Merge tag 'for-linus-5.6-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubca...
[linux-2.6-microblaze.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 int kvm_arch_check_processor_compat(void)
127 {
128         return 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134 #ifdef CONFIG_KVM_MIPS_VZ
135         case KVM_VM_MIPS_VZ:
136 #else
137         case KVM_VM_MIPS_TE:
138 #endif
139                 break;
140         default:
141                 /* Unsupported KVM type */
142                 return -EINVAL;
143         };
144
145         /* Allocate page table to map GPA -> RPA */
146         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147         if (!kvm->arch.gpa_mm.pgd)
148                 return -ENOMEM;
149
150         return 0;
151 }
152
153 void kvm_mips_free_vcpus(struct kvm *kvm)
154 {
155         unsigned int i;
156         struct kvm_vcpu *vcpu;
157
158         kvm_for_each_vcpu(i, vcpu, kvm) {
159                 kvm_vcpu_destroy(vcpu);
160         }
161
162         mutex_lock(&kvm->lock);
163
164         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
165                 kvm->vcpus[i] = NULL;
166
167         atomic_set(&kvm->online_vcpus, 0);
168
169         mutex_unlock(&kvm->lock);
170 }
171
172 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
173 {
174         /* It should always be safe to remove after flushing the whole range */
175         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
176         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
177 }
178
179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181         kvm_mips_free_vcpus(kvm);
182         kvm_mips_free_gpa_pt(kvm);
183 }
184
185 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
186                         unsigned long arg)
187 {
188         return -ENOIOCTLCMD;
189 }
190
191 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
192                             unsigned long npages)
193 {
194         return 0;
195 }
196
197 void kvm_arch_flush_shadow_all(struct kvm *kvm)
198 {
199         /* Flush whole GPA */
200         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
201
202         /* Let implementation do the rest */
203         kvm_mips_callbacks->flush_shadow_all(kvm);
204 }
205
206 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
207                                    struct kvm_memory_slot *slot)
208 {
209         /*
210          * The slot has been made invalid (ready for moving or deletion), so we
211          * need to ensure that it can no longer be accessed by any guest VCPUs.
212          */
213
214         spin_lock(&kvm->mmu_lock);
215         /* Flush slot from GPA */
216         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
217                               slot->base_gfn + slot->npages - 1);
218         /* Let implementation do the rest */
219         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
220         spin_unlock(&kvm->mmu_lock);
221 }
222
223 int kvm_arch_prepare_memory_region(struct kvm *kvm,
224                                    struct kvm_memory_slot *memslot,
225                                    const struct kvm_userspace_memory_region *mem,
226                                    enum kvm_mr_change change)
227 {
228         return 0;
229 }
230
231 void kvm_arch_commit_memory_region(struct kvm *kvm,
232                                    const struct kvm_userspace_memory_region *mem,
233                                    const struct kvm_memory_slot *old,
234                                    const struct kvm_memory_slot *new,
235                                    enum kvm_mr_change change)
236 {
237         int needs_flush;
238
239         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240                   __func__, kvm, mem->slot, mem->guest_phys_addr,
241                   mem->memory_size, mem->userspace_addr);
242
243         /*
244          * If dirty page logging is enabled, write protect all pages in the slot
245          * ready for dirty logging.
246          *
247          * There is no need to do this in any of the following cases:
248          * CREATE:      No dirty mappings will already exist.
249          * MOVE/DELETE: The old mappings will already have been cleaned up by
250          *              kvm_arch_flush_shadow_memslot()
251          */
252         if (change == KVM_MR_FLAGS_ONLY &&
253             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
254              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
255                 spin_lock(&kvm->mmu_lock);
256                 /* Write protect GPA page table entries */
257                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
258                                         new->base_gfn + new->npages - 1);
259                 /* Let implementation do the rest */
260                 if (needs_flush)
261                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
262                 spin_unlock(&kvm->mmu_lock);
263         }
264 }
265
266 static inline void dump_handler(const char *symbol, void *start, void *end)
267 {
268         u32 *p;
269
270         pr_debug("LEAF(%s)\n", symbol);
271
272         pr_debug("\t.set push\n");
273         pr_debug("\t.set noreorder\n");
274
275         for (p = start; p < (u32 *)end; ++p)
276                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
277
278         pr_debug("\t.set\tpop\n");
279
280         pr_debug("\tEND(%s)\n", symbol);
281 }
282
283 /* low level hrtimer wake routine */
284 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
285 {
286         struct kvm_vcpu *vcpu;
287
288         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
289
290         kvm_mips_callbacks->queue_timer_int(vcpu);
291
292         vcpu->arch.wait = 0;
293         if (swq_has_sleeper(&vcpu->wq))
294                 swake_up_one(&vcpu->wq);
295
296         return kvm_mips_count_timeout(vcpu);
297 }
298
299 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
300 {
301         return 0;
302 }
303
304 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
305 {
306         int err, size;
307         void *gebase, *p, *handler, *refill_start, *refill_end;
308         int i;
309
310         kvm_debug("kvm @ %p: create cpu %d at %p\n",
311                   vcpu->kvm, vcpu->vcpu_id, vcpu);
312
313         err = kvm_mips_callbacks->vcpu_init(vcpu);
314         if (err)
315                 return err;
316
317         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
318                      HRTIMER_MODE_REL);
319         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
320
321         /*
322          * Allocate space for host mode exception handlers that handle
323          * guest mode exits
324          */
325         if (cpu_has_veic || cpu_has_vint)
326                 size = 0x200 + VECTORSPACING * 64;
327         else
328                 size = 0x4000;
329
330         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
331
332         if (!gebase) {
333                 err = -ENOMEM;
334                 goto out_uninit_vcpu;
335         }
336         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
337                   ALIGN(size, PAGE_SIZE), gebase);
338
339         /*
340          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
341          * limits us to the low 512MB of physical address space. If the memory
342          * we allocate is out of range, just give up now.
