7e055e5dfd3cf4e63eeeef407af5ef0ac352430e
[linux-2.6-microblaze.git] / arch / mips / kvm / mmu.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:       Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45         unsigned long *p, *end;
46         unsigned long entry;
47
48 #ifdef __PAGETABLE_PMD_FOLDED
49         entry = (unsigned long)invalid_pte_table;
50 #else
51         entry = (unsigned long)invalid_pmd_table;
52 #endif
53
54         p = (unsigned long *)page;
55         end = p + PTRS_PER_PGD;
56
57         do {
58                 p[0] = entry;
59                 p[1] = entry;
60                 p[2] = entry;
61                 p[3] = entry;
62                 p[4] = entry;
63                 p += 8;
64                 p[-3] = entry;
65                 p[-2] = entry;
66                 p[-1] = entry;
67         } while (p != end);
68 }
69
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:     Pointer to new KVM GPA page directory.
77  *              NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81         pgd_t *ret;
82
83         ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
84         if (ret)
85                 kvm_pgd_init(ret);
86
87         return ret;
88 }
89
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:        Page directory pointer.
93  * @addr:       Address to index page table using.
94  * @cache:      MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:     Pointer to pte_t corresponding to @addr.
101  *              NULL if a page table doesn't exist for @addr and !@cache.
102  *              NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105                                 unsigned long addr)
106 {
107         p4d_t *p4d;
108         pud_t *pud;
109         pmd_t *pmd;
110
111         pgd += pgd_index(addr);
112         if (pgd_none(*pgd)) {
113                 /* Not used on MIPS yet */
114                 BUG();
115                 return NULL;
116         }
117         p4d = p4d_offset(pgd, addr);
118         pud = pud_offset(p4d, addr);
119         if (pud_none(*pud)) {
120                 pmd_t *new_pmd;
121
122                 if (!cache)
123                         return NULL;
124                 new_pmd = kvm_mmu_memory_cache_alloc(cache);
125                 pmd_init((unsigned long)new_pmd,
126                          (unsigned long)invalid_pte_table);
127                 pud_populate(NULL, pud, new_pmd);
128         }
129         pmd = pmd_offset(pud, addr);
130         if (pmd_none(*pmd)) {
131                 pte_t *new_pte;
132
133                 if (!cache)
134                         return NULL;
135                 new_pte = kvm_mmu_memory_cache_alloc(cache);
136                 clear_page(new_pte);
137                 pmd_populate_kernel(NULL, pmd, new_pte);
138         }
139         return pte_offset_kernel(pmd, addr);
140 }
141
142 /* Caller must hold kvm->mm_lock */
143 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
144                                    struct kvm_mmu_memory_cache *cache,
145                                    unsigned long addr)
146 {
147         return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
148 }
149
150 /*
151  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
152  * Flush a range of guest physical address space from the VM's GPA page tables.
153  */
154
155 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
156                                    unsigned long end_gpa)
157 {
158         int i_min = pte_index(start_gpa);
159         int i_max = pte_index(end_gpa);
160         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
161         int i;
162
163         for (i = i_min; i <= i_max; ++i) {
164                 if (!pte_present(pte[i]))
165                         continue;
166
167                 set_pte(pte + i, __pte(0));
168         }
169         return safe_to_remove;
170 }
171
172 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
173                                    unsigned long end_gpa)
174 {
175         pte_t *pte;
176         unsigned long end = ~0ul;
177         int i_min = pmd_index(start_gpa);
178         int i_max = pmd_index(end_gpa);
179         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
180         int i;
181
182         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
183                 if (!pmd_present(pmd[i]))
184                         continue;
185
186                 pte = pte_offset_kernel(pmd + i, 0);
187                 if (i == i_max)
188                         end = end_gpa;
189
190                 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
191                         pmd_clear(pmd + i);
192                         pte_free_kernel(NULL, pte);
193                 } else {
194                         safe_to_remove = false;
195                 }
196         }
197         return safe_to_remove;
198 }
199
200 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
201                                    unsigned long end_gpa)
202 {
203         pmd_t *pmd;
204         unsigned long end = ~0ul;
205         int i_min = pud_index(start_gpa);
206         int i_max = pud_index(end_gpa);
207         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
208         int i;
209
210         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
211                 if (!pud_present(pud[i]))
212                         continue;
213
214                 pmd = pmd_offset(pud + i, 0);
215                 if (i == i_max)
216                         end = end_gpa;
217
218                 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
219                         pud_clear(pud + i);
220                         pmd_free(NULL, pmd);
221                 } else {
222                         safe_to_remove = false;
223                 }
224         }
225         return safe_to_remove;
226 }
227
228 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
229                                    unsigned long end_gpa)
230 {
231         p4d_t *p4d;
232         pud_t *pud;
233         unsigned long end = ~0ul;
234         int i_min = pgd_index(start_gpa);
235         int i_max = pgd_index(end_gpa);
236         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
237         int i;
238
239         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
240                 if (!pgd_present(pgd[i]))
241                         continue;
242
243                 p4d = p4d_offset(pgd, 0);
244                 pud = pud_offset(p4d + i, 0);
245                 if (i == i_max)
246                         end = end_gpa;
247
248                 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
249                         pgd_clear(pgd + i);
250                         pud_free(NULL, pud);
251                 } else {
252                         safe_to_remove = false;
253                 }
254         }
255         return safe_to_remove;
256 }
257
258 /**
259  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
260  * @kvm:        KVM pointer.
