Merge tag 'zonefs-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[linux-2.6-microblaze.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 struct kvm_stats_debugfs_item debugfs_entries[] = {
43         VCPU_STAT("wait", wait_exits),
44         VCPU_STAT("cache", cache_exits),
45         VCPU_STAT("signal", signal_exits),
46         VCPU_STAT("interrupt", int_exits),
47         VCPU_STAT("cop_unusable", cop_unusable_exits),
48         VCPU_STAT("tlbmod", tlbmod_exits),
49         VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits),
50         VCPU_STAT("tlbmiss_st", tlbmiss_st_exits),
51         VCPU_STAT("addrerr_st", addrerr_st_exits),
52         VCPU_STAT("addrerr_ld", addrerr_ld_exits),
53         VCPU_STAT("syscall", syscall_exits),
54         VCPU_STAT("resvd_inst", resvd_inst_exits),
55         VCPU_STAT("break_inst", break_inst_exits),
56         VCPU_STAT("trap_inst", trap_inst_exits),
57         VCPU_STAT("msa_fpe", msa_fpe_exits),
58         VCPU_STAT("fpe", fpe_exits),
59         VCPU_STAT("msa_disabled", msa_disabled_exits),
60         VCPU_STAT("flush_dcache", flush_dcache_exits),
61 #ifdef CONFIG_KVM_MIPS_VZ
62         VCPU_STAT("vz_gpsi", vz_gpsi_exits),
63         VCPU_STAT("vz_gsfc", vz_gsfc_exits),
64         VCPU_STAT("vz_hc", vz_hc_exits),
65         VCPU_STAT("vz_grr", vz_grr_exits),
66         VCPU_STAT("vz_gva", vz_gva_exits),
67         VCPU_STAT("vz_ghfc", vz_ghfc_exits),
68         VCPU_STAT("vz_gpa", vz_gpa_exits),
69         VCPU_STAT("vz_resvd", vz_resvd_exits),
70 #ifdef CONFIG_CPU_LOONGSON64
71         VCPU_STAT("vz_cpucfg", vz_cpucfg_exits),
72 #endif
73 #endif
74         VCPU_STAT("halt_successful_poll", halt_successful_poll),
75         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
76         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
77         VCPU_STAT("halt_wakeup", halt_wakeup),
78         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
79         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
80         {NULL}
81 };
82
83 bool kvm_trace_guest_mode_change;
84
85 int kvm_guest_mode_change_trace_reg(void)
86 {
87         kvm_trace_guest_mode_change = true;
88         return 0;
89 }
90
91 void kvm_guest_mode_change_trace_unreg(void)
92 {
93         kvm_trace_guest_mode_change = false;
94 }
95
96 /*
97  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
98  * Config7, so we are "runnable" if interrupts are pending
99  */
100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
101 {
102         return !!(vcpu->arch.pending_exceptions);
103 }
104
105 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
106 {
107         return false;
108 }
109
110 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
111 {
112         return 1;
113 }
114
115 int kvm_arch_hardware_enable(void)
116 {
117         return kvm_mips_callbacks->hardware_enable();
118 }
119
120 void kvm_arch_hardware_disable(void)
121 {
122         kvm_mips_callbacks->hardware_disable();
123 }
124
125 int kvm_arch_hardware_setup(void *opaque)
126 {
127         return 0;
128 }
129
130 int kvm_arch_check_processor_compat(void *opaque)
131 {
132         return 0;
133 }
134
135 extern void kvm_init_loongson_ipi(struct kvm *kvm);
136
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         switch (type) {
140         case KVM_VM_MIPS_AUTO:
141                 break;
142 #ifdef CONFIG_KVM_MIPS_VZ
143         case KVM_VM_MIPS_VZ:
144 #else
145         case KVM_VM_MIPS_TE:
146 #endif
147                 break;
148         default:
149                 /* Unsupported KVM type */
150                 return -EINVAL;
151         }
152
153         /* Allocate page table to map GPA -> RPA */
154         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
155         if (!kvm->arch.gpa_mm.pgd)
156                 return -ENOMEM;
157
158 #ifdef CONFIG_CPU_LOONGSON64
159         kvm_init_loongson_ipi(kvm);
160 #endif
161
162         return 0;
163 }
164
165 void kvm_mips_free_vcpus(struct kvm *kvm)
166 {
167         unsigned int i;
168         struct kvm_vcpu *vcpu;
169
170         kvm_for_each_vcpu(i, vcpu, kvm) {
171                 kvm_vcpu_destroy(vcpu);
172         }
173
174         mutex_lock(&kvm->lock);
175
176         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
177                 kvm->vcpus[i] = NULL;
178
179         atomic_set(&kvm->online_vcpus, 0);
180
181         mutex_unlock(&kvm->lock);
182 }
183
184 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
185 {
186         /* It should always be safe to remove after flushing the whole range */
187         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
188         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
189 }
190
191 void kvm_arch_destroy_vm(struct kvm *kvm)
192 {
193         kvm_mips_free_vcpus(kvm);
194         kvm_mips_free_gpa_pt(kvm);
195 }
196
197 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
198                         unsigned long arg)
199 {
200         return -ENOIOCTLCMD;
201 }
202
203 void kvm_arch_flush_shadow_all(struct kvm *kvm)
204 {
205         /* Flush whole GPA */
206         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
207
208         /* Let implementation do the rest */
209         kvm_mips_callbacks->flush_shadow_all(kvm);
210 }
211
212 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
213                                    struct kvm_memory_slot *slot)
214 {
215         /*
216          * The slot has been made invalid (ready for moving or deletion), so we
217          * need to ensure that it can no longer be accessed by any guest VCPUs.
