Merge tag 'iio-for-5.11a' of https://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[linux-2.6-microblaze.git] / arch / mips / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42
43 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60
61 /*
62  * A logcal cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73
74 cpumask_t cpu_coherent_mask;
75
76 #ifdef CONFIG_GENERIC_IRQ_IPI
77 static struct irq_desc *call_desc;
78 static struct irq_desc *sched_desc;
79 #endif
80
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83         int i;
84
85         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86
87         if (smp_num_siblings > 1) {
88                 for_each_cpu(i, &cpu_sibling_setup_map) {
89                         if (cpus_are_siblings(cpu, i)) {
90                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92                         }
93                 }
94         } else
95                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96 }
97
98 static inline void set_cpu_core_map(int cpu)
99 {
100         int i;
101
102         cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104         for_each_cpu(i, &cpu_core_setup_map) {
105                 if (cpu_data[cpu].package == cpu_data[i].package) {
106                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
107                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
108                 }
109         }
110 }
111
112 /*
113  * Calculate a new cpu_foreign_map mask whenever a
114  * new cpu appears or disappears.
115  */
116 void calculate_cpu_foreign_map(void)
117 {
118         int i, k, core_present;
119         cpumask_t temp_foreign_map;
120
121         /* Re-calculate the mask */
122         cpumask_clear(&temp_foreign_map);
123         for_each_online_cpu(i) {
124                 core_present = 0;
125                 for_each_cpu(k, &temp_foreign_map)
126                         if (cpus_are_siblings(i, k))
127                                 core_present = 1;
128                 if (!core_present)
129                         cpumask_set_cpu(i, &temp_foreign_map);
130         }
131
132         for_each_online_cpu(i)
133                 cpumask_andnot(&cpu_foreign_map[i],
134                                &temp_foreign_map, &cpu_sibling_map[i]);
135 }
136
137 const struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139
140 void register_smp_ops(const struct plat_smp_ops *ops)
141 {
142         if (mp_ops)
143                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145         mp_ops = ops;
146 }
147
148 #ifdef CONFIG_GENERIC_IRQ_IPI
149 void mips_smp_send_ipi_single(int cpu, unsigned int action)
150 {
151         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152 }
153
154 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155 {
156         unsigned long flags;
157         unsigned int core;
158         int cpu;
159
160         local_irq_save(flags);
161
162         switch (action) {
163         case SMP_CALL_FUNCTION:
164                 __ipi_send_mask(call_desc, mask);
165                 break;
166
167         case SMP_RESCHEDULE_YOURSELF:
168                 __ipi_send_mask(sched_desc, mask);
169                 break;
170
171         default:
172                 BUG();
173         }
174
175         if (mips_cpc_present()) {
176                 for_each_cpu(cpu, mask) {
177                         if (cpus_are_siblings(cpu, smp_processor_id()))
178                                 continue;
179
180                         core = cpu_core(&cpu_data[cpu]);
181
182                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183                                 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184                                 mips_cpc_lock_other(core);
185                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186                                 mips_cpc_unlock_other();
187                                 mips_cm_unlock_other();
188                         }
189                 }
190         }
191
192         local_irq_restore(flags);
193 }
194
195
196 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197 {
198         scheduler_ipi();
199
200         return IRQ_HANDLED;
201 }
202
203 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204 {
205         generic_smp_call_function_interrupt();
206
207         return IRQ_HANDLED;
208 }
209
210 static void smp_ipi_init_one(unsigned int virq, const char *name,
211                              irq_handler_t handler)
212 {
213         int ret;
214
215         irq_set_handler(virq, handle_percpu_irq);
216         ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217         BUG_ON(ret);
218 }
219
220 static unsigned int call_virq, sched_virq;
221
222 int mips_smp_ipi_allocate(const struct cpumask *mask)
223 {
224         int virq;
225         struct irq_domain *ipidomain;
226         struct device_node *node;
227
228         node = of_irq_find_parent(of_root);
229         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230
231         /*
232          * Some platforms have half DT setup. So if we found irq node but
233          * didn't find an ipidomain, try to search for one that is not in the
234          * DT.
235          */
236         if (node && !ipidomain)
237                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238
239         /*
240          * There are systems which use IPI IRQ domains, but only have one
241          * registered when some runtime condition is met. For example a Malta
242          * kernel may include support for GIC & CPU interrupt controller IPI
243          * IRQ domains, but if run on a system with no GIC & no MT ASE then
244          * neither will be supported or registered.
245          *
246          * We only have a problem if we're actually using multiple CPUs so fail
247          * loudly if that is the case. Otherwise simply return, skipping IPI
248          * setup, if we're running with only a single CPU.