261  * @start_gfn:  Guest frame number of first page in GPA range to flush.
262  * @end_gfn:    Guest frame number of last page in GPA range to flush.
263  *
264  * Flushes a range of GPA mappings from the GPA page tables.
265  *
266  * The caller must hold the @kvm->mmu_lock spinlock.
267  *
268  * Returns:     Whether its safe to remove the top level page directory because
269  *              all lower levels have been removed.
270  */
271 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
272 {
273         return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
274                                       start_gfn << PAGE_SHIFT,
275                                       end_gfn << PAGE_SHIFT);
276 }
277
278 #define BUILD_PTE_RANGE_OP(name, op)                                    \
279 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
280                                  unsigned long end)                     \
281 {                                                                       \
282         int ret = 0;                                                    \
283         int i_min = pte_index(start);                           \
284         int i_max = pte_index(end);                                     \
285         int i;                                                          \
286         pte_t old, new;                                                 \
287                                                                         \
288         for (i = i_min; i <= i_max; ++i) {                              \
289                 if (!pte_present(pte[i]))                               \
290                         continue;                                       \
291                                                                         \
292                 old = pte[i];                                           \
293                 new = op(old);                                          \
294                 if (pte_val(new) == pte_val(old))                       \
295                         continue;                                       \
296                 set_pte(pte + i, new);                                  \
297                 ret = 1;                                                \
298         }                                                               \
299         return ret;                                                     \
300 }                                                                       \
301                                                                         \
302 /* returns true if anything was done */                                 \
303 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
304                                  unsigned long end)                     \
305 {                                                                       \
306         int ret = 0;                                                    \
307         pte_t *pte;                                                     \
308         unsigned long cur_end = ~0ul;                                   \
309         int i_min = pmd_index(start);                           \
310         int i_max = pmd_index(end);                                     \
311         int i;                                                          \
312                                                                         \
313         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
314                 if (!pmd_present(pmd[i]))                               \
315                         continue;                                       \
316                                                                         \
317                 pte = pte_offset_kernel(pmd + i, 0);                            \
318                 if (i == i_max)                                         \
319                         cur_end = end;                                  \
320                                                                         \
321                 ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
322         }                                                               \
323         return ret;                                                     \
324 }                                                                       \
325                                                                         \
326 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
327                                  unsigned long end)                     \
328 {                                                                       \
329         int ret = 0;                                                    \
330         pmd_t *pmd;                                                     \
331         unsigned long cur_end = ~0ul;                                   \
332         int i_min = pud_index(start);                           \
333         int i_max = pud_index(end);                                     \
334         int i;                                                          \
335                                                                         \
336         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
337                 if (!pud_present(pud[i]))                               \
338                         continue;                                       \
339                                                                         \
340                 pmd = pmd_offset(pud + i, 0);                           \
341                 if (i == i_max)                                         \
342                         cur_end = end;                                  \
343                                                                         \
344                 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
345         }                                                               \
346         return ret;                                                     \
347 }                                                                       \
348                                                                         \
349 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
350                                  unsigned long end)                     \
351 {                                                                       \
352         int ret = 0;                                                    \
353         p4d_t *p4d;                                                     \
354         pud_t *pud;                                                     \
355         unsigned long cur_end = ~0ul;                                   \
356         int i_min = pgd_index(start);                                   \
357         int i_max = pgd_index(end);                                     \
358         int i;                                                          \
359                                                                         \
360         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
361                 if (!pgd_present(pgd[i]))                               \
362                         continue;                                       \
363                                                                         \
364                 p4d = p4d_offset(pgd, 0);                               \
365                 pud = pud_offset(p4d + i, 0);                           \
366                 if (i == i_max)                                         \
367                         cur_end = end;                                  \
368                                                                         \
369                 ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
370         }                                                               \
371         return ret;                                                     \
372 }
373
374 /*
375  * kvm_mips_mkclean_gpa_pt.
