Merge branch 'i2c/for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
[linux-2.6-microblaze.git] / arch / parisc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/parisc/kernel/kprobes.c
4  *
5  * PA-RISC kprobes implementation
6  *
7  * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
8  */
9
10 #include <linux/types.h>
11 #include <linux/kprobes.h>
12 #include <linux/slab.h>
13 #include <asm/cacheflush.h>
14 #include <asm/patch.h>
15
16 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
17 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
18
19 int __kprobes arch_prepare_kprobe(struct kprobe *p)
20 {
21         if ((unsigned long)p->addr & 3UL)
22                 return -EINVAL;
23
24         p->ainsn.insn = get_insn_slot();
25         if (!p->ainsn.insn)
26                 return -ENOMEM;
27
28         memcpy(p->ainsn.insn, p->addr,
29                 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
30         p->opcode = *p->addr;
31         flush_insn_slot(p);
32         return 0;
33 }
34
35 void __kprobes arch_remove_kprobe(struct kprobe *p)
36 {
37         if (!p->ainsn.insn)
38                 return;
39
40         free_insn_slot(p->ainsn.insn, 0);
41         p->ainsn.insn = NULL;
42 }
43
44 void __kprobes arch_arm_kprobe(struct kprobe *p)
45 {
46         patch_text(p->addr, PARISC_KPROBES_BREAK_INSN);
47 }
48
49 void __kprobes arch_disarm_kprobe(struct kprobe *p)
50 {
51         patch_text(p->addr, p->opcode);
52 }
53
54 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
55 {
56         kcb->prev_kprobe.kp = kprobe_running();
57         kcb->prev_kprobe.status = kcb->kprobe_status;
58 }
59
60 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
61 {
62         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
63         kcb->kprobe_status = kcb->prev_kprobe.status;
64 }
65
66 static inline void __kprobes set_current_kprobe(struct kprobe *p)
67 {
68         __this_cpu_write(current_kprobe, p);
69 }
70
71 static void __kprobes setup_singlestep(struct kprobe *p,
72                 struct kprobe_ctlblk *kcb, struct pt_regs *regs)
73 {
74         kcb->iaoq[0] = regs->iaoq[0];
75         kcb->iaoq[1] = regs->iaoq[1];
76         regs->iaoq[0] = (unsigned long)p->ainsn.insn;
77         mtctl(0, 0);
78         regs->gr[0] |= PSW_R;
79 }
80
81 int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs)
82 {
83         struct kprobe *p;
84         struct kprobe_ctlblk *kcb;
85
86         preempt_disable();
87
88         kcb = get_kprobe_ctlblk();
89         p = get_kprobe((unsigned long *)regs->iaoq[0]);
90
91         if (!p) {
92                 preempt_enable_no_resched();
93                 return 0;
94         }
95
96         if (kprobe_running()) {
97                 /*
98                  * We have reentered the kprobe_handler, since another kprobe
99                  * was hit while within the handler, we save the original
100                  * kprobes and single step on the instruction of the new probe
101                  * without calling any user handlers to avoid recursive
102                  * kprobes.
103                  */
104                 save_previous_kprobe(kcb);
105                 set_current_kprobe(p);
106                 kprobes_inc_nmissed_count(p);
107                 setup_singlestep(p, kcb, regs);
108                 kcb->kprobe_status = KPROBE_REENTER;
109                 return 1;
110         }
111
112         set_current_kprobe(p);
113         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
114
115         /* If we have no pre-handler or it returned 0, we continue with
116          * normal processing. If we have a pre-handler and it returned
117          * non-zero - which means user handler setup registers to exit
118          * to another instruction, we must skip the single stepping.
119          */
120
121         if (!p->pre_handler || !p->pre_handler(p, regs)) {
122                 setup_singlestep(p, kcb, regs);
123                 kcb->kprobe_status = KPROBE_HIT_SS;
124         } else {
125                 reset_current_kprobe();
126                 preempt_enable_no_resched();
127         }
128         return 1;
129 }
130
131 int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs)
132 {
133         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
134         struct kprobe *p = kprobe_running();
135
136         if (!p)
137                 return 0;
138
139         if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4)
140                 return 0;
141
142         /* restore back original saved kprobe variables and continue */
143         if (kcb->kprobe_status == KPROBE_REENTER) {
144                 restore_previous_kprobe(kcb);
145                 return 1;
146         }
147
148         /* for absolute branch instructions we can copy iaoq_b. for relative
149          * branch instructions we need to calculate the new address based on the
150          * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without
151          * modificationt because it's based on our ainsn.insn address.