343          */
344         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
345                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
346                         gebase);
347                 err = -ENOMEM;
348                 goto out_free_gebase;
349         }
350
351         /* Save new ebase */
352         vcpu->arch.guest_ebase = gebase;
353
354         /* Build guest exception vectors dynamically in unmapped memory */
355         handler = gebase + 0x2000;
356
357         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
358         refill_start = gebase;
359         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
360                 refill_start += 0x080;
361         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
362
363         /* General Exception Entry point */
364         kvm_mips_build_exception(gebase + 0x180, handler);
365
366         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
367         for (i = 0; i < 8; i++) {
368                 kvm_debug("L1 Vectored handler @ %p\n",
369                           gebase + 0x200 + (i * VECTORSPACING));
370                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
371                                          handler);
372         }
373
374         /* General exit handler */
375         p = handler;
376         p = kvm_mips_build_exit(p);
377
378         /* Guest entry routine */
379         vcpu->arch.vcpu_run = p;
380         p = kvm_mips_build_vcpu_run(p);
381
382         /* Dump the generated code */
383         pr_debug("#include <asm/asm.h>\n");
384         pr_debug("#include <asm/regdef.h>\n");
385         pr_debug("\n");
386         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
387         dump_handler("kvm_tlb_refill", refill_start, refill_end);
388         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
389         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
390
391         /* Invalidate the icache for these ranges */
392         flush_icache_range((unsigned long)gebase,
393                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
394
395         /*
396          * Allocate comm page for guest kernel, a TLB will be reserved for
397          * mapping GVA @ 0xFFFF8000 to this page
398          */
399         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
400
401         if (!vcpu->arch.kseg0_commpage) {
402                 err = -ENOMEM;
403                 goto out_free_gebase;
404         }
405
406         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
407         kvm_mips_commpage_init(vcpu);
408
409         /* Init */
410         vcpu->arch.last_sched_cpu = -1;
411         vcpu->arch.last_exec_cpu = -1;
412
413         /* Initial guest state */
414         err = kvm_mips_callbacks->vcpu_setup(vcpu);
415         if (err)
416                 goto out_free_commpage;
417
418         return 0;
419
420 out_free_commpage:
421         kfree(vcpu->arch.kseg0_commpage);
422 out_free_gebase:
423         kfree(gebase);
424 out_uninit_vcpu:
425         kvm_mips_callbacks->vcpu_uninit(vcpu);
426         return err;
427 }
428
429 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
430 {
431         hrtimer_cancel(&vcpu->arch.comparecount_timer);
432
433         kvm_mips_dump_stats(vcpu);
434
435         kvm_mmu_free_memory_caches(vcpu);
436         kfree(vcpu->arch.guest_ebase);
437         kfree(vcpu->arch.kseg0_commpage);
438
439         kvm_mips_callbacks->vcpu_uninit(vcpu);
440 }
441
442 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
443                                         struct kvm_guest_debug *dbg)
444 {
445         return -ENOIOCTLCMD;
446 }
447
448 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
449 {
450         int r = -EINTR;
451
452         vcpu_load(vcpu);
453
454         kvm_sigset_activate(vcpu);
455
456         if (vcpu->mmio_needed) {
457                 if (!vcpu->mmio_is_write)
458                         kvm_mips_complete_mmio_load(vcpu, run);
459                 vcpu->mmio_needed = 0;
460         }
461
462         if (run->immediate_exit)
463                 goto out;
464
465         lose_fpu(1);
466
467         local_irq_disable();
468         guest_enter_irqoff();
469         trace_kvm_enter(vcpu);
470
471         /*
472          * Make sure the read of VCPU requests in vcpu_run() callback is not
473          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
474          * flush request while the requester sees the VCPU as outside of guest
475          * mode and not needing an IPI.
