mm/sparse: cleanup the code surrounding memory_present()
[linux-2.6-microblaze.git] / arch / parisc / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright 1999 SuSE GmbH
7  *    changed by Philipp Rumpf
8  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9  *  Copyright 2004 Randolph Chung (tausq@debian.org)
10  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11  *
12  */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35
36 extern int  data_start;
37 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
38
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42  * guarantee that global objects will be laid out in memory in the same order
43  * as the order of declaration, so put these in different sections and use
44  * the linker script to order them. */
45 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
46 #endif
47
48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
50
51 static struct resource data_resource = {
52         .name   = "Kernel data",
53         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
54 };
55
56 static struct resource code_resource = {
57         .name   = "Kernel code",
58         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
59 };
60
61 static struct resource pdcdata_resource = {
62         .name   = "PDC data (Page Zero)",
63         .start  = 0,
64         .end    = 0x9ff,
65         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
66 };
67
68 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
69
70 /* The following array is initialized from the firmware specific
71  * information retrieved in kernel/inventory.c.
72  */
73
74 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
75 int npmem_ranges __initdata;
76
77 #ifdef CONFIG_64BIT
78 #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
79 #else /* !CONFIG_64BIT */
80 #define MAX_MEM         (3584U*1024U*1024U)
81 #endif /* !CONFIG_64BIT */
82
83 static unsigned long mem_limit __read_mostly = MAX_MEM;
84
85 static void __init mem_limit_func(void)
86 {
87         char *cp, *end;
88         unsigned long limit;
89
90         /* We need this before __setup() functions are called */
91
92         limit = MAX_MEM;
93         for (cp = boot_command_line; *cp; ) {
94                 if (memcmp(cp, "mem=", 4) == 0) {
95                         cp += 4;
96                         limit = memparse(cp, &end);
97                         if (end != cp)
98                                 break;
99                         cp = end;
100                 } else {
101                         while (*cp != ' ' && *cp)
102                                 ++cp;
103                         while (*cp == ' ')
104                                 ++cp;
105                 }
106         }
107
108         if (limit < mem_limit)
109                 mem_limit = limit;
110 }
111
112 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
113
114 static void __init setup_bootmem(void)
115 {
116         unsigned long mem_max;
117 #ifndef CONFIG_SPARSEMEM
118         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
119         int npmem_holes;
120 #endif
121         int i, sysram_resource_count;
122
123         disable_sr_hashing(); /* Turn off space register hashing */
124
125         /*
126          * Sort the ranges. Since the number of ranges is typically
127          * small, and performance is not an issue here, just do
128          * a simple insertion sort.
129          */
130
131         for (i = 1; i < npmem_ranges; i++) {
132                 int j;
133
134                 for (j = i; j > 0; j--) {
135                         physmem_range_t tmp;
136
137                         if (pmem_ranges[j-1].start_pfn <
138                             pmem_ranges[j].start_pfn) {
139
140                                 break;
141                         }
142                         tmp = pmem_ranges[j-1];
143                         pmem_ranges[j-1] = pmem_ranges[j];
144                         pmem_ranges[j] = tmp;
145                 }
146         }
147
148 #ifndef CONFIG_SPARSEMEM
149         /*
150          * Throw out ranges that are too far apart (controlled by
151          * MAX_GAP).
152          */
153
154         for (i = 1; i < npmem_ranges; i++) {
155                 if (pmem_ranges[i].start_pfn -
156                         (pmem_ranges[i-1].start_pfn +
157                          pmem_ranges[i-1].pages) > MAX_GAP) {
158                         npmem_ranges = i;
159                         printk("Large gap in memory detected (%ld pages). "
160                                "Consider turning on CONFIG_SPARSEMEM\n",
161                                pmem_ranges[i].start_pfn -
162                                (pmem_ranges[i-1].start_pfn +
163                                 pmem_ranges[i-1].pages));
164                         break;
165                 }
166         }
167 #endif
168
169         /* Print the memory ranges */
170         pr_info("Memory Ranges:\n");
171
172         for (i = 0; i < npmem_ranges; i++) {
173                 struct resource *res = &sysram_resources[i];
174                 unsigned long start;
175                 unsigned long size;
176
177                 size = (pmem_ranges[i].pages << PAGE_SHIFT);
178                 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179                 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180                         i, start, start + (size - 1), size >> 20);
181
182                 /* request memory resource */
183                 res->name = "System RAM";
184                 res->start = start;
185                 res->end = start + size - 1;
186                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
187                 request_resource(&iomem_resource, res);
188         }
189
190         sysram_resource_count = npmem_ranges;
191
192         /*
193          * For 32 bit kernels we limit the amount of memory we can
194          * support, in order to preserve enough kernel address space
195          * for other purposes. For 64 bit kernels we don't normally
196          * limit the memory, but this mechanism can be used to
197          * artificially limit the amount of memory (and it is written
198          * to work with multiple memory ranges).