218          */
219
220         spin_lock(&kvm->mmu_lock);
221         /* Flush slot from GPA */
222         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
223                               slot->base_gfn + slot->npages - 1);
224         /* Let implementation do the rest */
225         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
226         spin_unlock(&kvm->mmu_lock);
227 }
228
229 int kvm_arch_prepare_memory_region(struct kvm *kvm,
230                                    struct kvm_memory_slot *memslot,
231                                    const struct kvm_userspace_memory_region *mem,
232                                    enum kvm_mr_change change)
233 {
234         return 0;
235 }
236
237 void kvm_arch_commit_memory_region(struct kvm *kvm,
238                                    const struct kvm_userspace_memory_region *mem,
239                                    struct kvm_memory_slot *old,
240                                    const struct kvm_memory_slot *new,
241                                    enum kvm_mr_change change)
242 {
243         int needs_flush;
244
245         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
246                   __func__, kvm, mem->slot, mem->guest_phys_addr,
247                   mem->memory_size, mem->userspace_addr);
248
249         /*
250          * If dirty page logging is enabled, write protect all pages in the slot
251          * ready for dirty logging.
252          *
253          * There is no need to do this in any of the following cases:
254          * CREATE:      No dirty mappings will already exist.
255          * MOVE/DELETE: The old mappings will already have been cleaned up by
256          *              kvm_arch_flush_shadow_memslot()
257          */
258         if (change == KVM_MR_FLAGS_ONLY &&
259             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
260              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
261                 spin_lock(&kvm->mmu_lock);
262                 /* Write protect GPA page table entries */
263                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
264                                         new->base_gfn + new->npages - 1);
265                 /* Let implementation do the rest */
266                 if (needs_flush)
267                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
268                 spin_unlock(&kvm->mmu_lock);
269         }
270 }
271
272 static inline void dump_handler(const char *symbol, void *start, void *end)
273 {
274         u32 *p;
275
276         pr_debug("LEAF(%s)\n", symbol);
277
278         pr_debug("\t.set push\n");
279         pr_debug("\t.set noreorder\n");
280
281         for (p = start; p < (u32 *)end; ++p)
282                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
283
284         pr_debug("\t.set\tpop\n");
285
286         pr_debug("\tEND(%s)\n", symbol);
287 }
288
289 /* low level hrtimer wake routine */
290 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
291 {
292         struct kvm_vcpu *vcpu;
293
294         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
295
296         kvm_mips_callbacks->queue_timer_int(vcpu);
297
298         vcpu->arch.wait = 0;
299         rcuwait_wake_up(&vcpu->wait);
300
301         return kvm_mips_count_timeout(vcpu);
302 }
303
304 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
305 {
306         return 0;
307 }
308
309 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
310 {
311         int err, size;
312         void *gebase, *p, *handler, *refill_start, *refill_end;
313         int i;
314
315         kvm_debug("kvm @ %p: create cpu %d at %p\n",
316                   vcpu->kvm, vcpu->vcpu_id, vcpu);
317
318         err = kvm_mips_callbacks->vcpu_init(vcpu);
319         if (err)
320                 return err;
321
322         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
323                      HRTIMER_MODE_REL);
324         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
325
326         /*
327          * Allocate space for host mode exception handlers that handle
328          * guest mode exits
329          */
330         if (cpu_has_veic || cpu_has_vint)
331                 size = 0x200 + VECTORSPACING * 64;
332         else
333                 size = 0x4000;
334
335         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
336
337         if (!gebase) {
338                 err = -ENOMEM;
339                 goto out_uninit_vcpu;
340         }
341         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
342                   ALIGN(size, PAGE_SIZE), gebase);
343
344         /*
345          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
346          * limits us to the low 512MB of physical address space. If the memory
347          * we allocate is out of range, just give up now.
348          */
349         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
350                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
351                         gebase);
352                 err = -ENOMEM;
353                 goto out_free_gebase;
354         }
355
356         /* Save new ebase */
357         vcpu->arch.guest_ebase = gebase;
358
359         /* Build guest exception vectors dynamically in unmapped memory */
360         handler = gebase + 0x2000;
361
362         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
363         refill_start = gebase;
364         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
365                 refill_start += 0x080;
366         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
367
368         /* General Exception Entry point */
369         kvm_mips_build_exception(gebase + 0x180, handler);
370
371         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
372         for (i = 0; i < 8; i++) {
373                 kvm_debug("L1 Vectored handler @ %p\n",
374                           gebase + 0x200 + (i * VECTORSPACING));
375                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
376                                          handler);
377         }
378
379         /* General exit handler */
380         p = handler;
381         p = kvm_mips_build_exit(p);
382
383         /* Guest entry routine */
384         vcpu->arch.vcpu_run = p;
385         p = kvm_mips_build_vcpu_run(p);
386
387         /* Dump the generated code */
388         pr_debug("#include <asm/asm.h>\n");
389         pr_debug("#include <asm/regdef.h>\n");
390         pr_debug("\n");
391         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
392         dump_handler("kvm_tlb_refill", refill_start, refill_end);
393         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
394         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
395
396         /* Invalidate the icache for these ranges */
397         flush_icache_range((unsigned long)gebase,
398                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
399
400         /*
401          * Allocate comm page for guest kernel, a TLB will be reserved for
402          * mapping GVA @ 0xFFFF8000 to this page
403          */
404         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
405
406         if (!vcpu->arch.kseg0_commpage) {
407                 err = -ENOMEM;
408                 goto out_free_gebase;
409         }
410
411         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
412         kvm_mips_commpage_init(vcpu);
413
414         /* Init */
415         vcpu->arch.last_sched_cpu = -1;
416         vcpu->arch.last_exec_cpu = -1;
417
418         /* Initial guest state */
419         err = kvm_mips_callbacks->vcpu_setup(vcpu);
420         if (err)
421                 goto out_free_commpage;
422
423         return 0;
424
425 out_free_commpage:
426         kfree(vcpu->arch.kseg0_commpage);
427 out_free_gebase:
428         kfree(gebase);
429 out_uninit_vcpu:
430         kvm_mips_callbacks->vcpu_uninit(vcpu);
431         return err;
432 }