476          */
477         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
478
479         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
480
481         trace_kvm_out(vcpu);
482         guest_exit_irqoff();
483         local_irq_enable();
484
485 out:
486         kvm_sigset_deactivate(vcpu);
487
488         vcpu_put(vcpu);
489         return r;
490 }
491
492 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
493                              struct kvm_mips_interrupt *irq)
494 {
495         int intr = (int)irq->irq;
496         struct kvm_vcpu *dvcpu = NULL;
497
498         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
499                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
500                           (int)intr);
501
502         if (irq->cpu == -1)
503                 dvcpu = vcpu;
504         else
505                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
506
507         if (intr == 2 || intr == 3 || intr == 4) {
508                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
509
510         } else if (intr == -2 || intr == -3 || intr == -4) {
511                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
512         } else {
513                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
514                         irq->cpu, irq->irq);
515                 return -EINVAL;
516         }
517
518         dvcpu->arch.wait = 0;
519
520         if (swq_has_sleeper(&dvcpu->wq))
521                 swake_up_one(&dvcpu->wq);
522
523         return 0;
524 }
525
526 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
527                                     struct kvm_mp_state *mp_state)
528 {
529         return -ENOIOCTLCMD;
530 }
531
532 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
533                                     struct kvm_mp_state *mp_state)
534 {
535         return -ENOIOCTLCMD;
536 }
537
538 static u64 kvm_mips_get_one_regs[] = {
539         KVM_REG_MIPS_R0,
540         KVM_REG_MIPS_R1,
541         KVM_REG_MIPS_R2,
542         KVM_REG_MIPS_R3,
543         KVM_REG_MIPS_R4,
544         KVM_REG_MIPS_R5,
545         KVM_REG_MIPS_R6,
546         KVM_REG_MIPS_R7,
547         KVM_REG_MIPS_R8,
548         KVM_REG_MIPS_R9,
549         KVM_REG_MIPS_R10,
550         KVM_REG_MIPS_R11,
551         KVM_REG_MIPS_R12,
552         KVM_REG_MIPS_R13,
553         KVM_REG_MIPS_R14,
554         KVM_REG_MIPS_R15,
555         KVM_REG_MIPS_R16,
556         KVM_REG_MIPS_R17,
557         KVM_REG_MIPS_R18,
558         KVM_REG_MIPS_R19,
559         KVM_REG_MIPS_R20,
560         KVM_REG_MIPS_R21,
561         KVM_REG_MIPS_R22,
562         KVM_REG_MIPS_R23,
563         KVM_REG_MIPS_R24,
564         KVM_REG_MIPS_R25,
565         KVM_REG_MIPS_R26,
566         KVM_REG_MIPS_R27,
567         KVM_REG_MIPS_R28,
568         KVM_REG_MIPS_R29,
569         KVM_REG_MIPS_R30,
570         KVM_REG_MIPS_R31,
571
572 #ifndef CONFIG_CPU_MIPSR6
573         KVM_REG_MIPS_HI,
574         KVM_REG_MIPS_LO,
575 #endif
576         KVM_REG_MIPS_PC,
577 };
578
579 static u64 kvm_mips_get_one_regs_fpu[] = {
580         KVM_REG_MIPS_FCR_IR,
581         KVM_REG_MIPS_FCR_CSR,
582 };
583
584 static u64 kvm_mips_get_one_regs_msa[] = {
585         KVM_REG_MIPS_MSA_IR,
586         KVM_REG_MIPS_MSA_CSR,
587 };
588
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
590 {
591         unsigned long ret;
592
593         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
594         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
595                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
596                 /* odd doubles */
597                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
598                         ret += 16;
599         }
600         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
601                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
602         ret += kvm_mips_callbacks->num_regs(vcpu);
603
604         return ret;
605 }
606
607 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
608 {
609         u64 index;
610         unsigned int i;
611
612         if (copy_to_user(indices, kvm_mips_get_one_regs,
613                          sizeof(kvm_mips_get_one_regs)))
614                 return -EFAULT;
615         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
616
617         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
618                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
619                                  sizeof(kvm_mips_get_one_regs_fpu)))
620                         return -EFAULT;
621                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
622
623                 for (i = 0; i < 32; ++i) {
624                         index = KVM_REG_MIPS_FPR_32(i);
625                         if (copy_to_user(indices, &index, sizeof(index)))
626                                 return -EFAULT;
627                         ++indices;
628
629                         /* skip odd doubles if no F64 */
630                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
631                                 continue;
632
633                         index = KVM_REG_MIPS_FPR_64(i);
634                         if (copy_to_user(indices, &index, sizeof(index)))
635                                 return -EFAULT;
636                         ++indices;
637                 }
638         }
639
640         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
641                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
642                                  sizeof(kvm_mips_get_one_regs_msa)))
643                         return -EFAULT;
644                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
645
646                 for (i = 0; i < 32; ++i) {
647                         index = KVM_REG_MIPS_VEC_128(i);
648                         if (copy_to_user(indices, &index, sizeof(index)))
649                                 return -EFAULT;
650                         ++indices;
651                 }
652         }
653
654         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
655 }
656
657 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
658                             const struct kvm_one_reg *reg)
659 {
660         struct mips_coproc *cop0 = vcpu->arch.cop0;
661         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
662         int ret;
663         s64 v;
664         s64 vs[2];
665         unsigned int idx;
666
667         switch (reg->id) {
668         /* General purpose registers */
669         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
670                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
671                 break;
672 #ifndef CONFIG_CPU_MIPSR6
673         case KVM_REG_MIPS_HI:
674                 v = (long)vcpu->arch.hi;
675                 break;
676         case KVM_REG_MIPS_LO:
677                 v = (long)vcpu->arch.lo;
678                 break;
679 #endif
680         case KVM_REG_MIPS_PC:
681                 v = (long)vcpu->arch.pc;
682                 break;
683
684         /* Floating point registers */
685         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
686                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
687                         return -EINVAL;
688                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
689                 /* Odd singles in top of even double when FR=0 */
690                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
691                         v = get_fpr32(&fpu->fpr[idx], 0);
692                 else
693                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
694                 break;
695         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
696                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
697                         return -EINVAL;
698                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
699                 /* Can't access odd doubles in FR=0 mode */
700                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
