; }
509 static void do_restore_altivec(void) { }
510 #endif /* CONFIG_ALTIVEC */
511
512 #ifdef CONFIG_VSX
513 static bool should_restore_vsx(void)
514 {
515         if (cpu_has_feature(CPU_FTR_VSX))
516                 return true;
517         return false;
518 }
519 static void do_restore_vsx(void)
520 {
521         current->thread.used_vsr = 1;
522 }
523 #else
524 static bool should_restore_vsx(void) { return false; }
525 static void do_restore_vsx(void) { }
526 #endif /* CONFIG_VSX */
527
528 /*
529  * The exception exit path calls restore_math() with interrupts hard disabled
530  * but the soft irq state not "reconciled". ftrace code that calls
531  * local_irq_save/restore causes warnings.
532  *
533  * Rather than complicate the exit path, just don't trace restore_math. This
534  * could be done by having ftrace entry code check for this un-reconciled
535  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
536  * temporarily fix it up for the duration of the ftrace call.
537  */
538 void notrace restore_math(struct pt_regs *regs)
539 {
540         unsigned long msr;
541         unsigned long new_msr = 0;
542
543         msr = regs->msr;
544
545         /*
546          * new_msr tracks the facilities that are to be restored. Only reload
547          * if the bit is not set in the user MSR (if it is set, the registers
548          * are live for the user thread).
549          */
550         if ((!(msr & MSR_FP)) && should_restore_fp())
551                 new_msr |= MSR_FP;
552
553         if ((!(msr & MSR_VEC)) && should_restore_altivec())
554                 new_msr |= MSR_VEC;
555
556         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
557                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
558                         new_msr |= MSR_VSX;
559         }
560
561         if (new_msr) {
562                 unsigned long fpexc_mode = 0;
563
564                 msr_check_and_set(new_msr);
565
566                 if (new_msr & MSR_FP) {
567                         do_restore_fp();
568
569                         // This also covers VSX, because VSX implies FP
570                         fpexc_mode = current->thread.fpexc_mode;
571                 }
572
573                 if (new_msr & MSR_VEC)
574                         do_restore_altivec();
575
576                 if (new_msr & MSR_VSX)
577                         do_restore_vsx();
578
579                 msr_check_and_clear(new_msr);
580
581                 regs->msr |= new_msr | fpexc_mode;
582         }
583 }
584 #endif
585
586 static void save_all(struct task_struct *tsk)
587 {
588         unsigned long usermsr;
589
590         if (!tsk->thread.regs)
591                 return;
592
593         usermsr = tsk->thread.regs->msr;
594
595         if ((usermsr & msr_all_available) == 0)
596                 return;
597
598         msr_check_and_set(msr_all_available);
599
600         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
601
602         if (usermsr & MSR_FP)
603                 save_fpu(tsk);
604
605         if (usermsr & MSR_VEC)
606                 save_altivec(tsk);
607
608         if (usermsr & MSR_SPE)
609                 __giveup_spe(tsk);
610
611         msr_check_and_clear(msr_all_available);
612         thread_pkey_regs_save(&tsk->thread);
613 }
614
615 void flush_all_to_thread(struct task_struct *tsk)
616 {
617         if (tsk->thread.regs) {
618                 preempt_disable();
619                 BUG_ON(tsk != current);
620 #ifdef CONFIG_SPE
621                 if (tsk->thread.regs->msr & MSR_SPE)
622                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
623 #endif
624                 save_all(tsk);
625
626                 preempt_enable();
627         }
628 }
629 EXPORT_SYMBOL(flush_all_to_thread);
630
631 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
632 void do_send_trap(struct pt_regs *regs, unsigned long address,
633                   unsigned long error_code, int breakpt)
634 {
635         current->thread.trap_nr = TRAP_HWBKPT;
636         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
637                         11, SIGSEGV) == NOTIFY_STOP)
638                 return;
639
640         /* Deliver the signal to userspace */
641         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
642                                     (void __user *)address);
643 }
644 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
645 void do_break (struct pt_regs *regs, unsigned long address,
646                     unsigned long error_code)
647 {
648         current->thread.trap_nr = TRAP_HWBKPT;
649         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
650                         11, SIGSEGV) == NOTIFY_STOP)
651                 return;
652
653         if (debugger_break_match(regs))
654                 return;
655
656         /* Deliver the signal to userspace */
657         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
658 }
659 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
660
661 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
662
663 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
664 /*
665  * Set the debug registers back to their default "safe" values.
666  */
667 static void set_debug_reg_defaults(struct thread_struct *thread)
668 {
669         thread->debug.iac1 = thread->debug.iac2 = 0;
670 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
671         thread->debug.iac3 = thread->debug.iac4 = 0;
672 #endif
673         thread->debug.dac1 = thread->debug.dac2 = 0;
674 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
675         thread->debug.dvc1 = thread->debug.dvc2 = 0;
676 #endif
677         thread->debug.dbcr0 = 0;
678 #ifdef CONFIG_BOOKE
679         /*
680          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
681          */
682         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
683                         DBCR1_IAC3US | DBCR1_IAC4US;
684         /*
685          * Force Data Address Compare User/Supervisor bits to be User-only
686          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
687          */
688         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
689 #else
690         thread->debug.dbcr1 = 0;
691 #endif
692 }
693
694 static void prime_debug_regs(struct debug_reg *debug)
695 {
696         /*
697          * We could have inherited MSR_DE from userspace, since
698          * it doesn't get cleared on exception entry.  Make sure
699          * MSR_DE is clear before we enable any debug events.
700          */
701         mtmsr(mfmsr() & ~MSR_DE);
702
703         mtspr(SPRN_IAC1, debug->iac1);
704         mtspr(SPRN_IAC2, debug->iac2);
705 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
706         mtspr(SPRN_IAC3, debug->iac3);
707         mtspr(SPRN_IAC4, debug->iac4);
708 #endif
709         mtspr(SPRN_DAC1, debug->dac1);
710         mtspr(SPRN_DAC2, debug->dac2);
711 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
712         mtspr(SPRN_DVC1, debug->dvc1);
713         mtspr(SPRN_DVC2, debug->dvc2);
714 #endif
715         mtspr(SPRN_DBCR0, debug->dbcr0);
716         mtspr(SPRN_DBCR1, debug->dbcr1);
717 #ifdef CONFIG_BOOKE
718         mtspr(SPRN_DBCR2, debug->dbcr2);
719 #endif
720 }
721 /*
722  * Unless neither the old or new thread are making use of the
723  * debug registers, set the debug registers from the values
724  * stored in the new thread.