199          */
200
201         mem_limit_func();       /* check for "mem=" argument */
202
203         mem_max = 0;
204         for (i = 0; i < npmem_ranges; i++) {
205                 unsigned long rsize;
206
207                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
208                 if ((mem_max + rsize) > mem_limit) {
209                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
210                         if (mem_max == mem_limit)
211                                 npmem_ranges = i;
212                         else {
213                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
214                                                        - (mem_max >> PAGE_SHIFT);
215                                 npmem_ranges = i + 1;
216                                 mem_max = mem_limit;
217                         }
218                         break;
219                 }
220                 mem_max += rsize;
221         }
222
223         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
224
225 #ifndef CONFIG_SPARSEMEM
226         /* Merge the ranges, keeping track of the holes */
227         {
228                 unsigned long end_pfn;
229                 unsigned long hole_pages;
230
231                 npmem_holes = 0;
232                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
233                 for (i = 1; i < npmem_ranges; i++) {
234
235                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
236                         if (hole_pages) {
237                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
238                                 pmem_holes[npmem_holes++].pages = hole_pages;
239                                 end_pfn += hole_pages;
240                         }
241                         end_pfn += pmem_ranges[i].pages;
242                 }
243
244                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
245                 npmem_ranges = 1;
246         }
247 #endif
248
249         /*
250          * Initialize and free the full range of memory in each range.
251          */
252
253         max_pfn = 0;
254         for (i = 0; i < npmem_ranges; i++) {
255                 unsigned long start_pfn;
256                 unsigned long npages;
257                 unsigned long start;
258                 unsigned long size;
259
260                 start_pfn = pmem_ranges[i].start_pfn;
261                 npages = pmem_ranges[i].pages;
262
263                 start = start_pfn << PAGE_SHIFT;
264                 size = npages << PAGE_SHIFT;
265
266                 /* add system RAM memblock */
267                 memblock_add(start, size);
268
269                 if ((start_pfn + npages) > max_pfn)
270                         max_pfn = start_pfn + npages;
271         }
272
273         /*
274          * We can't use memblock top-down allocations because we only
275          * created the initial mapping up to KERNEL_INITIAL_SIZE in
276          * the assembly bootup code.
277          */
278         memblock_set_bottom_up(true);
279
280         /* IOMMU is always used to access "high mem" on those boxes
281          * that can support enough mem that a PCI device couldn't
282          * directly DMA to any physical addresses.
283          * ISA DMA support will need to revisit this.
284          */
285         max_low_pfn = max_pfn;
286
287         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
288
289 #define PDC_CONSOLE_IO_IODC_SIZE 32768
290
291         memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
292                                 PDC_CONSOLE_IO_IODC_SIZE));
293         memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
294                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
295
296 #ifndef CONFIG_SPARSEMEM
297
298         /* reserve the holes */
299
300         for (i = 0; i < npmem_holes; i++) {
301                 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
302                                 (pmem_holes[i].pages << PAGE_SHIFT));
303         }
304 #endif
305
306 #ifdef CONFIG_BLK_DEV_INITRD
307         if (initrd_start) {
308                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
309                 if (__pa(initrd_start) < mem_max) {
310                         unsigned long initrd_reserve;
311
312                         if (__pa(initrd_end) > mem_max) {
313                                 initrd_reserve = mem_max - __pa(initrd_start);
314                         } else {
315                                 initrd_reserve = initrd_end - initrd_start;
316                         }
317                         initrd_below_start_ok = 1;
318                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
319
320                         memblock_reserve(__pa(initrd_start), initrd_reserve);
321                 }
322         }
323 #endif
324
325         data_resource.start =  virt_to_phys(&data_start);
326         data_resource.end = virt_to_phys(_end) - 1;
327         code_resource.start = virt_to_phys(_text);
328         code_resource.end = virt_to_phys(&data_start)-1;
329
330         /* We don't know which region the kernel will be in, so try
331          * all of them.