249          */
250         if (!ipidomain) {
251                 BUG_ON(num_present_cpus() > 1);
252                 return 0;
253         }
254
255         virq = irq_reserve_ipi(ipidomain, mask);
256         BUG_ON(!virq);
257         if (!call_virq)
258                 call_virq = virq;
259
260         virq = irq_reserve_ipi(ipidomain, mask);
261         BUG_ON(!virq);
262         if (!sched_virq)
263                 sched_virq = virq;
264
265         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266                 int cpu;
267
268                 for_each_cpu(cpu, mask) {
269                         smp_ipi_init_one(call_virq + cpu, "IPI call",
270                                          ipi_call_interrupt);
271                         smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272                                          ipi_resched_interrupt);
273                 }
274         } else {
275                 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276                 smp_ipi_init_one(sched_virq, "IPI resched",
277                                  ipi_resched_interrupt);
278         }
279
280         return 0;
281 }
282
283 int mips_smp_ipi_free(const struct cpumask *mask)
284 {
285         struct irq_domain *ipidomain;
286         struct device_node *node;
287
288         node = of_irq_find_parent(of_root);
289         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290
291         /*
292          * Some platforms have half DT setup. So if we found irq node but
293          * didn't find an ipidomain, try to search for one that is not in the
294          * DT.
295          */
296         if (node && !ipidomain)
297                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298
299         BUG_ON(!ipidomain);
300
301         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302                 int cpu;
303
304                 for_each_cpu(cpu, mask) {
305                         free_irq(call_virq + cpu, NULL);
306                         free_irq(sched_virq + cpu, NULL);
307                 }
308         }
309         irq_destroy_ipi(call_virq, mask);
310         irq_destroy_ipi(sched_virq, mask);
311         return 0;
312 }
313
314
315 static int __init mips_smp_ipi_init(void)
316 {
317         if (num_possible_cpus() == 1)
318                 return 0;
319
320         mips_smp_ipi_allocate(cpu_possible_mask);
321
322         call_desc = irq_to_desc(call_virq);
323         sched_desc = irq_to_desc(sched_virq);
324
325         return 0;
326 }
327 early_initcall(mips_smp_ipi_init);
328 #endif
329
330 /*
331  * First C code run on the secondary CPUs after being started up by
332  * the master.
333  */
334 asmlinkage void start_secondary(void)
335 {
336         unsigned int cpu;
337
338         cpu_probe();
339         per_cpu_trap_init(false);
340         mips_clockevent_init();
341         mp_ops->init_secondary();
342         cpu_report();
343         maar_init();
344
345         /*
346          * XXX parity protection should be folded in here when it's converted
347          * to an option instead of something based on .cputype
348          */
349
350         calibrate_delay();
351         preempt_disable();
352         cpu = smp_processor_id();
353         cpu_data[cpu].udelay_val = loops_per_jiffy;
354
355         cpumask_set_cpu(cpu, &cpu_coherent_mask);
356         notify_cpu_starting(cpu);
357
358         /* Notify boot CPU that we're starting & ready to sync counters */
359         complete(&cpu_starting);
360
361         synchronise_count_slave(cpu);
362
363         /* The CPU is running and counters synchronised, now mark it online */
364         set_cpu_online(cpu, true);
365
366         set_cpu_sibling_map(cpu);
367         set_cpu_core_map(cpu);
368
369         calculate_cpu_foreign_map();
370
371         /*
372          * Notify boot CPU that we're up & online and it can safely return
373          * from __cpu_up
374          */
375         complete(&cpu_running);
376
377         /*
378          * irq will be enabled in ->smp_finish(), enabling it too early
379          * is dangerous.