725  */
726 void switch_booke_debug_regs(struct debug_reg *new_debug)
727 {
728         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
729                 || (new_debug->dbcr0 & DBCR0_IDM))
730                         prime_debug_regs(new_debug);
731 }
732 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
733 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
734 #ifndef CONFIG_HAVE_HW_BREAKPOINT
735 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
736 {
737         preempt_disable();
738         __set_breakpoint(i, brk);
739         preempt_enable();
740 }
741
742 static void set_debug_reg_defaults(struct thread_struct *thread)
743 {
744         int i;
745         struct arch_hw_breakpoint null_brk = {0};
746
747         for (i = 0; i < nr_wp_slots(); i++) {
748                 thread->hw_brk[i] = null_brk;
749                 if (ppc_breakpoint_available())
750                         set_breakpoint(i, &thread->hw_brk[i]);
751         }
752 }
753
754 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
755                                 struct arch_hw_breakpoint *b)
756 {
757         if (a->address != b->address)
758                 return false;
759         if (a->type != b->type)
760                 return false;
761         if (a->len != b->len)
762                 return false;
763         /* no need to check hw_len. it's calculated from address and len */
764         return true;
765 }
766
767 static void switch_hw_breakpoint(struct task_struct *new)
768 {
769         int i;
770
771         for (i = 0; i < nr_wp_slots(); i++) {
772                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
773                                         &new->thread.hw_brk[i])))
774                         continue;
775
776                 __set_breakpoint(i, &new->thread.hw_brk[i]);
777         }
778 }
779 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
780 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
781
782 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
783 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
784 {
785         mtspr(SPRN_DAC1, dabr);
786 #ifdef CONFIG_PPC_47x
787         isync();
788 #endif
789         return 0;
790 }
791 #elif defined(CONFIG_PPC_BOOK3S)
792 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
793 {
794         mtspr(SPRN_DABR, dabr);
795         if (cpu_has_feature(CPU_FTR_DABRX))
796                 mtspr(SPRN_DABRX, dabrx);
797         return 0;
798 }
799 #else
800 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
801 {
802         return -EINVAL;
803 }
804 #endif
805
806 static inline int set_dabr(struct arch_hw_breakpoint *brk)
807 {
808         unsigned long dabr, dabrx;
809
810         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
811         dabrx = ((brk->type >> 3) & 0x7);
812
813         if (ppc_md.set_dabr)
814                 return ppc_md.set_dabr(dabr, dabrx);
815
816         return __set_dabr(dabr, dabrx);
817 }
818
819 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
820 {
821         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
822                                LCTRL1_CRWF_RW;
823         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
824         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
825         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
826
827         if (start_addr == 0)
828                 lctrl2 |= LCTRL2_LW0LA_F;
829         else if (end_addr == 0)
830                 lctrl2 |= LCTRL2_LW0LA_E;
831         else
832                 lctrl2 |= LCTRL2_LW0LA_EandF;
833
834         mtspr(SPRN_LCTRL2, 0);
835
836         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
837                 return 0;
838
839         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
840                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
841         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
842                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
843
844         mtspr(SPRN_CMPE, start_addr - 1);
845         mtspr(SPRN_CMPF, end_addr);
846         mtspr(SPRN_LCTRL1, lctrl1);
847         mtspr(SPRN_LCTRL2, lctrl2);
848
849         return 0;
850 }
851
852 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
853 {
854         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
855
856         if (dawr_enabled())
857                 // Power8 or later
858                 set_dawr(nr, brk);
859         else if (IS_ENABLED(CONFIG_PPC_8xx))
860                 set_breakpoint_8xx(brk);
861         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
862                 // Power7 or earlier
863                 set_dabr(brk);
864         else
865                 // Shouldn't happen due to higher level checks
866                 WARN_ON_ONCE(1);
867 }
868
869 /* Check if we have DAWR or DABR hardware */
870 bool ppc_breakpoint_available(void)
871 {
872         if (dawr_enabled())
873                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
874         if (cpu_has_feature(CPU_FTR_ARCH_207S))
875                 return false; /* POWER9 with DAWR disabled */
876         /* DABR: Everything but POWER8 and POWER9 */
877         return true;
878 }
879 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
880
881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
882
883 static inline bool tm_enabled(struct task_struct *tsk)
884 {
885         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
886 }
887
888 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
889 {
890         /*
891          * Use the current MSR TM suspended bit to track if we have
892          * checkpointed state outstanding.
893          * On signal delivery, we'd normally reclaim the checkpointed
894          * state to obtain stack pointer (see:get_tm_stackpointer()).
895          * This will then directly return to userspace without going
896          * through __switch_to(). However, if the stack frame is bad,
897          * we need to exit this thread which calls __switch_to() which
898          * will again attempt to reclaim the already saved tm state.
899          * Hence we need to check that we've not already reclaimed
900          * this state.
901          * We do this using the current MSR, rather tracking it in
902          * some specific thread_struct bit, as it has the additional
903          * benefit of checking for a potential TM bad thing exception.
904          */
905         if (!MSR_TM_SUSPENDED(mfmsr()))
906                 return;
907
908         giveup_all(container_of(thr, struct task_struct, thread));
909
910         tm_reclaim(thr, cause);
911
912         /*
913          * If we are in a transaction and FP is off then we can't have
914          * used FP inside that transaction. Hence the checkpointed
915          * state is the same as the live state. We need to copy the
916          * live state to the checkpointed state so that when the
917          * transaction is restored, the checkpointed state is correct
918          * and the aborted transaction sees the correct state. We use
919          * ckpt_regs.msr here as that's what tm_reclaim will use to
920          * determine if it's going to write the checkpointed state or
921          * not. So either this will write the checkpointed registers,
922          * or reclaim will. Similarly for VMX.
923          */
924         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
925                 memcpy(&thr->ckfp_state, &thr->fp_state,
926                        sizeof(struct thread_fp_state));
927         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
928                 memcpy(&thr->ckvr_state, &thr->vr_state,
929                        sizeof(struct thread_vr_state));
930 }
931
932 void tm_reclaim_current(uint8_t cause)
933 {
934         tm_enable();
935         tm_reclaim_thread(&current->thread, cause);
936 }
937
938 static inline void tm_reclaim_task(struct task_struct *tsk)
939 {
940         /* We have to work out if we're switching from/to a task that's in the
941          * middle of a transaction.
942          *
943          * In switching we need to maintain a 2nd register state as
944          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
945          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
946          * ckvr_state
947          *
948          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
949          */
950         struct thread_struct *thr = &tsk->thread;
951
952         if (!thr->regs)
953                 return;
954
955         if (!MSR_TM_ACTIVE(thr->regs->msr))
956                 goto out_and_saveregs;
957
958         WARN_ON(tm_suspend_disabled);
959
960         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
961                  "ccr=%lx, msr=%lx, trap=%lx)\n",
962                  tsk->pid, thr->regs->nip,
963                  thr->regs->ccr, thr->regs->msr,
964                  thr->regs->trap);
965
966         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
967
968         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
969                  tsk->pid);
970
971 out_and_saveregs:
972         /* Always save the regs here, even if a transaction's not active.
