9f50ceef9978a713402e801ace028814fefefbab
[linux-2.6-microblaze.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 struct kvm_stats_debugfs_item debugfs_entries[] = {
43         VCPU_STAT("wait", wait_exits),
44         VCPU_STAT("cache", cache_exits),
45         VCPU_STAT("signal", signal_exits),
46         VCPU_STAT("interrupt", int_exits),
47         VCPU_STAT("cop_unusable", cop_unusable_exits),
48         VCPU_STAT("tlbmod", tlbmod_exits),
49         VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits),
50         VCPU_STAT("tlbmiss_st", tlbmiss_st_exits),
51         VCPU_STAT("addrerr_st", addrerr_st_exits),
52         VCPU_STAT("addrerr_ld", addrerr_ld_exits),
53         VCPU_STAT("syscall", syscall_exits),
54         VCPU_STAT("resvd_inst", resvd_inst_exits),
55         VCPU_STAT("break_inst", break_inst_exits),
56         VCPU_STAT("trap_inst", trap_inst_exits),
57         VCPU_STAT("msa_fpe", msa_fpe_exits),
58         VCPU_STAT("fpe", fpe_exits),
59         VCPU_STAT("msa_disabled", msa_disabled_exits),
60         VCPU_STAT("flush_dcache", flush_dcache_exits),
61 #ifdef CONFIG_KVM_MIPS_VZ
62         VCPU_STAT("vz_gpsi", vz_gpsi_exits),
63         VCPU_STAT("vz_gsfc", vz_gsfc_exits),
64         VCPU_STAT("vz_hc", vz_hc_exits),
65         VCPU_STAT("vz_grr", vz_grr_exits),
66         VCPU_STAT("vz_gva", vz_gva_exits),
67         VCPU_STAT("vz_ghfc", vz_ghfc_exits),
68         VCPU_STAT("vz_gpa", vz_gpa_exits),
69         VCPU_STAT("vz_resvd", vz_resvd_exits),
70 #endif
71         VCPU_STAT("halt_successful_poll", halt_successful_poll),
72         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
73         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
74         VCPU_STAT("halt_wakeup", halt_wakeup),
75         {NULL}
76 };
77
78 bool kvm_trace_guest_mode_change;
79
80 int kvm_guest_mode_change_trace_reg(void)
81 {
82         kvm_trace_guest_mode_change = 1;
83         return 0;
84 }
85
86 void kvm_guest_mode_change_trace_unreg(void)
87 {
88         kvm_trace_guest_mode_change = 0;
89 }
90
91 /*
92  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
93  * Config7, so we are "runnable" if interrupts are pending
94  */
95 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
96 {
97         return !!(vcpu->arch.pending_exceptions);
98 }
99
100 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
101 {
102         return false;
103 }
104
105 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
106 {
107         return 1;
108 }
109
110 int kvm_arch_hardware_enable(void)
111 {
112         return kvm_mips_callbacks->hardware_enable();
113 }
114
115 void kvm_arch_hardware_disable(void)
116 {
117         kvm_mips_callbacks->hardware_disable();
118 }
119
120 int kvm_arch_hardware_setup(void *opaque)
121 {
122         return 0;
123 }
124
125 int kvm_arch_check_processor_compat(void *opaque)
126 {
127         return 0;
128 }
129
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132         switch (type) {
133 #ifdef CONFIG_KVM_MIPS_VZ
134         case KVM_VM_MIPS_VZ:
135 #else
136         case KVM_VM_MIPS_TE:
137 #endif
138                 break;
139         default:
140                 /* Unsupported KVM type */
141                 return -EINVAL;
142         };
143
144         /* Allocate page table to map GPA -> RPA */
145         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
146         if (!kvm->arch.gpa_mm.pgd)
147                 return -ENOMEM;
148
149         return 0;
150 }
151
152 void kvm_mips_free_vcpus(struct kvm *kvm)
153 {
154         unsigned int i;
155         struct kvm_vcpu *vcpu;
156
157         kvm_for_each_vcpu(i, vcpu, kvm) {
158                 kvm_vcpu_destroy(vcpu);
159         }
160
161         mutex_lock(&kvm->lock);
162
163         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
164                 kvm->vcpus[i] = NULL;
165
166         atomic_set(&kvm->online_vcpus, 0);
167
168         mutex_unlock(&kvm->lock);
169 }
170
171 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
172 {
173         /* It should always be safe to remove after flushing the whole range */
174         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
175         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         kvm_mips_free_vcpus(kvm);
181         kvm_mips_free_gpa_pt(kvm);
182 }
183
184 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
185                         unsigned long arg)
186 {
187         return -ENOIOCTLCMD;
188 }
189
190 void kvm_arch_flush_shadow_all(struct kvm *kvm)
191 {
192         /* Flush whole GPA */
193         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
194
195         /* Let implementation do the rest */
196         kvm_mips_callbacks->flush_shadow_all(kvm);
197 }
198
199 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
200                                    struct kvm_memory_slot *slot)
201 {
202         /*
203          * The slot has been made invalid (ready for moving or deletion), so we
204          * need to ensure that it can no longer be accessed by any guest VCPUs.
