Merge tag 'm68k-for-v5.3-tag2' of git://git.kernel.org/pub/scm/linux/kernel/git/geert...
[linux-2.6-microblaze.git] / arch / mips / sibyte / sb1250 / irq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/init.h>
7 #include <linux/linkage.h>
8 #include <linux/interrupt.h>
9 #include <linux/spinlock.h>
10 #include <linux/smp.h>
11 #include <linux/mm.h>
12 #include <linux/kernel_stat.h>
13
14 #include <asm/errno.h>
15 #include <asm/signal.h>
16 #include <asm/time.h>
17 #include <asm/io.h>
18
19 #include <asm/sibyte/sb1250_regs.h>
20 #include <asm/sibyte/sb1250_int.h>
21 #include <asm/sibyte/sb1250_uart.h>
22 #include <asm/sibyte/sb1250_scd.h>
23 #include <asm/sibyte/sb1250.h>
24
25 /*
26  * These are the routines that handle all the low level interrupt stuff.
27  * Actions handled here are: initialization of the interrupt map, requesting of
28  * interrupt lines by handlers, dispatching if interrupts to handlers, probing
29  * for interrupt lines
30  */
31
32 #ifdef CONFIG_SIBYTE_HAS_LDT
33 extern unsigned long ldt_eoi_space;
34 #endif
35
36 /* Store the CPU id (not the logical number) */
37 int sb1250_irq_owner[SB1250_NR_IRQS];
38
39 static DEFINE_RAW_SPINLOCK(sb1250_imr_lock);
40
41 void sb1250_mask_irq(int cpu, int irq)
42 {
43         unsigned long flags;
44         u64 cur_ints;
45
46         raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
47         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
48                                         R_IMR_INTERRUPT_MASK));
49         cur_ints |= (((u64) 1) << irq);
50         ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
51                                         R_IMR_INTERRUPT_MASK));
52         raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
53 }
54
55 void sb1250_unmask_irq(int cpu, int irq)
56 {
57         unsigned long flags;
58         u64 cur_ints;
59
60         raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
61         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
62                                         R_IMR_INTERRUPT_MASK));
63         cur_ints &= ~(((u64) 1) << irq);
64         ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
65                                         R_IMR_INTERRUPT_MASK));
66         raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
67 }
68
69 #ifdef CONFIG_SMP
70 static int sb1250_set_affinity(struct irq_data *d, const struct cpumask *mask,
71                                bool force)
72 {
73         int i = 0, old_cpu, cpu, int_on;
74         unsigned int irq = d->irq;
75         u64 cur_ints;
76         unsigned long flags;
77
78         i = cpumask_first_and(mask, cpu_online_mask);
79
80         /* Convert logical CPU to physical CPU */
81         cpu = cpu_logical_map(i);
82
83         /* Protect against other affinity changers and IMR manipulation */
84         raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
85
86         /* Swizzle each CPU's IMR (but leave the IP selection alone) */
87         old_cpu = sb1250_irq_owner[irq];
88         cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) +
89                                         R_IMR_INTERRUPT_MASK));
90         int_on = !(cur_ints & (((u64) 1) << irq));
91         if (int_on) {
92                 /* If it was on, mask it */
93                 cur_ints |= (((u64) 1) << irq);
94                 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) +
95                                         R_IMR_INTERRUPT_MASK));
96         }
97         sb1250_irq_owner[irq] = cpu;
98         if (int_on) {
99                 /* unmask for the new CPU */
100                 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
101                                         R_IMR_INTERRUPT_MASK));
102                 cur_ints &= ~(((u64) 1) << irq);
103                 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
104                                         R_IMR_INTERRUPT_MASK));
105         }
106         raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
107
108         return 0;
109 }
110 #endif
111
112 static void disable_sb1250_irq(struct irq_data *d)
113 {
114         unsigned int irq = d->irq;
115
116         sb1250_mask_irq(sb1250_irq_owner[irq], irq);
117 }
118
119 static void enable_sb1250_irq(struct irq_data *d)
120 {
121         unsigned int irq = d->irq;
122
123         sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
124 }
125
126
127 static void ack_sb1250_irq(struct irq_data *d)
128 {
129         unsigned int irq = d->irq;
130 #ifdef CONFIG_SIBYTE_HAS_LDT
131         u64 pending;
132
133         /*
134          * If the interrupt was an HT interrupt, now is the time to
135          * clear it.  NOTE: we assume the HT bridge was set up to
136          * deliver the interrupts to all CPUs (which makes affinity
137          * changing easier for us)
138          */
139         pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq],
140                                                     R_IMR_LDT_INTERRUPT)));
141         pending &= ((u64)1 << (irq));
142         if (pending) {
143                 int i;
144                 for (i=0; i<NR_CPUS; i++) {
145                         int cpu;
146 #ifdef CONFIG_SMP
147                         cpu = cpu_logical_map(i);
148 #else
149                         cpu = i;
150 #endif
151                         /*
152                          * Clear for all CPUs so an affinity switch
153                          * doesn't find an old status
154                          */
155                         __raw_writeq(pending,
156                                      IOADDR(A_IMR_REGISTER(cpu,
157                                                 R_IMR_LDT_INTERRUPT_CLR)));
158                 }
159
160                 /*
161                  * Generate EOI.  For Pass 1 parts, EOI is a nop.  For
162                  * Pass 2, the LDT world may be edge-triggered, but
163                  * this EOI shouldn't hurt.  If they are
164                  * level-sensitive, the EOI is required.