973          * This context-switches a thread's TM info SPRs.  We do it here to
974          * be consistent with the restore path (in recheckpoint) which
975          * cannot happen later in _switch().
976          */
977         tm_save_sprs(thr);
978 }
979
980 extern void __tm_recheckpoint(struct thread_struct *thread);
981
982 void tm_recheckpoint(struct thread_struct *thread)
983 {
984         unsigned long flags;
985
986         if (!(thread->regs->msr & MSR_TM))
987                 return;
988
989         /* We really can't be interrupted here as the TEXASR registers can't
990          * change and later in the trecheckpoint code, we have a userspace R1.
991          * So let's hard disable over this region.
992          */
993         local_irq_save(flags);
994         hard_irq_disable();
995
996         /* The TM SPRs are restored here, so that TEXASR.FS can be set
997          * before the trecheckpoint and no explosion occurs.
998          */
999         tm_restore_sprs(thread);
1000
1001         __tm_recheckpoint(thread);
1002
1003         local_irq_restore(flags);
1004 }
1005
1006 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1007 {
1008         if (!cpu_has_feature(CPU_FTR_TM))
1009                 return;
1010
1011         /* Recheckpoint the registers of the thread we're about to switch to.
1012          *
1013          * If the task was using FP, we non-lazily reload both the original and
1014          * the speculative FP register states.  This is because the kernel
1015          * doesn't see if/when a TM rollback occurs, so if we take an FP
1016          * unavailable later, we are unable to determine which set of FP regs
1017          * need to be restored.
1018          */
1019         if (!tm_enabled(new))
1020                 return;
1021
1022         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1023                 tm_restore_sprs(&new->thread);
1024                 return;
1025         }
1026         /* Recheckpoint to restore original checkpointed register state. */
1027         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1028                  new->pid, new->thread.regs->msr);
1029
1030         tm_recheckpoint(&new->thread);
1031
1032         /*
1033          * The checkpointed state has been restored but the live state has
1034          * not, ensure all the math functionality is turned off to trigger
1035          * restore_math() to reload.
1036          */
1037         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1038
1039         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1040                  "(kernel msr 0x%lx)\n",
1041                  new->pid, mfmsr());
1042 }
1043
1044 static inline void __switch_to_tm(struct task_struct *prev,
1045                 struct task_struct *new)
1046 {
1047         if (cpu_has_feature(CPU_FTR_TM)) {
1048                 if (tm_enabled(prev) || tm_enabled(new))
1049                         tm_enable();
1050
1051                 if (tm_enabled(prev)) {
1052                         prev->thread.load_tm++;
1053                         tm_reclaim_task(prev);
1054                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1055                                 prev->thread.regs->msr &= ~MSR_TM;
1056                 }
1057
1058                 tm_recheckpoint_new_task(new);
1059         }
1060 }
1061
1062 /*
1063  * This is called if we are on the way out to userspace and the
1064  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1065  * FP and/or vector state and does so if necessary.
1066  * If userspace is inside a transaction (whether active or
1067  * suspended) and FP/VMX/VSX instructions have ever been enabled
1068  * inside that transaction, then we have to keep them enabled
1069  * and keep the FP/VMX/VSX state loaded while ever the transaction
1070  * continues.  The reason is that if we didn't, and subsequently
1071  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1072  * we don't know whether it's the same transaction, and thus we
1073  * don't know which of the checkpointed state and the transactional
1074  * state to use.
1075  */
1076 void restore_tm_state(struct pt_regs *regs)
1077 {
1078         unsigned long msr_diff;
1079
1080         /*
1081          * This is the only moment we should clear TIF_RESTORE_TM as
1082          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1083          * again, anything else could lead to an incorrect ckpt_msr being
1084          * saved and therefore incorrect signal contexts.
1085          */
1086         clear_thread_flag(TIF_RESTORE_TM);
1087         if (!MSR_TM_ACTIVE(regs->msr))
1088                 return;
1089
1090         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1091         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1092
1093         /* Ensure that restore_math() will restore */
1094         if (msr_diff & MSR_FP)
1095                 current->thread.load_fp = 1;
1096 #ifdef CONFIG_ALTIVEC
1097         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1098                 current->thread.load_vec = 1;
1099 #endif
1100         restore_math(regs);
1101
1102         regs->msr |= msr_diff;
1103 }
1104
1105 #else
1106 #define tm_recheckpoint_new_task(new)
1107 #define __switch_to_tm(prev, new)
1108 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1109
1110 static inline void save_sprs(struct thread_struct *t)
1111 {
1112 #ifdef CONFIG_ALTIVEC
1113         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1114                 t->vrsave = mfspr(SPRN_VRSAVE);
1115 #endif
1116 #ifdef CONFIG_PPC_BOOK3S_64
1117         if (cpu_has_feature(CPU_FTR_DSCR))
1118                 t->dscr = mfspr(SPRN_DSCR);
1119
1120         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121                 t->bescr = mfspr(SPRN_BESCR);
1122                 t->ebbhr = mfspr(SPRN_EBBHR);
1123                 t->ebbrr = mfspr(SPRN_EBBRR);
1124
1125                 t->fscr = mfspr(SPRN_FSCR);
1126
1127                 /*
1128                  * Note that the TAR is not available for use in the kernel.
1129                  * (To provide this, the TAR should be backed up/restored on
1130                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1131                  * this should be in pt_regs anyway (for debug).)