433
434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
435 {
436         hrtimer_cancel(&vcpu->arch.comparecount_timer);
437
438         kvm_mips_dump_stats(vcpu);
439
440         kvm_mmu_free_memory_caches(vcpu);
441         kfree(vcpu->arch.guest_ebase);
442         kfree(vcpu->arch.kseg0_commpage);
443
444         kvm_mips_callbacks->vcpu_uninit(vcpu);
445 }
446
447 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
448                                         struct kvm_guest_debug *dbg)
449 {
450         return -ENOIOCTLCMD;
451 }
452
453 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
454 {
455         int r = -EINTR;
456
457         vcpu_load(vcpu);
458
459         kvm_sigset_activate(vcpu);
460
461         if (vcpu->mmio_needed) {
462                 if (!vcpu->mmio_is_write)
463                         kvm_mips_complete_mmio_load(vcpu);
464                 vcpu->mmio_needed = 0;
465         }
466
467         if (vcpu->run->immediate_exit)
468                 goto out;
469
470         lose_fpu(1);
471
472         local_irq_disable();
473         guest_enter_irqoff();
474         trace_kvm_enter(vcpu);
475
476         /*
477          * Make sure the read of VCPU requests in vcpu_run() callback is not
478          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
479          * flush request while the requester sees the VCPU as outside of guest
480          * mode and not needing an IPI.
481          */
482         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
483
484         r = kvm_mips_callbacks->vcpu_run(vcpu);
485
486         trace_kvm_out(vcpu);
487         guest_exit_irqoff();
488         local_irq_enable();
489
490 out:
491         kvm_sigset_deactivate(vcpu);
492
493         vcpu_put(vcpu);
494         return r;
495 }
496
497 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
498                              struct kvm_mips_interrupt *irq)
499 {
500         int intr = (int)irq->irq;
501         struct kvm_vcpu *dvcpu = NULL;
502
503         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
504             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
505             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
506             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
507                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
508                           (int)intr);
509
510         if (irq->cpu == -1)
511                 dvcpu = vcpu;
512         else
513                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
514
515         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
516                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
517
518         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
519                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
520         } else {
521                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
522                         irq->cpu, irq->irq);
523                 return -EINVAL;
524         }
525
526         dvcpu->arch.wait = 0;
527
528         rcuwait_wake_up(&dvcpu->wait);
529
530         return 0;
531 }
532
533 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
534                                     struct kvm_mp_state *mp_state)
535 {
536         return -ENOIOCTLCMD;
537 }
538
539 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
540                                     struct kvm_mp_state *mp_state)
541 {
542         return -ENOIOCTLCMD;
543 }
544
545 static u64 kvm_mips_get_one_regs[] = {
546         KVM_REG_MIPS_R0,
547         KVM_REG_MIPS_R1,
548         KVM_REG_MIPS_R2,
549         KVM_REG_MIPS_R3,
550         KVM_REG_MIPS_R4,
551         KVM_REG_MIPS_R5,
552         KVM_REG_MIPS_R6,
553         KVM_REG_MIPS_R7,
554         KVM_REG_MIPS_R8,
555         KVM_REG_MIPS_R9,
556         KVM_REG_MIPS_R10,
557         KVM_REG_MIPS_R11,
558         KVM_REG_MIPS_R12,
559         KVM_REG_MIPS_R13,
560         KVM_REG_MIPS_R14,
561         KVM_REG_MIPS_R15,
562         KVM_REG_MIPS_R16,
563         KVM_REG_MIPS_R17,
564         KVM_REG_MIPS_R18,
565         KVM_REG_MIPS_R19,
566         KVM_REG_MIPS_R20,
567         KVM_REG_MIPS_R21,
568         KVM_REG_MIPS_R22,
569         KVM_REG_MIPS_R23,
570         KVM_REG_MIPS_R24,
571         KVM_REG_MIPS_R25,
572         KVM_REG_MIPS_R26,
573         KVM_REG_MIPS_R27,
574         KVM_REG_MIPS_R28,
575         KVM_REG_MIPS_R29,
576         KVM_REG_MIPS_R30,
577         KVM_REG_MIPS_R31,
578
579 #ifndef CONFIG_CPU_MIPSR6
580         KVM_REG_MIPS_HI,
581         KVM_REG_MIPS_LO,
582 #endif
583         KVM_REG_MIPS_PC,
584 };
585
586 static u64 kvm_mips_get_one_regs_fpu[] = {
587         KVM_REG_MIPS_FCR_IR,
588         KVM_REG_MIPS_FCR_CSR,
589 };
590
591 static u64 kvm_mips_get_one_regs_msa[] = {
592         KVM_REG_MIPS_MSA_IR,
593         KVM_REG_MIPS_MSA_CSR,
594 };
595
596 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
597 {
598         unsigned long ret;
599
600         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
601         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
602                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
603                 /* odd doubles */
604                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
605                         ret += 16;
606         }
607         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
608                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
609         ret += kvm_mips_callbacks->num_regs(vcpu);
610
611         return ret;
612 }
613
614 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
615 {
616         u64 index;
617         unsigned int i;
618
619         if (copy_to_user(indices, kvm_mips_get_one_regs,
620                          sizeof(kvm_mips_get_one_regs)))
621                 return -EFAULT;
622         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
623
624         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
625                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
626                                  sizeof(kvm_mips_get_one_regs_fpu)))
627                         return -EFAULT;
628                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
629
630                 for (i = 0; i < 32; ++i) {
631                         index = KVM_REG_MIPS_FPR_32(i);
632                         if (copy_to_user(indices, &index, sizeof(index)))
633                                 return -EFAULT;
634                         ++indices;
635
636                         /* skip odd doubles if no F64 */
637                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
638                                 continue;
639
640                         index = KVM_REG_MIPS_FPR_64(i);
641                         if (copy_to_user(indices, &index, sizeof(index)))
642                                 return -EFAULT;
643                         ++indices;
644                 }
645         }
646
647         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
648                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
649                                  sizeof(kvm_mips_get_one_regs_msa)))
650                         return -EFAULT;
651                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
652
653                 for (i = 0; i < 32; ++i) {
654                         index = KVM_REG_MIPS_VEC_128(i);
655                         if (copy_to_user(indices, &index, sizeof(index)))
656                                 return -EFAULT;
657                         ++indices;
658                 }
659         }
660
661         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
662 }
663
664 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
665                             const struct kvm_one_reg *reg)
666 {
667         struct mips_coproc *cop0 = vcpu->arch.cop0;
668         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