165                  */
166                 *(uint32_t *)(ldt_eoi_space+(irq<<16)+(7<<2)) = 0;
167         }
168 #endif
169         sb1250_mask_irq(sb1250_irq_owner[irq], irq);
170 }
171
172 static struct irq_chip sb1250_irq_type = {
173         .name = "SB1250-IMR",
174         .irq_mask_ack = ack_sb1250_irq,
175         .irq_unmask = enable_sb1250_irq,
176         .irq_mask = disable_sb1250_irq,
177 #ifdef CONFIG_SMP
178         .irq_set_affinity = sb1250_set_affinity
179 #endif
180 };
181
182 void __init init_sb1250_irqs(void)
183 {
184         int i;
185
186         for (i = 0; i < SB1250_NR_IRQS; i++) {
187                 irq_set_chip_and_handler(i, &sb1250_irq_type,
188                                          handle_level_irq);
189                 sb1250_irq_owner[i] = 0;
190         }
191 }
192
193
194 /*
195  *  arch_init_irq is called early in the boot sequence from init/main.c via
196  *  init_IRQ.  It is responsible for setting up the interrupt mapper and
197  *  installing the handler that will be responsible for dispatching interrupts
198  *  to the "right" place.
199  */
200 /*
201  * For now, map all interrupts to IP[2].  We could save
202  * some cycles by parceling out system interrupts to different
203  * IP lines, but keep it simple for bringup.  We'll also direct
204  * all interrupts to a single CPU; we should probably route
205  * PCI and LDT to one cpu and everything else to the other
206  * to balance the load a bit.
207  *
208  * On the second cpu, everything is set to IP5, which is
209  * ignored, EXCEPT the mailbox interrupt.  That one is
210  * set to IP[2] so it is handled.  This is needed so we
211  * can do cross-cpu function calls, as required by SMP
212  */
213
214 #define IMR_IP2_VAL     K_INT_MAP_I0
215 #define IMR_IP3_VAL     K_INT_MAP_I1
216 #define IMR_IP4_VAL     K_INT_MAP_I2
217 #define IMR_IP5_VAL     K_INT_MAP_I3
218 #define IMR_IP6_VAL     K_INT_MAP_I4
219
220 void __init arch_init_irq(void)
221 {
222
223         unsigned int i;
224         u64 tmp;
225         unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
226                 STATUSF_IP1 | STATUSF_IP0;
227
228         /* Default everything to IP2 */
229         for (i = 0; i < SB1250_NR_IRQS; i++) {  /* was I0 */
230                 __raw_writeq(IMR_IP2_VAL,
231                              IOADDR(A_IMR_REGISTER(0,
232                                                    R_IMR_INTERRUPT_MAP_BASE) +
233                                     (i << 3)));
234                 __raw_writeq(IMR_IP2_VAL,
235                              IOADDR(A_IMR_REGISTER(1,
236                                                    R_IMR_INTERRUPT_MAP_BASE) +
237                                     (i << 3)));
238         }
239
240         init_sb1250_irqs();
241
242         /*
243          * Map the high 16 bits of the mailbox registers to IP[3], for
244          * inter-cpu messages
245          */
246         /* Was I1 */
247         __raw_writeq(IMR_IP3_VAL,
248                      IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) +
249                             (K_INT_MBOX_0 << 3)));
250         __raw_writeq(IMR_IP3_VAL,
251                      IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) +
252                             (K_INT_MBOX_0 << 3)));
253
254         /* Clear the mailboxes.  The firmware may leave them dirty */
255         __raw_writeq(0xffffffffffffffffULL,
256                      IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU)));
257         __raw_writeq(0xffffffffffffffffULL,
258                      IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU)));
259
260         /* Mask everything except the mailbox registers for both cpus */
261         tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0);
262         __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK)));
263         __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK)));
264
265         /*
266          * Note that the timer interrupts are also mapped, but this is
267          * done in sb1250_time_init().  Also, the profiling driver
268          * does its own management of IP7.
269          */
270
271         /* Enable necessary IPs, disable the rest */
272         change_c0_status(ST0_IM, imask);
273 }
274
275 extern void sb1250_mailbox_interrupt(void);
276
277 static inline void dispatch_ip2(void)
278 {
279         unsigned int cpu = smp_processor_id();
280         unsigned long long mask;
281
282         /*
283          * Default...we've hit an IP[2] interrupt, which means we've got to
284          * check the 1250 interrupt registers to figure out what to do.  Need
285          * to detect which CPU we're on, now that smp_affinity is supported.
286          */
287         mask = __raw_readq(IOADDR(A_IMR_REGISTER(cpu,
288                                   R_IMR_INTERRUPT_STATUS_BASE)));
289         if (mask)
290                 do_IRQ(fls64(mask) - 1);
291 }
292
293 asmlinkage void plat_irq_dispatch(void)
294 {
295         unsigned int cpu = smp_processor_id();
296         unsigned int pending;
297
298         /*
299          * What a pain. We have to be really careful saving the upper 32 bits
300          * of any * register across function calls if we don't want them
301          * trashed--since were running in -o32, the calling routing never saves
302          * the full 64 bits of a register across a function call.  Being the
303          * interrupt handler, we're guaranteed that interrupts are disabled
304          * during this code so we don't have to worry about random interrupts
305          * blasting the high 32 bits.
306          */
307
308         pending = read_c0_cause() & read_c0_status() & ST0_IM;
309
310         if (pending & CAUSEF_IP7) /* CPU performance counter interrupt */
311                 do_IRQ(MIPS_CPU_IRQ_BASE + 7);
312         else if (pending & CAUSEF_IP4)
313                 do_IRQ(K_INT_TIMER_0 + cpu);    /* sb1250_timer_interrupt() */
314
315 #ifdef CONFIG_SMP
316         else if (pending & CAUSEF_IP3)
317                 sb1250_mailbox_interrupt();
318 #endif
319
320         else if (pending & CAUSEF_IP2)
321                 dispatch_ip2();
322         else
323                 spurious_interrupt();
324 }