1132                  */
1133                 t->tar = mfspr(SPRN_TAR);
1134         }
1135 #endif
1136
1137         thread_pkey_regs_save(t);
1138 }
1139
1140 static inline void restore_sprs(struct thread_struct *old_thread,
1141                                 struct thread_struct *new_thread)
1142 {
1143 #ifdef CONFIG_ALTIVEC
1144         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1145             old_thread->vrsave != new_thread->vrsave)
1146                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1147 #endif
1148 #ifdef CONFIG_PPC_BOOK3S_64
1149         if (cpu_has_feature(CPU_FTR_DSCR)) {
1150                 u64 dscr = get_paca()->dscr_default;
1151                 if (new_thread->dscr_inherit)
1152                         dscr = new_thread->dscr;
1153
1154                 if (old_thread->dscr != dscr)
1155                         mtspr(SPRN_DSCR, dscr);
1156         }
1157
1158         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1159                 if (old_thread->bescr != new_thread->bescr)
1160                         mtspr(SPRN_BESCR, new_thread->bescr);
1161                 if (old_thread->ebbhr != new_thread->ebbhr)
1162                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1163                 if (old_thread->ebbrr != new_thread->ebbrr)
1164                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1165
1166                 if (old_thread->fscr != new_thread->fscr)
1167                         mtspr(SPRN_FSCR, new_thread->fscr);
1168
1169                 if (old_thread->tar != new_thread->tar)
1170                         mtspr(SPRN_TAR, new_thread->tar);
1171         }
1172
1173         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1174             old_thread->tidr != new_thread->tidr)
1175                 mtspr(SPRN_TIDR, new_thread->tidr);
1176 #endif
1177
1178         thread_pkey_regs_restore(new_thread, old_thread);
1179 }
1180
1181 struct task_struct *__switch_to(struct task_struct *prev,
1182         struct task_struct *new)
1183 {
1184         struct thread_struct *new_thread, *old_thread;
1185         struct task_struct *last;
1186 #ifdef CONFIG_PPC_BOOK3S_64
1187         struct ppc64_tlb_batch *batch;
1188 #endif
1189
1190         new_thread = &new->thread;
1191         old_thread = &current->thread;
1192
1193         WARN_ON(!irqs_disabled());
1194
1195 #ifdef CONFIG_PPC_BOOK3S_64
1196         batch = this_cpu_ptr(&ppc64_tlb_batch);
1197         if (batch->active) {
1198                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1199                 if (batch->index)
1200                         __flush_tlb_pending(batch);
1201                 batch->active = 0;
1202         }
1203 #endif /* CONFIG_PPC_BOOK3S_64 */
1204
1205 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1206         switch_booke_debug_regs(&new->thread.debug);
1207 #else
1208 /*
1209  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1210  * schedule DABR
1211  */
1212 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1213         switch_hw_breakpoint(new);
1214 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1215 #endif
1216
1217         /*
1218          * We need to save SPRs before treclaim/trecheckpoint as these will
1219          * change a number of them.
1220          */
1221         save_sprs(&prev->thread);
1222
1223         /* Save FPU, Altivec, VSX and SPE state */
1224         giveup_all(prev);
1225
1226         __switch_to_tm(prev, new);
1227
1228         if (!radix_enabled()) {
1229                 /*
1230                  * We can't take a PMU exception inside _switch() since there
1231                  * is a window where the kernel stack SLB and the kernel stack
1232                  * are out of sync. Hard disable here.
1233                  */
1234                 hard_irq_disable();
1235         }
1236
1237         /*
1238          * Call restore_sprs() before calling _switch(). If we move it after
1239          * _switch() then we miss out on calling it for new tasks. The reason
1240          * for this is we manually create a stack frame for new tasks that
1241          * directly returns through ret_from_fork() or
1242          * ret_from_kernel_thread(). See copy_thread() for details.
1243          */
1244         restore_sprs(old_thread, new_thread);
1245
1246         last = _switch(old_thread, new_thread);
1247
1248 #ifdef CONFIG_PPC_BOOK3S_64
1249         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1250                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1251                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1252                 batch->active = 1;
1253         }
1254
1255         if (current->thread.regs) {
1256                 restore_math(current->thread.regs);
1257
1258                 /*
1259                  * The copy-paste buffer can only store into foreign real
1260                  * addresses, so unprivileged processes can not see the
1261                  * data or use it in any way unless they have foreign real
1262                  * mappings. If the new process has the foreign real address
1263                  * mappings, we must issue a cp_abort to clear any state and
1264                  * prevent snooping, corruption or a covert channel.
1265                  */
1266                 if (current->mm &&
1267                         atomic_read(&current->mm->context.vas_windows))
1268                         asm volatile(PPC_CP_ABORT);
1269         }
1270 #endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272         return last;
1273 }
1274
1275 #define NR_INSN_TO_PRINT        16
1276
1277 static void show_instructions(struct pt_regs *regs)
1278 {
1279         int i;
1280         unsigned long nip = regs->nip;
1281         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1282
1283         printk("Instruction dump:");
1284
1285         /*
1286          * If we were executing with the MMU off for instructions, adjust pc
1287          * rather than printing XXXXXXXX.
1288          */
1289         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1290                 pc = (unsigned long)phys_to_virt(pc);
1291                 nip = (unsigned long)phys_to_virt(regs->nip);
1292         }
1293
1294         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1295                 int instr;
1296
1297                 if (!(i % 8))
1298                         pr_cont("\n");
1299
1300                 if (!__kernel_text_address(pc) ||
1301                     get_kernel_nofault(instr, (const void *)pc)) {
1302                         pr_cont("XXXXXXXX ");
1303                 } else {
1304                         if (nip == pc)
1305                                 pr_cont("<%08x> ", instr);
1306                         else
1307                                 pr_cont("%08x ", instr);
1308                 }
1309
1310                 pc += sizeof(int);
1311         }
1312
1313         pr_cont("\n");
1314 }
1315
1316 void show_user_instructions(struct pt_regs *regs)
1317 {
1318         unsigned long pc;
1319         int n = NR_INSN_TO_PRINT;
1320         struct seq_buf s;
1321         char buf[96]; /* enough for 8 times 9 + 2 chars */
1322
1323         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1324
1325         seq_buf_init(&s, buf, sizeof(buf));
1326
1327         while (n) {
1328                 int i;
1329
1330                 seq_buf_clear(&s);
1331
1332                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1333                         int instr;
1334
1335                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1336                                         sizeof(instr))) {
1337                                 seq_buf_printf(&s, "XXXXXXXX ");
1338                                 continue;
1339                         }
1340                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1341                 }
1342
1343                 if (!seq_buf_has_overflowed(&s))
1344                         pr_info("%s[%d]: code: %s\n", current->comm,
1345                                 current->pid, s.buffer);
1346         }
1347 }
1348
1349 struct regbit {
1350         unsigned long bit;
1351         const char *name;
1352 };
1353
1354 static struct regbit msr_bits[] = {
1355 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1356         {MSR_SF,        "SF"},
1357         {MSR_HV,        "HV"},
1358 #endif
1359         {MSR_VEC,       "VEC"},
1360         {MSR_VSX,       "VSX"},
1361 #ifdef CONFIG_BOOKE
1362         {MSR_CE,        "CE"},
1363 #endif
1364         {MSR_EE,        "EE"},
1365         {MSR_PR,        "PR"},
1366         {MSR_FP,        "FP"},
1367         {MSR_ME,        "ME"},
1368 #ifdef CONFIG_BOOKE
1369         {MSR_DE,        "DE"},
1370 #else
1371         {MSR_SE,        "SE"},
1372         {MSR_BE,        "BE"},
1373 #endif
1374         {MSR_IR,        "IR"},
1375         {MSR_DR,        "DR"},
1376         {MSR_PMM,       "PMM"},
1377 #ifndef CONFIG_BOOKE
1378         {MSR_RI,        "RI"},
1379         {MSR_LE,        "LE"},
1380 #endif
1381         {0,             NULL}
1382 };
1383
1384 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1385 {
1386         const char *s = "";
1387
1388         for (; bits->bit; ++bits)
1389                 if (val & bits->bit) {
1390                         pr_cont("%s%s", s, bits->name);
1391                         s = sep;
1392                 }
1393 }
1394
1395 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1396 static struct regbit msr_tm_bits[] = {
1397         {MSR_TS_T,      "T"},
1398         {MSR_TS_S,      "S"},
1399         {MSR_TM,        "E"},
1400         {0,             NULL}
1401 };
1402
1403 static void print_tm_bits(unsigned long val)
1404 {
1405 /*
1406  * This only prints something if at least one of the TM bit is set.
