Merge branch 'topic/paca' into next
[linux-2.6-microblaze.git] / arch / powerpc / kernel / eeh.c
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/iommu.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/reboot.h>
33 #include <linux/seq_file.h>
34 #include <linux/spinlock.h>
35 #include <linux/export.h>
36 #include <linux/of.h>
37
38 #include <linux/atomic.h>
39 #include <asm/debugfs.h>
40 #include <asm/eeh.h>
41 #include <asm/eeh_event.h>
42 #include <asm/io.h>
43 #include <asm/iommu.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 #include <asm/pte-walk.h>
48
49
50 /** Overview:
51  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS   2100000
90
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121 /* Lock to protect passed flags */
122 static DEFINE_MUTEX(eeh_dev_mutex);
123
124 /* Buffer for reporting pci register dumps. Its here in BSS, and
125  * not dynamically alloced, so that it ends up in RMO where RTAS
126  * can access it.
127  */
128 #define EEH_PCI_REGS_LOG_LEN 8192
129 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131 /*
132  * The struct is used to maintain the EEH global statistic
133  * information. Besides, the EEH global statistics will be
134  * exported to user space through procfs
135  */
136 struct eeh_stats {
137         u64 no_device;          /* PCI device not found         */
138         u64 no_dn;              /* OF node not found            */
139         u64 no_cfg_addr;        /* Config address not found     */
140         u64 ignored_check;      /* EEH check skipped            */
141         u64 total_mmio_ffs;     /* Total EEH checks             */
142         u64 false_positives;    /* Unnecessary EEH checks       */
143         u64 slot_resets;        /* PE reset                     */
144 };
145
146 static struct eeh_stats eeh_stats;
147
148 static int __init eeh_setup(char *str)
149 {
150         if (!strcmp(str, "off"))
151                 eeh_add_flag(EEH_FORCE_DISABLED);
152         else if (!strcmp(str, "early_log"))
153                 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155         return 1;
156 }
157 __setup("eeh=", eeh_setup);
158
159 /*
160  * This routine captures assorted PCI configuration space data
161  * for the indicated PCI device, and puts them into a buffer
162  * for RTAS error logging.
163  */
164 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165 {
166         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167         u32 cfg;
168         int cap, i;
169         int n = 0, l = 0;
170         char buffer[128];
171
172         n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173                        pdn->phb->global_number, pdn->busno,
174                        PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175         pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176                 pdn->phb->global_number, pdn->busno,
177                 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179         eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180         n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181         pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183         eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184         n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185         pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187         /* Gather bridge-specific registers */
188         if (edev->mode & EEH_DEV_BRIDGE) {
189                 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190                 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191                 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193                 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194                 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195                 pr_warn("EEH: Bridge control: %04x\n", cfg);
196         }
197
198         /* Dump out the PCI-X command and status regs */
199         cap = edev->pcix_cap;
200         if (cap) {
201                 eeh_ops->read_config(pdn, cap, 4, &cfg);
202                 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203                 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205                 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206                 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207                 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208         }
209
210         /* If PCI-E capable, dump PCI-E cap 10 */
211         cap = edev->pcie_cap;
212         if (cap) {
213                 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214                 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216                 for (i=0; i<=8; i++) {
217                         eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218                         n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220                         if ((i % 4) == 0) {
221                                 if (i != 0)
222                                         pr_warn("%s\n", buffer);
223
224                                 l = scnprintf(buffer, sizeof(buffer),
225                                               "EEH: PCI-E %02x: %08x ",
226                                               4*i, cfg);
227                         } else {
228                                 l += scnprintf(buffer+l, sizeof(buffer)-l,
229                                                "%08x ", cfg);
230                         }
231
232                 }
233
234                 pr_warn("%s\n", buffer);
235         }
236
237         /* If AER capable, dump it */
238         cap = edev->aer_cap;
239         if (cap) {
240                 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241                 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243                 for (i=0; i<=13; i++) {
244                         eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245                         n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247                         if ((i % 4) == 0) {
248                                 if (i != 0)
249                                         pr_warn("%s\n", buffer);
250
251                                 l = scnprintf(buffer, sizeof(buffer),
252                                               "EEH: PCI-E AER %02x: %08x ",
253                                               4*i, cfg);
254                         } else {
255                                 l += scnprintf(buffer+l, sizeof(buffer)-l,
256                                                "%08x ", cfg);
257                         }
258                 }
259
260                 pr_warn("%s\n", buffer);
261         }
262
263         return n;
264 }
265
266 static void *eeh_dump_pe_log(void *data, void *flag)
267 {
268         struct eeh_pe *pe = data;
269         struct eeh_dev *edev, *tmp;
270         size_t *plen = flag;
271
272         eeh_pe_for_each_dev(pe, edev, tmp)
273                 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274                                           EEH_PCI_REGS_LOG_LEN - *plen);
275
276         return NULL;
277 }
278
279 /**
280  * eeh_slot_error_detail - Generate combined log including driver log and error log
281  * @pe: EEH PE
282  * @severity: temporary or permanent error log
283  *
284  * This routine should be called to generate the combined log, which
285  * is comprised of driver log and error log. The driver log is figured
286  * out from the config space of the corresponding PCI device, while
287  * the error log is fetched through platform dependent function call.
288  */
289 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
290 {
291         size_t loglen = 0;
292
293         /*
294          * When the PHB is fenced or dead, it's pointless to collect
295          * the data from PCI config space because it should return
296          * 0xFF's. For ER, we still retrieve the data from the PCI
297          * config space.
298          *
299          * For pHyp, we have to enable IO for log retrieval. Otherwise,
300          * 0xFF's is always returned from PCI config space.
301          *
302          * When the @severity is EEH_LOG_PERM, the PE is going to be
303          * removed. Prior to that, the drivers for devices included in
304          * the PE will be closed. The drivers rely on working IO path
305          * to bring the devices to quiet state. Otherwise, PCI traffic
306          * from those devices after they are removed is like to cause
307          * another unexpected EEH error.
308          */
309         if (!(pe->type & EEH_PE_PHB)) {
310                 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
311                     severity == EEH_LOG_PERM)
312                         eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313
314                 /*
315                  * The config space of some PCI devices can't be accessed
316                  * when their PEs are in frozen state. Otherwise, fenced
317                  * PHB might be seen. Those PEs are identified with flag
318                  * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
319                  * is set automatically when the PE is put to EEH_PE_ISOLATED.
320                  *
321                  * Restoring BARs possibly triggers PCI config access in
322                  * (OPAL) firmware and then causes fenced PHB. If the
323                  * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
324                  * pointless to restore BARs and dump config space.