376  * Mark a range of guest physical address space clean (writes fault) in the VM's
377  * GPA page table to allow dirty page tracking.
378  */
379
380 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
381
382 /**
383  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
384  * @kvm:        KVM pointer.
385  * @start_gfn:  Guest frame number of first page in GPA range to flush.
386  * @end_gfn:    Guest frame number of last page in GPA range to flush.
387  *
388  * Make a range of GPA mappings clean so that guest writes will fault and
389  * trigger dirty page logging.
390  *
391  * The caller must hold the @kvm->mmu_lock spinlock.
392  *
393  * Returns:     Whether any GPA mappings were modified, which would require
394  *              derived mappings (GVA page tables & TLB enties) to be
395  *              invalidated.
396  */
397 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
398 {
399         return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
400                                     start_gfn << PAGE_SHIFT,
401                                     end_gfn << PAGE_SHIFT);
402 }
403
404 /**
405  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
406  * @kvm:        The KVM pointer
407  * @slot:       The memory slot associated with mask
408  * @gfn_offset: The gfn offset in memory slot
409  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
410  *              slot to be write protected
411  *
412  * Walks bits set in mask write protects the associated pte's. Caller must
413  * acquire @kvm->mmu_lock.
414  */
415 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
416                 struct kvm_memory_slot *slot,
417                 gfn_t gfn_offset, unsigned long mask)
418 {
419         gfn_t base_gfn = slot->base_gfn + gfn_offset;
420         gfn_t start = base_gfn +  __ffs(mask);
421         gfn_t end = base_gfn + __fls(mask);
422
423         kvm_mips_mkclean_gpa_pt(kvm, start, end);
424 }
425
426 /*
427  * kvm_mips_mkold_gpa_pt.
428  * Mark a range of guest physical address space old (all accesses fault) in the
429  * VM's GPA page table to allow detection of commonly used pages.
430  */
431
432 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
433
434 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
435                                  gfn_t end_gfn)
436 {
437         return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
438                                   start_gfn << PAGE_SHIFT,
439                                   end_gfn << PAGE_SHIFT);
440 }
441
442 static int handle_hva_to_gpa(struct kvm *kvm,
443                              unsigned long start,
444                              unsigned long end,
445                              int (*handler)(struct kvm *kvm, gfn_t gfn,
446                                             gpa_t gfn_end,
447                                             struct kvm_memory_slot *memslot,
448                                             void *data),
449                              void *data)
450 {
451         struct kvm_memslots *slots;
452         struct kvm_memory_slot *memslot;
453         int ret = 0;
454
455         slots = kvm_memslots(kvm);
456
457         /* we only care about the pages that the guest sees */
458         kvm_for_each_memslot(memslot, slots) {
459                 unsigned long hva_start, hva_end;
460                 gfn_t gfn, gfn_end;
461
462                 hva_start = max(start, memslot->userspace_addr);
463                 hva_end = min(end, memslot->userspace_addr +
464                                         (memslot->npages << PAGE_SHIFT));
465                 if (hva_start >= hva_end)
466                         continue;
467
468                 /*
469                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
470                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
471                  */
472                 gfn = hva_to_gfn_memslot(hva_start, memslot);
473                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
474
475                 ret |= handler(kvm, gfn, gfn_end, memslot, data);
476         }
477
478         return ret;
479 }
480
481
482 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
483                                  struct kvm_memory_slot *memslot, void *data)
484 {
485         kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
486         return 1;
487 }
488
489 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
490                         unsigned flags)
491 {
492         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
493
494         kvm_mips_callbacks->prepare_flush_shadow(kvm);
495         kvm_flush_remote_tlbs(kvm);
496         return 0;
497 }
498
499 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
500                                 struct kvm_memory_slot *memslot, void *data)
501 {
502         gpa_t gpa = gfn << PAGE_SHIFT;
503         pte_t hva_pte = *(pte_t *)data;
504         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
505         pte_t old_pte;