332          */
333         for (i = 0; i < sysram_resource_count; i++) {
334                 struct resource *res = &sysram_resources[i];
335                 request_resource(res, &code_resource);
336                 request_resource(res, &data_resource);
337         }
338         request_resource(&sysram_resources[0], &pdcdata_resource);
339
340         /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
341         pdc_pdt_init();
342
343         memblock_allow_resize();
344         memblock_dump_all();
345 }
346
347 static bool kernel_set_to_readonly;
348
349 static void __init map_pages(unsigned long start_vaddr,
350                              unsigned long start_paddr, unsigned long size,
351                              pgprot_t pgprot, int force)
352 {
353         pmd_t *pmd;
354         pte_t *pg_table;
355         unsigned long end_paddr;
356         unsigned long start_pmd;
357         unsigned long start_pte;
358         unsigned long tmp1;
359         unsigned long tmp2;
360         unsigned long address;
361         unsigned long vaddr;
362         unsigned long ro_start;
363         unsigned long ro_end;
364         unsigned long kernel_start, kernel_end;
365
366         ro_start = __pa((unsigned long)_text);
367         ro_end   = __pa((unsigned long)&data_start);
368         kernel_start = __pa((unsigned long)&__init_begin);
369         kernel_end  = __pa((unsigned long)&_end);
370
371         end_paddr = start_paddr + size;
372
373         /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
374         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
375         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
376
377         address = start_paddr;
378         vaddr = start_vaddr;
379         while (address < end_paddr) {
380                 pgd_t *pgd = pgd_offset_k(vaddr);
381                 p4d_t *p4d = p4d_offset(pgd, vaddr);
382                 pud_t *pud = pud_offset(p4d, vaddr);
383
384 #if CONFIG_PGTABLE_LEVELS == 3
385                 if (pud_none(*pud)) {
386                         pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
387                                              PAGE_SIZE << PMD_ORDER);
388                         if (!pmd)
389                                 panic("pmd allocation failed.\n");
390                         pud_populate(NULL, pud, pmd);
391                 }
392 #endif
393
394                 pmd = pmd_offset(pud, vaddr);
395                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
396                         if (pmd_none(*pmd)) {
397                                 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
398                                 if (!pg_table)
399                                         panic("page table allocation failed\n");
400                                 pmd_populate_kernel(NULL, pmd, pg_table);
401                         }
402
403                         pg_table = pte_offset_kernel(pmd, vaddr);
404                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
405                                 pte_t pte;
406                                 pgprot_t prot;
407                                 bool huge = false;
408
409                                 if (force) {
410                                         prot = pgprot;
411                                 } else if (address < kernel_start || address >= kernel_end) {
412                                         /* outside kernel memory */
413                                         prot = PAGE_KERNEL;
414                                 } else if (!kernel_set_to_readonly) {
415                                         /* still initializing, allow writing to RO memory */
416                                         prot = PAGE_KERNEL_RWX;
417                                         huge = true;
418                                 } else if (address >= ro_start) {
419                                         /* Code (ro) and Data areas */
420                                         prot = (address < ro_end) ?
