Merge tag 'iommu-fixes-v5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / mips / mm / init.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 2000 Ralf Baechle
7  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
10  */
11 #include <linux/bug.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/memblock.h>
26 #include <linux/highmem.h>
27 #include <linux/swap.h>
28 #include <linux/proc_fs.h>
29 #include <linux/pfn.h>
30 #include <linux/hardirq.h>
31 #include <linux/gfp.h>
32 #include <linux/kcore.h>
33 #include <linux/initrd.h>
34
35 #include <asm/bootinfo.h>
36 #include <asm/cachectl.h>
37 #include <asm/cpu.h>
38 #include <asm/dma.h>
39 #include <asm/maar.h>
40 #include <asm/mmu_context.h>
41 #include <asm/sections.h>
42 #include <asm/pgalloc.h>
43 #include <asm/tlb.h>
44 #include <asm/fixmap.h>
45
46 /*
47  * We have up to 8 empty zeroed pages so we can map one of the right colour
48  * when needed.  This is necessary only on R4000 / R4400 SC and MC versions
49  * where we have to avoid VCED / VECI exceptions for good performance at
50  * any price.  Since page is never written to after the initialization we
51  * don't have to care about aliases on other CPUs.
52  */
53 unsigned long empty_zero_page, zero_page_mask;
54 EXPORT_SYMBOL_GPL(empty_zero_page);
55 EXPORT_SYMBOL(zero_page_mask);
56
57 /*
58  * Not static inline because used by IP27 special magic initialization code
59  */
60 void setup_zero_pages(void)
61 {
62         unsigned int order, i;
63         struct page *page;
64
65         if (cpu_has_vce)
66                 order = 3;
67         else
68                 order = 0;
69
70         empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
71         if (!empty_zero_page)
72                 panic("Oh boy, that early out of memory?");
73
74         page = virt_to_page((void *)empty_zero_page);
75         split_page(page, order);
76         for (i = 0; i < (1 << order); i++, page++)
77                 mark_page_reserved(page);
78
79         zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
80 }
81
82 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
83 {
84         enum fixed_addresses idx;
85         unsigned int old_mmid;
86         unsigned long vaddr, flags, entrylo;
87         unsigned long old_ctx;
88         pte_t pte;
89         int tlbidx;
90
91         BUG_ON(Page_dcache_dirty(page));
92
93         preempt_disable();
94         pagefault_disable();
95         idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
96         idx += in_interrupt() ? FIX_N_COLOURS : 0;
97         vaddr = __fix_to_virt(FIX_CMAP_END - idx);
98         pte = mk_pte(page, prot);
99 #if defined(CONFIG_XPA)
100         entrylo = pte_to_entrylo(pte.pte_high);
101 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
102         entrylo = pte.pte_high;
103 #else
104         entrylo = pte_to_entrylo(pte_val(pte));
105 #endif
106
107         local_irq_save(flags);
108         old_ctx = read_c0_entryhi();
109         write_c0_entryhi(vaddr & (PAGE_MASK << 1));
110         write_c0_entrylo0(entrylo);
111         write_c0_entrylo1(entrylo);
112         if (cpu_has_mmid) {
113                 old_mmid = read_c0_memorymapid();
114                 write_c0_memorymapid(MMID_KERNEL_WIRED);
115         }
116 #ifdef CONFIG_XPA
117         if (cpu_has_xpa) {
118                 entrylo = (pte.pte_low & _PFNX_MASK);
119                 writex_c0_entrylo0(entrylo);
120                 writex_c0_entrylo1(entrylo);
121         }
122 #endif
123         tlbidx = num_wired_entries();
124         write_c0_wired(tlbidx + 1);
125         write_c0_index(tlbidx);
126         mtc0_tlbw_hazard();
127         tlb_write_indexed();
128         tlbw_use_hazard();
129         write_c0_entryhi(old_ctx);
130         if (cpu_has_mmid)
131                 write_c0_memorymapid(old_mmid);
132         local_irq_restore(flags);
133
134         return (void*) vaddr;
135 }
136
137 void *kmap_coherent(struct page *page, unsigned long addr)
138 {
139         return __kmap_pgprot(page, addr, PAGE_KERNEL);
140 }
141
142 void *kmap_noncoherent(struct page *page, unsigned long addr)
143 {
144         return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
145 }
146
147 void kunmap_coherent(void)
148 {
149         unsigned int wired;
150         unsigned long flags, old_ctx;
151
152         local_irq_save(flags);
153         old_ctx = read_c0_entryhi();
154         wired = num_wired_entries() - 1;
155         write_c0_wired(wired);
156         write_c0_index(wired);
157         write_c0_entryhi(UNIQUE_ENTRYHI(wired));
158         write_c0_entrylo0(0);
159         write_c0_entrylo1(0);
160         mtc0_tlbw_hazard();