1407  * Inside the TM[], the output means:
1408  *   E: Enabled         (bit 32)
1409  *   S: Suspended       (bit 33)
1410  *   T: Transactional   (bit 34)
1411  */
1412         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1413                 pr_cont(",TM[");
1414                 print_bits(val, msr_tm_bits, "");
1415                 pr_cont("]");
1416         }
1417 }
1418 #else
1419 static void print_tm_bits(unsigned long val) {}
1420 #endif
1421
1422 static void print_msr_bits(unsigned long val)
1423 {
1424         pr_cont("<");
1425         print_bits(val, msr_bits, ",");
1426         print_tm_bits(val);
1427         pr_cont(">");
1428 }
1429
1430 #ifdef CONFIG_PPC64
1431 #define REG             "%016lx"
1432 #define REGS_PER_LINE   4
1433 #define LAST_VOLATILE   13
1434 #else
1435 #define REG             "%08lx"
1436 #define REGS_PER_LINE   8
1437 #define LAST_VOLATILE   12
1438 #endif
1439
1440 void show_regs(struct pt_regs * regs)
1441 {
1442         int i, trap;
1443
1444         show_regs_print_info(KERN_DEFAULT);
1445
1446         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1447                regs->nip, regs->link, regs->ctr);
1448         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1449                regs, regs->trap, print_tainted(), init_utsname()->release);
1450         printk("MSR:  "REG" ", regs->msr);
1451         print_msr_bits(regs->msr);
1452         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1453         trap = TRAP(regs);
1454         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1455                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1456         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1457 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1458                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1459 #else
1460                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1461 #endif
1462 #ifdef CONFIG_PPC64
1463         pr_cont("IRQMASK: %lx ", regs->softe);
1464 #endif
1465 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1466         if (MSR_TM_ACTIVE(regs->msr))
1467                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1468 #endif
1469
1470         for (i = 0;  i < 32;  i++) {
1471                 if ((i % REGS_PER_LINE) == 0)
1472                         pr_cont("\nGPR%02d: ", i);
1473                 pr_cont(REG " ", regs->gpr[i]);
1474                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1475                         break;
1476         }
1477         pr_cont("\n");
1478 #ifdef CONFIG_KALLSYMS
1479         /*
1480          * Lookup NIP late so we have the best change of getting the
1481          * above info out without failing
1482          */
1483         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1484         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1485 #endif
1486         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1487         if (!user_mode(regs))
1488                 show_instructions(regs);
1489 }
1490
1491 void flush_thread(void)
1492 {
1493 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1494         flush_ptrace_hw_breakpoint(current);
1495 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1496         set_debug_reg_defaults(&current->thread);
1497 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1498 }
1499
1500 #ifdef CONFIG_PPC_BOOK3S_64
1501 void arch_setup_new_exec(void)
1502 {
1503         if (radix_enabled())
1504                 return;
1505         hash__setup_new_exec();
1506 }
1507 #endif
1508
1509 #ifdef CONFIG_PPC64
1510 /**
1511  * Assign a TIDR (thread ID) for task @t and set it in the thread
1512  * structure. For now, we only support setting TIDR for 'current' task.
1513  *
1514  * Since the TID value is a truncated form of it PID, it is possible
1515  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1516  * that 2 threads share the same TID and are waiting, one of the following
1517  * cases will happen:
1518  *
1519  * 1. The correct thread is running, the wrong thread is not
1520  * In this situation, the correct thread is woken and proceeds to pass it's
1521  * condition check.
1522  *
1523  * 2. Neither threads are running
1524  * In this situation, neither thread will be woken. When scheduled, the waiting
1525  * threads will execute either a wait, which will return immediately, followed
1526  * by a condition check, which will pass for the correct thread and fail
1527  * for the wrong thread, or they will execute the condition check immediately.
1528  *
1529  * 3. The wrong thread is running, the correct thread is not
1530  * The wrong thread will be woken, but will fail it's condition check and
1531  * re-execute wait. The correct thread, when scheduled, will execute either
1532  * it's condition check (which will pass), or wait, which returns immediately
1533  * when called the first time after the thread is scheduled, followed by it's
1534  * condition check (which will pass).
1535  *
1536  * 4. Both threads are running
1537  * Both threads will be woken. The wrong thread will fail it's condition check
1538  * and execute another wait, while the correct thread will pass it's condition
1539  * check.
1540  *
1541  * @t: the task to set the thread ID for
1542  */
1543 int set_thread_tidr(struct task_struct *t)
1544 {
1545         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1546                 return -EINVAL;
1547
1548         if (t != current)
1549                 return -EINVAL;
1550
1551         if (t->thread.tidr)
1552                 return 0;
1553
1554         t->thread.tidr = (u16)task_pid_nr(t);
1555         mtspr(SPRN_TIDR, t->thread.tidr);
1556
1557         return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(set_thread_tidr);
1560
1561 #endif /* CONFIG_PPC64 */
1562
1563 void
1564 release_thread(struct task_struct *t)
1565 {
1566 }
1567
1568 /*
1569  * this gets called so that we can store coprocessor state into memory and
1570  * copy the current task into the new thread.
1571  */
1572 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1573 {
1574         flush_all_to_thread(src);
1575         /*
1576          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1577          * flush but it removes the checkpointed state from the current CPU and
1578          * transitions the CPU out of TM mode.  Hence we need to call
1579          * tm_recheckpoint_new_task() (on the same task) to restore the
1580          * checkpointed state back and the TM mode.
1581          *
1582          * Can't pass dst because it isn't ready. Doesn't matter, passing
1583          * dst is only important for __switch_to()
1584          */
1585         __switch_to_tm(src, src);
1586
1587         *dst = *src;
1588
1589         clear_task_ebb(dst);
1590
1591         return 0;
1592 }
1593
1594 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1595 {
1596 #ifdef CONFIG_PPC_BOOK3S_64
1597         unsigned long sp_vsid;
1598         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1599
1600         if (radix_enabled())
1601                 return;
1602
1603         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1605                         << SLB_VSID_SHIFT_1T;
1606         else
1607                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1608                         << SLB_VSID_SHIFT;
1609         sp_vsid |= SLB_VSID_KERNEL | llp;
1610         p->thread.ksp_vsid = sp_vsid;
1611 #endif
1612 }
1613
1614 /*
1615  * Copy a thread..