669         int ret;
670         s64 v;
671         s64 vs[2];
672         unsigned int idx;
673
674         switch (reg->id) {
675         /* General purpose registers */
676         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
677                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
678                 break;
679 #ifndef CONFIG_CPU_MIPSR6
680         case KVM_REG_MIPS_HI:
681                 v = (long)vcpu->arch.hi;
682                 break;
683         case KVM_REG_MIPS_LO:
684                 v = (long)vcpu->arch.lo;
685                 break;
686 #endif
687         case KVM_REG_MIPS_PC:
688                 v = (long)vcpu->arch.pc;
689                 break;
690
691         /* Floating point registers */
692         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
693                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
694                         return -EINVAL;
695                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
696                 /* Odd singles in top of even double when FR=0 */
697                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
698                         v = get_fpr32(&fpu->fpr[idx], 0);
699                 else
700                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
701                 break;
702         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
703                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
704                         return -EINVAL;
705                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
706                 /* Can't access odd doubles in FR=0 mode */
707                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
708                         return -EINVAL;
709                 v = get_fpr64(&fpu->fpr[idx], 0);
710                 break;
711         case KVM_REG_MIPS_FCR_IR:
712                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
713                         return -EINVAL;
714                 v = boot_cpu_data.fpu_id;
715                 break;
716         case KVM_REG_MIPS_FCR_CSR:
717                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
718                         return -EINVAL;
719                 v = fpu->fcr31;
720                 break;
721
722         /* MIPS SIMD Architecture (MSA) registers */
723         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
724                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
725                         return -EINVAL;
726                 /* Can't access MSA registers in FR=0 mode */
727                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
728                         return -EINVAL;
729                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
730 #ifdef CONFIG_CPU_LITTLE_ENDIAN
731                 /* least significant byte first */
732                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
733                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
734 #else
735                 /* most significant byte first */
736                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
737                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
738 #endif
739                 break;
740         case KVM_REG_MIPS_MSA_IR:
741                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
742                         return -EINVAL;
743                 v = boot_cpu_data.msa_id;
744                 break;
745         case KVM_REG_MIPS_MSA_CSR:
746                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
747                         return -EINVAL;
748                 v = fpu->msacsr;
749                 break;
750
751         /* registers to be handled specially */
752         default:
753                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
754                 if (ret)
755                         return ret;
756                 break;
757         }
758         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
759                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
760
761                 return put_user(v, uaddr64);
762         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
763                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
764                 u32 v32 = (u32)v;
765
766                 return put_user(v32, uaddr32);
767         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
768                 void __user *uaddr = (void __user *)(long)reg->addr;
769
770                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
771         } else {
772                 return -EINVAL;
773         }
774 }
775
776 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
777                             const struct kvm_one_reg *reg)
778 {
779         struct mips_coproc *cop0 = vcpu->arch.cop0;
780         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
781         s64 v;
782         s64 vs[2];
783         unsigned int idx;
784
785         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
786                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
787
788                 if (get_user(v, uaddr64) != 0)
789                         return -EFAULT;
790         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
791                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
792                 s32 v32;
793
794                 if (get_user(v32, uaddr32) != 0)
795                         return -EFAULT;
796                 v = (s64)v32;
797         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
798                 void __user *uaddr = (void __user *)(long)reg->addr;
799
800                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
801         } else {
802                 return -EINVAL;
803         }
804
805         switch (reg->id) {
806         /* General purpose registers */
807         case KVM_REG_MIPS_R0:
808                 /* Silently ignore requests to set $0 */
809                 break;
810         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
811                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
812                 break;
813 #ifndef CONFIG_CPU_MIPSR6
814         case KVM_REG_MIPS_HI:
815                 vcpu->arch.hi = v;
816                 break;
817         case KVM_REG_MIPS_LO:
818                 vcpu->arch.lo = v;
819                 break;
820 #endif
821         case KVM_REG_MIPS_PC:
822                 vcpu->arch.pc = v;
823                 break;
824
825         /* Floating point registers */
826         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
827                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
828                         return -EINVAL;
829                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
830                 /* Odd singles in top of even double when FR=0 */
831                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
832                         set_fpr32(&fpu->fpr[idx], 0, v);
833                 else
834                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
835                 break;
836         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
837                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
838                         return -EINVAL;
839                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
840                 /* Can't access odd doubles in FR=0 mode */
841                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
842                         return -EINVAL;
843                 set_fpr64(&fpu->fpr[idx], 0, v);
844                 break;
845         case KVM_REG_MIPS_FCR_IR:
846                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
847                         return -EINVAL;
848                 /* Read-only */
849                 break;
850         case KVM_REG_MIPS_FCR_CSR:
851                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
852                         return -EINVAL;
853                 fpu->fcr31 = v;
854                 break;
855
856         /* MIPS SIMD Architecture (MSA) registers */
857         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
858                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
859                         return -EINVAL;
860                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
861 #ifdef CONFIG_CPU_LITTLE_ENDIAN
862                 /* least significant byte first */
863                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
864                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
865 #else
866                 /* most significant byte first */
867                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
868                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
869 #endif
870                 break;
871         case KVM_REG_MIPS_MSA_IR:
872                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
873                         return -EINVAL;
874                 /* Read-only */
875                 break;
876         case KVM_REG_MIPS_MSA_CSR:
877                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
878                         return -EINVAL;
879                 fpu->msacsr = v;
880                 break;
881
882         /* registers to be handled specially */
883         default:
884                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
885         }
886         return 0;
887 }
888
889 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
890                                      struct kvm_enable_cap *cap)
891 {
892         int r = 0;
893
894         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
895                 return -EINVAL;
896         if (cap->flags)
897                 return -EINVAL;
898         if (cap->args[0])
899                 return -EINVAL;
900
901         switch (cap->cap) {
902         case KVM_CAP_MIPS_FPU:
903                 vcpu->arch.fpu_enabled = true;
904                 break;
905         case KVM_CAP_MIPS_MSA:
906                 vcpu->arch.msa_enabled = true;
907                 break;
908         default:
909                 r = -EINVAL;
910                 break;
911         }
912
913         return r;
914 }
915
916 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
917                                unsigned long arg)
918 {
919         struct kvm_vcpu *vcpu = filp->private_data;
920         void __user *argp = (void __user *)arg;
921
922         if (ioctl == KVM_INTERRUPT) {
923                 struct kvm_mips_interrupt irq;
924
925                 if (copy_from_user(&irq, argp, sizeof(irq)))
926                         return -EFAULT;
927                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
928                           irq.irq);
929
930                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
931         }
932
933         return -ENOIOCTLCMD;
934 }
935
936 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
937                          unsigned long arg)
938 {
939         struct kvm_vcpu *vcpu = filp->private_data;
940         void __user *argp = (void __user *)arg;
941         long r;
942
943         vcpu_load(vcpu);
944
945         switch (ioctl) {
946         case KVM_SET_ONE_REG:
947         case KVM_GET_ONE_REG: {
948                 struct kvm_one_reg reg;
949
950                 r = -EFAULT;
951                 if (copy_from_user(&reg, argp, sizeof(reg)))
952                         break;
953                 if (ioctl == KVM_SET_ONE_REG)
954                         r = kvm_mips_set_reg(vcpu, &reg);
955                 else
956                         r = kvm_mips_get_reg(vcpu, &reg);
957                 break;
958         }
959         case KVM_GET_REG_LIST: {
960                 struct kvm_reg_list __user *user_list = argp;
961                 struct kvm_reg_list reg_list;
962                 unsigned n;
963
964                 r = -EFAULT;
965                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
966                         break;
967                 n = reg_list.n;
968                 reg_list.n = kvm_mips_num_regs(vcpu);
969                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
970                         break;
971                 r = -E2BIG;
972                 if (n < reg_list.n)
973                         break;
974                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
975                 break;
976         }
977         case KVM_ENABLE_CAP: {
978                 struct kvm_enable_cap cap;
979
980                 r = -EFAULT;
981                 if (copy_from_user(&cap, argp, sizeof(cap)))
982                         break;
983                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
984                 break;
985         }
986         default:
987                 r = -ENOIOCTLCMD;
988         }
989
990         vcpu_put(vcpu);
991         return r;
992 }
993
994 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
995 {
996
997 }
998
999 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1000                                         struct kvm_memory_slot *memslot)
1001 {
1002         /* Let implementation handle TLB/GVA invalidation */
1003         kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1004 }
1005
1006 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007 {
1008         long r;
1009
1010         switch (ioctl) {
1011         default:
1012                 r = -ENOIOCTLCMD;
1013         }
1014
1015         return r;
1016 }
1017
1018 int kvm_arch_init(void *opaque)
1019 {
1020         if (kvm_mips_callbacks) {
1021                 kvm_err("kvm: module already exists\n");
1022                 return -EEXIST;
1023         }
1024
1025         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026 }
1027
1028 void kvm_arch_exit(void)
1029 {
1030         kvm_mips_callbacks = NULL;
1031 }
1032
1033 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034                                   struct kvm_sregs *sregs)
1035 {
1036         return -ENOIOCTLCMD;
1037 }
1038
1039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040                                   struct kvm_sregs *sregs)
1041 {
1042         return -ENOIOCTLCMD;
1043 }
1044
1045 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046 {
1047 }
1048
1049 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050 {
1051         return -ENOIOCTLCMD;
1052 }
1053
1054 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055 {
1056         return -ENOIOCTLCMD;
1057 }
1058
1059 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060 {
1061         return VM_FAULT_SIGBUS;
1062 }
1063
1064 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065 {
1066         int r;
1067
1068         switch (ext) {
1069         case KVM_CAP_ONE_REG:
1070         case KVM_CAP_ENABLE_CAP:
1071         case KVM_CAP_READONLY_MEM:
1072         case KVM_CAP_SYNC_MMU:
1073         case KVM_CAP_IMMEDIATE_EXIT:
1074                 r = 1;
1075                 break;
1076         case KVM_CAP_NR_VCPUS:
1077                 r = num_online_cpus();
1078                 break;
1079         case KVM_CAP_MAX_VCPUS:
1080                 r = KVM_MAX_VCPUS;
1081                 break;
1082         case KVM_CAP_MAX_VCPU_ID:
1083                 r = KVM_MAX_VCPU_ID;
1084                 break;
1085         case KVM_CAP_MIPS_FPU:
1086                 /* We don't handle systems with inconsistent cpu_has_fpu */
1087                 r = !!raw_cpu_has_fpu;
1088                 break;
1089         case KVM_CAP_MIPS_MSA:
1090                 /*
1091                  * We don't support MSA vector partitioning yet:
1092                  * 1) It would require explicit support which can't be tested
1093                  *    yet due to lack of support in current hardware.