205          */
206
207         spin_lock(&kvm->mmu_lock);
208         /* Flush slot from GPA */
209         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
210                               slot->base_gfn + slot->npages - 1);
211         /* Let implementation do the rest */
212         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
213         spin_unlock(&kvm->mmu_lock);
214 }
215
216 int kvm_arch_prepare_memory_region(struct kvm *kvm,
217                                    struct kvm_memory_slot *memslot,
218                                    const struct kvm_userspace_memory_region *mem,
219                                    enum kvm_mr_change change)
220 {
221         return 0;
222 }
223
224 void kvm_arch_commit_memory_region(struct kvm *kvm,
225                                    const struct kvm_userspace_memory_region *mem,
226                                    struct kvm_memory_slot *old,
227                                    const struct kvm_memory_slot *new,
228                                    enum kvm_mr_change change)
229 {
230         int needs_flush;
231
232         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
233                   __func__, kvm, mem->slot, mem->guest_phys_addr,
234                   mem->memory_size, mem->userspace_addr);
235
236         /*
237          * If dirty page logging is enabled, write protect all pages in the slot
238          * ready for dirty logging.
239          *
240          * There is no need to do this in any of the following cases:
241          * CREATE:      No dirty mappings will already exist.
242          * MOVE/DELETE: The old mappings will already have been cleaned up by
243          *              kvm_arch_flush_shadow_memslot()
244          */
245         if (change == KVM_MR_FLAGS_ONLY &&
246             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
247              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
248                 spin_lock(&kvm->mmu_lock);
249                 /* Write protect GPA page table entries */
250                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
251                                         new->base_gfn + new->npages - 1);
252                 /* Let implementation do the rest */
253                 if (needs_flush)
254                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
255                 spin_unlock(&kvm->mmu_lock);
256         }
257 }
258
259 static inline void dump_handler(const char *symbol, void *start, void *end)
260 {
261         u32 *p;
262
263         pr_debug("LEAF(%s)\n", symbol);
264
265         pr_debug("\t.set push\n");
266         pr_debug("\t.set noreorder\n");
267
268         for (p = start; p < (u32 *)end; ++p)
269                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270
271         pr_debug("\t.set\tpop\n");
272
273         pr_debug("\tEND(%s)\n", symbol);
274 }
275
276 /* low level hrtimer wake routine */
277 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
278 {
279         struct kvm_vcpu *vcpu;
280
281         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
282
283         kvm_mips_callbacks->queue_timer_int(vcpu);
284
285         vcpu->arch.wait = 0;
286         if (swq_has_sleeper(&vcpu->wq))
287                 swake_up_one(&vcpu->wq);
288
289         return kvm_mips_count_timeout(vcpu);
290 }
291
292 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
293 {
294         return 0;
295 }
296
297 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
298 {
299         int err, size;
300         void *gebase, *p, *handler, *refill_start, *refill_end;
301         int i;
302
303         kvm_debug("kvm @ %p: create cpu %d at %p\n",
304                   vcpu->kvm, vcpu->vcpu_id, vcpu);
305
306         err = kvm_mips_callbacks->vcpu_init(vcpu);
307         if (err)
308                 return err;
309
310         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
311                      HRTIMER_MODE_REL);
312         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
313
314         /*
315          * Allocate space for host mode exception handlers that handle
316          * guest mode exits
317          */
318         if (cpu_has_veic || cpu_has_vint)
319                 size = 0x200 + VECTORSPACING * 64;
320         else
321                 size = 0x4000;
322
323         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
324
325         if (!gebase) {
326                 err = -ENOMEM;
327                 goto out_uninit_vcpu;
328         }
329         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
330                   ALIGN(size, PAGE_SIZE), gebase);
331
332         /*
333          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
334          * limits us to the low 512MB of physical address space. If the memory
335          * we allocate is out of range, just give up now.
336          */
337         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
338                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
339                         gebase);
340                 err = -ENOMEM;
341                 goto out_free_gebase;
342         }
343
344         /* Save new ebase */
345         vcpu->arch.guest_ebase = gebase;
346
347         /* Build guest exception vectors dynamically in unmapped memory */
348         handler = gebase + 0x2000;
349
350         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
351         refill_start = gebase;
352         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
353                 refill_start += 0x080;
354         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
355
356         /* General Exception Entry point */
357         kvm_mips_build_exception(gebase + 0x180, handler);
358
359         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
360         for (i = 0; i < 8; i++) {
361                 kvm_debug("L1 Vectored handler @ %p\n",
362                           gebase + 0x200 + (i * VECTORSPACING));
363                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
364                                          handler);
365         }
366
367         /* General exit handler */
368         p = handler;
369         p = kvm_mips_build_exit(p);
370
371         /* Guest entry routine */
372         vcpu->arch.vcpu_run = p;
373         p = kvm_mips_build_vcpu_run(p);
374
375         /* Dump the generated code */
376         pr_debug("#include <asm/asm.h>\n");
377         pr_debug("#include <asm/regdef.h>\n");
378         pr_debug("\n");
379         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
380         dump_handler("kvm_tlb_refill", refill_start, refill_end);
381         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
382         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
383
384         /* Invalidate the icache for these ranges */
385         flush_icache_range((unsigned long)gebase,
386                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
387
388         /*
389          * Allocate comm page for guest kernel, a TLB will be reserved for
390          * mapping GVA @ 0xFFFF8000 to this page
391          */
392         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
393
394         if (!vcpu->arch.kseg0_commpage) {
395                 err = -ENOMEM;
396                 goto out_free_gebase;
397         }
398
399         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
400         kvm_mips_commpage_init(vcpu);
401
402         /* Init */
403         vcpu->arch.last_sched_cpu = -1;
404         vcpu->arch.last_exec_cpu = -1;
405
406         /* Initial guest state */
407         err = kvm_mips_callbacks->vcpu_setup(vcpu);
408         if (err)
409                 goto out_free_commpage;
410
411         return 0;
412
413 out_free_commpage:
414         kfree(vcpu->arch.kseg0_commpage);
415 out_free_gebase:
416         kfree(gebase);
417 out_uninit_vcpu:
418         kvm_mips_callbacks->vcpu_uninit(vcpu);
419         return err;
420 }
421
422 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
423 {
424         hrtimer_cancel(&vcpu->arch.comparecount_timer);
425
426         kvm_mips_dump_stats(vcpu);
427
428         kvm_mmu_free_memory_caches(vcpu);
429         kfree(vcpu->arch.guest_ebase);
430         kfree(vcpu->arch.kseg0_commpage);
431
432         kvm_mips_callbacks->vcpu_uninit(vcpu);
433 }
434
435 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
436                                         struct kvm_guest_debug *dbg)
437 {
438         return -ENOIOCTLCMD;
439 }
440
441 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
442 {
443         struct kvm_run *run = vcpu->run;
444         int r = -EINTR;
445
446         vcpu_load(vcpu);
447
448         kvm_sigset_activate(vcpu);
449
450         if (vcpu->mmio_needed) {
451                 if (!vcpu->mmio_is_write)
452                         kvm_mips_complete_mmio_load(vcpu, run);
453                 vcpu->mmio_needed = 0;
454         }
455
456         if (run->immediate_exit)
457                 goto out;
458
459         lose_fpu(1);
460
461         local_irq_disable();
462         guest_enter_irqoff();
463         trace_kvm_enter(vcpu);
464
465         /*
466          * Make sure the read of VCPU requests in vcpu_run() callback is not
467          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
468          * flush request while the requester sees the VCPU as outside of guest
469          * mode and not needing an IPI.