325                  */
326                 eeh_ops->configure_bridge(pe);
327                 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
328                         eeh_pe_restore_bars(pe);
329
330                         pci_regs_buf[0] = 0;
331                         eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
332                 }
333         }
334
335         eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
336 }
337
338 /**
339  * eeh_token_to_phys - Convert EEH address token to phys address
340  * @token: I/O token, should be address in the form 0xA....
341  *
342  * This routine should be called to convert virtual I/O address
343  * to physical one.
344  */
345 static inline unsigned long eeh_token_to_phys(unsigned long token)
346 {
347         pte_t *ptep;
348         unsigned long pa;
349         int hugepage_shift;
350
351         /*
352          * We won't find hugepages here(this is iomem). Hence we are not
353          * worried about _PAGE_SPLITTING/collapse. Also we will not hit
354          * page table free, because of init_mm.
355          */
356         ptep = find_init_mm_pte(token, &hugepage_shift);
357         if (!ptep)
358                 return token;
359         WARN_ON(hugepage_shift);
360         pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362         return pa | (token & (PAGE_SIZE-1));
363 }
364
365 /*
366  * On PowerNV platform, we might already have fenced PHB there.
367  * For that case, it's meaningless to recover frozen PE. Intead,
368  * We have to handle fenced PHB firstly.
369  */
370 static int eeh_phb_check_failure(struct eeh_pe *pe)
371 {
372         struct eeh_pe *phb_pe;
373         unsigned long flags;
374         int ret;
375
376         if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377                 return -EPERM;
378
379         /* Find the PHB PE */
380         phb_pe = eeh_phb_pe_get(pe->phb);
381         if (!phb_pe) {
382                 pr_warn("%s Can't find PE for PHB#%x\n",
383                         __func__, pe->phb->global_number);
384                 return -EEXIST;
385         }
386
387         /* If the PHB has been in problematic state */
388         eeh_serialize_lock(&flags);
389         if (phb_pe->state & EEH_PE_ISOLATED) {
390                 ret = 0;
391                 goto out;
392         }
393
394         /* Check PHB state */
395         ret = eeh_ops->get_state(phb_pe, NULL);
396         if ((ret < 0) ||
397             (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
398                 ret = 0;
399                 goto out;
400         }
401
402         /* Isolate the PHB and send event */
403         eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
404         eeh_serialize_unlock(flags);
405
406         pr_err("EEH: PHB#%x failure detected, location: %s\n",
407                 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
408         dump_stack();
409         eeh_send_failure_event(phb_pe);
410
411         return 1;
412 out:
413         eeh_serialize_unlock(flags);
414         return ret;
415 }
416
417 /**
418  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
419  * @edev: eeh device
420  *
421  * Check for an EEH failure for the given device node.  Call this
422  * routine if the result of a read was all 0xff's and you want to
423  * find out if this is due to an EEH slot freeze.  This routine
424  * will query firmware for the EEH status.
425  *
426  * Returns 0 if there has not been an EEH error; otherwise returns
427  * a non-zero value and queues up a slot isolation event notification.
428  *
429  * It is safe to call this routine in an interrupt context.
430  */
431 int eeh_dev_check_failure(struct eeh_dev *edev)
432 {
433         int ret;
434         unsigned long flags;
435         struct device_node *dn;
436         struct pci_dev *dev;
437         struct eeh_pe *pe, *parent_pe, *phb_pe;
438         int rc = 0;
439         const char *location = NULL;
440
441         eeh_stats.total_mmio_ffs++;
442
443         if (!eeh_enabled())
444                 return 0;
445
446         if (!edev) {
447                 eeh_stats.no_dn++;
448                 return 0;
449         }
450         dev = eeh_dev_to_pci_dev(edev);
451         pe = eeh_dev_to_pe(edev);
452
453         /* Access to IO BARs might get this far and still not want checking. */
454         if (!pe) {
455                 eeh_stats.ignored_check++;
456                 pr_debug("EEH: Ignored check for %s\n",
457                         eeh_pci_name(dev));
458                 return 0;
459         }
460
461         if (!pe->addr && !pe->config_addr) {
462                 eeh_stats.no_cfg_addr++;
463                 return 0;
464         }
465
466         /*
467          * On PowerNV platform, we might already have fenced PHB
468          * there and we need take care of that firstly.
469          */
470         ret = eeh_phb_check_failure(pe);
471         if (ret > 0)
472                 return ret;
473
474         /*
475          * If the PE isn't owned by us, we shouldn't check the
476          * state. Instead, let the owner handle it if the PE has
477          * been frozen.
478          */
479         if (eeh_pe_passed(pe))
480                 return 0;
481
482         /* If we already have a pending isolation event for this
483          * slot, we know it's bad already, we don't need to check.
484          * Do this checking under a lock; as multiple PCI devices
485          * in one slot might report errors simultaneously, and we
486          * only want one error recovery routine running.
487          */
488         eeh_serialize_lock(&flags);
489         rc = 1;
490         if (pe->state & EEH_PE_ISOLATED) {
491                 pe->check_count++;
492                 if (pe->check_count % EEH_MAX_FAILS == 0) {
493                         dn = pci_device_to_OF_node(dev);
494                         if (dn)
495                                 location = of_get_property(dn, "ibm,loc-code",
496                                                 NULL);
497                         printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
498                                 "location=%s driver=%s pci addr=%s\n",
499                                 pe->check_count,
500                                 location ? location : "unknown",
501                                 eeh_driver_name(dev), eeh_pci_name(dev));
502                         printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
503                                 eeh_driver_name(dev));
504                         dump_stack();
505                 }
506                 goto dn_unlock;
507         }
508
509         /*
510          * Now test for an EEH failure.  This is VERY expensive.
511          * Note that the eeh_config_addr may be a parent device
512          * in the case of a device behind a bridge, or it may be
513          * function zero of a multi-function device.
514          * In any case they must share a common PHB.
515          */
516         ret = eeh_ops->get_state(pe, NULL);
517
518         /* Note that config-io to empty slots may fail;
519          * they are empty when they don't have children.
520          * We will punt with the following conditions: Failure to get
521          * PE's state, EEH not support and Permanently unavailable
522          * state, PE is in good state.
523          */
524         if ((ret < 0) ||
525             (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
526                 eeh_stats.false_positives++;
527                 pe->false_positives++;
528                 rc = 0;
529                 goto dn_unlock;
530         }
531
532         /*
533          * It should be corner case that the parent PE has been
534          * put into frozen state as well. We should take care
535          * that at first.