701                         return -EINVAL;
702                 v = get_fpr64(&fpu->fpr[idx], 0);
703                 break;
704         case KVM_REG_MIPS_FCR_IR:
705                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
706                         return -EINVAL;
707                 v = boot_cpu_data.fpu_id;
708                 break;
709         case KVM_REG_MIPS_FCR_CSR:
710                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
711                         return -EINVAL;
712                 v = fpu->fcr31;
713                 break;
714
715         /* MIPS SIMD Architecture (MSA) registers */
716         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
717                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
718                         return -EINVAL;
719                 /* Can't access MSA registers in FR=0 mode */
720                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
721                         return -EINVAL;
722                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
723 #ifdef CONFIG_CPU_LITTLE_ENDIAN
724                 /* least significant byte first */
725                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
726                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
727 #else
728                 /* most significant byte first */
729                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
730                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
731 #endif
732                 break;
733         case KVM_REG_MIPS_MSA_IR:
734                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
735                         return -EINVAL;
736                 v = boot_cpu_data.msa_id;
737                 break;
738         case KVM_REG_MIPS_MSA_CSR:
739                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
740                         return -EINVAL;
741                 v = fpu->msacsr;
742                 break;
743
744         /* registers to be handled specially */
745         default:
746                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
747                 if (ret)
748                         return ret;
749                 break;
750         }
751         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
752                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
753
754                 return put_user(v, uaddr64);
755         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
756                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
757                 u32 v32 = (u32)v;
758
759                 return put_user(v32, uaddr32);
760         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
761                 void __user *uaddr = (void __user *)(long)reg->addr;
762
763                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
764         } else {
765                 return -EINVAL;
766         }
767 }
768
769 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
770                             const struct kvm_one_reg *reg)
771 {
772         struct mips_coproc *cop0 = vcpu->arch.cop0;
773         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
774         s64 v;
775         s64 vs[2];
776         unsigned int idx;
777
778         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
779                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
780
781                 if (get_user(v, uaddr64) != 0)
782                         return -EFAULT;
783         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
784                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
785                 s32 v32;
786
787                 if (get_user(v32, uaddr32) != 0)
788                         return -EFAULT;
789                 v = (s64)v32;
790         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
791                 void __user *uaddr = (void __user *)(long)reg->addr;
792
793                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
794         } else {
795                 return -EINVAL;
796         }
797
798         switch (reg->id) {
799         /* General purpose registers */
800         case KVM_REG_MIPS_R0:
801                 /* Silently ignore requests to set $0 */
802                 break;
803         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
804                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
805                 break;
806 #ifndef CONFIG_CPU_MIPSR6
807         case KVM_REG_MIPS_HI:
808                 vcpu->arch.hi = v;
809                 break;
810         case KVM_REG_MIPS_LO:
811                 vcpu->arch.lo = v;
812                 break;
813 #endif
814         case KVM_REG_MIPS_PC:
815                 vcpu->arch.pc = v;
816                 break;
817
818         /* Floating point registers */
819         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
820                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
821                         return -EINVAL;
822                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
823                 /* Odd singles in top of even double when FR=0 */
824                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
825                         set_fpr32(&fpu->fpr[idx], 0, v);
826                 else
827                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
828                 break;
829         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
830                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
831                         return -EINVAL;
832                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
833                 /* Can't access odd doubles in FR=0 mode */
834                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
835                         return -EINVAL;
836                 set_fpr64(&fpu->fpr[idx], 0, v);
837                 break;
838         case KVM_REG_MIPS_FCR_IR:
839                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
840                         return -EINVAL;
841                 /* Read-only */
842                 break;
843         case KVM_REG_MIPS_FCR_CSR:
844                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
845                         return -EINVAL;
846                 fpu->fcr31 = v;
847                 break;
848
849         /* MIPS SIMD Architecture (MSA) registers */
850         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
851                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
852                         return -EINVAL;
853                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
854 #ifdef CONFIG_CPU_LITTLE_ENDIAN
855                 /* least significant byte first */
856                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
857                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
858 #else
859                 /* most significant byte first */
860                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
861                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
862 #endif
863                 break;
864         case KVM_REG_MIPS_MSA_IR:
865                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
866                         return -EINVAL;
867                 /* Read-only */
868                 break;
869         case KVM_REG_MIPS_MSA_CSR:
870                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
871                         return -EINVAL;
872                 fpu->msacsr = v;
873                 break;
874
875         /* registers to be handled specially */
876         default:
877                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
878         }
879         return 0;
880 }
881
882 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
883                                      struct kvm_enable_cap *cap)
884 {
885         int r = 0;
886
887         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