470          */
471         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
472
473         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
474
475         trace_kvm_out(vcpu);
476         guest_exit_irqoff();
477         local_irq_enable();
478
479 out:
480         kvm_sigset_deactivate(vcpu);
481
482         vcpu_put(vcpu);
483         return r;
484 }
485
486 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
487                              struct kvm_mips_interrupt *irq)
488 {
489         int intr = (int)irq->irq;
490         struct kvm_vcpu *dvcpu = NULL;
491
492         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
493                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
494                           (int)intr);
495
496         if (irq->cpu == -1)
497                 dvcpu = vcpu;
498         else
499                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
500
501         if (intr == 2 || intr == 3 || intr == 4) {
502                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
503
504         } else if (intr == -2 || intr == -3 || intr == -4) {
505                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
506         } else {
507                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
508                         irq->cpu, irq->irq);
509                 return -EINVAL;
510         }
511
512         dvcpu->arch.wait = 0;
513
514         if (swq_has_sleeper(&dvcpu->wq))
515                 swake_up_one(&dvcpu->wq);
516
517         return 0;
518 }
519
520 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
521                                     struct kvm_mp_state *mp_state)
522 {
523         return -ENOIOCTLCMD;
524 }
525
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527                                     struct kvm_mp_state *mp_state)
528 {
529         return -ENOIOCTLCMD;
530 }
531
532 static u64 kvm_mips_get_one_regs[] = {
533         KVM_REG_MIPS_R0,
534         KVM_REG_MIPS_R1,
535         KVM_REG_MIPS_R2,
536         KVM_REG_MIPS_R3,
537         KVM_REG_MIPS_R4,
538         KVM_REG_MIPS_R5,
539         KVM_REG_MIPS_R6,
540         KVM_REG_MIPS_R7,
541         KVM_REG_MIPS_R8,
542         KVM_REG_MIPS_R9,
543         KVM_REG_MIPS_R10,
544         KVM_REG_MIPS_R11,
545         KVM_REG_MIPS_R12,
546         KVM_REG_MIPS_R13,
547         KVM_REG_MIPS_R14,
548         KVM_REG_MIPS_R15,
549         KVM_REG_MIPS_R16,
550         KVM_REG_MIPS_R17,
551         KVM_REG_MIPS_R18,
552         KVM_REG_MIPS_R19,
553         KVM_REG_MIPS_R20,
554         KVM_REG_MIPS_R21,
555         KVM_REG_MIPS_R22,
556         KVM_REG_MIPS_R23,
557         KVM_REG_MIPS_R24,
558         KVM_REG_MIPS_R25,
559         KVM_REG_MIPS_R26,
560         KVM_REG_MIPS_R27,
561         KVM_REG_MIPS_R28,
562         KVM_REG_MIPS_R29,
563         KVM_REG_MIPS_R30,
564         KVM_REG_MIPS_R31,
565
566 #ifndef CONFIG_CPU_MIPSR6
567         KVM_REG_MIPS_HI,
568         KVM_REG_MIPS_LO,
569 #endif
570         KVM_REG_MIPS_PC,
571 };
572
573 static u64 kvm_mips_get_one_regs_fpu[] = {
574         KVM_REG_MIPS_FCR_IR,
575         KVM_REG_MIPS_FCR_CSR,
576 };
577
578 static u64 kvm_mips_get_one_regs_msa[] = {
579         KVM_REG_MIPS_MSA_IR,
580         KVM_REG_MIPS_MSA_CSR,
581 };
582
583 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
584 {
585         unsigned long ret;
586
587         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
588         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
589                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
590                 /* odd doubles */
591                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
592                         ret += 16;
593         }
594         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
595                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
596         ret += kvm_mips_callbacks->num_regs(vcpu);
597
598         return ret;
599 }
600
601 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
602 {
603         u64 index;
604         unsigned int i;
605
606         if (copy_to_user(indices, kvm_mips_get_one_regs,
607                          sizeof(kvm_mips_get_one_regs)))
608                 return -EFAULT;
609         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
610
611         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
612                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
613                                  sizeof(kvm_mips_get_one_regs_fpu)))
614                         return -EFAULT;
615                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
616
617                 for (i = 0; i < 32; ++i) {
618                         index = KVM_REG_MIPS_FPR_32(i);
619                         if (copy_to_user(indices, &index, sizeof(index)))
620                                 return -EFAULT;
621                         ++indices;
622
623                         /* skip odd doubles if no F64 */
624                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
625                                 continue;
626
627                         index = KVM_REG_MIPS_FPR_64(i);
628                         if (copy_to_user(indices, &index, sizeof(index)))
629                                 return -EFAULT;
630                         ++indices;
631                 }
632         }
633
634         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
635                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
636                                  sizeof(kvm_mips_get_one_regs_msa)))
637                         return -EFAULT;
638                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
639
640                 for (i = 0; i < 32; ++i) {
641                         index = KVM_REG_MIPS_VEC_128(i);
642                         if (copy_to_user(indices, &index, sizeof(index)))
643                                 return -EFAULT;
644                         ++indices;
645                 }
646         }
647
648         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
649 }
650
651 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
652                             const struct kvm_one_reg *reg)
653 {
654         struct mips_coproc *cop0 = vcpu->arch.cop0;
655         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
656         int ret;
657         s64 v;
658         s64 vs[2];
659         unsigned int idx;
660
661         switch (reg->id) {
662         /* General purpose registers */
663         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
664                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
665                 break;
666 #ifndef CONFIG_CPU_MIPSR6
667         case KVM_REG_MIPS_HI:
668                 v = (long)vcpu->arch.hi;
669                 break;
670         case KVM_REG_MIPS_LO:
671                 v = (long)vcpu->arch.lo;
672                 break;
673 #endif
674         case KVM_REG_MIPS_PC:
675                 v = (long)vcpu->arch.pc;
676                 break;
677
678         /* Floating point registers */
679         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
680                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
681                         return -EINVAL;
682                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
683                 /* Odd singles in top of even double when FR=0 */