506
507         if (!gpa_pte)
508                 return 0;
509
510         /* Mapping may need adjusting depending on memslot flags */
511         old_pte = *gpa_pte;
512         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
513                 hva_pte = pte_mkclean(hva_pte);
514         else if (memslot->flags & KVM_MEM_READONLY)
515                 hva_pte = pte_wrprotect(hva_pte);
516
517         set_pte(gpa_pte, hva_pte);
518
519         /* Replacing an absent or old page doesn't need flushes */
520         if (!pte_present(old_pte) || !pte_young(old_pte))
521                 return 0;
522
523         /* Pages swapped, aged, moved, or cleaned require flushes */
524         return !pte_present(hva_pte) ||
525                !pte_young(hva_pte) ||
526                pte_pfn(old_pte) != pte_pfn(hva_pte) ||
527                (pte_dirty(old_pte) && !pte_dirty(hva_pte));
528 }
529
530 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
531 {
532         unsigned long end = hva + PAGE_SIZE;
533         int ret;
534
535         ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
536         if (ret) {
537                 kvm_mips_callbacks->prepare_flush_shadow(kvm);
538                 kvm_flush_remote_tlbs(kvm);
539         }
540         return 0;
541 }
542
543 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
544                                struct kvm_memory_slot *memslot, void *data)
545 {
546         return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
547 }
548
549 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
550                                     struct kvm_memory_slot *memslot, void *data)
551 {
552         gpa_t gpa = gfn << PAGE_SHIFT;
553         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
554
555         if (!gpa_pte)
556                 return 0;
557         return pte_young(*gpa_pte);
558 }
559
560 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
561 {
562         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
563 }
564
565 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
566 {
567         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
568 }
569
570 /**
571  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
572  * @vcpu:               VCPU pointer.
573  * @gpa:                Guest physical address of fault.
574  * @write_fault:        Whether the fault was due to a write.
575  * @out_entry:          New PTE for @gpa (written on success unless NULL).
576  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
577  *                      NULL).
578  *
579  * Perform fast path GPA fault handling, doing all that can be done without
580  * calling into KVM. This handles marking old pages young (for idle page
581  * tracking), and dirtying of clean pages (for dirty page logging).
582  *
583  * Returns:     0 on success, in which case we can update derived mappings and
584  *              resume guest execution.
585  *              -EFAULT on failure due to absent GPA mapping or write to
586  *              read-only page, in which case KVM must be consulted.
587  */
588 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
589                                    bool write_fault,
590                                    pte_t *out_entry, pte_t *out_buddy)
591 {
592         struct kvm *kvm = vcpu->kvm;
593         gfn_t gfn = gpa >> PAGE_SHIFT;
594         pte_t *ptep;
595         kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
596         bool pfn_valid = false;
597         int ret = 0;
598
599         spin_lock(&kvm->mmu_lock);
600
601         /* Fast path - just check GPA page table for an existing entry */
602         ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
603         if (!ptep || !pte_present(*ptep)) {
604                 ret = -EFAULT;
605                 goto out;
606         }
607
608         /* Track access to pages marked old */
609         if (!pte_young(*ptep)) {
610                 set_pte(ptep, pte_mkyoung(*ptep));
611                 pfn = pte_pfn(*ptep);
612                 pfn_valid = true;
613                 /* call kvm_set_pfn_accessed() after unlock */
614         }
615         if (write_fault && !pte_dirty(*ptep)) {
616                 if (!pte_write(*ptep)) {
617                         ret = -EFAULT;
618                         goto out;
619                 }
620
621                 /* Track dirtying of writeable pages */
622                 set_pte(ptep, pte_mkdirty(*ptep));
623                 pfn = pte_pfn(*ptep);
624                 mark_page_dirty(kvm, gfn);
625                 kvm_set_pfn_dirty(pfn);
626         }
627
628         if (out_entry)
629                 *out_entry = *ptep;
630         if (out_buddy)
631                 *out_buddy = *ptep_buddy(ptep);
632
633 out:
634         spin_unlock(&kvm->mmu_lock);
635         if (pfn_valid)
636                 kvm_set_pfn_accessed(pfn);
637         return ret;
638 }
639
640 /**
641  * kvm_mips_map_page() - Map a guest physical page.
642  * @vcpu:               VCPU pointer.