1616  */
1617
1618 /*
1619  * Copy architecture-specific thread state
1620  */
1621 int copy_thread(unsigned long clone_flags, unsigned long usp,
1622                 unsigned long kthread_arg, struct task_struct *p,
1623                 unsigned long tls)
1624 {
1625         struct pt_regs *childregs, *kregs;
1626         extern void ret_from_fork(void);
1627         extern void ret_from_fork_scv(void);
1628         extern void ret_from_kernel_thread(void);
1629         void (*f)(void);
1630         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1631         struct thread_info *ti = task_thread_info(p);
1632 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1633         int i;
1634 #endif
1635
1636         klp_init_thread_info(p);
1637
1638         /* Copy registers */
1639         sp -= sizeof(struct pt_regs);
1640         childregs = (struct pt_regs *) sp;
1641         if (unlikely(p->flags & PF_KTHREAD)) {
1642                 /* kernel thread */
1643                 memset(childregs, 0, sizeof(struct pt_regs));
1644                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1645                 /* function */
1646                 if (usp)
1647                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1648 #ifdef CONFIG_PPC64
1649                 clear_tsk_thread_flag(p, TIF_32BIT);
1650                 childregs->softe = IRQS_ENABLED;
1651 #endif
1652                 childregs->gpr[15] = kthread_arg;
1653                 p->thread.regs = NULL;  /* no user register state */
1654                 ti->flags |= _TIF_RESTOREALL;
1655                 f = ret_from_kernel_thread;
1656         } else {
1657                 /* user thread */
1658                 struct pt_regs *regs = current_pt_regs();
1659                 CHECK_FULL_REGS(regs);
1660                 *childregs = *regs;
1661                 if (usp)
1662                         childregs->gpr[1] = usp;
1663                 p->thread.regs = childregs;
1664                 /* 64s sets this in ret_from_fork */
1665                 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1666                         childregs->gpr[3] = 0;  /* Result from fork() */
1667                 if (clone_flags & CLONE_SETTLS) {
1668                         if (!is_32bit_task())
1669                                 childregs->gpr[13] = tls;
1670                         else
1671                                 childregs->gpr[2] = tls;
1672                 }
1673
1674                 if (trap_is_scv(regs))
1675                         f = ret_from_fork_scv;
1676                 else
1677                         f = ret_from_fork;
1678         }
1679         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1680         sp -= STACK_FRAME_OVERHEAD;
1681
1682         /*
1683          * The way this works is that at some point in the future
1684          * some task will call _switch to switch to the new task.
1685          * That will pop off the stack frame created below and start
1686          * the new task running at ret_from_fork.  The new task will
1687          * do some house keeping and then return from the fork or clone
1688          * system call, using the stack frame created above.
1689          */
1690         ((unsigned long *)sp)[0] = 0;
1691         sp -= sizeof(struct pt_regs);
1692         kregs = (struct pt_regs *) sp;
1693         sp -= STACK_FRAME_OVERHEAD;
1694         p->thread.ksp = sp;
1695 #ifdef CONFIG_PPC32
1696         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1697 #endif
1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1699         for (i = 0; i < nr_wp_slots(); i++)
1700                 p->thread.ptrace_bps[i] = NULL;
1701 #endif
1702
1703         p->thread.fp_save_area = NULL;
1704 #ifdef CONFIG_ALTIVEC
1705         p->thread.vr_save_area = NULL;
1706 #endif
1707
1708         setup_ksp_vsid(p, sp);
1709
1710 #ifdef CONFIG_PPC64 
1711         if (cpu_has_feature(CPU_FTR_DSCR)) {
1712                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1713                 p->thread.dscr = mfspr(SPRN_DSCR);
1714         }
1715         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1716                 childregs->ppr = DEFAULT_PPR;
1717
1718         p->thread.tidr = 0;
1719 #endif
1720         kregs->nip = ppc_function_entry(f);
1721         return 0;
1722 }
1723
1724 void preload_new_slb_context(unsigned long start, unsigned long sp);
1725
1726 /*
1727  * Set up a thread for executing a new program
1728  */
1729 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1730 {
1731 #ifdef CONFIG_PPC64
1732         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1733
1734 #ifdef CONFIG_PPC_BOOK3S_64
1735         if (!radix_enabled())
1736                 preload_new_slb_context(start, sp);
1737 #endif
1738 #endif
1739
1740         /*
1741          * If we exec out of a kernel thread then thread.regs will not be
1742          * set.  Do it now.
1743          */
1744         if (!current->thread.regs) {
1745                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1746                 current->thread.regs = regs - 1;
1747         }
1748
1749 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1750         /*
1751          * Clear any transactional state, we're exec()ing. The cause is
1752          * not important as there will never be a recheckpoint so it's not
1753          * user visible.
1754          */
1755         if (MSR_TM_SUSPENDED(mfmsr()))
1756                 tm_reclaim_current(0);
1757 #endif
1758
1759         memset(regs->gpr, 0, sizeof(regs->gpr));
1760         regs->ctr = 0;
1761         regs->link = 0;
1762         regs->xer = 0;
1763         regs->ccr = 0;
1764         regs->gpr[1] = sp;
1765
1766         /*
1767          * We have just cleared all the nonvolatile GPRs, so make
1768          * FULL_REGS(regs) return true.  This is necessary to allow
1769          * ptrace to examine the thread immediately after exec.
1770          */
1771         SET_FULL_REGS(regs);
1772
1773 #ifdef CONFIG_PPC32
1774         regs->mq = 0;
1775         regs->nip = start;
1776         regs->msr = MSR_USER;
1777 #else
1778         if (!is_32bit_task()) {
1779                 unsigned long entry;
1780
1781                 if (is_elf2_task()) {
1782                         /* Look ma, no function descriptors! */
1783                         entry = start;
1784
1785                         /*
1786                          * Ulrich says:
1787                          *   The latest iteration of the ABI requires that when
1788                          *   calling a function (at its global entry point),
1789                          *   the caller must ensure r12 holds the entry point
1790                          *   address (so that the function can quickly
1791                          *   establish addressability).
1792                          */
1793                         regs->gpr[12] = start;
1794                         /* Make sure that's restored on entry to userspace. */
1795                         set_thread_flag(TIF_RESTOREALL);
1796                 } else {
1797                         unsigned long toc;
1798
1799                         /* start is a relocated pointer to the function
1800                          * descriptor for the elf _start routine.  The first
1801                          * entry in the function descriptor is the entry
1802                          * address of _start and the second entry is the TOC
1803                          * value we need to use.