536          */
537         parent_pe = pe->parent;
538         while (parent_pe) {
539                 /* Hit the ceiling ? */
540                 if (parent_pe->type & EEH_PE_PHB)
541                         break;
542
543                 /* Frozen parent PE ? */
544                 ret = eeh_ops->get_state(parent_pe, NULL);
545                 if (ret > 0 && !eeh_state_active(ret))
546                         pe = parent_pe;
547
548                 /* Next parent level */
549                 parent_pe = parent_pe->parent;
550         }
551
552         eeh_stats.slot_resets++;
553
554         /* Avoid repeated reports of this failure, including problems
555          * with other functions on this device, and functions under
556          * bridges.
557          */
558         eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
559         eeh_serialize_unlock(flags);
560
561         /* Most EEH events are due to device driver bugs.  Having
562          * a stack trace will help the device-driver authors figure
563          * out what happened.  So print that out.
564          */
565         phb_pe = eeh_phb_pe_get(pe->phb);
566         pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
567                pe->phb->global_number, pe->addr);
568         pr_err("EEH: PE location: %s, PHB location: %s\n",
569                eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
570         dump_stack();
571
572         eeh_send_failure_event(pe);
573
574         return 1;
575
576 dn_unlock:
577         eeh_serialize_unlock(flags);
578         return rc;
579 }
580
581 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
582
583 /**
584  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
585  * @token: I/O address
586  *
587  * Check for an EEH failure at the given I/O address. Call this
588  * routine if the result of a read was all 0xff's and you want to
589  * find out if this is due to an EEH slot freeze event. This routine
590  * will query firmware for the EEH status.
591  *
592  * Note this routine is safe to call in an interrupt context.
593  */
594 int eeh_check_failure(const volatile void __iomem *token)
595 {
596         unsigned long addr;
597         struct eeh_dev *edev;
598
599         /* Finding the phys addr + pci device; this is pretty quick. */
600         addr = eeh_token_to_phys((unsigned long __force) token);
601         edev = eeh_addr_cache_get_dev(addr);
602         if (!edev) {
603                 eeh_stats.no_device++;
604                 return 0;
605         }
606
607         return eeh_dev_check_failure(edev);
608 }
609 EXPORT_SYMBOL(eeh_check_failure);
610
611
612 /**
613  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
614  * @pe: EEH PE
615  *
616  * This routine should be called to reenable frozen MMIO or DMA
617  * so that it would work correctly again. It's useful while doing
618  * recovery or log collection on the indicated device.
619  */
620 int eeh_pci_enable(struct eeh_pe *pe, int function)
621 {
622         int active_flag, rc;
623
624         /*
625          * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
626          * Also, it's pointless to enable them on unfrozen PE. So
627          * we have to check before enabling IO or DMA.
628          */
629         switch (function) {
630         case EEH_OPT_THAW_MMIO:
631                 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
632                 break;
633         case EEH_OPT_THAW_DMA:
634                 active_flag = EEH_STATE_DMA_ACTIVE;
635                 break;
636         case EEH_OPT_DISABLE:
637         case EEH_OPT_ENABLE:
638         case EEH_OPT_FREEZE_PE:
639                 active_flag = 0;
640                 break;
641         default:
642                 pr_warn("%s: Invalid function %d\n",
643                         __func__, function);
644                 return -EINVAL;
645         }
646
647         /*
648          * Check if IO or DMA has been enabled before
649          * enabling them.
650          */
651         if (active_flag) {
652                 rc = eeh_ops->get_state(pe, NULL);
653                 if (rc < 0)
654                         return rc;
655
656                 /* Needn't enable it at all */
657                 if (rc == EEH_STATE_NOT_SUPPORT)
658                         return 0;
659
660                 /* It's already enabled */
661                 if (rc & active_flag)
662                         return 0;
663         }
664
665
666         /* Issue the request */
667         rc = eeh_ops->set_option(pe, function);
668         if (rc)
669                 pr_warn("%s: Unexpected state change %d on "
670                         "PHB#%x-PE#%x, err=%d\n",
671                         __func__, function, pe->phb->global_number,
672                         pe->addr, rc);
673
674         /* Check if the request is finished successfully */
675         if (active_flag) {
676                 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
677                 if (rc < 0)
678                         return rc;
679
680                 if (rc & active_flag)
681                         return 0;
682
683                 return -EIO;
684         }
685
686         return rc;
687 }
688
689 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
690 {
691         struct eeh_dev *edev = data;
692         struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
693         struct pci_dev *dev = userdata;
694
695         /*
696          * The caller should have disabled and saved the
697          * state for the specified device
698          */
699         if (!pdev || pdev == dev)
700                 return NULL;
701
702         /* Ensure we have D0 power state */
703         pci_set_power_state(pdev, PCI_D0);
704
705         /* Save device state */
706         pci_save_state(pdev);
707
708         /*
709          * Disable device to avoid any DMA traffic and
710          * interrupt from the device
711          */
712         pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
713
714         return NULL;
715 }
716
717 static void *eeh_restore_dev_state(void *data, void *userdata)
718 {
719         struct eeh_dev *edev = data;
720         struct pci_dn *pdn = eeh_dev_to_pdn(edev);
721         struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
722         struct pci_dev *dev = userdata;
723
724         if (!pdev)
725                 return NULL;
726
727         /* Apply customization from firmware */
728         if (pdn && eeh_ops->restore_config)
729                 eeh_ops->restore_config(pdn);
730
731         /* The caller should restore state for the specified device */
732         if (pdev != dev)
733                 pci_restore_state(pdev);
734
735         return NULL;
736 }
737
738 int eeh_restore_vf_config(struct pci_dn *pdn)
739 {
740         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
741         u32 devctl, cmd, cap2, aer_capctl;
742         int old_mps;
743
744         if (edev->pcie_cap) {
745                 /* Restore MPS */
746                 old_mps = (ffs(pdn->mps) - 8) << 5;
747                 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
748                                      2, &devctl);
749                 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
750                 devctl |= old_mps;
751                 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
752                                       2, devctl);
753
754                 /* Disable Completion Timeout if possible */
755                 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
756                                      4, &cap2);
757                 if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
758                         eeh_ops->read_config(pdn,
759                                              edev->pcie_cap + PCI_EXP_DEVCTL2,
760                                              4, &cap2);
761                         cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
762                         eeh_ops->write_config(pdn,
763                                               edev->pcie_cap + PCI_EXP_DEVCTL2,
764                                               4, cap2);
765                 }
766         }
767
768         /* Enable SERR and parity checking */
769         eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
770         cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
771         eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
772
773         /* Enable report various errors */
774         if (edev->pcie_cap) {
775                 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