643  * @gpa:                Guest physical address of fault.
644  * @write_fault:        Whether the fault was due to a write.
645  * @out_entry:          New PTE for @gpa (written on success unless NULL).
646  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
647  *                      NULL).
648  *
649  * Handle GPA faults by creating a new GPA mapping (or updating an existing
650  * one).
651  *
652  * This takes care of marking pages young or dirty (idle/dirty page tracking),
653  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
654  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
655  * caller.
656  *
657  * Returns:     0 on success, in which case the caller may use the @out_entry
658  *              and @out_buddy PTEs to update derived mappings and resume guest
659  *              execution.
660  *              -EFAULT if there is no memory region at @gpa or a write was
661  *              attempted to a read-only memory region. This is usually handled
662  *              as an MMIO access.
663  */
664 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
665                              bool write_fault,
666                              pte_t *out_entry, pte_t *out_buddy)
667 {
668         struct kvm *kvm = vcpu->kvm;
669         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
670         gfn_t gfn = gpa >> PAGE_SHIFT;
671         int srcu_idx, err;
672         kvm_pfn_t pfn;
673         pte_t *ptep, entry, old_pte;
674         bool writeable;
675         unsigned long prot_bits;
676         unsigned long mmu_seq;
677
678         /* Try the fast path to handle old / clean pages */
679         srcu_idx = srcu_read_lock(&kvm->srcu);
680         err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
681                                       out_buddy);
682         if (!err)
683                 goto out;
684
685         /* We need a minimum of cached pages ready for page table creation */
686         err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
687         if (err)
688                 goto out;
689
690 retry:
691         /*
692          * Used to check for invalidations in progress, of the pfn that is
693          * returned by pfn_to_pfn_prot below.
694          */
695         mmu_seq = kvm->mmu_notifier_seq;
696         /*
697          * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
698          * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
699          * risk the page we get a reference to getting unmapped before we have a
700          * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
701          *
702          * This smp_rmb() pairs with the effective smp_wmb() of the combination
703          * of the pte_unmap_unlock() after the PTE is zapped, and the
704          * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
705          * mmu_notifier_seq is incremented.
706          */
707         smp_rmb();
708
709         /* Slow path - ask KVM core whether we can access this GPA */
710         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
711         if (is_error_noslot_pfn(pfn)) {
712                 err = -EFAULT;
713                 goto out;
714         }
715
716         spin_lock(&kvm->mmu_lock);
717         /* Check if an invalidation has taken place since we got pfn */
718         if (mmu_notifier_retry(kvm, mmu_seq)) {
719                 /*
720                  * This can happen when mappings are changed asynchronously, but
721                  * also synchronously if a COW is triggered by
722                  * gfn_to_pfn_prot().
723                  */
724                 spin_unlock(&kvm->mmu_lock);
725                 kvm_release_pfn_clean(pfn);
726                 goto retry;
727         }
728
729         /* Ensure page tables are allocated */
730         ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
731
732         /* Set up the PTE */
733         prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
734         if (writeable) {
735                 prot_bits |= _PAGE_WRITE;
736                 if (write_fault) {
737                         prot_bits |= __WRITEABLE;
738                         mark_page_dirty(kvm, gfn);
739                         kvm_set_pfn_dirty(pfn);
740                 }
741         }
742         entry = pfn_pte(pfn, __pgprot(prot_bits));
743
744         /* Write the PTE */
745         old_pte = *ptep;
746         set_pte(ptep, entry);
747
748         err = 0;
749         if (out_entry)
750                 *out_entry = *ptep;
751         if (out_buddy)
752                 *out_buddy = *ptep_buddy(ptep);
753
754         spin_unlock(&kvm->mmu_lock);
755         kvm_release_pfn_clean(pfn);
756         kvm_set_pfn_accessed(pfn);
757 out:
758         srcu_read_unlock(&kvm->srcu, srcu_idx);
759         return err;
760 }
761
762 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
763                                         unsigned long addr)
764 {
765         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
766         pgd_t *pgdp;
767         int ret;
768
769         /* We need a minimum of cached pages ready for page table creation */
770         ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
771         if (ret)
772                 return NULL;
773
774         if (KVM_GUEST_KERNEL_MODE(vcpu))
775                 pgdp = vcpu->arch.guest_kernel_mm.pgd;
776         else
777                 pgdp = vcpu->arch.guest_user_mm.pgd;
778
779         return kvm_mips_walk_pgd(pgdp, memcache, addr);
780 }
781
782 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
783                                   bool user)
784 {
785         pgd_t *pgdp;
786         pte_t *ptep;
787
788         addr &= PAGE_MASK << 1;
789
790         pgdp = vcpu->arch.guest_kernel_mm.pgd;
791         ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
792         if (ptep) {
793                 ptep[0] = pfn_pte(0, __pgprot(0));
794                 ptep[1] = pfn_pte(0, __pgprot(0));
795         }
796
797         if (user) {
798                 pgdp = vcpu->arch.guest_user_mm.pgd;
799                 ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
800                 if (ptep) {
801                         ptep[0] = pfn_pte(0, __pgprot(0));
802                         ptep[1] = pfn_pte(0, __pgprot(0));
803                 }
804         }
805 }
806
807 /*
808  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
809  * Flush a range of guest physical address space from the VM's GPA page tables.