684                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
685                         v = get_fpr32(&fpu->fpr[idx], 0);
686                 else
687                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
688                 break;
689         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
690                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
691                         return -EINVAL;
692                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
693                 /* Can't access odd doubles in FR=0 mode */
694                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
695                         return -EINVAL;
696                 v = get_fpr64(&fpu->fpr[idx], 0);
697                 break;
698         case KVM_REG_MIPS_FCR_IR:
699                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
700                         return -EINVAL;
701                 v = boot_cpu_data.fpu_id;
702                 break;
703         case KVM_REG_MIPS_FCR_CSR:
704                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
705                         return -EINVAL;
706                 v = fpu->fcr31;
707                 break;
708
709         /* MIPS SIMD Architecture (MSA) registers */
710         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
711                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
712                         return -EINVAL;
713                 /* Can't access MSA registers in FR=0 mode */
714                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
715                         return -EINVAL;
716                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
717 #ifdef CONFIG_CPU_LITTLE_ENDIAN
718                 /* least significant byte first */
719                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
720                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
721 #else
722                 /* most significant byte first */
723                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
724                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
725 #endif
726                 break;
727         case KVM_REG_MIPS_MSA_IR:
728                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
729                         return -EINVAL;
730                 v = boot_cpu_data.msa_id;
731                 break;
732         case KVM_REG_MIPS_MSA_CSR:
733                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
734                         return -EINVAL;
735                 v = fpu->msacsr;
736                 break;
737
738         /* registers to be handled specially */
739         default:
740                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
741                 if (ret)
742                         return ret;
743                 break;
744         }
745         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
746                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
747
748                 return put_user(v, uaddr64);
749         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
750                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
751                 u32 v32 = (u32)v;
752
753                 return put_user(v32, uaddr32);
754         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
755                 void __user *uaddr = (void __user *)(long)reg->addr;
756
757                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
758         } else {
759                 return -EINVAL;
760         }
761 }
762
763 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
764                             const struct kvm_one_reg *reg)
765 {
766         struct mips_coproc *cop0 = vcpu->arch.cop0;
767         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
768         s64 v;
769         s64 vs[2];
770         unsigned int idx;
771
772         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
773                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
774
775                 if (get_user(v, uaddr64) != 0)
776                         return -EFAULT;
777         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
778                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
779                 s32 v32;
780
781                 if (get_user(v32, uaddr32) != 0)
782                         return -EFAULT;
783                 v = (s64)v32;
784         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
785                 void __user *uaddr = (void __user *)(long)reg->addr;
786
787                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
788         } else {
789                 return -EINVAL;
790         }
791
792         switch (reg->id) {
793         /* General purpose registers */
794         case KVM_REG_MIPS_R0:
795                 /* Silently ignore requests to set $0 */
796                 break;
797         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
798                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
799                 break;
800 #ifndef CONFIG_CPU_MIPSR6
801         case KVM_REG_MIPS_HI:
802                 vcpu->arch.hi = v;
803                 break;
804         case KVM_REG_MIPS_LO:
805                 vcpu->arch.lo = v;
806                 break;
807 #endif
808         case KVM_REG_MIPS_PC:
809                 vcpu->arch.pc = v;
810                 break;
811
812         /* Floating point registers */
813         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
814                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
815                         return -EINVAL;
816                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
817                 /* Odd singles in top of even double when FR=0 */
818                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
819                         set_fpr32(&fpu->fpr[idx], 0, v);
820                 else
821                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
822                 break;
823         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
824                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
825                         return -EINVAL;
826                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
827                 /* Can't access odd doubles in FR=0 mode */
828                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
829                         return -EINVAL;
830                 set_fpr64(&fpu->fpr[idx], 0, v);
831                 break;
832         case KVM_REG_MIPS_FCR_IR:
833                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
834                         return -EINVAL;
835                 /* Read-only */
836                 break;
837         case KVM_REG_MIPS_FCR_CSR:
838                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
839                         return -EINVAL;
840                 fpu->fcr31 = v;
841                 break;
842
843         /* MIPS SIMD Architecture (MSA) registers */
844         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
845                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
846                         return -EINVAL;
847                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
848 #ifdef CONFIG_CPU_LITTLE_ENDIAN