1094                  * 2) It extends the state that would need to be saved/restored
1095                  *    by e.g. QEMU for migration.
1096                  *
1097                  * When vector partitioning hardware becomes available, support
1098                  * could be added by requiring a flag when enabling
1099                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100                  * to save/restore the appropriate extra state.
1101                  */
1102                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103                 break;
1104         default:
1105                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1106                 break;
1107         }
1108         return r;
1109 }
1110
1111 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112 {
1113         return kvm_mips_pending_timer(vcpu) ||
1114                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115 }
1116
1117 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118 {
1119         int i;
1120         struct mips_coproc *cop0;
1121
1122         if (!vcpu)
1123                 return -1;
1124
1125         kvm_debug("VCPU Register Dump:\n");
1126         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129         for (i = 0; i < 32; i += 4) {
1130                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131                        vcpu->arch.gprs[i],
1132                        vcpu->arch.gprs[i + 1],
1133                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134         }
1135         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138         cop0 = vcpu->arch.cop0;
1139         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140                   kvm_read_c0_guest_status(cop0),
1141                   kvm_read_c0_guest_cause(cop0));
1142
1143         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145         return 0;
1146 }
1147
1148 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149 {
1150         int i;
1151
1152         vcpu_load(vcpu);
1153
1154         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155                 vcpu->arch.gprs[i] = regs->gpr[i];
1156         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157         vcpu->arch.hi = regs->hi;
1158         vcpu->arch.lo = regs->lo;
1159         vcpu->arch.pc = regs->pc;
1160
1161         vcpu_put(vcpu);
1162         return 0;
1163 }
1164
1165 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166 {
1167         int i;
1168
1169         vcpu_load(vcpu);
1170
1171         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172                 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174         regs->hi = vcpu->arch.hi;
1175         regs->lo = vcpu->arch.lo;
1176         regs->pc = vcpu->arch.pc;
1177
1178         vcpu_put(vcpu);
1179         return 0;
1180 }
1181
1182 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183                                   struct kvm_translation *tr)
1184 {
1185         return 0;
1186 }
1187
1188 static void kvm_mips_set_c0_status(void)
1189 {
1190         u32 status = read_c0_status();
1191
1192         if (cpu_has_dsp)
1193                 status |= (ST0_MX);
1194
1195         write_c0_status(status);
1196         ehb();
1197 }
1198
1199 /*
1200  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201  */
1202 int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203 {
1204         struct kvm_run *run = vcpu->run;
1205         u32 cause = vcpu->arch.host_cp0_cause;
1206         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209         enum emulation_result er = EMULATE_DONE;
1210         u32 inst;
1211         int ret = RESUME_GUEST;
1212
1213         vcpu->mode = OUTSIDE_GUEST_MODE;
1214
1215         /* re-enable HTW before enabling interrupts */
1216         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1217                 htw_start();
1218
1219         /* Set a default exit reason */
1220         run->exit_reason = KVM_EXIT_UNKNOWN;
1221         run->ready_for_interrupt_injection = 1;
1222
1223         /*
1224          * Set the appropriate status bits based on host CPU features,
1225          * before we hit the scheduler
1226          */
1227         kvm_mips_set_c0_status();
1228
1229         local_irq_enable();
1230
1231         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1232                         cause, opc, run, vcpu);
1233         trace_kvm_exit(vcpu, exccode);
1234
1235         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1236                 /*
1237                  * Do a privilege check, if in UM most of these exit conditions
1238                  * end up causing an exception to be delivered to the Guest
1239                  * Kernel
1240                  */
1241                 er = kvm_mips_check_privilege(cause, opc, vcpu);
1242                 if (er == EMULATE_PRIV_FAIL) {
1243                         goto skip_emul;
1244                 } else if (er == EMULATE_FAIL) {
1245                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1246                         ret = RESUME_HOST;
1247                         goto skip_emul;
1248                 }
1249         }
1250
1251         switch (exccode) {
1252         case EXCCODE_INT:
1253                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1254
1255                 ++vcpu->stat.int_exits;
1256
1257                 if (need_resched())
1258                         cond_resched();
1259
1260                 ret = RESUME_GUEST;
1261                 break;
1262
1263         case EXCCODE_CPU:
1264                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1265
1266                 ++vcpu->stat.cop_unusable_exits;
1267                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1268                 /* XXXKYMA: Might need to return to user space */
1269                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1270                         ret = RESUME_HOST;
1271                 break;
1272
1273         case EXCCODE_MOD:
1274                 ++vcpu->stat.tlbmod_exits;
1275                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1276                 break;
1277
1278         case EXCCODE_TLBS:
1279                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1280                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1281                           badvaddr);
1282
1283                 ++vcpu->stat.tlbmiss_st_exits;
1284                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1285                 break;
1286
1287         case EXCCODE_TLBL:
1288                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1289                           cause, opc, badvaddr);
1290
1291                 ++vcpu->stat.tlbmiss_ld_exits;
1292                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1293                 break;
1294
1295         case EXCCODE_ADES:
1296                 ++vcpu->stat.addrerr_st_exits;
1297                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1298                 break;
1299
1300         case EXCCODE_ADEL:
1301                 ++vcpu->stat.addrerr_ld_exits;
1302                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1303                 break;
1304
1305         case EXCCODE_SYS:
1306                 ++vcpu->stat.syscall_exits;
1307                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1308                 break;
1309
1310         case EXCCODE_RI:
1311                 ++vcpu->stat.resvd_inst_exits;
1312                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1313                 break;
1314
1315         case EXCCODE_BP:
1316                 ++vcpu->stat.break_inst_exits;
1317                 ret = kvm_mips_callbacks->handle_break(vcpu);
1318                 break;
1319
1320         case EXCCODE_TR:
1321                 ++vcpu->stat.trap_inst_exits;
1322                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1323                 break;
1324
1325         case EXCCODE_MSAFPE:
1326                 ++vcpu->stat.msa_fpe_exits;
1327                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1328                 break;
1329
1330         case EXCCODE_FPE:
1331                 ++vcpu->stat.fpe_exits;
1332                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1333                 break;
1334
1335         case EXCCODE_MSADIS:
1336                 ++vcpu->stat.msa_disabled_exits;
1337                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1338                 break;
1339
1340         case EXCCODE_GE:
1341                 /* defer exit accounting to handler */
1342                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1343                 break;
1344
1345         default:
1346                 if (cause & CAUSEF_BD)
1347                         opc += 1;
1348                 inst = 0;
1349                 kvm_get_badinstr(opc, vcpu, &inst);
1350                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1351                         exccode, opc, inst, badvaddr,
1352                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1353                 kvm_arch_vcpu_dump_regs(vcpu);
1354                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1355                 ret = RESUME_HOST;
1356                 break;
1357
1358         }
1359
1360 skip_emul:
1361         local_irq_disable();
1362
1363         if (ret == RESUME_GUEST)
1364                 kvm_vz_acquire_htimer(vcpu);
1365
1366         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1367                 kvm_mips_deliver_interrupts(vcpu, cause);
1368
1369         if (!(ret & RESUME_HOST)) {
1370                 /* Only check for signals if not already exiting to userspace */
1371                 if (signal_pending(current)) {
1372                         run->exit_reason = KVM_EXIT_INTR;
1373                         ret = (-EINTR << 2) | RESUME_HOST;
1374                         ++vcpu->stat.signal_exits;
1375                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1376                 }
1377         }
1378
1379         if (ret == RESUME_GUEST) {
1380                 trace_kvm_reenter(vcpu);
1381
1382                 /*
1383                  * Make sure the read of VCPU requests in vcpu_reenter()
1384                  * callback is not reordered ahead of the write to vcpu->mode,
1385                  * or we could miss a TLB flush request while the requester sees
1386                  * the VCPU as outside of guest mode and not needing an IPI.
1387                  */
1388                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1389
1390                 kvm_mips_callbacks->vcpu_reenter(vcpu);
1391
1392                 /*
1393                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1394                  * is live), restore FCR31 / MSACSR.
1395                  *
1396                  * This should be before returning to the guest exception
1397                  * vector, as it may well cause an [MSA] FP exception if there
1398                  * are pending exception bits unmasked. (see
1399                  * kvm_mips_csr_die_notifier() for how that is handled).
1400                  */
1401                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1402                     read_c0_status() & ST0_CU1)
1403                         __kvm_restore_fcsr(&vcpu->arch);
1404
1405                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1406                     read_c0_config5() & MIPS_CONF5_MSAEN)
1407                         __kvm_restore_msacsr(&vcpu->arch);
1408         }
1409
1410         /* Disable HTW before returning to guest or host */
1411         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1412                 htw_stop();
1413
1414         return ret;
1415 }
1416
1417 /* Enable FPU for guest and restore context */
1418 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1419 {
1420         struct mips_coproc *cop0 = vcpu->arch.cop0;
1421         unsigned int sr, cfg5;
1422
1423         preempt_disable();
1424
1425         sr = kvm_read_c0_guest_status(cop0);
1426
1427         /*
1428          * If MSA state is already live, it is undefined how it interacts with
1429          * FR=0 FPU state, and we don't want to hit reserved instruction
1430          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1431          * play it safe and save it first.
1432          *
1433          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1434          * get called when guest CU1 is set, however we can't trust the guest
1435          * not to clobber the status register directly via the commpage.
1436          */
1437         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1438             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1439                 kvm_lose_fpu(vcpu);
1440
1441         /*
1442          * Enable FPU for guest
1443          * We set FR and FRE according to guest context
1444          */
1445         change_c0_status(ST0_CU1 | ST0_FR, sr);
1446         if (cpu_has_fre) {
1447                 cfg5 = kvm_read_c0_guest_config5(cop0);
1448                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1449         }
1450         enable_fpu_hazard();
1451
1452         /* If guest FPU state not active, restore it now */
1453         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1454                 __kvm_restore_fpu(&vcpu->arch);
1455                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1456                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1457         } else {
1458                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1459         }
1460
1461         preempt_enable();
1462 }
1463
1464 #ifdef CONFIG_CPU_HAS_MSA
1465 /* Enable MSA for guest and restore context */
1466 void kvm_own_msa(struct kvm_vcpu *vcpu)
1467 {
1468         struct mips_coproc *cop0 = vcpu->arch.cop0;
1469         unsigned int sr, cfg5;
1470
1471         preempt_disable();
1472
1473         /*
1474          * Enable FPU if enabled in guest, since we're restoring FPU context
1475          * anyway. We set FR and FRE according to guest context.