888                 return -EINVAL;
889         if (cap->flags)
890                 return -EINVAL;
891         if (cap->args[0])
892                 return -EINVAL;
893
894         switch (cap->cap) {
895         case KVM_CAP_MIPS_FPU:
896                 vcpu->arch.fpu_enabled = true;
897                 break;
898         case KVM_CAP_MIPS_MSA:
899                 vcpu->arch.msa_enabled = true;
900                 break;
901         default:
902                 r = -EINVAL;
903                 break;
904         }
905
906         return r;
907 }
908
909 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
910                                unsigned long arg)
911 {
912         struct kvm_vcpu *vcpu = filp->private_data;
913         void __user *argp = (void __user *)arg;
914
915         if (ioctl == KVM_INTERRUPT) {
916                 struct kvm_mips_interrupt irq;
917
918                 if (copy_from_user(&irq, argp, sizeof(irq)))
919                         return -EFAULT;
920                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
921                           irq.irq);
922
923                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
924         }
925
926         return -ENOIOCTLCMD;
927 }
928
929 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
930                          unsigned long arg)
931 {
932         struct kvm_vcpu *vcpu = filp->private_data;
933         void __user *argp = (void __user *)arg;
934         long r;
935
936         vcpu_load(vcpu);
937
938         switch (ioctl) {
939         case KVM_SET_ONE_REG:
940         case KVM_GET_ONE_REG: {
941                 struct kvm_one_reg reg;
942
943                 r = -EFAULT;
944                 if (copy_from_user(&reg, argp, sizeof(reg)))
945                         break;
946                 if (ioctl == KVM_SET_ONE_REG)
947                         r = kvm_mips_set_reg(vcpu, &reg);
948                 else
949                         r = kvm_mips_get_reg(vcpu, &reg);
950                 break;
951         }
952         case KVM_GET_REG_LIST: {
953                 struct kvm_reg_list __user *user_list = argp;
954                 struct kvm_reg_list reg_list;
955                 unsigned n;
956
957                 r = -EFAULT;
958                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
959                         break;
960                 n = reg_list.n;
961                 reg_list.n = kvm_mips_num_regs(vcpu);
962                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
963                         break;
964                 r = -E2BIG;
965                 if (n < reg_list.n)
966                         break;
967                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
968                 break;
969         }
970         case KVM_ENABLE_CAP: {
971                 struct kvm_enable_cap cap;
972
973                 r = -EFAULT;
974                 if (copy_from_user(&cap, argp, sizeof(cap)))
975                         break;
976                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
977                 break;
978         }
979         default:
980                 r = -ENOIOCTLCMD;
981         }
982
983         vcpu_put(vcpu);
984         return r;
985 }
986
987 /**
988  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
989  * @kvm: kvm instance
990  * @log: slot id and address to which we copy the log
991  *
992  * Steps 1-4 below provide general overview of dirty page logging. See
993  * kvm_get_dirty_log_protect() function description for additional details.
994  *
995  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
996  * always flush the TLB (step 4) even if previous step failed  and the dirty
997  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
998  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
999  * writes will be marked dirty for next log read.
1000  *
1001  *   1. Take a snapshot of the bit and clear it if needed.
1002  *   2. Write protect the corresponding page.
1003  *   3. Copy the snapshot to the userspace.
1004  *   4. Flush TLB's if needed.
1005  */
1006 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1007 {
1008         struct kvm_memslots *slots;
1009         struct kvm_memory_slot *memslot;
1010         bool flush = false;
1011         int r;
1012
1013         mutex_lock(&kvm->slots_lock);
1014
1015         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1016
1017         if (flush) {
1018                 slots = kvm_memslots(kvm);
1019                 memslot = id_to_memslot(slots, log->slot);
1020
1021                 /* Let implementation handle TLB/GVA invalidation */
1022                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1023         }
1024
1025         mutex_unlock(&kvm->slots_lock);
1026         return r;
1027 }
1028
1029 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1030 {
1031         struct kvm_memslots *slots;
1032         struct kvm_memory_slot *memslot;
1033         bool flush = false;
1034         int r;
1035
1036         mutex_lock(&kvm->slots_lock);
1037
1038         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1039
1040         if (flush) {
1041                 slots = kvm_memslots(kvm);
1042                 memslot = id_to_memslot(slots, log->slot);
1043
1044                 /* Let implementation handle TLB/GVA invalidation */
1045                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1046         }
1047
1048         mutex_unlock(&kvm->slots_lock);
1049         return r;
1050 }
1051
1052 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1053 {
1054         long r;
1055
1056         switch (ioctl) {
1057         default:
1058                 r = -ENOIOCTLCMD;
1059         }
1060
1061         return r;
1062 }
1063
1064 int kvm_arch_init(void *opaque)
1065 {
1066         if (kvm_mips_callbacks) {
1067                 kvm_err("kvm: module already exists\n");
1068                 return -EEXIST;
1069         }
1070
1071         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1072 }
1073
1074 void kvm_arch_exit(void)
1075 {
1076         kvm_mips_callbacks = NULL;
1077 }
1078
1079 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1080                                   struct kvm_sregs *sregs)
1081 {
1082         return -ENOIOCTLCMD;
1083 }
1084
1085 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1086                                   struct kvm_sregs *sregs)
1087 {
1088         return -ENOIOCTLCMD;
1089 }
1090
1091 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1092 {
1093 }
1094
1095 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1096 {
1097         return -ENOIOCTLCMD;
1098 }
1099
1100 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1101 {
1102         return -ENOIOCTLCMD;
1103 }
1104
1105 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1106 {
1107         return VM_FAULT_SIGBUS;
1108 }
1109
1110 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1111 {
1112         int r;
1113
1114         switch (ext) {
1115         case KVM_CAP_ONE_REG:
1116         case KVM_CAP_ENABLE_CAP:
1117         case KVM_CAP_READONLY_MEM:
1118         case KVM_CAP_SYNC_MMU:
1119         case KVM_CAP_IMMEDIATE_EXIT:
1120                 r = 1;
1121                 break;
1122         case KVM_CAP_NR_VCPUS:
1123                 r = num_online_cpus();
1124                 break;
1125         case KVM_CAP_MAX_VCPUS:
1126                 r = KVM_MAX_VCPUS;
1127                 break;
1128         case KVM_CAP_MAX_VCPU_ID:
1129                 r = KVM_MAX_VCPU_ID;
1130                 break;
1131         case KVM_CAP_MIPS_FPU:
1132                 /* We don't handle systems with inconsistent cpu_has_fpu */
1133                 r = !!raw_cpu_has_fpu;
1134                 break;
1135         case KVM_CAP_MIPS_MSA:
1136                 /*
1137                  * We don't support MSA vector partitioning yet:
1138                  * 1) It would require explicit support which can't be tested
1139                  *    yet due to lack of support in current hardware.