421                                                 PAGE_KERNEL_EXEC : PAGE_KERNEL;
422                                         huge = true;
423                                 } else {
424                                         prot = PAGE_KERNEL;
425                                 }
426
427                                 pte = __mk_pte(address, prot);
428                                 if (huge)
429                                         pte = pte_mkhuge(pte);
430
431                                 if (address >= end_paddr)
432                                         break;
433
434                                 set_pte(pg_table, pte);
435
436                                 address += PAGE_SIZE;
437                                 vaddr += PAGE_SIZE;
438                         }
439                         start_pte = 0;
440
441                         if (address >= end_paddr)
442                             break;
443                 }
444                 start_pmd = 0;
445         }
446 }
447
448 void __init set_kernel_text_rw(int enable_read_write)
449 {
450         unsigned long start = (unsigned long) __init_begin;
451         unsigned long end   = (unsigned long) &data_start;
452
453         map_pages(start, __pa(start), end-start,
454                 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
455
456         /* force the kernel to see the new page table entries */
457         flush_cache_all();
458         flush_tlb_all();
459 }
460
461 void __ref free_initmem(void)
462 {
463         unsigned long init_begin = (unsigned long)__init_begin;
464         unsigned long init_end = (unsigned long)__init_end;
465         unsigned long kernel_end  = (unsigned long)&_end;
466
467         /* Remap kernel text and data, but do not touch init section yet. */
468         kernel_set_to_readonly = true;
469         map_pages(init_end, __pa(init_end), kernel_end - init_end,
470                   PAGE_KERNEL, 0);
471
472         /* The init text pages are marked R-X.  We have to
473          * flush the icache and mark them RW-
474          *
475          * This is tricky, because map_pages is in the init section.
476          * Do a dummy remap of the data section first (the data
477          * section is already PAGE_KERNEL) to pull in the TLB entries
478          * for map_kernel */
479         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
480                   PAGE_KERNEL_RWX, 1);
481         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
482          * map_pages */
483         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
484                   PAGE_KERNEL, 1);
485
486         /* force the kernel to see the new TLB entries */
487         __flush_tlb_range(0, init_begin, kernel_end);
488
489         /* finally dump all the instructions which were cached, since the
490          * pages are no-longer executable */
491         flush_icache_range(init_begin, init_end);
492         
493         free_initmem_default(POISON_FREE_INITMEM);
494
495         /* set up a new led state on systems shipped LED State panel */
496         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
497 }
498
499
500 #ifdef CONFIG_STRICT_KERNEL_RWX
501 void mark_rodata_ro(void)
502 {
503         /* rodata memory was already mapped with KERNEL_RO access rights by
504            pagetable_init() and map_pages(). No need to do additional stuff here */
505         unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
506
507         pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
508 }
509 #endif
510
511
512 /*
513  * Just an arbitrary offset to serve as a "hole" between mapping areas
514  * (between top of physical memory and a potential pcxl dma mapping
515  * area, and below the vmalloc mapping area).
516  *
517  * The current 32K value just means that there will be a 32K "hole"
518  * between mapping areas. That means that  any out-of-bounds memory
519  * accesses will hopefully be caught. The vmalloc() routines leaves
520  * a hole of 4kB between each vmalloced area for the same reason.
521  */
522
523  /* Leave room for gateway page expansion */
524 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
525 #error KERNEL_MAP_START is in gateway reserved region
526 #endif
527 #define MAP_START (KERNEL_MAP_START)
528
529 #define VM_MAP_OFFSET  (32*1024)
530 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
531                                      & ~(VM_MAP_OFFSET-1)))
532
533 void *parisc_vmalloc_start __ro_after_init;
534 EXPORT_SYMBOL(parisc_vmalloc_start);
535
536 #ifdef CONFIG_PA11
537 unsigned long pcxl_dma_start __ro_after_init;
538 #endif
539
540 void __init mem_init(void)
541 {
542         /* Do sanity checks on IPC (compat) structures */
543         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
544 #ifndef CONFIG_64BIT
545         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
546         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
547         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
548 #endif
549 #ifdef CONFIG_COMPAT
550         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
551         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
552         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
553         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
554 #endif
555
556         /* Do sanity checks on page table constants */
557         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
558         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
559         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
560         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
561                         > BITS_PER_LONG);
562
563         high_memory = __va((max_pfn << PAGE_SHIFT));
564         set_max_mapnr(max_low_pfn);
565         memblock_free_all();
566
567 #ifdef CONFIG_PA11
568         if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
569                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
570                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
571                                                 + PCXL_DMA_MAP_SIZE);
572         } else
573 #endif
574                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575
576         mem_init_print_info(NULL);
577
578 #if 0
579         /*
580          * Do not expose the virtual kernel memory layout to userspace.