1476          */
1477         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1478                 sr = kvm_read_c0_guest_status(cop0);
1479
1480                 /*
1481                  * If FR=0 FPU state is already live, it is undefined how it
1482                  * interacts with MSA state, so play it safe and save it first.
1483                  */
1484                 if (!(sr & ST0_FR) &&
1485                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1486                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1487                         kvm_lose_fpu(vcpu);
1488
1489                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1490                 if (sr & ST0_CU1 && cpu_has_fre) {
1491                         cfg5 = kvm_read_c0_guest_config5(cop0);
1492                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1493                 }
1494         }
1495
1496         /* Enable MSA for guest */
1497         set_c0_config5(MIPS_CONF5_MSAEN);
1498         enable_fpu_hazard();
1499
1500         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1501         case KVM_MIPS_AUX_FPU:
1502                 /*
1503                  * Guest FPU state already loaded, only restore upper MSA state
1504                  */
1505                 __kvm_restore_msa_upper(&vcpu->arch);
1506                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1507                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1508                 break;
1509         case 0:
1510                 /* Neither FPU or MSA already active, restore full MSA state */
1511                 __kvm_restore_msa(&vcpu->arch);
1512                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1513                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1514                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1515                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1516                               KVM_TRACE_AUX_FPU_MSA);
1517                 break;
1518         default:
1519                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1520                 break;
1521         }
1522
1523         preempt_enable();
1524 }
1525 #endif
1526
1527 /* Drop FPU & MSA without saving it */
1528 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1529 {
1530         preempt_disable();
1531         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1532                 disable_msa();
1533                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1534                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1535         }
1536         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1537                 clear_c0_status(ST0_CU1 | ST0_FR);
1538                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1539                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1540         }
1541         preempt_enable();
1542 }
1543
1544 /* Save and disable FPU & MSA */
1545 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1546 {
1547         /*
1548          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1549          * is disabled in guest context (software), but the register state in
1550          * the hardware may still be in use.
1551          * This is why we explicitly re-enable the hardware before saving.
1552          */
1553
1554         preempt_disable();
1555         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1556                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1557                         set_c0_config5(MIPS_CONF5_MSAEN);
1558                         enable_fpu_hazard();
1559                 }
1560
1561                 __kvm_save_msa(&vcpu->arch);
1562                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1563
1564                 /* Disable MSA & FPU */
1565                 disable_msa();
1566                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1567                         clear_c0_status(ST0_CU1 | ST0_FR);
1568                         disable_fpu_hazard();
1569                 }
1570                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1571         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1572                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1573                         set_c0_status(ST0_CU1);
1574                         enable_fpu_hazard();
1575                 }
1576
1577                 __kvm_save_fpu(&vcpu->arch);
1578                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1579                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1580
1581                 /* Disable FPU */
1582                 clear_c0_status(ST0_CU1 | ST0_FR);
1583                 disable_fpu_hazard();
1584         }
1585         preempt_enable();
1586 }
1587
1588 /*
1589  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1590  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1591  * exception if cause bits are set in the value being written.
1592  */
1593 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1594                                    unsigned long cmd, void *ptr)
1595 {
1596         struct die_args *args = (struct die_args *)ptr;
1597         struct pt_regs *regs = args->regs;
1598         unsigned long pc;
1599
1600         /* Only interested in FPE and MSAFPE */
1601         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1602                 return NOTIFY_DONE;
1603
1604         /* Return immediately if guest context isn't active */
1605         if (!(current->flags & PF_VCPU))
1606                 return NOTIFY_DONE;
1607
1608         /* Should never get here from user mode */
1609         BUG_ON(user_mode(regs));
1610
1611         pc = instruction_pointer(regs);
1612         switch (cmd) {
1613         case DIE_FP:
1614                 /* match 2nd instruction in __kvm_restore_fcsr */
1615                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1616                         return NOTIFY_DONE;
1617                 break;
1618         case DIE_MSAFP:
1619                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1620                 if (!cpu_has_msa ||
1621                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1622                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1623                         return NOTIFY_DONE;
1624                 break;
1625         }
1626
1627         /* Move PC forward a little and continue executing */
1628         instruction_pointer(regs) += 4;
1629
1630         return NOTIFY_STOP;
1631 }
1632
1633 static struct notifier_block kvm_mips_csr_die_notifier = {
1634         .notifier_call = kvm_mips_csr_die_notify,
1635 };
1636
1637 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1638         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1639         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1640         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1641         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1642 };
1643
1644 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1645         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1646         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1647         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1648         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1649 };
1650
1651 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1652
1653 u32 kvm_irq_to_priority(u32 irq)
1654 {
1655         int i;
1656
1657         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1658                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1659                         return i;
1660         }
1661
1662         return MIPS_EXC_MAX;
1663 }
1664
1665 static int __init kvm_mips_init(void)
1666 {
1667         int ret;
1668
1669         if (cpu_has_mmid) {
1670                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1671                 return -EOPNOTSUPP;
1672         }
1673
1674         ret = kvm_mips_entry_setup();
1675         if (ret)
1676                 return ret;
1677
1678         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1679
1680         if (ret)
1681                 return ret;
1682
1683         if (boot_cpu_type() == CPU_LOONGSON64)
1684                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1685
1686         register_die_notifier(&kvm_mips_csr_die_notifier);
1687
1688         return 0;
1689 }
1690
1691 static void __exit kvm_mips_exit(void)
1692 {
1693         kvm_exit();
1694
1695         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1696 }
1697
1698 module_init(kvm_mips_init);
1699 module_exit(kvm_mips_exit);
1700
1701 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);