776                                      2, &devctl);
777                 devctl &= ~PCI_EXP_DEVCTL_CERE;
778                 devctl |= (PCI_EXP_DEVCTL_NFERE |
779                            PCI_EXP_DEVCTL_FERE |
780                            PCI_EXP_DEVCTL_URRE);
781                 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
782                                       2, devctl);
783         }
784
785         /* Enable ECRC generation and check */
786         if (edev->pcie_cap && edev->aer_cap) {
787                 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
788                                      4, &aer_capctl);
789                 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
790                 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
791                                       4, aer_capctl);
792         }
793
794         return 0;
795 }
796
797 /**
798  * pcibios_set_pcie_reset_state - Set PCI-E reset state
799  * @dev: pci device struct
800  * @state: reset state to enter
801  *
802  * Return value:
803  *      0 if success
804  */
805 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
806 {
807         struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
808         struct eeh_pe *pe = eeh_dev_to_pe(edev);
809
810         if (!pe) {
811                 pr_err("%s: No PE found on PCI device %s\n",
812                         __func__, pci_name(dev));
813                 return -EINVAL;
814         }
815
816         switch (state) {
817         case pcie_deassert_reset:
818                 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
819                 eeh_unfreeze_pe(pe, false);
820                 if (!(pe->type & EEH_PE_VF))
821                         eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
822                 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
823                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
824                 break;
825         case pcie_hot_reset:
826                 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
827                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
828                 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
829                 if (!(pe->type & EEH_PE_VF))
830                         eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
831                 eeh_ops->reset(pe, EEH_RESET_HOT);
832                 break;
833         case pcie_warm_reset:
834                 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
835                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
836                 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
837                 if (!(pe->type & EEH_PE_VF))
838                         eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
839                 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
840                 break;
841         default:
842                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
843                 return -EINVAL;
844         };
845
846         return 0;
847 }
848
849 /**
850  * eeh_set_pe_freset - Check the required reset for the indicated device
851  * @data: EEH device
852  * @flag: return value
853  *
854  * Each device might have its preferred reset type: fundamental or
855  * hot reset. The routine is used to collected the information for
856  * the indicated device and its children so that the bunch of the
857  * devices could be reset properly.
858  */
859 static void *eeh_set_dev_freset(void *data, void *flag)
860 {
861         struct pci_dev *dev;
862         unsigned int *freset = (unsigned int *)flag;
863         struct eeh_dev *edev = (struct eeh_dev *)data;
864
865         dev = eeh_dev_to_pci_dev(edev);
866         if (dev)
867                 *freset |= dev->needs_freset;
868
869         return NULL;
870 }
871
872 /**
873  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
874  * @pe: EEH PE
875  *
876  * This function executes a full reset procedure on a PE, including setting
877  * the appropriate flags, performing a fundamental or hot reset, and then
878  * deactivating the reset status.  It is designed to be used within the EEH
879  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
880  * only performs a single operation at a time.
881  *
882  * This function will attempt to reset a PE three times before failing.
883  */
884 int eeh_pe_reset_full(struct eeh_pe *pe)
885 {
886         int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
887         int type = EEH_RESET_HOT;
888         unsigned int freset = 0;
889         int i, state, ret;
890
891         /*
892          * Determine the type of reset to perform - hot or fundamental.
893          * Hot reset is the default operation, unless any device under the
894          * PE requires a fundamental reset.
895          */
896         eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
897
898         if (freset)
899                 type = EEH_RESET_FUNDAMENTAL;
900
901         /* Mark the PE as in reset state and block config space accesses */
902         eeh_pe_state_mark(pe, reset_state);
903
904         /* Make three attempts at resetting the bus */
905         for (i = 0; i < 3; i++) {
906                 ret = eeh_pe_reset(pe, type);
907                 if (ret)
908                         break;
909
910                 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
911                 if (ret)
912                         break;
913
914                 /* Wait until the PE is in a functioning state */
915                 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
916                 if (eeh_state_active(state))
917                         break;
918
919                 if (state < 0) {
920                         pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
921                                 __func__, pe->phb->global_number, pe->addr);
922                         ret = -ENOTRECOVERABLE;
923                         break;
924                 }
925
926                 /* Set error in case this is our last attempt */
927                 ret = -EIO;
928                 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
929                         __func__, state, pe->phb->global_number, pe->addr, (i + 1));
930         }
931
932         eeh_pe_state_clear(pe, reset_state);
933         return ret;
934 }
935
936 /**
937  * eeh_save_bars - Save device bars
938  * @edev: PCI device associated EEH device
939  *
940  * Save the values of the device bars. Unlike the restore
941  * routine, this routine is *not* recursive. This is because
942  * PCI devices are added individually; but, for the restore,
943  * an entire slot is reset at a time.
944  */
945 void eeh_save_bars(struct eeh_dev *edev)
946 {
947         struct pci_dn *pdn;
948         int i;
949
950         pdn = eeh_dev_to_pdn(edev);
951         if (!pdn)
952                 return;
953
954         for (i = 0; i < 16; i++)
955                 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
956
957         /*
958          * For PCI bridges including root port, we need enable bus
959          * master explicitly. Otherwise, it can't fetch IODA table
960          * entries correctly. So we cache the bit in advance so that
961          * we can restore it after reset, either PHB range or PE range.
962          */
963         if (edev->mode & EEH_DEV_BRIDGE)
964                 edev->config_space[1] |= PCI_COMMAND_MASTER;
965 }
966
967 /**
968  * eeh_ops_register - Register platform dependent EEH operations
969  * @ops: platform dependent EEH operations
970  *
971  * Register the platform dependent EEH operation callback
972  * functions. The platform should call this function before
973  * any other EEH operations.
974  */
975 int __init eeh_ops_register(struct eeh_ops *ops)
976 {
977         if (!ops->name) {
978                 pr_warn("%s: Invalid EEH ops name for %p\n",
979                         __func__, ops);
980                 return -EINVAL;
981         }
982
983         if (eeh_ops && eeh_ops != ops) {
984                 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
985                         __func__, eeh_ops->name, ops->name);
986                 return -EEXIST;
987         }
988
989         eeh_ops = ops;
990
991         return 0;
992 }
993
994 /**
995  * eeh_ops_unregister - Unreigster platform dependent EEH operations
996  * @name: name of EEH platform operations
997  *
998  * Unregister the platform dependent EEH operation callback
999  * functions.