1140                  * 2) It extends the state that would need to be saved/restored
1141                  *    by e.g. QEMU for migration.
1142                  *
1143                  * When vector partitioning hardware becomes available, support
1144                  * could be added by requiring a flag when enabling
1145                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1146                  * to save/restore the appropriate extra state.
1147                  */
1148                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1149                 break;
1150         default:
1151                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1152                 break;
1153         }
1154         return r;
1155 }
1156
1157 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1158 {
1159         return kvm_mips_pending_timer(vcpu) ||
1160                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1161 }
1162
1163 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1164 {
1165         int i;
1166         struct mips_coproc *cop0;
1167
1168         if (!vcpu)
1169                 return -1;
1170
1171         kvm_debug("VCPU Register Dump:\n");
1172         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1173         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1174
1175         for (i = 0; i < 32; i += 4) {
1176                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1177                        vcpu->arch.gprs[i],
1178                        vcpu->arch.gprs[i + 1],
1179                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1180         }
1181         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1182         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1183
1184         cop0 = vcpu->arch.cop0;
1185         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1186                   kvm_read_c0_guest_status(cop0),
1187                   kvm_read_c0_guest_cause(cop0));
1188
1189         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1190
1191         return 0;
1192 }
1193
1194 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1195 {
1196         int i;
1197
1198         vcpu_load(vcpu);
1199
1200         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1201                 vcpu->arch.gprs[i] = regs->gpr[i];
1202         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1203         vcpu->arch.hi = regs->hi;
1204         vcpu->arch.lo = regs->lo;
1205         vcpu->arch.pc = regs->pc;
1206
1207         vcpu_put(vcpu);
1208         return 0;
1209 }
1210
1211 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1212 {
1213         int i;
1214
1215         vcpu_load(vcpu);
1216
1217         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1218                 regs->gpr[i] = vcpu->arch.gprs[i];
1219
1220         regs->hi = vcpu->arch.hi;
1221         regs->lo = vcpu->arch.lo;
1222         regs->pc = vcpu->arch.pc;
1223
1224         vcpu_put(vcpu);
1225         return 0;
1226 }
1227
1228 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1229                                   struct kvm_translation *tr)
1230 {
1231         return 0;
1232 }
1233
1234 static void kvm_mips_set_c0_status(void)
1235 {
1236         u32 status = read_c0_status();
1237
1238         if (cpu_has_dsp)
1239                 status |= (ST0_MX);
1240
1241         write_c0_status(status);
1242         ehb();
1243 }
1244
1245 /*
1246  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1247  */
1248 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1249 {
1250         u32 cause = vcpu->arch.host_cp0_cause;
1251         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1252         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1253         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1254         enum emulation_result er = EMULATE_DONE;
1255         u32 inst;
1256         int ret = RESUME_GUEST;
1257
1258         vcpu->mode = OUTSIDE_GUEST_MODE;
1259
1260         /* re-enable HTW before enabling interrupts */
1261         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1262                 htw_start();
1263
1264         /* Set a default exit reason */
1265         run->exit_reason = KVM_EXIT_UNKNOWN;
1266         run->ready_for_interrupt_injection = 1;
1267
1268         /*
1269          * Set the appropriate status bits based on host CPU features,
1270          * before we hit the scheduler
1271          */
1272         kvm_mips_set_c0_status();
1273
1274         local_irq_enable();
1275
1276         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1277                         cause, opc, run, vcpu);
1278         trace_kvm_exit(vcpu, exccode);
1279
1280         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1281                 /*
1282                  * Do a privilege check, if in UM most of these exit conditions
1283                  * end up causing an exception to be delivered to the Guest
1284                  * Kernel
1285                  */
1286                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1287                 if (er == EMULATE_PRIV_FAIL) {
1288                         goto skip_emul;
1289                 } else if (er == EMULATE_FAIL) {
1290                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1291                         ret = RESUME_HOST;
1292                         goto skip_emul;
1293                 }
1294         }
1295
1296         switch (exccode) {
1297         case EXCCODE_INT:
1298                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1299
1300                 ++vcpu->stat.int_exits;
1301
1302                 if (need_resched())
1303                         cond_resched();
1304
1305                 ret = RESUME_GUEST;
1306                 break;
1307
1308         case EXCCODE_CPU:
1309                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1310
1311                 ++vcpu->stat.cop_unusable_exits;
1312                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1313                 /* XXXKYMA: Might need to return to user space */
1314                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1315                         ret = RESUME_HOST;
1316                 break;
1317
1318         case EXCCODE_MOD:
1319                 ++vcpu->stat.tlbmod_exits;
1320                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1321                 break;
1322
1323         case EXCCODE_TLBS:
1324                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1325                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1326                           badvaddr);
1327
1328                 ++vcpu->stat.tlbmiss_st_exits;
1329                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1330                 break;
1331
1332         case EXCCODE_TLBL:
1333                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1334                           cause, opc, badvaddr);
1335
1336                 ++vcpu->stat.tlbmiss_ld_exits;
1337                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1338                 break;
1339
1340         case EXCCODE_ADES:
1341                 ++vcpu->stat.addrerr_st_exits;