152          */
153
154         if (p->post_handler)
155                 p->post_handler(p, regs, 0);
156
157         switch (regs->iir >> 26) {
158         case 0x38: /* BE */
159         case 0x39: /* BE,L */
160         case 0x3a: /* BV */
161         case 0x3b: /* BVE */
162                 /* for absolute branches, regs->iaoq[1] has already the right
163                  * address
164                  */
165                 regs->iaoq[0] = kcb->iaoq[1];
166                 break;
167         default:
168                 regs->iaoq[1] = kcb->iaoq[0];
169                 regs->iaoq[1] += (regs->iaoq[1] - regs->iaoq[0]) + 4;
170                 regs->iaoq[0] = kcb->iaoq[1];
171                 break;
172         }
173         kcb->kprobe_status = KPROBE_HIT_SSDONE;
174         reset_current_kprobe();
175         return 1;
176 }
177
178 static inline void kretprobe_trampoline(void)
179 {
180         asm volatile("nop");
181         asm volatile("nop");
182 }
183
184 static int __kprobes trampoline_probe_handler(struct kprobe *p,
185                                               struct pt_regs *regs);
186
187 static struct kprobe trampoline_p = {
188         .pre_handler = trampoline_probe_handler
189 };
190
191 static int __kprobes trampoline_probe_handler(struct kprobe *p,
192                                               struct pt_regs *regs)
193 {
194         struct kretprobe_instance *ri = NULL;
195         struct hlist_head *head, empty_rp;
196         struct hlist_node *tmp;
197         unsigned long flags, orig_ret_address = 0;
198         unsigned long trampoline_address = (unsigned long)trampoline_p.addr;
199         kprobe_opcode_t *correct_ret_addr = NULL;
200
201         INIT_HLIST_HEAD(&empty_rp);
202         kretprobe_hash_lock(current, &head, &flags);
203
204         /*
205          * It is possible to have multiple instances associated with a given
206          * task either because multiple functions in the call path have
207          * a return probe installed on them, and/or more than one return
208          * probe was registered for a target function.
209          *
210          * We can handle this because:
211          *     - instances are always inserted at the head of the list
212          *     - when multiple return probes are registered for the same
213          *       function, the first instance's ret_addr will point to the
214          *       real return address, and all the rest will point to
215          *       kretprobe_trampoline
216          */
217         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
218                 if (ri->task != current)
219                         /* another task is sharing our hash bucket */
220                         continue;
221
222                 orig_ret_address = (unsigned long)ri->ret_addr;
223
224                 if (orig_ret_address != trampoline_address)
225                         /*
226                          * This is the real return address. Any other
227                          * instances associated with this task are for
228                          * other calls deeper on the call stack
229                          */
230                         break;
231         }
232
233         kretprobe_assert(ri, orig_ret_address, trampoline_address);
234
235         correct_ret_addr = ri->ret_addr;
236         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
237                 if (ri->task != current)
238                         /* another task is sharing our hash bucket */
239                         continue;
240
241                 orig_ret_address = (unsigned long)ri->ret_addr;
242                 if (ri->rp && ri->rp->handler) {
243                         __this_cpu_write(current_kprobe, &ri->rp->kp);
244                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
245                         ri->ret_addr = correct_ret_addr;
246                         ri->rp->handler(ri, regs);
247                         __this_cpu_write(current_kprobe, NULL);
248                 }
249
250                 recycle_rp_inst(ri, &empty_rp);
251
252                 if (orig_ret_address != trampoline_address)
253                         /*
254                          * This is the real return address. Any other
255                          * instances associated with this task are for
256                          * other calls deeper on the call stack
257                          */
258                         break;
259         }
260
261         kretprobe_hash_unlock(current, &flags);
262
263         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
264                 hlist_del(&ri->hlist);
265                 kfree(ri);
266         }
267         instruction_pointer_set(regs, orig_ret_address);
268         return 1;
269 }
270
271 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
272                                       struct pt_regs *regs)
273 {
274         ri->ret_addr = (kprobe_opcode_t *)regs->gr[2];
275
276         /* Replace the return addr with trampoline addr. */
277         regs->gr[2] = (unsigned long)trampoline_p.addr;
278 }
279
280 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
281 {
282         return p->addr == trampoline_p.addr;
283 }
284
285 int __init arch_init_kprobes(void)
286 {
287         trampoline_p.addr = (kprobe_opcode_t *)
288                 dereference_function_descriptor(kretprobe_trampoline);
289         return register_kprobe(&trampoline_p);
290 }