1000  */
1001 int __exit eeh_ops_unregister(const char *name)
1002 {
1003         if (!name || !strlen(name)) {
1004                 pr_warn("%s: Invalid EEH ops name\n",
1005                         __func__);
1006                 return -EINVAL;
1007         }
1008
1009         if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1010                 eeh_ops = NULL;
1011                 return 0;
1012         }
1013
1014         return -EEXIST;
1015 }
1016
1017 static int eeh_reboot_notifier(struct notifier_block *nb,
1018                                unsigned long action, void *unused)
1019 {
1020         eeh_clear_flag(EEH_ENABLED);
1021         return NOTIFY_DONE;
1022 }
1023
1024 static struct notifier_block eeh_reboot_nb = {
1025         .notifier_call = eeh_reboot_notifier,
1026 };
1027
1028 void eeh_probe_devices(void)
1029 {
1030         struct pci_controller *hose, *tmp;
1031         struct pci_dn *pdn;
1032
1033         /* Enable EEH for all adapters */
1034         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1035                 pdn = hose->pci_data;
1036                 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1037         }
1038 }
1039
1040 /**
1041  * eeh_init - EEH initialization
1042  *
1043  * Initialize EEH by trying to enable it for all of the adapters in the system.
1044  * As a side effect we can determine here if eeh is supported at all.
1045  * Note that we leave EEH on so failed config cycles won't cause a machine
1046  * check.  If a user turns off EEH for a particular adapter they are really
1047  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1048  * grant access to a slot if EEH isn't enabled, and so we always enable
1049  * EEH for all slots/all devices.
1050  *
1051  * The eeh-force-off option disables EEH checking globally, for all slots.
1052  * Even if force-off is set, the EEH hardware is still enabled, so that
1053  * newer systems can boot.
1054  */
1055 static int eeh_init(void)
1056 {
1057         struct pci_controller *hose, *tmp;
1058         int ret = 0;
1059
1060         /* Register reboot notifier */
1061         ret = register_reboot_notifier(&eeh_reboot_nb);
1062         if (ret) {
1063                 pr_warn("%s: Failed to register notifier (%d)\n",
1064                         __func__, ret);
1065                 return ret;
1066         }
1067
1068         /* call platform initialization function */
1069         if (!eeh_ops) {
1070                 pr_warn("%s: Platform EEH operation not found\n",
1071                         __func__);
1072                 return -EEXIST;
1073         } else if ((ret = eeh_ops->init()))
1074                 return ret;
1075
1076         /* Initialize PHB PEs */
1077         list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1078                 eeh_dev_phb_init_dynamic(hose);
1079
1080         /* Initialize EEH event */
1081         ret = eeh_event_init();
1082         if (ret)
1083                 return ret;
1084
1085         eeh_probe_devices();
1086
1087         if (eeh_enabled())
1088                 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1089         else
1090                 pr_info("EEH: No capable adapters found\n");
1091
1092         return ret;
1093 }
1094
1095 core_initcall_sync(eeh_init);
1096
1097 /**
1098  * eeh_add_device_early - Enable EEH for the indicated device node
1099  * @pdn: PCI device node for which to set up EEH
1100  *
1101  * This routine must be used to perform EEH initialization for PCI
1102  * devices that were added after system boot (e.g. hotplug, dlpar).
1103  * This routine must be called before any i/o is performed to the
1104  * adapter (inluding any config-space i/o).
1105  * Whether this actually enables EEH or not for this device depends
1106  * on the CEC architecture, type of the device, on earlier boot
1107  * command-line arguments & etc.
1108  */
1109 void eeh_add_device_early(struct pci_dn *pdn)
1110 {
1111         struct pci_controller *phb = pdn ? pdn->phb : NULL;
1112         struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1113
1114         if (!edev)
1115                 return;
1116
1117         if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1118                 return;
1119
1120         /* USB Bus children of PCI devices will not have BUID's */
1121         if (NULL == phb ||
1122             (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1123                 return;
1124
1125         eeh_ops->probe(pdn, NULL);
1126 }
1127
1128 /**
1129  * eeh_add_device_tree_early - Enable EEH for the indicated device
1130  * @pdn: PCI device node
1131  *
1132  * This routine must be used to perform EEH initialization for the
1133  * indicated PCI device that was added after system boot (e.g.
1134  * hotplug, dlpar).
1135  */
1136 void eeh_add_device_tree_early(struct pci_dn *pdn)
1137 {
1138         struct pci_dn *n;
1139
1140         if (!pdn)
1141                 return;
1142
1143         list_for_each_entry(n, &pdn->child_list, list)
1144                 eeh_add_device_tree_early(n);
1145         eeh_add_device_early(pdn);
1146 }
1147 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1148
1149 /**
1150  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1151  * @dev: pci device for which to set up EEH
1152  *
1153  * This routine must be used to complete EEH initialization for PCI
1154  * devices that were added after system boot (e.g. hotplug, dlpar).
1155  */
1156 void eeh_add_device_late(struct pci_dev *dev)
1157 {
1158         struct pci_dn *pdn;
1159         struct eeh_dev *edev;
1160
1161         if (!dev || !eeh_enabled())
1162                 return;
1163
1164         pr_debug("EEH: Adding device %s\n", pci_name(dev));
1165
1166         pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1167         edev = pdn_to_eeh_dev(pdn);
1168         if (edev->pdev == dev) {
1169                 pr_debug("EEH: Already referenced !\n");
1170                 return;
1171         }
1172
1173         /*
1174          * The EEH cache might not be removed correctly because of
1175          * unbalanced kref to the device during unplug time, which
1176          * relies on pcibios_release_device(). So we have to remove
1177          * that here explicitly.
1178          */
1179         if (edev->pdev) {
1180                 eeh_rmv_from_parent_pe(edev);
1181                 eeh_addr_cache_rmv_dev(edev->pdev);
1182                 eeh_sysfs_remove_device(edev->pdev);
1183                 edev->mode &= ~EEH_DEV_SYSFS;
1184
1185                 /*
1186                  * We definitely should have the PCI device removed
1187                  * though it wasn't correctly. So we needn't call
1188                  * into error handler afterwards.
1189                  */
1190                 edev->mode |= EEH_DEV_NO_HANDLER;
1191
1192                 edev->pdev = NULL;
1193                 dev->dev.archdata.edev = NULL;
1194         }
1195
1196         if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1197                 eeh_ops->probe(pdn, NULL);
1198
1199         edev->pdev = dev;
1200         dev->dev.archdata.edev = edev;
1201
1202         eeh_addr_cache_insert_dev(dev);
1203 }
1204
1205 /**
1206  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1207  * @bus: PCI bus
1208  *
1209  * This routine must be used to perform EEH initialization for PCI
1210  * devices which are attached to the indicated PCI bus. The PCI bus
1211  * is added after system boot through hotplug or dlpar.