161         tlb_write_indexed();
162         tlbw_use_hazard();
163         write_c0_entryhi(old_ctx);
164         local_irq_restore(flags);
165         pagefault_enable();
166         preempt_enable();
167 }
168
169 void copy_user_highpage(struct page *to, struct page *from,
170         unsigned long vaddr, struct vm_area_struct *vma)
171 {
172         void *vfrom, *vto;
173
174         vto = kmap_atomic(to);
175         if (cpu_has_dc_aliases &&
176             page_mapcount(from) && !Page_dcache_dirty(from)) {
177                 vfrom = kmap_coherent(from, vaddr);
178                 copy_page(vto, vfrom);
179                 kunmap_coherent();
180         } else {
181                 vfrom = kmap_atomic(from);
182                 copy_page(vto, vfrom);
183                 kunmap_atomic(vfrom);
184         }
185         if ((!cpu_has_ic_fills_f_dc) ||
186             pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
187                 flush_data_cache_page((unsigned long)vto);
188         kunmap_atomic(vto);
189         /* Make sure this page is cleared on other CPU's too before using it */
190         smp_wmb();
191 }
192
193 void copy_to_user_page(struct vm_area_struct *vma,
194         struct page *page, unsigned long vaddr, void *dst, const void *src,
195         unsigned long len)
196 {
197         if (cpu_has_dc_aliases &&
198             page_mapcount(page) && !Page_dcache_dirty(page)) {
199                 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
200                 memcpy(vto, src, len);
201                 kunmap_coherent();
202         } else {
203                 memcpy(dst, src, len);
204                 if (cpu_has_dc_aliases)
205                         SetPageDcacheDirty(page);
206         }
207         if (vma->vm_flags & VM_EXEC)
208                 flush_cache_page(vma, vaddr, page_to_pfn(page));
209 }
210
211 void copy_from_user_page(struct vm_area_struct *vma,
212         struct page *page, unsigned long vaddr, void *dst, const void *src,
213         unsigned long len)
214 {
215         if (cpu_has_dc_aliases &&
216             page_mapcount(page) && !Page_dcache_dirty(page)) {
217                 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
218                 memcpy(dst, vfrom, len);
219                 kunmap_coherent();
220         } else {
221                 memcpy(dst, src, len);
222                 if (cpu_has_dc_aliases)
223                         SetPageDcacheDirty(page);
224         }
225 }
226 EXPORT_SYMBOL_GPL(copy_from_user_page);
227
228 void __init fixrange_init(unsigned long start, unsigned long end,
229         pgd_t *pgd_base)
230 {
231 #ifdef CONFIG_HIGHMEM
232         pgd_t *pgd;
233         pud_t *pud;
234         pmd_t *pmd;
235         pte_t *pte;
236         int i, j, k;
237         unsigned long vaddr;
238
239         vaddr = start;
240         i = pgd_index(vaddr);
241         j = pud_index(vaddr);
242         k = pmd_index(vaddr);
243         pgd = pgd_base + i;
244
245         for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
246                 pud = (pud_t *)pgd;
247                 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
248                         pmd = (pmd_t *)pud;
249                         for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
250                                 if (pmd_none(*pmd)) {
251                                         pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
252                                                                            PAGE_SIZE);
253                                         if (!pte)
254                                                 panic("%s: Failed to allocate %lu bytes align=%lx\n",
255                                                       __func__, PAGE_SIZE,
256                                                       PAGE_SIZE);
257
258                                         set_pmd(pmd, __pmd((unsigned long)pte));
259                                         BUG_ON(pte != pte_offset_kernel(pmd, 0));
260                                 }
261                                 vaddr += PMD_SIZE;
262                         }
263                         k = 0;
264                 }
265                 j = 0;
266         }
267 #endif
268 }
269
270 struct maar_walk_info {
271         struct maar_config cfg[16];
272         unsigned int num_cfg;
273 };
274
275 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
276                          void *data)
277 {
278         struct maar_walk_info *wi = data;
279         struct maar_config *cfg = &wi->cfg[wi->num_cfg];
280         unsigned int maar_align;
281
282         /* MAAR registers hold physical addresses right shifted by 4 bits */