849                 /* least significant byte first */
850                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
851                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
852 #else
853                 /* most significant byte first */
854                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
855                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
856 #endif
857                 break;
858         case KVM_REG_MIPS_MSA_IR:
859                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
860                         return -EINVAL;
861                 /* Read-only */
862                 break;
863         case KVM_REG_MIPS_MSA_CSR:
864                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
865                         return -EINVAL;
866                 fpu->msacsr = v;
867                 break;
868
869         /* registers to be handled specially */
870         default:
871                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
872         }
873         return 0;
874 }
875
876 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
877                                      struct kvm_enable_cap *cap)
878 {
879         int r = 0;
880
881         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
882                 return -EINVAL;
883         if (cap->flags)
884                 return -EINVAL;
885         if (cap->args[0])
886                 return -EINVAL;
887
888         switch (cap->cap) {
889         case KVM_CAP_MIPS_FPU:
890                 vcpu->arch.fpu_enabled = true;
891                 break;
892         case KVM_CAP_MIPS_MSA:
893                 vcpu->arch.msa_enabled = true;
894                 break;
895         default:
896                 r = -EINVAL;
897                 break;
898         }
899
900         return r;
901 }
902
903 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
904                                unsigned long arg)
905 {
906         struct kvm_vcpu *vcpu = filp->private_data;
907         void __user *argp = (void __user *)arg;
908
909         if (ioctl == KVM_INTERRUPT) {
910                 struct kvm_mips_interrupt irq;
911
912                 if (copy_from_user(&irq, argp, sizeof(irq)))
913                         return -EFAULT;
914                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
915                           irq.irq);
916
917                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
918         }
919
920         return -ENOIOCTLCMD;
921 }
922
923 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
924                          unsigned long arg)
925 {
926         struct kvm_vcpu *vcpu = filp->private_data;
927         void __user *argp = (void __user *)arg;
928         long r;
929
930         vcpu_load(vcpu);
931
932         switch (ioctl) {
933         case KVM_SET_ONE_REG:
934         case KVM_GET_ONE_REG: {
935                 struct kvm_one_reg reg;
936
937                 r = -EFAULT;
938                 if (copy_from_user(&reg, argp, sizeof(reg)))
939                         break;
940                 if (ioctl == KVM_SET_ONE_REG)
941                         r = kvm_mips_set_reg(vcpu, &reg);
942                 else
943                         r = kvm_mips_get_reg(vcpu, &reg);
944                 break;
945         }
946         case KVM_GET_REG_LIST: {
947                 struct kvm_reg_list __user *user_list = argp;
948                 struct kvm_reg_list reg_list;
949                 unsigned n;
950
951                 r = -EFAULT;
952                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
953                         break;
954                 n = reg_list.n;
955                 reg_list.n = kvm_mips_num_regs(vcpu);
956                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
957                         break;
958                 r = -E2BIG;
959                 if (n < reg_list.n)
960                         break;
961                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
962                 break;
963         }
964         case KVM_ENABLE_CAP: {
965                 struct kvm_enable_cap cap;
966
967                 r = -EFAULT;
968                 if (copy_from_user(&cap, argp, sizeof(cap)))
969                         break;
970                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
971                 break;
972         }
973         default:
974                 r = -ENOIOCTLCMD;
975         }
976
977         vcpu_put(vcpu);
978         return r;
979 }
980
981 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
982 {
983
984 }
985
986 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
987                                         struct kvm_memory_slot *memslot)
988 {
989         /* Let implementation handle TLB/GVA invalidation */
990         kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
991 }
992
993 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
994 {
995         long r;
996
997         switch (ioctl) {
998         default:
999                 r = -ENOIOCTLCMD;
1000         }
1001
1002         return r;
1003 }
1004
1005 int kvm_arch_init(void *opaque)
1006 {
1007         if (kvm_mips_callbacks) {
1008                 kvm_err("kvm: module already exists\n");
1009                 return -EEXIST;
1010         }
1011
1012         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1013 }
1014
1015 void kvm_arch_exit(void)
1016 {
1017         kvm_mips_callbacks = NULL;
1018 }
1019
1020 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1021                                   struct kvm_sregs *sregs)
1022 {
1023         return -ENOIOCTLCMD;
1024 }
1025
1026 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1027                                   struct kvm_sregs *sregs)
1028 {
1029         return -ENOIOCTLCMD;
1030 }
1031
1032 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1033 {
1034 }
1035
1036 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1037 {
1038         return -ENOIOCTLCMD;
1039 }
1040
1041 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1042 {
1043         return -ENOIOCTLCMD;
1044 }
1045
1046 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1047 {
1048         return VM_FAULT_SIGBUS;
1049 }
1050
1051 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1052 {
1053         int r;
1054
1055         switch (ext) {
1056         case KVM_CAP_ONE_REG:
1057         case KVM_CAP_ENABLE_CAP:
1058         case KVM_CAP_READONLY_MEM:
1059         case KVM_CAP_SYNC_MMU:
1060         case KVM_CAP_IMMEDIATE_EXIT:
1061                 r = 1;
1062                 break;
1063         case KVM_CAP_NR_VCPUS:
1064                 r = num_online_cpus();
1065                 break;
1066         case KVM_CAP_MAX_VCPUS:
1067                 r = KVM_MAX_VCPUS;
1068                 break;
1069         case KVM_CAP_MAX_VCPU_ID:
1070                 r = KVM_MAX_VCPU_ID;
1071                 break;
1072         case KVM_CAP_MIPS_FPU:
1073                 /* We don't handle systems with inconsistent cpu_has_fpu */
1074                 r = !!raw_cpu_has_fpu;
1075                 break;
1076         case KVM_CAP_MIPS_MSA:
1077                 /*
1078                  * We don't support MSA vector partitioning yet:
1079                  * 1) It would require explicit support which can't be tested
1080                  *    yet due to lack of support in current hardware.