1212  */
1213 void eeh_add_device_tree_late(struct pci_bus *bus)
1214 {
1215         struct pci_dev *dev;
1216
1217         list_for_each_entry(dev, &bus->devices, bus_list) {
1218                 eeh_add_device_late(dev);
1219                 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1220                         struct pci_bus *subbus = dev->subordinate;
1221                         if (subbus)
1222                                 eeh_add_device_tree_late(subbus);
1223                 }
1224         }
1225 }
1226 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1227
1228 /**
1229  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1230  * @bus: PCI bus
1231  *
1232  * This routine must be used to add EEH sysfs files for PCI
1233  * devices which are attached to the indicated PCI bus. The PCI bus
1234  * is added after system boot through hotplug or dlpar.
1235  */
1236 void eeh_add_sysfs_files(struct pci_bus *bus)
1237 {
1238         struct pci_dev *dev;
1239
1240         list_for_each_entry(dev, &bus->devices, bus_list) {
1241                 eeh_sysfs_add_device(dev);
1242                 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1243                         struct pci_bus *subbus = dev->subordinate;
1244                         if (subbus)
1245                                 eeh_add_sysfs_files(subbus);
1246                 }
1247         }
1248 }
1249 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1250
1251 /**
1252  * eeh_remove_device - Undo EEH setup for the indicated pci device
1253  * @dev: pci device to be removed
1254  *
1255  * This routine should be called when a device is removed from
1256  * a running system (e.g. by hotplug or dlpar).  It unregisters
1257  * the PCI device from the EEH subsystem.  I/O errors affecting
1258  * this device will no longer be detected after this call; thus,
1259  * i/o errors affecting this slot may leave this device unusable.
1260  */
1261 void eeh_remove_device(struct pci_dev *dev)
1262 {
1263         struct eeh_dev *edev;
1264
1265         if (!dev || !eeh_enabled())
1266                 return;
1267         edev = pci_dev_to_eeh_dev(dev);
1268
1269         /* Unregister the device with the EEH/PCI address search system */
1270         pr_debug("EEH: Removing device %s\n", pci_name(dev));
1271
1272         if (!edev || !edev->pdev || !edev->pe) {
1273                 pr_debug("EEH: Not referenced !\n");
1274                 return;
1275         }
1276
1277         /*
1278          * During the hotplug for EEH error recovery, we need the EEH
1279          * device attached to the parent PE in order for BAR restore
1280          * a bit later. So we keep it for BAR restore and remove it
1281          * from the parent PE during the BAR resotre.
1282          */
1283         edev->pdev = NULL;
1284
1285         /*
1286          * The flag "in_error" is used to trace EEH devices for VFs
1287          * in error state or not. It's set in eeh_report_error(). If
1288          * it's not set, eeh_report_{reset,resume}() won't be called
1289          * for the VF EEH device.
1290          */
1291         edev->in_error = false;
1292         dev->dev.archdata.edev = NULL;
1293         if (!(edev->pe->state & EEH_PE_KEEP))
1294                 eeh_rmv_from_parent_pe(edev);
1295         else
1296                 edev->mode |= EEH_DEV_DISCONNECTED;
1297
1298         /*
1299          * We're removing from the PCI subsystem, that means
1300          * the PCI device driver can't support EEH or not
1301          * well. So we rely on hotplug completely to do recovery
1302          * for the specific PCI device.
1303          */
1304         edev->mode |= EEH_DEV_NO_HANDLER;
1305
1306         eeh_addr_cache_rmv_dev(dev);
1307         eeh_sysfs_remove_device(dev);
1308         edev->mode &= ~EEH_DEV_SYSFS;
1309 }
1310
1311 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1312 {
1313         int ret;
1314
1315         ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1316         if (ret) {
1317                 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1318                         __func__, ret, pe->phb->global_number, pe->addr);
1319                 return ret;
1320         }
1321
1322         ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1323         if (ret) {
1324                 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1325                         __func__, ret, pe->phb->global_number, pe->addr);
1326                 return ret;
1327         }
1328
1329         /* Clear software isolated state */
1330         if (sw_state && (pe->state & EEH_PE_ISOLATED))
1331                 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1332
1333         return ret;
1334 }
1335
1336
1337 static struct pci_device_id eeh_reset_ids[] = {
1338         { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE     */
1339         { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1340         { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1341         { 0 }
1342 };
1343
1344 static int eeh_pe_change_owner(struct eeh_pe *pe)
1345 {
1346         struct eeh_dev *edev, *tmp;
1347         struct pci_dev *pdev;
1348         struct pci_device_id *id;
1349         int ret;
1350
1351         /* Check PE state */
1352         ret = eeh_ops->get_state(pe, NULL);
1353         if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1354                 return 0;
1355
1356         /* Unfrozen PE, nothing to do */
1357         if (eeh_state_active(ret))
1358                 return 0;
1359
1360         /* Frozen PE, check if it needs PE level reset */
1361         eeh_pe_for_each_dev(pe, edev, tmp) {
1362                 pdev = eeh_dev_to_pci_dev(edev);
1363                 if (!pdev)
1364                         continue;
1365
1366                 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1367                         if (id->vendor != PCI_ANY_ID &&
1368                             id->vendor != pdev->vendor)
1369                                 continue;
1370                         if (id->device != PCI_ANY_ID &&
1371                             id->device != pdev->device)
1372                                 continue;
1373                         if (id->subvendor != PCI_ANY_ID &&
1374                             id->subvendor != pdev->subsystem_vendor)
1375                                 continue;
1376                         if (id->subdevice != PCI_ANY_ID &&
1377                             id->subdevice != pdev->subsystem_device)
1378                                 continue;
1379
1380                         return eeh_pe_reset_and_recover(pe);
1381                 }
1382         }
1383
1384         return eeh_unfreeze_pe(pe, true);
1385 }
1386
1387 /**
1388  * eeh_dev_open - Increase count of pass through devices for PE
1389  * @pdev: PCI device
1390  *
1391  * Increase count of passed through devices for the indicated
1392  * PE. In the result, the EEH errors detected on the PE won't be
1393  * reported. The PE owner will be responsible for detection
1394  * and recovery.
1395  */
1396 int eeh_dev_open(struct pci_dev *pdev)
1397 {
1398         struct eeh_dev *edev;
1399         int ret = -ENODEV;
1400
1401         mutex_lock(&eeh_dev_mutex);
1402
1403         /* No PCI device ? */
1404         if (!pdev)
1405                 goto out;
1406
1407         /* No EEH device or PE ? */
1408         edev = pci_dev_to_eeh_dev(pdev);
1409         if (!edev || !edev->pe)
1410                 goto out;
1411
1412         /*
1413          * The PE might have been put into frozen state, but we
1414          * didn't detect that yet. The passed through PCI devices
1415          * in frozen PE won't work properly. Clear the frozen state
1416          * in advance.