810  */
811
812 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
813                                    unsigned long end_gva)
814 {
815         int i_min = pte_index(start_gva);
816         int i_max = pte_index(end_gva);
817         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
818         int i;
819
820         /*
821          * There's no freeing to do, so there's no point clearing individual
822          * entries unless only part of the last level page table needs flushing.
823          */
824         if (safe_to_remove)
825                 return true;
826
827         for (i = i_min; i <= i_max; ++i) {
828                 if (!pte_present(pte[i]))
829                         continue;
830
831                 set_pte(pte + i, __pte(0));
832         }
833         return false;
834 }
835
836 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
837                                    unsigned long end_gva)
838 {
839         pte_t *pte;
840         unsigned long end = ~0ul;
841         int i_min = pmd_index(start_gva);
842         int i_max = pmd_index(end_gva);
843         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
844         int i;
845
846         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
847                 if (!pmd_present(pmd[i]))
848                         continue;
849
850                 pte = pte_offset_kernel(pmd + i, 0);
851                 if (i == i_max)
852                         end = end_gva;
853
854                 if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
855                         pmd_clear(pmd + i);
856                         pte_free_kernel(NULL, pte);
857                 } else {
858                         safe_to_remove = false;
859                 }
860         }
861         return safe_to_remove;
862 }
863
864 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
865                                    unsigned long end_gva)
866 {
867         pmd_t *pmd;
868         unsigned long end = ~0ul;
869         int i_min = pud_index(start_gva);
870         int i_max = pud_index(end_gva);
871         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
872         int i;
873
874         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
875                 if (!pud_present(pud[i]))
876                         continue;
877
878                 pmd = pmd_offset(pud + i, 0);
879                 if (i == i_max)
880                         end = end_gva;
881
882                 if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
883                         pud_clear(pud + i);
884                         pmd_free(NULL, pmd);
885                 } else {
886                         safe_to_remove = false;
887                 }
888         }
889         return safe_to_remove;
890 }
891
892 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
893                                    unsigned long end_gva)
894 {
895         p4d_t *p4d;
896         pud_t *pud;
897         unsigned long end = ~0ul;
898         int i_min = pgd_index(start_gva);
899         int i_max = pgd_index(end_gva);
900         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
901         int i;
902
903         for (i = i_min; i <= i_max; ++i, start_gva = 0) {
904                 if (!pgd_present(pgd[i]))
905                         continue;
906
907                 p4d = p4d_offset(pgd, 0);
908                 pud = pud_offset(p4d + i, 0);
909                 if (i == i_max)
910                         end = end_gva;
911
912                 if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
913                         pgd_clear(pgd + i);
914                         pud_free(NULL, pud);
915                 } else {
916                         safe_to_remove = false;
917                 }
918         }
919         return safe_to_remove;
920 }
921
922 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
923 {
924         if (flags & KMF_GPA) {
925                 /* all of guest virtual address space could be affected */
926                 if (flags & KMF_KERN)
927                         /* useg, kseg0, seg2/3 */
928                         kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
929                 else
930                         /* useg */
931                         kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
932         } else {
933                 /* useg */
934                 kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
935
936                 /* kseg2/3 */
937                 if (flags & KMF_KERN)
938                         kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
939         }
940 }
941
942 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
943 {
944         /*
945          * Don't leak writeable but clean entries from GPA page tables. We don't
946          * want the normal Linux tlbmod handler to handle dirtying when KVM
947          * accesses guest memory.