1081                  * 2) It extends the state that would need to be saved/restored
1082                  *    by e.g. QEMU for migration.
1083                  *
1084                  * When vector partitioning hardware becomes available, support
1085                  * could be added by requiring a flag when enabling
1086                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1087                  * to save/restore the appropriate extra state.
1088                  */
1089                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1090                 break;
1091         default:
1092                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1093                 break;
1094         }
1095         return r;
1096 }
1097
1098 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1099 {
1100         return kvm_mips_pending_timer(vcpu) ||
1101                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1102 }
1103
1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1105 {
1106         int i;
1107         struct mips_coproc *cop0;
1108
1109         if (!vcpu)
1110                 return -1;
1111
1112         kvm_debug("VCPU Register Dump:\n");
1113         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1114         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1115
1116         for (i = 0; i < 32; i += 4) {
1117                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1118                        vcpu->arch.gprs[i],
1119                        vcpu->arch.gprs[i + 1],
1120                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1121         }
1122         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1123         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1124
1125         cop0 = vcpu->arch.cop0;
1126         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1127                   kvm_read_c0_guest_status(cop0),
1128                   kvm_read_c0_guest_cause(cop0));
1129
1130         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1131
1132         return 0;
1133 }
1134
1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1136 {
1137         int i;
1138
1139         vcpu_load(vcpu);
1140
1141         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1142                 vcpu->arch.gprs[i] = regs->gpr[i];
1143         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1144         vcpu->arch.hi = regs->hi;
1145         vcpu->arch.lo = regs->lo;
1146         vcpu->arch.pc = regs->pc;
1147
1148         vcpu_put(vcpu);
1149         return 0;
1150 }
1151
1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1153 {
1154         int i;
1155
1156         vcpu_load(vcpu);
1157
1158         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1159                 regs->gpr[i] = vcpu->arch.gprs[i];
1160
1161         regs->hi = vcpu->arch.hi;
1162         regs->lo = vcpu->arch.lo;
1163         regs->pc = vcpu->arch.pc;
1164
1165         vcpu_put(vcpu);
1166         return 0;
1167 }
1168
1169 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1170                                   struct kvm_translation *tr)
1171 {
1172         return 0;
1173 }
1174
1175 static void kvm_mips_set_c0_status(void)
1176 {
1177         u32 status = read_c0_status();
1178
1179         if (cpu_has_dsp)
1180                 status |= (ST0_MX);
1181
1182         write_c0_status(status);
1183         ehb();
1184 }
1185
1186 /*
1187  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1188  */
1189 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1190 {
1191         u32 cause = vcpu->arch.host_cp0_cause;
1192         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1193         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1194         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1195         enum emulation_result er = EMULATE_DONE;
1196         u32 inst;
1197         int ret = RESUME_GUEST;
1198
1199         vcpu->mode = OUTSIDE_GUEST_MODE;
1200
1201         /* re-enable HTW before enabling interrupts */
1202         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1203                 htw_start();
1204
1205         /* Set a default exit reason */
1206         run->exit_reason = KVM_EXIT_UNKNOWN;
1207         run->ready_for_interrupt_injection = 1;
1208
1209         /*
1210          * Set the appropriate status bits based on host CPU features,
1211          * before we hit the scheduler
1212          */
1213         kvm_mips_set_c0_status();
1214
1215         local_irq_enable();
1216
1217         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1218                         cause, opc, run, vcpu);
1219         trace_kvm_exit(vcpu, exccode);
1220
1221         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1222                 /*
1223                  * Do a privilege check, if in UM most of these exit conditions
1224                  * end up causing an exception to be delivered to the Guest
1225                  * Kernel
1226                  */
1227                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1228                 if (er == EMULATE_PRIV_FAIL) {
1229                         goto skip_emul;
1230                 } else if (er == EMULATE_FAIL) {
1231                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1232                         ret = RESUME_HOST;
1233                         goto skip_emul;
1234                 }
1235         }
1236
1237         switch (exccode) {
1238         case EXCCODE_INT:
1239                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1240
1241                 ++vcpu->stat.int_exits;
1242
1243                 if (need_resched())
1244                         cond_resched();
1245
1246                 ret = RESUME_GUEST;
1247                 break;
1248
1249         case EXCCODE_CPU:
1250                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1251
1252                 ++vcpu->stat.cop_unusable_exits;
1253                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1254                 /* XXXKYMA: Might need to return to user space */
1255                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1256                         ret = RESUME_HOST;
1257                 break;
1258
1259         case EXCCODE_MOD:
1260                 ++vcpu->stat.tlbmod_exits;
1261                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1262                 break;
1263
1264         case EXCCODE_TLBS:
1265                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1266                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1267                           badvaddr);
1268
1269                 ++vcpu->stat.tlbmiss_st_exits;
1270                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1271                 break;
1272
1273         case EXCCODE_TLBL:
1274                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1275                           cause, opc, badvaddr);
1276
1277                 ++vcpu->stat.tlbmiss_ld_exits;
1278                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1279                 break;
1280
1281         case EXCCODE_ADES:
1282                 ++vcpu->stat.addrerr_st_exits;