1417          */
1418         ret = eeh_pe_change_owner(edev->pe);
1419         if (ret)
1420                 goto out;
1421
1422         /* Increase PE's pass through count */
1423         atomic_inc(&edev->pe->pass_dev_cnt);
1424         mutex_unlock(&eeh_dev_mutex);
1425
1426         return 0;
1427 out:
1428         mutex_unlock(&eeh_dev_mutex);
1429         return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(eeh_dev_open);
1432
1433 /**
1434  * eeh_dev_release - Decrease count of pass through devices for PE
1435  * @pdev: PCI device
1436  *
1437  * Decrease count of pass through devices for the indicated PE. If
1438  * there is no passed through device in PE, the EEH errors detected
1439  * on the PE will be reported and handled as usual.
1440  */
1441 void eeh_dev_release(struct pci_dev *pdev)
1442 {
1443         struct eeh_dev *edev;
1444
1445         mutex_lock(&eeh_dev_mutex);
1446
1447         /* No PCI device ? */
1448         if (!pdev)
1449                 goto out;
1450
1451         /* No EEH device ? */
1452         edev = pci_dev_to_eeh_dev(pdev);
1453         if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1454                 goto out;
1455
1456         /* Decrease PE's pass through count */
1457         WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1458         eeh_pe_change_owner(edev->pe);
1459 out:
1460         mutex_unlock(&eeh_dev_mutex);
1461 }
1462 EXPORT_SYMBOL(eeh_dev_release);
1463
1464 #ifdef CONFIG_IOMMU_API
1465
1466 static int dev_has_iommu_table(struct device *dev, void *data)
1467 {
1468         struct pci_dev *pdev = to_pci_dev(dev);
1469         struct pci_dev **ppdev = data;
1470
1471         if (!dev)
1472                 return 0;
1473
1474         if (dev->iommu_group) {
1475                 *ppdev = pdev;
1476                 return 1;
1477         }
1478
1479         return 0;
1480 }
1481
1482 /**
1483  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1484  * @group: IOMMU group
1485  *
1486  * The routine is called to convert IOMMU group to EEH PE.
1487  */
1488 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1489 {
1490         struct pci_dev *pdev = NULL;
1491         struct eeh_dev *edev;
1492         int ret;
1493
1494         /* No IOMMU group ? */
1495         if (!group)
1496                 return NULL;
1497
1498         ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1499         if (!ret || !pdev)
1500                 return NULL;
1501
1502         /* No EEH device or PE ? */
1503         edev = pci_dev_to_eeh_dev(pdev);
1504         if (!edev || !edev->pe)
1505                 return NULL;
1506
1507         return edev->pe;
1508 }
1509 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1510
1511 #endif /* CONFIG_IOMMU_API */
1512
1513 /**
1514  * eeh_pe_set_option - Set options for the indicated PE
1515  * @pe: EEH PE
1516  * @option: requested option
1517  *
1518  * The routine is called to enable or disable EEH functionality
1519  * on the indicated PE, to enable IO or DMA for the frozen PE.
1520  */
1521 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1522 {
1523         int ret = 0;
1524
1525         /* Invalid PE ? */
1526         if (!pe)
1527                 return -ENODEV;
1528
1529         /*
1530          * EEH functionality could possibly be disabled, just
1531          * return error for the case. And the EEH functinality
1532          * isn't expected to be disabled on one specific PE.
1533          */
1534         switch (option) {
1535         case EEH_OPT_ENABLE:
1536                 if (eeh_enabled()) {
1537                         ret = eeh_pe_change_owner(pe);
1538                         break;
1539                 }
1540                 ret = -EIO;
1541                 break;
1542         case EEH_OPT_DISABLE:
1543                 break;
1544         case EEH_OPT_THAW_MMIO:
1545         case EEH_OPT_THAW_DMA:
1546         case EEH_OPT_FREEZE_PE:
1547                 if (!eeh_ops || !eeh_ops->set_option) {
1548                         ret = -ENOENT;
1549                         break;
1550                 }
1551
1552                 ret = eeh_pci_enable(pe, option);
1553                 break;
1554         default:
1555                 pr_debug("%s: Option %d out of range (%d, %d)\n",
1556                         __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1557                 ret = -EINVAL;
1558         }
1559
1560         return ret;
1561 }
1562 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1563
1564 /**
1565  * eeh_pe_get_state - Retrieve PE's state
1566  * @pe: EEH PE
1567  *
1568  * Retrieve the PE's state, which includes 3 aspects: enabled
1569  * DMA, enabled IO and asserted reset.
1570  */
1571 int eeh_pe_get_state(struct eeh_pe *pe)
1572 {
1573         int result, ret = 0;
1574         bool rst_active, dma_en, mmio_en;
1575
1576         /* Existing PE ? */
1577         if (!pe)
1578                 return -ENODEV;
1579
1580         if (!eeh_ops || !eeh_ops->get_state)
1581                 return -ENOENT;
1582
1583         /*
1584          * If the parent PE is owned by the host kernel and is undergoing
1585          * error recovery, we should return the PE state as temporarily
1586          * unavailable so that the error recovery on the guest is suspended
1587          * until the recovery completes on the host.
1588          */
1589         if (pe->parent &&
1590             !(pe->state & EEH_PE_REMOVED) &&
1591             (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1592                 return EEH_PE_STATE_UNAVAIL;
1593
1594         result = eeh_ops->get_state(pe, NULL);
1595         rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1596         dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1597         mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1598
1599         if (rst_active)
1600                 ret = EEH_PE_STATE_RESET;
1601         else if (dma_en && mmio_en)
1602                 ret = EEH_PE_STATE_NORMAL;
1603         else if (!dma_en && !mmio_en)
1604                 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1605         else if (!dma_en && mmio_en)
1606                 ret = EEH_PE_STATE_STOPPED_DMA;
1607         else
1608                 ret = EEH_PE_STATE_UNAVAIL;
1609
1610         return ret;
1611 }
1612 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1613
1614 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1615 {
1616         struct eeh_dev *edev, *tmp;
1617         struct pci_dev *pdev;
1618         int ret = 0;
1619
1620         /* Restore config space */
1621         eeh_pe_restore_bars(pe);
1622
1623         /*
1624          * Reenable PCI devices as the devices passed
1625          * through are always enabled before the reset.