948          */
949         if (!pte_dirty(pte))
950                 pte = pte_wrprotect(pte);
951
952         return pte;
953 }
954
955 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
956 {
957         /* Guest EntryLo overrides host EntryLo */
958         if (!(entrylo & ENTRYLO_D))
959                 pte = pte_mkclean(pte);
960
961         return kvm_mips_gpa_pte_to_gva_unmapped(pte);
962 }
963
964 #ifdef CONFIG_KVM_MIPS_VZ
965 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
966                                       struct kvm_vcpu *vcpu,
967                                       bool write_fault)
968 {
969         int ret;
970
971         ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
972         if (ret)
973                 return ret;
974
975         /* Invalidate this entry in the TLB */
976         return kvm_vz_host_tlb_inv(vcpu, badvaddr);
977 }
978 #endif
979
980 /* XXXKYMA: Must be called with interrupts disabled */
981 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
982                                     struct kvm_vcpu *vcpu,
983                                     bool write_fault)
984 {
985         unsigned long gpa;
986         pte_t pte_gpa[2], *ptep_gva;
987         int idx;
988
989         if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
990                 kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
991                 kvm_mips_dump_host_tlbs();
992                 return -1;
993         }
994
995         /* Get the GPA page table entry */
996         gpa = KVM_GUEST_CPHYSADDR(badvaddr);
997         idx = (badvaddr >> PAGE_SHIFT) & 1;
998         if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
999                               &pte_gpa[!idx]) < 0)
1000                 return -1;
1001
1002         /* Get the GVA page table entry */
1003         ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1004         if (!ptep_gva) {
1005                 kvm_err("No ptep for gva %lx\n", badvaddr);
1006                 return -1;
1007         }
1008
1009         /* Copy a pair of entries from GPA page table to GVA page table */
1010         ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1011         ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1012
1013         /* Invalidate this entry in the TLB, guest kernel ASID only */
1014         kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1015         return 0;
1016 }
1017
1018 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1019                                          struct kvm_mips_tlb *tlb,
1020                                          unsigned long gva,
1021                                          bool write_fault)
1022 {
1023         struct kvm *kvm = vcpu->kvm;
1024         long tlb_lo[2];
1025         pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1026         unsigned int idx = TLB_LO_IDX(*tlb, gva);
1027         bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1028
1029         tlb_lo[0] = tlb->tlb_lo[0];
1030         tlb_lo[1] = tlb->tlb_lo[1];
1031
1032         /*
1033          * The commpage address must not be mapped to anything else if the guest
1034          * TLB contains entries nearby, or commpage accesses will break.
1035          */
1036         if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1037                 tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1038
1039         /* Get the GPA page table entry */
1040         if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1041                               write_fault, &pte_gpa[idx], NULL) < 0)
1042                 return -1;
1043
1044         /* And its GVA buddy's GPA page table entry if it also exists */
1045         pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1046         if (tlb_lo[!idx] & ENTRYLO_V) {
1047                 spin_lock(&kvm->mmu_lock);
1048                 ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1049                                         mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1050                 if (ptep_buddy)
1051                         pte_gpa[!idx] = *ptep_buddy;
1052                 spin_unlock(&kvm->mmu_lock);
1053         }
1054
1055         /* Get the GVA page table entry pair */
1056         ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1057         if (!ptep_gva) {
1058                 kvm_err("No ptep for gva %lx\n", gva);
1059                 return -1;
1060         }
1061
1062         /* Copy a pair of entries from GPA page table to GVA page table */
1063         ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1064         ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1065
1066         /* Invalidate this entry in the TLB, current guest mode ASID only */
1067         kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1068
1069         kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1070                   tlb->tlb_lo[0], tlb->tlb_lo[1]);
1071
1072         return 0;
1073 }
1074
1075 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1076                                        struct kvm_vcpu *vcpu)
1077 {
1078         kvm_pfn_t pfn;
1079         pte_t *ptep;
1080         pgprot_t prot;
1081
1082         ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1083         if (!ptep) {
1084                 kvm_err("No ptep for commpage %lx\n", badvaddr);
1085                 return -1;
1086         }
1087
1088         pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1089         /* Also set valid and dirty, so refill handler doesn't have to */
1090         prot = vm_get_page_prot(VM_READ|VM_WRITE|VM_SHARED);
1091         *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, prot)));
1092
1093         /* Invalidate this entry in the TLB, guest kernel ASID only */
1094         kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1095         return 0;
1096 }
1097
1098 /**
1099  * kvm_mips_migrate_count() - Migrate timer.