1283                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1284                 break;
1285
1286         case EXCCODE_ADEL:
1287                 ++vcpu->stat.addrerr_ld_exits;
1288                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1289                 break;
1290
1291         case EXCCODE_SYS:
1292                 ++vcpu->stat.syscall_exits;
1293                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1294                 break;
1295
1296         case EXCCODE_RI:
1297                 ++vcpu->stat.resvd_inst_exits;
1298                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1299                 break;
1300
1301         case EXCCODE_BP:
1302                 ++vcpu->stat.break_inst_exits;
1303                 ret = kvm_mips_callbacks->handle_break(vcpu);
1304                 break;
1305
1306         case EXCCODE_TR:
1307                 ++vcpu->stat.trap_inst_exits;
1308                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1309                 break;
1310
1311         case EXCCODE_MSAFPE:
1312                 ++vcpu->stat.msa_fpe_exits;
1313                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1314                 break;
1315
1316         case EXCCODE_FPE:
1317                 ++vcpu->stat.fpe_exits;
1318                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1319                 break;
1320
1321         case EXCCODE_MSADIS:
1322                 ++vcpu->stat.msa_disabled_exits;
1323                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1324                 break;
1325
1326         case EXCCODE_GE:
1327                 /* defer exit accounting to handler */
1328                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1329                 break;
1330
1331         default:
1332                 if (cause & CAUSEF_BD)
1333                         opc += 1;
1334                 inst = 0;
1335                 kvm_get_badinstr(opc, vcpu, &inst);
1336                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1337                         exccode, opc, inst, badvaddr,
1338                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1339                 kvm_arch_vcpu_dump_regs(vcpu);
1340                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1341                 ret = RESUME_HOST;
1342                 break;
1343
1344         }
1345
1346 skip_emul:
1347         local_irq_disable();
1348
1349         if (ret == RESUME_GUEST)
1350                 kvm_vz_acquire_htimer(vcpu);
1351
1352         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1353                 kvm_mips_deliver_interrupts(vcpu, cause);
1354
1355         if (!(ret & RESUME_HOST)) {
1356                 /* Only check for signals if not already exiting to userspace */
1357                 if (signal_pending(current)) {
1358                         run->exit_reason = KVM_EXIT_INTR;
1359                         ret = (-EINTR << 2) | RESUME_HOST;
1360                         ++vcpu->stat.signal_exits;
1361                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1362                 }
1363         }
1364
1365         if (ret == RESUME_GUEST) {
1366                 trace_kvm_reenter(vcpu);
1367
1368                 /*
1369                  * Make sure the read of VCPU requests in vcpu_reenter()
1370                  * callback is not reordered ahead of the write to vcpu->mode,
1371                  * or we could miss a TLB flush request while the requester sees
1372                  * the VCPU as outside of guest mode and not needing an IPI.
1373                  */
1374                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1375
1376                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1377
1378                 /*
1379                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1380                  * is live), restore FCR31 / MSACSR.
1381                  *
1382                  * This should be before returning to the guest exception
1383                  * vector, as it may well cause an [MSA] FP exception if there
1384                  * are pending exception bits unmasked. (see
1385                  * kvm_mips_csr_die_notifier() for how that is handled).
1386                  */
1387                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1388                     read_c0_status() & ST0_CU1)
1389                         __kvm_restore_fcsr(&vcpu->arch);
1390
1391                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1392                     read_c0_config5() & MIPS_CONF5_MSAEN)
1393                         __kvm_restore_msacsr(&vcpu->arch);
1394         }
1395
1396         /* Disable HTW before returning to guest or host */
1397         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1398                 htw_stop();
1399
1400         return ret;
1401 }
1402
1403 /* Enable FPU for guest and restore context */
1404 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1405 {
1406         struct mips_coproc *cop0 = vcpu->arch.cop0;
1407         unsigned int sr, cfg5;
1408
1409         preempt_disable();
1410
1411         sr = kvm_read_c0_guest_status(cop0);
1412
1413         /*
1414          * If MSA state is already live, it is undefined how it interacts with
1415          * FR=0 FPU state, and we don't want to hit reserved instruction
1416          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1417          * play it safe and save it first.
1418          *
1419          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1420          * get called when guest CU1 is set, however we can't trust the guest
1421          * not to clobber the status register directly via the commpage.
1422          */
1423         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1424             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1425                 kvm_lose_fpu(vcpu);
1426
1427         /*
1428          * Enable FPU for guest
1429          * We set FR and FRE according to guest context
1430          */
1431         change_c0_status(ST0_CU1 | ST0_FR, sr);
1432         if (cpu_has_fre) {
1433                 cfg5 = kvm_read_c0_guest_config5(cop0);
1434                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1435         }
1436         enable_fpu_hazard();
1437
1438         /* If guest FPU state not active, restore it now */
1439         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1440                 __kvm_restore_fpu(&vcpu->arch);
1441                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1442                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1443         } else {
1444                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1445         }
1446
1447         preempt_enable();
1448 }
1449
1450 #ifdef CONFIG_CPU_HAS_MSA
1451 /* Enable MSA for guest and restore context */
1452 void kvm_own_msa(struct kvm_vcpu *vcpu)
1453 {
1454         struct mips_coproc *cop0 = vcpu->arch.cop0;
1455         unsigned int sr, cfg5;
1456
1457         preempt_disable();
1458
1459         /*
1460          * Enable FPU if enabled in guest, since we're restoring FPU context
1461          * anyway. We set FR and FRE according to guest context.