1804                          */
1805                         __get_user(entry, (unsigned long __user *)start);
1806                         __get_user(toc, (unsigned long __user *)start+1);
1807
1808                         /* Check whether the e_entry function descriptor entries
1809                          * need to be relocated before we can use them.
1810                          */
1811                         if (load_addr != 0) {
1812                                 entry += load_addr;
1813                                 toc   += load_addr;
1814                         }
1815                         regs->gpr[2] = toc;
1816                 }
1817                 regs->nip = entry;
1818                 regs->msr = MSR_USER64;
1819         } else {
1820                 regs->nip = start;
1821                 regs->gpr[2] = 0;
1822                 regs->msr = MSR_USER32;
1823         }
1824 #endif
1825 #ifdef CONFIG_VSX
1826         current->thread.used_vsr = 0;
1827 #endif
1828         current->thread.load_slb = 0;
1829         current->thread.load_fp = 0;
1830         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1831         current->thread.fp_save_area = NULL;
1832 #ifdef CONFIG_ALTIVEC
1833         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1834         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1835         current->thread.vr_save_area = NULL;
1836         current->thread.vrsave = 0;
1837         current->thread.used_vr = 0;
1838         current->thread.load_vec = 0;
1839 #endif /* CONFIG_ALTIVEC */
1840 #ifdef CONFIG_SPE
1841         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1842         current->thread.acc = 0;
1843         current->thread.spefscr = 0;
1844         current->thread.used_spe = 0;
1845 #endif /* CONFIG_SPE */
1846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1847         current->thread.tm_tfhar = 0;
1848         current->thread.tm_texasr = 0;
1849         current->thread.tm_tfiar = 0;
1850         current->thread.load_tm = 0;
1851 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1852
1853         thread_pkey_regs_init(&current->thread);
1854 }
1855 EXPORT_SYMBOL(start_thread);
1856
1857 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1858                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1859
1860 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1861 {
1862         struct pt_regs *regs = tsk->thread.regs;
1863
1864         /* This is a bit hairy.  If we are an SPE enabled  processor
1865          * (have embedded fp) we store the IEEE exception enable flags in
1866          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1867          * mode (asyn, precise, disabled) for 'Classic' FP. */
1868         if (val & PR_FP_EXC_SW_ENABLE) {
1869 #ifdef CONFIG_SPE
1870                 if (cpu_has_feature(CPU_FTR_SPE)) {
1871                         /*
1872                          * When the sticky exception bits are set
1873                          * directly by userspace, it must call prctl
1874                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1875                          * in the existing prctl settings) or
1876                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1877                          * the bits being set).  <fenv.h> functions
1878                          * saving and restoring the whole
1879                          * floating-point environment need to do so
1880                          * anyway to restore the prctl settings from
1881                          * the saved environment.
1882                          */
1883                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1884                         tsk->thread.fpexc_mode = val &
1885                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1886                         return 0;
1887                 } else {
1888                         return -EINVAL;
1889                 }
1890 #else
1891                 return -EINVAL;
1892 #endif
1893         }
1894
1895         /* on a CONFIG_SPE this does not hurt us.  The bits that
1896          * __pack_fe01 use do not overlap with bits used for
1897          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1898          * on CONFIG_SPE implementations are reserved so writing to
1899          * them does not change anything */
1900         if (val > PR_FP_EXC_PRECISE)
1901                 return -EINVAL;
1902         tsk->thread.fpexc_mode = __pack_fe01(val);
1903         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1904                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1905                         | tsk->thread.fpexc_mode;
1906         return 0;
1907 }
1908
1909 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1910 {
1911         unsigned int val;
1912
1913         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1914 #ifdef CONFIG_SPE
1915                 if (cpu_has_feature(CPU_FTR_SPE)) {
1916                         /*
1917                          * When the sticky exception bits are set
1918                          * directly by userspace, it must call prctl
1919                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1920                          * in the existing prctl settings) or
1921                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1922                          * the bits being set).  <fenv.h> functions
1923                          * saving and restoring the whole
1924                          * floating-point environment need to do so
1925                          * anyway to restore the prctl settings from
1926                          * the saved environment.
1927                          */
1928                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1929                         val = tsk->thread.fpexc_mode;
1930                 } else
1931                         return -EINVAL;
1932 #else
1933                 return -EINVAL;
1934 #endif
1935         else
1936                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1937         return put_user(val, (unsigned int __user *) adr);
1938 }
1939
1940 int set_endian(struct task_struct *tsk, unsigned int val)
1941 {
1942         struct pt_regs *regs = tsk->thread.regs;
1943
1944         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1945             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1946                 return -EINVAL;
1947
1948         if (regs == NULL)
1949                 return -EINVAL;
1950
1951         if (val == PR_ENDIAN_BIG)
1952                 regs->msr &= ~MSR_LE;
1953         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1954                 regs->msr |= MSR_LE;
1955         else
1956                 return -EINVAL;
1957
1958         return 0;
1959 }
1960
1961 int get_endian(struct task_struct *tsk, unsigned long adr)
1962 {
1963         struct pt_regs *regs = tsk->thread.regs;
1964         unsigned int val;
1965
1966         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1967             !cpu_has_feature(CPU_FTR_REAL_LE))
1968                 return -EINVAL;
1969
1970         if (regs == NULL)
1971                 return -EINVAL;
1972
1973         if (regs->msr & MSR_LE) {
1974                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1975                         val = PR_ENDIAN_LITTLE;
1976                 else
1977                         val = PR_ENDIAN_PPC_LITTLE;
1978         } else
1979                 val = PR_ENDIAN_BIG;
1980
1981         return put_user(val, (unsigned int __user *)adr);
1982 }
1983
1984 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1985 {
1986         tsk->thread.align_ctl = val;
1987         return 0;
1988 }
1989
1990 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1991 {
1992         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1993 }
1994
1995 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1996                                   unsigned long nbytes)
1997 {
1998         unsigned long stack_page;
1999         unsigned long cpu = task_cpu(p);
2000
2001         stack_page = (unsigned long)hardirq_ctx[cpu];
2002         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003                 return 1;
2004
2005         stack_page = (unsigned long)softirq_ctx[cpu];
2006         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2007                 return 1;
2008
2009         return 0;
2010 }
2011
2012 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2013                                         unsigned long nbytes)