581          * But keep code for debugging purposes.
582          */
583         printk("virtual kernel memory layout:\n"
584                "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
585                "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
586                "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
587                "       .init : 0x%px - 0x%px   (%4ld kB)\n"
588                "       .data : 0x%px - 0x%px   (%4ld kB)\n"
589                "       .text : 0x%px - 0x%px   (%4ld kB)\n",
590
591                (void*)VMALLOC_START, (void*)VMALLOC_END,
592                (VMALLOC_END - VMALLOC_START) >> 20,
593
594                (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
595                (unsigned long)(FIXMAP_SIZE / 1024),
596
597                __va(0), high_memory,
598                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
599
600                __init_begin, __init_end,
601                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
602
603                _etext, _edata,
604                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
605
606                _text, _etext,
607                ((unsigned long)_etext - (unsigned long)_text) >> 10);
608 #endif
609 }
610
611 unsigned long *empty_zero_page __ro_after_init;
612 EXPORT_SYMBOL(empty_zero_page);
613
614 /*
615  * pagetable_init() sets up the page tables
616  *
617  * Note that gateway_init() places the Linux gateway page at page 0.
618  * Since gateway pages cannot be dereferenced this has the desirable
619  * side effect of trapping those pesky NULL-reference errors in the
620  * kernel.
621  */
622 static void __init pagetable_init(void)
623 {
624         int range;
625
626         /* Map each physical memory range to its kernel vaddr */
627
628         for (range = 0; range < npmem_ranges; range++) {
629                 unsigned long start_paddr;
630                 unsigned long end_paddr;
631                 unsigned long size;
632
633                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
634                 size = pmem_ranges[range].pages << PAGE_SHIFT;
635                 end_paddr = start_paddr + size;
636
637                 map_pages((unsigned long)__va(start_paddr), start_paddr,
638                           size, PAGE_KERNEL, 0);
639         }
640
641 #ifdef CONFIG_BLK_DEV_INITRD
642         if (initrd_end && initrd_end > mem_limit) {
643                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
644                 map_pages(initrd_start, __pa(initrd_start),
645                           initrd_end - initrd_start, PAGE_KERNEL, 0);
646         }
647 #endif
648
649         empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
650         if (!empty_zero_page)
651                 panic("zero page allocation failed.\n");
652
653 }
654
655 static void __init gateway_init(void)
656 {
657         unsigned long linux_gateway_page_addr;
658         /* FIXME: This is 'const' in order to trick the compiler
659            into not treating it as DP-relative data. */
660         extern void * const linux_gateway_page;
661
662         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
663
664         /*
665          * Setup Linux Gateway page.
666          *
667          * The Linux gateway page will reside in kernel space (on virtual
668          * page 0), so it doesn't need to be aliased into user space.
669          */
670
671         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
672                   PAGE_SIZE, PAGE_GATEWAY, 1);
673 }
674
675 static void __init parisc_bootmem_free(void)
676 {
677         unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
678
679         max_zone_pfn[0] = memblock_end_of_DRAM();
680
681         free_area_init(max_zone_pfn);
682 }
683
684 void __init paging_init(void)
685 {
686         setup_bootmem();
687         pagetable_init();
688         gateway_init();
689         flush_cache_all_local(); /* start with known state */
690         flush_tlb_all_local(NULL);
691
692         sparse_init();
693         parisc_bootmem_free();
694 }
695
696 #ifdef CONFIG_PA20
697
698 /*
699  * Currently, all PA20 chips have 18 bit protection IDs, which is the
700  * limiting factor (space ids are 32 bits).
701  */
702
703 #define NR_SPACE_IDS 262144
704
705 #else
706
707 /*
708  * Currently we have a one-to-one relationship between space IDs and
709  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
710  * support 15 bit protection IDs, so that is the limiting factor.
711  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
712  * probably not worth the effort for a special case here.