283         maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
284
285         /* Fill in the MAAR config entry */
286         cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
287         cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
288         cfg->attrs = MIPS_MAAR_S;
289
290         /* Ensure we don't overflow the cfg array */
291         if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
292                 wi->num_cfg++;
293
294         return 0;
295 }
296
297
298 unsigned __weak platform_maar_init(unsigned num_pairs)
299 {
300         unsigned int num_configured;
301         struct maar_walk_info wi;
302
303         wi.num_cfg = 0;
304         walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
305
306         num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
307         if (num_configured < wi.num_cfg)
308                 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
309                         num_pairs, wi.num_cfg);
310
311         return num_configured;
312 }
313
314 void maar_init(void)
315 {
316         unsigned num_maars, used, i;
317         phys_addr_t lower, upper, attr;
318         static struct {
319                 struct maar_config cfgs[3];
320                 unsigned used;
321         } recorded = { { { 0 } }, 0 };
322
323         if (!cpu_has_maar)
324                 return;
325
326         /* Detect the number of MAARs */
327         write_c0_maari(~0);
328         back_to_back_c0_hazard();
329         num_maars = read_c0_maari() + 1;
330
331         /* MAARs should be in pairs */
332         WARN_ON(num_maars % 2);
333
334         /* Set MAARs using values we recorded already */
335         if (recorded.used) {
336                 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
337                 BUG_ON(used != recorded.used);
338         } else {
339                 /* Configure the required MAARs */
340                 used = platform_maar_init(num_maars / 2);
341         }
342
343         /* Disable any further MAARs */
344         for (i = (used * 2); i < num_maars; i++) {
345                 write_c0_maari(i);
346                 back_to_back_c0_hazard();
347                 write_c0_maar(0);
348                 back_to_back_c0_hazard();
349         }
350
351         if (recorded.used)
352                 return;
353
354         pr_info("MAAR configuration:\n");
355         for (i = 0; i < num_maars; i += 2) {
356                 write_c0_maari(i);
357                 back_to_back_c0_hazard();
358                 upper = read_c0_maar();
359 #ifdef CONFIG_XPA
360                 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
361 #endif
362
363                 write_c0_maari(i + 1);
364                 back_to_back_c0_hazard();
365                 lower = read_c0_maar();
366 #ifdef CONFIG_XPA
367                 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
368 #endif
369
370                 attr = lower & upper;
371                 lower = (lower & MIPS_MAAR_ADDR) << 4;
372                 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
373
374                 pr_info("  [%d]: ", i / 2);
375                 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
376                         pr_cont("disabled\n");
377                         continue;
378                 }
379
380                 pr_cont("%pa-%pa", &lower, &upper);
381
382                 if (attr & MIPS_MAAR_S)
383                         pr_cont(" speculate");
384
385                 pr_cont("\n");
386
387                 /* Record the setup for use on secondary CPUs */
388                 if (used <= ARRAY_SIZE(recorded.cfgs)) {
389                         recorded.cfgs[recorded.used].lower = lower;
390                         recorded.cfgs[recorded.used].upper = upper;
391                         recorded.cfgs[recorded.used].attrs = attr;
392                         recorded.used++;
393                 }
394         }
395 }
396
397 #ifndef CONFIG_NUMA
398 void __init paging_init(void)
399 {
400         unsigned long max_zone_pfns[MAX_NR_ZONES];
401
402         pagetable_init();
403
404 #ifdef CONFIG_ZONE_DMA
405         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
406 #endif
407 #ifdef CONFIG_ZONE_DMA32
408         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
409 #endif
410         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
411 #ifdef CONFIG_HIGHMEM
412         max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
413
414         if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
415                 printk(KERN_WARNING "This processor doesn't support highmem."