1342                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1343                 break;
1344
1345         case EXCCODE_ADEL:
1346                 ++vcpu->stat.addrerr_ld_exits;
1347                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1348                 break;
1349
1350         case EXCCODE_SYS:
1351                 ++vcpu->stat.syscall_exits;
1352                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1353                 break;
1354
1355         case EXCCODE_RI:
1356                 ++vcpu->stat.resvd_inst_exits;
1357                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1358                 break;
1359
1360         case EXCCODE_BP:
1361                 ++vcpu->stat.break_inst_exits;
1362                 ret = kvm_mips_callbacks->handle_break(vcpu);
1363                 break;
1364
1365         case EXCCODE_TR:
1366                 ++vcpu->stat.trap_inst_exits;
1367                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1368                 break;
1369
1370         case EXCCODE_MSAFPE:
1371                 ++vcpu->stat.msa_fpe_exits;
1372                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1373                 break;
1374
1375         case EXCCODE_FPE:
1376                 ++vcpu->stat.fpe_exits;
1377                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1378                 break;
1379
1380         case EXCCODE_MSADIS:
1381                 ++vcpu->stat.msa_disabled_exits;
1382                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1383                 break;
1384
1385         case EXCCODE_GE:
1386                 /* defer exit accounting to handler */
1387                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1388                 break;
1389
1390         default:
1391                 if (cause & CAUSEF_BD)
1392                         opc += 1;
1393                 inst = 0;
1394                 kvm_get_badinstr(opc, vcpu, &inst);
1395                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1396                         exccode, opc, inst, badvaddr,
1397                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1398                 kvm_arch_vcpu_dump_regs(vcpu);
1399                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1400                 ret = RESUME_HOST;
1401                 break;
1402
1403         }
1404
1405 skip_emul:
1406         local_irq_disable();
1407
1408         if (ret == RESUME_GUEST)
1409                 kvm_vz_acquire_htimer(vcpu);
1410
1411         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1412                 kvm_mips_deliver_interrupts(vcpu, cause);
1413
1414         if (!(ret & RESUME_HOST)) {
1415                 /* Only check for signals if not already exiting to userspace */
1416                 if (signal_pending(current)) {
1417                         run->exit_reason = KVM_EXIT_INTR;
1418                         ret = (-EINTR << 2) | RESUME_HOST;
1419                         ++vcpu->stat.signal_exits;
1420                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1421                 }
1422         }
1423
1424         if (ret == RESUME_GUEST) {
1425                 trace_kvm_reenter(vcpu);
1426
1427                 /*
1428                  * Make sure the read of VCPU requests in vcpu_reenter()
1429                  * callback is not reordered ahead of the write to vcpu->mode,
1430                  * or we could miss a TLB flush request while the requester sees
1431                  * the VCPU as outside of guest mode and not needing an IPI.
1432                  */
1433                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1434
1435                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1436
1437                 /*
1438                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1439                  * is live), restore FCR31 / MSACSR.
1440                  *
1441                  * This should be before returning to the guest exception
1442                  * vector, as it may well cause an [MSA] FP exception if there
1443                  * are pending exception bits unmasked. (see
1444                  * kvm_mips_csr_die_notifier() for how that is handled).
1445                  */
1446                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1447                     read_c0_status() & ST0_CU1)
1448                         __kvm_restore_fcsr(&vcpu->arch);
1449
1450                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1451                     read_c0_config5() & MIPS_CONF5_MSAEN)
1452                         __kvm_restore_msacsr(&vcpu->arch);
1453         }
1454
1455         /* Disable HTW before returning to guest or host */
1456         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1457                 htw_stop();
1458
1459         return ret;
1460 }
1461
1462 /* Enable FPU for guest and restore context */
1463 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1464 {
1465         struct mips_coproc *cop0 = vcpu->arch.cop0;
1466         unsigned int sr, cfg5;
1467
1468         preempt_disable();
1469
1470         sr = kvm_read_c0_guest_status(cop0);
1471
1472         /*
1473          * If MSA state is already live, it is undefined how it interacts with
1474          * FR=0 FPU state, and we don't want to hit reserved instruction
1475          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1476          * play it safe and save it first.
1477          *
1478          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1479          * get called when guest CU1 is set, however we can't trust the guest
1480          * not to clobber the status register directly via the commpage.
1481          */
1482         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1483             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1484                 kvm_lose_fpu(vcpu);
1485
1486         /*
1487          * Enable FPU for guest
1488          * We set FR and FRE according to guest context
1489          */
1490         change_c0_status(ST0_CU1 | ST0_FR, sr);
1491         if (cpu_has_fre) {
1492                 cfg5 = kvm_read_c0_guest_config5(cop0);
1493                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1494         }
1495         enable_fpu_hazard();
1496
1497         /* If guest FPU state not active, restore it now */
1498         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1499                 __kvm_restore_fpu(&vcpu->arch);
1500                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1501                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1502         } else {
1503                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1504         }
1505
1506         preempt_enable();
1507 }
1508
1509 #ifdef CONFIG_CPU_HAS_MSA
1510 /* Enable MSA for guest and restore context */
1511 void kvm_own_msa(struct kvm_vcpu *vcpu)
1512 {
1513         struct mips_coproc *cop0 = vcpu->arch.cop0;
1514         unsigned int sr, cfg5;
1515
1516         preempt_disable();
1517
1518         /*
1519          * Enable FPU if enabled in guest, since we're restoring FPU context
1520          * anyway. We set FR and FRE according to guest context.