713  */
714
715 #define NR_SPACE_IDS 32768
716
717 #endif  /* !CONFIG_PA20 */
718
719 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
720 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
721
722 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
723 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
724 static unsigned long space_id_index;
725 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
726 static unsigned long dirty_space_ids = 0;
727
728 static DEFINE_SPINLOCK(sid_lock);
729
730 unsigned long alloc_sid(void)
731 {
732         unsigned long index;
733
734         spin_lock(&sid_lock);
735
736         if (free_space_ids == 0) {
737                 if (dirty_space_ids != 0) {
738                         spin_unlock(&sid_lock);
739                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
740                         spin_lock(&sid_lock);
741                 }
742                 BUG_ON(free_space_ids == 0);
743         }
744
745         free_space_ids--;
746
747         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
748         space_id[BIT_WORD(index)] |= BIT_MASK(index);
749         space_id_index = index;
750
751         spin_unlock(&sid_lock);
752
753         return index << SPACEID_SHIFT;
754 }
755
756 void free_sid(unsigned long spaceid)
757 {
758         unsigned long index = spaceid >> SPACEID_SHIFT;
759         unsigned long *dirty_space_offset, mask;
760
761         dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
762         mask = BIT_MASK(index);
763
764         spin_lock(&sid_lock);
765
766         BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
767
768         *dirty_space_offset |= mask;
769         dirty_space_ids++;
770
771         spin_unlock(&sid_lock);
772 }
773
774
775 #ifdef CONFIG_SMP
776 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
777 {
778         int i;
779
780         /* NOTE: sid_lock must be held upon entry */
781
782         *ndirtyptr = dirty_space_ids;
783         if (dirty_space_ids != 0) {
784             for (i = 0; i < SID_ARRAY_SIZE; i++) {
785                 dirty_array[i] = dirty_space_id[i];
786                 dirty_space_id[i] = 0;
787             }
788             dirty_space_ids = 0;
789         }
790
791         return;
792 }
793
794 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
795 {
796         int i;
797
798         /* NOTE: sid_lock must be held upon entry */
799
800         if (ndirty != 0) {
801                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
802                         space_id[i] ^= dirty_array[i];
803                 }
804
805                 free_space_ids += ndirty;
806                 space_id_index = 0;
807         }
808 }
809
810 #else /* CONFIG_SMP */
811
812 static void recycle_sids(void)
813 {
814         int i;
815
816         /* NOTE: sid_lock must be held upon entry */
817
818         if (dirty_space_ids != 0) {
819                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
820                         space_id[i] ^= dirty_space_id[i];
821                         dirty_space_id[i] = 0;
822                 }
823
824                 free_space_ids += dirty_space_ids;
825                 dirty_space_ids = 0;
826                 space_id_index = 0;
827         }
828 }
829 #endif
830
831 /*
832  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
833  * purged, we can safely reuse the space ids that were released but
834  * not flushed from the tlb.
835  */
836
837 #ifdef CONFIG_SMP
838
839 static unsigned long recycle_ndirty;
840 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
841 static unsigned int recycle_inuse;
842
843 void flush_tlb_all(void)
844 {
845         int do_recycle;
846
847         __inc_irq_stat(irq_tlb_count);
848         do_recycle = 0;
849         spin_lock(&sid_lock);
850         if (dirty_space_ids > RECYCLE_THRESHOLD) {
851             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
852             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
853             recycle_inuse++;
854             do_recycle++;
855         }
856         spin_unlock(&sid_lock);
857         on_each_cpu(flush_tlb_all_local, NULL, 1);
858         if (do_recycle) {
859             spin_lock(&sid_lock);
860             recycle_sids(recycle_ndirty,recycle_dirty_array);
861             recycle_inuse = 0;
862             spin_unlock(&sid_lock);
863         }
864 }
865 #else
866 void flush_tlb_all(void)
867 {
868         __inc_irq_stat(irq_tlb_count);
869         spin_lock(&sid_lock);
870         flush_tlb_all_local(NULL);
871         recycle_sids();
872         spin_unlock(&sid_lock);
873 }
874 #endif