416                        " %ldk highmem ignored\n",
417                        (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
418                 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
419         }
420 #endif
421
422         free_area_init(max_zone_pfns);
423 }
424
425 #ifdef CONFIG_64BIT
426 static struct kcore_list kcore_kseg0;
427 #endif
428
429 static inline void __init mem_init_free_highmem(void)
430 {
431 #ifdef CONFIG_HIGHMEM
432         unsigned long tmp;
433
434         if (cpu_has_dc_aliases)
435                 return;
436
437         for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
438                 struct page *page = pfn_to_page(tmp);
439
440                 if (!memblock_is_memory(PFN_PHYS(tmp)))
441                         SetPageReserved(page);
442                 else
443                         free_highmem_page(page);
444         }
445 #endif
446 }
447
448 void __init mem_init(void)
449 {
450         /*
451          * When _PFN_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
452          * bits to hold a full 32b physical address on MIPS32 systems.
453          */
454         BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (_PFN_SHIFT > PAGE_SHIFT));
455
456 #ifdef CONFIG_HIGHMEM
457         max_mapnr = highend_pfn ? highend_pfn : max_low_pfn;
458 #else
459         max_mapnr = max_low_pfn;
460 #endif
461         high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
462
463         maar_init();
464         memblock_free_all();
465         setup_zero_pages();     /* Setup zeroed pages.  */
466         mem_init_free_highmem();
467
468 #ifdef CONFIG_64BIT
469         if ((unsigned long) &_text > (unsigned long) CKSEG0)
470                 /* The -4 is a hack so that user tools don't have to handle
471                    the overflow.  */
472                 kclist_add(&kcore_kseg0, (void *) CKSEG0,
473                                 0x80000000 - 4, KCORE_TEXT);
474 #endif
475 }
476 #endif /* !CONFIG_NUMA */
477
478 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
479 {
480         unsigned long pfn;
481
482         for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
483                 struct page *page = pfn_to_page(pfn);
484                 void *addr = phys_to_virt(PFN_PHYS(pfn));
485
486                 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
487                 free_reserved_page(page);
488         }
489         printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
490 }
491
492 void (*free_init_pages_eva)(void *begin, void *end) = NULL;
493
494 void __weak __init prom_free_prom_memory(void)
495 {
496         /* nothing to do */
497 }
498
499 void __ref free_initmem(void)
500 {
501         prom_free_prom_memory();
502         /*
503          * Let the platform define a specific function to free the
504          * init section since EVA may have used any possible mapping
505          * between virtual and physical addresses.
506          */
507         if (free_init_pages_eva)
508                 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
509         else
510                 free_initmem_default(POISON_FREE_INITMEM);
511 }
512
513 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
514 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
515 EXPORT_SYMBOL(__per_cpu_offset);
516
517 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
518 {
519         return node_distance(cpu_to_node(from), cpu_to_node(to));
520 }
521
522 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size,
523                                        size_t align)
524 {
525         return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
526                                       MEMBLOCK_ALLOC_ACCESSIBLE,
527                                       cpu_to_node(cpu));
528 }
529
530 static void __init pcpu_fc_free(void *ptr, size_t size)
531 {
532         memblock_free_early(__pa(ptr), size);
533 }
534
535 void __init setup_per_cpu_areas(void)
536 {
537         unsigned long delta;
538         unsigned int cpu;
539         int rc;
540
541         /*
542          * Always reserve area for module percpu variables.  That's
543          * what the legacy allocator did.
544          */
545         rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
546                                     PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
547                                     pcpu_cpu_distance,
548                                     pcpu_fc_alloc, pcpu_fc_free);
549         if (rc < 0)
550                 panic("Failed to initialize percpu areas.");
551
552         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
553         for_each_possible_cpu(cpu)
554                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
555 }
556 #endif
557
558 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
559 unsigned long pgd_current[NR_CPUS];
560 #endif
561
562 /*
563  * Align swapper_pg_dir in to 64K, allows its address to be loaded
564  * with a single LUI instruction in the TLB handlers.  If we used
565  * __aligned(64K), its size would get rounded up to the alignment
566  * size, and waste space.  So we place it in its own section and align
567  * it in the linker script.
568  */
569 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
570 #ifndef __PAGETABLE_PUD_FOLDED
571 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
572 #endif
573 #ifndef __PAGETABLE_PMD_FOLDED
574 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
575 EXPORT_SYMBOL_GPL(invalid_pmd_table);
576 #endif
577 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
578 EXPORT_SYMBOL(invalid_pte_table);