1100  * @vcpu:       Virtual CPU.
1101  *
1102  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1103  * if it was running prior to being cancelled.
1104  *
1105  * Must be called when the VCPU is migrated to a different CPU to ensure that
1106  * timer expiry during guest execution interrupts the guest and causes the
1107  * interrupt to be delivered in a timely manner.
1108  */
1109 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1110 {
1111         if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1112                 hrtimer_restart(&vcpu->arch.comparecount_timer);
1113 }
1114
1115 /* Restore ASID once we are scheduled back after preemption */
1116 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1117 {
1118         unsigned long flags;
1119
1120         kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1121
1122         local_irq_save(flags);
1123
1124         vcpu->cpu = cpu;
1125         if (vcpu->arch.last_sched_cpu != cpu) {
1126                 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1127                           vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1128                 /*
1129                  * Migrate the timer interrupt to the current CPU so that it
1130                  * always interrupts the guest and synchronously triggers a
1131                  * guest timer interrupt.
1132                  */
1133                 kvm_mips_migrate_count(vcpu);
1134         }
1135
1136         /* restore guest state to registers */
1137         kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1138
1139         local_irq_restore(flags);
1140 }
1141
1142 /* ASID can change if another task is scheduled during preemption */
1143 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1144 {
1145         unsigned long flags;
1146         int cpu;
1147
1148         local_irq_save(flags);
1149
1150         cpu = smp_processor_id();
1151         vcpu->arch.last_sched_cpu = cpu;
1152         vcpu->cpu = -1;
1153
1154         /* save guest state in registers */
1155         kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1156
1157         local_irq_restore(flags);
1158 }
1159
1160 /**
1161  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1162  * @vcpu:       Virtual CPU.
1163  * @gva:        Guest virtual address to be accessed.
1164  * @write:      True if write attempted (must be dirtied and made writable).
1165  *
1166  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1167  * dirtying the page if @write so that guest instructions can be modified.
1168  *
1169  * Returns:     KVM_MIPS_MAPPED on success.
1170  *              KVM_MIPS_GVA if bad guest virtual address.
1171  *              KVM_MIPS_GPA if bad guest physical address.
1172  *              KVM_MIPS_TLB if guest TLB not present.
1173  *              KVM_MIPS_TLBINV if guest TLB present but not valid.
1174  *              KVM_MIPS_TLBMOD if guest TLB read only.
1175  */
1176 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1177                                                    unsigned long gva,
1178                                                    bool write)
1179 {
1180         struct mips_coproc *cop0 = vcpu->arch.cop0;
1181         struct kvm_mips_tlb *tlb;
1182         int index;
1183
1184         if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1185                 if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1186                         return KVM_MIPS_GPA;
1187         } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1188                    KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1189                 /* Address should be in the guest TLB */
1190                 index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1191                           (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1192                 if (index < 0)
1193                         return KVM_MIPS_TLB;
1194                 tlb = &vcpu->arch.guest_tlb[index];
1195
1196                 /* Entry should be valid, and dirty for writes */
1197                 if (!TLB_IS_VALID(*tlb, gva))
1198                         return KVM_MIPS_TLBINV;
1199                 if (write && !TLB_IS_DIRTY(*tlb, gva))
1200                         return KVM_MIPS_TLBMOD;
1201
1202                 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1203                         return KVM_MIPS_GPA;
1204         } else {
1205                 return KVM_MIPS_GVA;
1206         }
1207
1208         return KVM_MIPS_MAPPED;
1209 }
1210
1211 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1212 {
1213         int err;
1214
1215         if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1216                  "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1217                 return -EINVAL;
1218
1219 retry:
1220         kvm_trap_emul_gva_lockless_begin(vcpu);
1221         err = get_user(*out, opc);
1222         kvm_trap_emul_gva_lockless_end(vcpu);
1223
1224         if (unlikely(err)) {
1225                 /*
1226                  * Try to handle the fault, maybe we just raced with a GVA
1227                  * invalidation.
1228                  */
1229                 err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1230                                               false);
1231                 if (unlikely(err)) {
1232                         kvm_err("%s: illegal address: %p\n",
1233                                 __func__, opc);
1234                         return -EFAULT;
1235                 }
1236
1237                 /* Hopefully it'll work now */
1238                 goto retry;
1239         }
1240         return 0;
1241 }