Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-2.6-microblaze.git] / arch / mips / mm / dma-noncoherent.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
4  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6  */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-map-ops.h>
9 #include <linux/highmem.h>
10
11 #include <asm/cache.h>
12 #include <asm/cpu-type.h>
13 #include <asm/io.h>
14
15 /*
16  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
17  * fill random cachelines with stale data at any time, requiring an extra
18  * flush post-DMA.
19  *
20  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
21  * terminology calls memory areas with hardware maintained coherency coherent.
22  *
23  * Note that the R14000 and R16000 should also be checked for in this condition.
24  * However this function is only called on non-I/O-coherent systems and only the
25  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
26  * SGI IP32 aka O2.
27  */
28 static inline bool cpu_needs_post_dma_flush(void)
29 {
30         switch (boot_cpu_type()) {
31         case CPU_R10000:
32         case CPU_R12000:
33         case CPU_BMIPS5000:
34         case CPU_LOONGSON2EF:
35         case CPU_XBURST:
36                 return true;
37         default:
38                 /*
39                  * Presence of MAARs suggests that the CPU supports
40                  * speculatively prefetching data, and therefore requires
41                  * the post-DMA flush/invalidate.
42                  */
43                 return cpu_has_maar;
44         }
45 }
46
47 void arch_dma_prep_coherent(struct page *page, size_t size)
48 {
49         dma_cache_wback_inv((unsigned long)page_address(page), size);
50 }
51
52 void *arch_dma_set_uncached(void *addr, size_t size)
53 {
54         return (void *)(__pa(addr) + UNCAC_BASE);
55 }
56
57 static inline void dma_sync_virt_for_device(void *addr, size_t size,
58                 enum dma_data_direction dir)
59 {
60         switch (dir) {
61         case DMA_TO_DEVICE:
62                 dma_cache_wback((unsigned long)addr, size);
63                 break;
64         case DMA_FROM_DEVICE:
65                 dma_cache_inv((unsigned long)addr, size);
66                 break;
67         case DMA_BIDIRECTIONAL:
68                 dma_cache_wback_inv((unsigned long)addr, size);
69                 break;
70         default:
71                 BUG();
72         }
73 }
74
75 static inline void dma_sync_virt_for_cpu(void *addr, size_t size,
76                 enum dma_data_direction dir)
77 {
78         switch (dir) {
79         case DMA_TO_DEVICE:
80                 break;
81         case DMA_FROM_DEVICE:
82         case DMA_BIDIRECTIONAL:
83                 dma_cache_inv((unsigned long)addr, size);
84                 break;
85         default:
86                 BUG();
87         }
88 }
89
90 /*
91  * A single sg entry may refer to multiple physically contiguous pages.  But
92  * we still need to process highmem pages individually.  If highmem is not
93  * configured then the bulk of this loop gets optimized out.
94  */
95 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
96                 enum dma_data_direction dir, bool for_device)
97 {
98         struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
99         unsigned long offset = paddr & ~PAGE_MASK;
100         size_t left = size;
101
102         do {
103                 size_t len = left;
104                 void *addr;
105
106                 if (PageHighMem(page)) {
107                         if (offset + len > PAGE_SIZE)
108                                 len = PAGE_SIZE - offset;
109                 }
110
111                 addr = kmap_atomic(page);
112                 if (for_device)
113                         dma_sync_virt_for_device(addr + offset, len, dir);
114                 else
115                         dma_sync_virt_for_cpu(addr + offset, len, dir);
116                 kunmap_atomic(addr);
117
118                 offset = 0;
119                 page++;
120                 left -= len;
121         } while (left);
122 }
123
124 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
125                 enum dma_data_direction dir)
126 {
127         dma_sync_phys(paddr, size, dir, true);
128 }
129
130 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
131 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
132                 enum dma_data_direction dir)
133 {
134         if (cpu_needs_post_dma_flush())
135                 dma_sync_phys(paddr, size, dir, false);
136 }
137 #endif
138
139 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
140 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
141                 const struct iommu_ops *iommu, bool coherent)
142 {
143         dev->dma_coherent = coherent;
144 }
145 #endif