1626          */
1627         eeh_pe_for_each_dev(pe, edev, tmp) {
1628                 pdev = eeh_dev_to_pci_dev(edev);
1629                 if (!pdev)
1630                         continue;
1631
1632                 ret = pci_reenable_device(pdev);
1633                 if (ret) {
1634                         pr_warn("%s: Failure %d reenabling %s\n",
1635                                 __func__, ret, pci_name(pdev));
1636                         return ret;
1637                 }
1638         }
1639
1640         /* The PE is still in frozen state */
1641         return eeh_unfreeze_pe(pe, true);
1642 }
1643
1644
1645 /**
1646  * eeh_pe_reset - Issue PE reset according to specified type
1647  * @pe: EEH PE
1648  * @option: reset type
1649  *
1650  * The routine is called to reset the specified PE with the
1651  * indicated type, either fundamental reset or hot reset.
1652  * PE reset is the most important part for error recovery.
1653  */
1654 int eeh_pe_reset(struct eeh_pe *pe, int option)
1655 {
1656         int ret = 0;
1657
1658         /* Invalid PE ? */
1659         if (!pe)
1660                 return -ENODEV;
1661
1662         if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1663                 return -ENOENT;
1664
1665         switch (option) {
1666         case EEH_RESET_DEACTIVATE:
1667                 ret = eeh_ops->reset(pe, option);
1668                 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1669                 if (ret)
1670                         break;
1671
1672                 ret = eeh_pe_reenable_devices(pe);
1673                 break;
1674         case EEH_RESET_HOT:
1675         case EEH_RESET_FUNDAMENTAL:
1676                 /*
1677                  * Proactively freeze the PE to drop all MMIO access
1678                  * during reset, which should be banned as it's always
1679                  * cause recursive EEH error.
1680                  */
1681                 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1682
1683                 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1684                 ret = eeh_ops->reset(pe, option);
1685                 break;
1686         default:
1687                 pr_debug("%s: Unsupported option %d\n",
1688                         __func__, option);
1689                 ret = -EINVAL;
1690         }
1691
1692         return ret;
1693 }
1694 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1695
1696 /**
1697  * eeh_pe_configure - Configure PCI bridges after PE reset
1698  * @pe: EEH PE
1699  *
1700  * The routine is called to restore the PCI config space for
1701  * those PCI devices, especially PCI bridges affected by PE
1702  * reset issued previously.
1703  */
1704 int eeh_pe_configure(struct eeh_pe *pe)
1705 {
1706         int ret = 0;
1707
1708         /* Invalid PE ? */
1709         if (!pe)
1710                 return -ENODEV;
1711
1712         return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1715
1716 /**
1717  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1718  * @pe: the indicated PE
1719  * @type: error type
1720  * @function: error function
1721  * @addr: address
1722  * @mask: address mask
1723  *
1724  * The routine is called to inject the specified PCI error, which
1725  * is determined by @type and @function, to the indicated PE for
1726  * testing purpose.
1727  */
1728 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1729                       unsigned long addr, unsigned long mask)
1730 {
1731         /* Invalid PE ? */
1732         if (!pe)
1733                 return -ENODEV;
1734
1735         /* Unsupported operation ? */
1736         if (!eeh_ops || !eeh_ops->err_inject)
1737                 return -ENOENT;
1738
1739         /* Check on PCI error type */
1740         if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1741                 return -EINVAL;
1742
1743         /* Check on PCI error function */
1744         if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1745                 return -EINVAL;
1746
1747         return eeh_ops->err_inject(pe, type, func, addr, mask);
1748 }
1749 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1750
1751 static int proc_eeh_show(struct seq_file *m, void *v)
1752 {
1753         if (!eeh_enabled()) {
1754                 seq_printf(m, "EEH Subsystem is globally disabled\n");
1755                 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1756         } else {
1757                 seq_printf(m, "EEH Subsystem is enabled\n");
1758                 seq_printf(m,
1759                                 "no device=%llu\n"
1760                                 "no device node=%llu\n"
1761                                 "no config address=%llu\n"
1762                                 "check not wanted=%llu\n"
1763                                 "eeh_total_mmio_ffs=%llu\n"
1764                                 "eeh_false_positives=%llu\n"
1765                                 "eeh_slot_resets=%llu\n",
1766                                 eeh_stats.no_device,
1767                                 eeh_stats.no_dn,
1768                                 eeh_stats.no_cfg_addr,
1769                                 eeh_stats.ignored_check,
1770                                 eeh_stats.total_mmio_ffs,
1771                                 eeh_stats.false_positives,
1772                                 eeh_stats.slot_resets);
1773         }
1774
1775         return 0;
1776 }
1777
1778 static int proc_eeh_open(struct inode *inode, struct file *file)
1779 {
1780         return single_open(file, proc_eeh_show, NULL);
1781 }
1782
1783 static const struct file_operations proc_eeh_operations = {
1784         .open      = proc_eeh_open,
1785         .read      = seq_read,
1786         .llseek    = seq_lseek,
1787         .release   = single_release,
1788 };
1789
1790 #ifdef CONFIG_DEBUG_FS
1791 static int eeh_enable_dbgfs_set(void *data, u64 val)
1792 {
1793         if (val)
1794                 eeh_clear_flag(EEH_FORCE_DISABLED);
1795         else
1796                 eeh_add_flag(EEH_FORCE_DISABLED);
1797
1798         return 0;
1799 }
1800
1801 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1802 {
1803         if (eeh_enabled())
1804                 *val = 0x1ul;
1805         else
1806                 *val = 0x0ul;
1807         return 0;
1808 }
1809
1810 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1811 {
1812         eeh_max_freezes = val;
1813         return 0;
1814 }
1815
1816 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1817 {
1818         *val = eeh_max_freezes;
1819         return 0;
1820 }
1821
1822 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1823                         eeh_enable_dbgfs_set, "0x%llx\n");
1824 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1825                         eeh_freeze_dbgfs_set, "0x%llx\n");
1826 #endif
1827
1828 static int __init eeh_init_proc(void)
1829 {
1830         if (machine_is(pseries) || machine_is(powernv)) {
1831                 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1832 #ifdef CONFIG_DEBUG_FS
1833                 debugfs_create_file("eeh_enable", 0600,
1834                                     powerpc_debugfs_root, NULL,
1835                                     &eeh_enable_dbgfs_ops);
1836                 debugfs_create_file("eeh_max_freezes", 0600,
1837                                     powerpc_debugfs_root, NULL,
1838                                     &eeh_freeze_dbgfs_ops);
1839 #endif
1840         }
1841
1842         return 0;
1843 }
1844 __initcall(eeh_init_proc);