1521          */
1522         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1523                 sr = kvm_read_c0_guest_status(cop0);
1524
1525                 /*
1526                  * If FR=0 FPU state is already live, it is undefined how it
1527                  * interacts with MSA state, so play it safe and save it first.
1528                  */
1529                 if (!(sr & ST0_FR) &&
1530                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1531                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1532                         kvm_lose_fpu(vcpu);
1533
1534                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1535                 if (sr & ST0_CU1 && cpu_has_fre) {
1536                         cfg5 = kvm_read_c0_guest_config5(cop0);
1537                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1538                 }
1539         }
1540
1541         /* Enable MSA for guest */
1542         set_c0_config5(MIPS_CONF5_MSAEN);
1543         enable_fpu_hazard();
1544
1545         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1546         case KVM_MIPS_AUX_FPU:
1547                 /*
1548                  * Guest FPU state already loaded, only restore upper MSA state
1549                  */
1550                 __kvm_restore_msa_upper(&vcpu->arch);
1551                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1552                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1553                 break;
1554         case 0:
1555                 /* Neither FPU or MSA already active, restore full MSA state */
1556                 __kvm_restore_msa(&vcpu->arch);
1557                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1558                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1559                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1560                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1561                               KVM_TRACE_AUX_FPU_MSA);
1562                 break;
1563         default:
1564                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1565                 break;
1566         }
1567
1568         preempt_enable();
1569 }
1570 #endif
1571
1572 /* Drop FPU & MSA without saving it */
1573 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1574 {
1575         preempt_disable();
1576         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1577                 disable_msa();
1578                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1579                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1580         }
1581         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1582                 clear_c0_status(ST0_CU1 | ST0_FR);
1583                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1584                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1585         }
1586         preempt_enable();
1587 }
1588
1589 /* Save and disable FPU & MSA */
1590 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1591 {
1592         /*
1593          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1594          * is disabled in guest context (software), but the register state in
1595          * the hardware may still be in use.
1596          * This is why we explicitly re-enable the hardware before saving.
1597          */
1598
1599         preempt_disable();
1600         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1601                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1602                         set_c0_config5(MIPS_CONF5_MSAEN);
1603                         enable_fpu_hazard();
1604                 }
1605
1606                 __kvm_save_msa(&vcpu->arch);
1607                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1608
1609                 /* Disable MSA & FPU */
1610                 disable_msa();
1611                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1612                         clear_c0_status(ST0_CU1 | ST0_FR);
1613                         disable_fpu_hazard();
1614                 }
1615                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1616         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1617                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1618                         set_c0_status(ST0_CU1);
1619                         enable_fpu_hazard();
1620                 }
1621
1622                 __kvm_save_fpu(&vcpu->arch);
1623                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1624                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1625
1626                 /* Disable FPU */
1627                 clear_c0_status(ST0_CU1 | ST0_FR);
1628                 disable_fpu_hazard();
1629         }
1630         preempt_enable();
1631 }
1632
1633 /*
1634  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1635  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1636  * exception if cause bits are set in the value being written.
1637  */
1638 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1639                                    unsigned long cmd, void *ptr)
1640 {
1641         struct die_args *args = (struct die_args *)ptr;
1642         struct pt_regs *regs = args->regs;
1643         unsigned long pc;
1644
1645         /* Only interested in FPE and MSAFPE */
1646         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1647                 return NOTIFY_DONE;
1648
1649         /* Return immediately if guest context isn't active */
1650         if (!(current->flags & PF_VCPU))
1651                 return NOTIFY_DONE;
1652
1653         /* Should never get here from user mode */
1654         BUG_ON(user_mode(regs));
1655
1656         pc = instruction_pointer(regs);
1657         switch (cmd) {
1658         case DIE_FP:
1659                 /* match 2nd instruction in __kvm_restore_fcsr */
1660                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1661                         return NOTIFY_DONE;
1662                 break;
1663         case DIE_MSAFP:
1664                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1665                 if (!cpu_has_msa ||
1666                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1667                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1668                         return NOTIFY_DONE;
1669                 break;
1670         }
1671
1672         /* Move PC forward a little and continue executing */
1673         instruction_pointer(regs) += 4;
1674
1675         return NOTIFY_STOP;
1676 }
1677
1678 static struct notifier_block kvm_mips_csr_die_notifier = {
1679         .notifier_call = kvm_mips_csr_die_notify,
1680 };
1681
1682 static int __init kvm_mips_init(void)
1683 {
1684         int ret;
1685
1686         if (cpu_has_mmid) {
1687                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1688                 return -EOPNOTSUPP;
1689         }
1690
1691         ret = kvm_mips_entry_setup();
1692         if (ret)
1693                 return ret;
1694
1695         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1696
1697         if (ret)
1698                 return ret;
1699
1700         register_die_notifier(&kvm_mips_csr_die_notifier);
1701
1702         return 0;
1703 }
1704
1705 static void __exit kvm_mips_exit(void)
1706 {
1707         kvm_exit();
1708
1709         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1710 }
1711
1712 module_init(kvm_mips_init);
1713 module_exit(kvm_mips_exit);
1714
1715 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);