1462          */
1463         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1464                 sr = kvm_read_c0_guest_status(cop0);
1465
1466                 /*
1467                  * If FR=0 FPU state is already live, it is undefined how it
1468                  * interacts with MSA state, so play it safe and save it first.
1469                  */
1470                 if (!(sr & ST0_FR) &&
1471                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1472                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1473                         kvm_lose_fpu(vcpu);
1474
1475                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1476                 if (sr & ST0_CU1 && cpu_has_fre) {
1477                         cfg5 = kvm_read_c0_guest_config5(cop0);
1478                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1479                 }
1480         }
1481
1482         /* Enable MSA for guest */
1483         set_c0_config5(MIPS_CONF5_MSAEN);
1484         enable_fpu_hazard();
1485
1486         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1487         case KVM_MIPS_AUX_FPU:
1488                 /*
1489                  * Guest FPU state already loaded, only restore upper MSA state
1490                  */
1491                 __kvm_restore_msa_upper(&vcpu->arch);
1492                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1493                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1494                 break;
1495         case 0:
1496                 /* Neither FPU or MSA already active, restore full MSA state */
1497                 __kvm_restore_msa(&vcpu->arch);
1498                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1499                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1500                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1501                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1502                               KVM_TRACE_AUX_FPU_MSA);
1503                 break;
1504         default:
1505                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1506                 break;
1507         }
1508
1509         preempt_enable();
1510 }
1511 #endif
1512
1513 /* Drop FPU & MSA without saving it */
1514 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1515 {
1516         preempt_disable();
1517         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1518                 disable_msa();
1519                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1520                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1521         }
1522         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1523                 clear_c0_status(ST0_CU1 | ST0_FR);
1524                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1525                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1526         }
1527         preempt_enable();
1528 }
1529
1530 /* Save and disable FPU & MSA */
1531 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1532 {
1533         /*
1534          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1535          * is disabled in guest context (software), but the register state in
1536          * the hardware may still be in use.
1537          * This is why we explicitly re-enable the hardware before saving.
1538          */
1539
1540         preempt_disable();
1541         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1542                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1543                         set_c0_config5(MIPS_CONF5_MSAEN);
1544                         enable_fpu_hazard();
1545                 }
1546
1547                 __kvm_save_msa(&vcpu->arch);
1548                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1549
1550                 /* Disable MSA & FPU */
1551                 disable_msa();
1552                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1553                         clear_c0_status(ST0_CU1 | ST0_FR);
1554                         disable_fpu_hazard();
1555                 }
1556                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1557         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1558                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1559                         set_c0_status(ST0_CU1);
1560                         enable_fpu_hazard();
1561                 }
1562
1563                 __kvm_save_fpu(&vcpu->arch);
1564                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1565                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1566
1567                 /* Disable FPU */
1568                 clear_c0_status(ST0_CU1 | ST0_FR);
1569                 disable_fpu_hazard();
1570         }
1571         preempt_enable();
1572 }
1573
1574 /*
1575  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1576  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1577  * exception if cause bits are set in the value being written.
1578  */
1579 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1580                                    unsigned long cmd, void *ptr)
1581 {
1582         struct die_args *args = (struct die_args *)ptr;
1583         struct pt_regs *regs = args->regs;
1584         unsigned long pc;
1585
1586         /* Only interested in FPE and MSAFPE */
1587         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1588                 return NOTIFY_DONE;
1589
1590         /* Return immediately if guest context isn't active */
1591         if (!(current->flags & PF_VCPU))
1592                 return NOTIFY_DONE;
1593
1594         /* Should never get here from user mode */
1595         BUG_ON(user_mode(regs));
1596
1597         pc = instruction_pointer(regs);
1598         switch (cmd) {
1599         case DIE_FP:
1600                 /* match 2nd instruction in __kvm_restore_fcsr */
1601                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1602                         return NOTIFY_DONE;
1603                 break;
1604         case DIE_MSAFP:
1605                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1606                 if (!cpu_has_msa ||
1607                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1608                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1609                         return NOTIFY_DONE;
1610                 break;
1611         }
1612
1613         /* Move PC forward a little and continue executing */
1614         instruction_pointer(regs) += 4;
1615
1616         return NOTIFY_STOP;
1617 }
1618
1619 static struct notifier_block kvm_mips_csr_die_notifier = {
1620         .notifier_call = kvm_mips_csr_die_notify,
1621 };
1622
1623 static int __init kvm_mips_init(void)
1624 {
1625         int ret;
1626
1627         if (cpu_has_mmid) {
1628                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1629                 return -EOPNOTSUPP;
1630         }
1631
1632         ret = kvm_mips_entry_setup();
1633         if (ret)
1634                 return ret;
1635
1636         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1637
1638         if (ret)
1639                 return ret;
1640
1641         register_die_notifier(&kvm_mips_csr_die_notifier);
1642
1643         return 0;
1644 }
1645
1646 static void __exit kvm_mips_exit(void)
1647 {
1648         kvm_exit();
1649
1650         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1651 }
1652
1653 module_init(kvm_mips_init);
1654 module_exit(kvm_mips_exit);
1655
1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);