2014 {
2015 #ifdef CONFIG_PPC64
2016         unsigned long stack_page;
2017         unsigned long cpu = task_cpu(p);
2018
2019         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2020         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2021                 return 1;
2022
2023 # ifdef CONFIG_PPC_BOOK3S_64
2024         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2025         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2026                 return 1;
2027
2028         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2029         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2030                 return 1;
2031 # endif
2032 #endif
2033
2034         return 0;
2035 }
2036
2037
2038 int validate_sp(unsigned long sp, struct task_struct *p,
2039                        unsigned long nbytes)
2040 {
2041         unsigned long stack_page = (unsigned long)task_stack_page(p);
2042
2043         if (sp < THREAD_SIZE)
2044                 return 0;
2045
2046         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2047                 return 1;
2048
2049         if (valid_irq_stack(sp, p, nbytes))
2050                 return 1;
2051
2052         return valid_emergency_stack(sp, p, nbytes);
2053 }
2054
2055 EXPORT_SYMBOL(validate_sp);
2056
2057 static unsigned long __get_wchan(struct task_struct *p)
2058 {
2059         unsigned long ip, sp;
2060         int count = 0;
2061
2062         if (!p || p == current || p->state == TASK_RUNNING)
2063                 return 0;
2064
2065         sp = p->thread.ksp;
2066         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2067                 return 0;
2068
2069         do {
2070                 sp = *(unsigned long *)sp;
2071                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2072                     p->state == TASK_RUNNING)
2073                         return 0;
2074                 if (count > 0) {
2075                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2076                         if (!in_sched_functions(ip))
2077                                 return ip;
2078                 }
2079         } while (count++ < 16);
2080         return 0;
2081 }
2082
2083 unsigned long get_wchan(struct task_struct *p)
2084 {
2085         unsigned long ret;
2086
2087         if (!try_get_task_stack(p))
2088                 return 0;
2089
2090         ret = __get_wchan(p);
2091
2092         put_task_stack(p);
2093
2094         return ret;
2095 }
2096
2097 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2098
2099 void show_stack(struct task_struct *tsk, unsigned long *stack,
2100                 const char *loglvl)
2101 {
2102         unsigned long sp, ip, lr, newsp;
2103         int count = 0;
2104         int firstframe = 1;
2105 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106         unsigned long ret_addr;
2107         int ftrace_idx = 0;
2108 #endif
2109
2110         if (tsk == NULL)
2111                 tsk = current;
2112
2113         if (!try_get_task_stack(tsk))
2114                 return;
2115
2116         sp = (unsigned long) stack;
2117         if (sp == 0) {
2118                 if (tsk == current)
2119                         sp = current_stack_frame();
2120                 else
2121                         sp = tsk->thread.ksp;
2122         }
2123
2124         lr = 0;
2125         printk("%sCall Trace:\n", loglvl);
2126         do {
2127                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2128                         break;
2129
2130                 stack = (unsigned long *) sp;
2131                 newsp = stack[0];
2132                 ip = stack[STACK_FRAME_LR_SAVE];
2133                 if (!firstframe || ip != lr) {
2134                         printk("%s["REG"] ["REG"] %pS",
2135                                 loglvl, sp, ip, (void *)ip);
2136 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2137                         ret_addr = ftrace_graph_ret_addr(current,
2138                                                 &ftrace_idx, ip, stack);
2139                         if (ret_addr != ip)
2140                                 pr_cont(" (%pS)", (void *)ret_addr);
2141 #endif
2142                         if (firstframe)
2143                                 pr_cont(" (unreliable)");
2144                         pr_cont("\n");
2145                 }
2146                 firstframe = 0;
2147
2148                 /*
2149                  * See if this is an exception frame.
2150                  * We look for the "regshere" marker in the current frame.
2151                  */
2152                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2153                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2154                         struct pt_regs *regs = (struct pt_regs *)
2155                                 (sp + STACK_FRAME_OVERHEAD);
2156                         lr = regs->link;
2157                         printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2158                                loglvl, regs->trap,
2159                                (void *)regs->nip, (void *)lr);
2160                         firstframe = 1;
2161                 }
2162
2163                 sp = newsp;
2164         } while (count++ < kstack_depth_to_print);
2165
2166         put_task_stack(tsk);
2167 }
2168
2169 #ifdef CONFIG_PPC64
2170 /* Called with hard IRQs off */
2171 void notrace __ppc64_runlatch_on(void)
2172 {
2173         struct thread_info *ti = current_thread_info();
2174
2175         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176                 /*
2177                  * Least significant bit (RUN) is the only writable bit of
2178                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2179                  * earliest ISA where this is the case, but it's convenient.
2180                  */
2181                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2182         } else {
2183                 unsigned long ctrl;
2184
2185                 /*
2186                  * Some architectures (e.g., Cell) have writable fields other
2187                  * than RUN, so do the read-modify-write.
2188                  */
2189                 ctrl = mfspr(SPRN_CTRLF);
2190                 ctrl |= CTRL_RUNLATCH;
2191                 mtspr(SPRN_CTRLT, ctrl);
2192         }
2193
2194         ti->local_flags |= _TLF_RUNLATCH;
2195 }
2196
2197 /* Called with hard IRQs off */
2198 void notrace __ppc64_runlatch_off(void)
2199 {
2200         struct thread_info *ti = current_thread_info();
2201
2202         ti->local_flags &= ~_TLF_RUNLATCH;
2203
2204         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2205                 mtspr(SPRN_CTRLT, 0);
2206         } else {
2207                 unsigned long ctrl;
2208
2209                 ctrl = mfspr(SPRN_CTRLF);
2210                 ctrl &= ~CTRL_RUNLATCH;
2211                 mtspr(SPRN_CTRLT, ctrl);
2212         }
2213 }
2214 #endif /* CONFIG_PPC64 */
2215
2216 unsigned long arch_align_stack(unsigned long sp)
2217 {
2218         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2219                 sp -= get_random_int() & ~PAGE_MASK;
2220         return sp & ~0xf;
2221 }
2222
2223 static inline unsigned long brk_rnd(void)
2224 {
2225         unsigned long rnd = 0;
2226
2227         /* 8MB for 32bit, 1GB for 64bit */
2228         if (is_32bit_task())
2229                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2230         else
2231                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2232
2233         return rnd << PAGE_SHIFT;
2234 }
2235
2236 unsigned long arch_randomize_brk(struct mm_struct *mm)
2237 {
2238         unsigned long base = mm->brk;
2239         unsigned long ret;
2240
2241 #ifdef CONFIG_PPC_BOOK3S_64
2242         /*
2243          * If we are using 1TB segments and we are allowed to randomise
2244          * the heap, we can put it above 1TB so it is backed by a 1TB
2245          * segment. Otherwise the heap will be in the bottom 1TB
2246          * which always uses 256MB segments and this may result in a
2247          * performance penalty. We don't need to worry about radix. For
2248          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2249          */
2250         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2251                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2252 #endif
2253
2254         ret = PAGE_ALIGN(base + brk_rnd());
2255
2256         if (ret < mm->brk)
2257                 return mm->brk;
2258
2259         return ret;
2260 }
2261