380          */
381         WARN_ON_ONCE(!irqs_disabled());
382         mp_ops->smp_finish();
383
384         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
385 }
386
387 static void stop_this_cpu(void *dummy)
388 {
389         /*
390          * Remove this CPU:
391          */
392
393         set_cpu_online(smp_processor_id(), false);
394         calculate_cpu_foreign_map();
395         local_irq_disable();
396         while (1);
397 }
398
399 void smp_send_stop(void)
400 {
401         smp_call_function(stop_this_cpu, NULL, 0);
402 }
403
404 void __init smp_cpus_done(unsigned int max_cpus)
405 {
406 }
407
408 /* called from main before smp_init() */
409 void __init smp_prepare_cpus(unsigned int max_cpus)
410 {
411         init_new_context(current, &init_mm);
412         current_thread_info()->cpu = 0;
413         mp_ops->prepare_cpus(max_cpus);
414         set_cpu_sibling_map(0);
415         set_cpu_core_map(0);
416         calculate_cpu_foreign_map();
417 #ifndef CONFIG_HOTPLUG_CPU
418         init_cpu_present(cpu_possible_mask);
419 #endif
420         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
421 }
422
423 /* preload SMP state for boot cpu */
424 void smp_prepare_boot_cpu(void)
425 {
426         if (mp_ops->prepare_boot_cpu)
427                 mp_ops->prepare_boot_cpu();
428         set_cpu_possible(0, true);
429         set_cpu_online(0, true);
430 }
431
432 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
433 {
434         int err;
435
436         err = mp_ops->boot_secondary(cpu, tidle);
437         if (err)
438                 return err;
439
440         /* Wait for CPU to start and be ready to sync counters */
441         if (!wait_for_completion_timeout(&cpu_starting,
442                                          msecs_to_jiffies(1000))) {
443                 pr_crit("CPU%u: failed to start\n", cpu);
444                 return -EIO;
445         }
446
447         synchronise_count_master(cpu);
448
449         /* Wait for CPU to finish startup & mark itself online before return */
450         wait_for_completion(&cpu_running);
451         return 0;
452 }
453
454 /* Not really SMP stuff ... */
455 int setup_profiling_timer(unsigned int multiplier)
456 {
457         return 0;
458 }
459
460 static void flush_tlb_all_ipi(void *info)
461 {
462         local_flush_tlb_all();
463 }
464
465 void flush_tlb_all(void)
466 {
467         if (cpu_has_mmid) {
468                 htw_stop();
469                 ginvt_full();
470                 sync_ginv();
471                 instruction_hazard();
472                 htw_start();
473                 return;
474         }
475
476         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
477 }
478
479 static void flush_tlb_mm_ipi(void *mm)
480 {
481         drop_mmu_context((struct mm_struct *)mm);
482 }
483
484 /*
485  * Special Variant of smp_call_function for use by TLB functions:
486  *
487  *  o No return value
488  *  o collapses to normal function call on UP kernels
489  *  o collapses to normal function call on systems with a single shared
490  *    primary cache.
491  */
492 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
493 {
494         smp_call_function(func, info, 1);
495 }
496
497 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
498 {
499         preempt_disable();
500
501         smp_on_other_tlbs(func, info);
502         func(info);
503
504         preempt_enable();
505 }
506
507 /*
508  * The following tlb flush calls are invoked when old translations are
509  * being torn down, or pte attributes are changing. For single threaded
510  * address spaces, a new context is obtained on the current cpu, and tlb
511  * context on other cpus are invalidated to force a new context allocation
512  * at switch_mm time, should the mm ever be used on other cpus. For
513  * multithreaded address spaces, intercpu interrupts have to be sent.
514  * Another case where intercpu interrupts are required is when the target
515  * mm might be active on another cpu (eg debuggers doing the flushes on
516  * behalf of debugees, kswapd stealing pages from another process etc).
517  * Kanoj 07/00.
518  */
519
520 void flush_tlb_mm(struct mm_struct *mm)
521 {
522         preempt_disable();
523
524         if (cpu_has_mmid) {
525                 /*
526                  * No need to worry about other CPUs - the ginvt in
527                  * drop_mmu_context() will be globalized.
528                  */
529         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
530                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
531         } else {
532                 unsigned int cpu;
533
534                 for_each_online_cpu(cpu) {
535                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
536                                 set_cpu_context(cpu, mm, 0);
537                 }
538         }
539         drop_mmu_context(mm);
540
541         preempt_enable();
542 }
543
544 struct flush_tlb_data {
545         struct vm_area_struct *vma;
546         unsigned long addr1;
547         unsigned long addr2;
548 };
549
550 static void flush_tlb_range_ipi(void *info)
551 {
552         struct flush_tlb_data *fd = info;
553
554         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
555 }
556
557 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
558 {
559         struct mm_struct *mm = vma->vm_mm;
560         unsigned long addr;
561         u32 old_mmid;
562
563         preempt_disable();
564         if (cpu_has_mmid) {
565                 htw_stop();
566                 old_mmid = read_c0_memorymapid();
567                 write_c0_memorymapid(cpu_asid(0, mm));
568                 mtc0_tlbw_hazard();
569                 addr = round_down(start, PAGE_SIZE * 2);
570                 end = round_up(end, PAGE_SIZE * 2);
571                 do {
572                         ginvt_va_mmid(addr);
573                         sync_ginv();
574                         addr += PAGE_SIZE * 2;
575                 } while (addr < end);
576                 write_c0_memorymapid(old_mmid);
577                 instruction_hazard();
578                 htw_start();
579         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
580                 struct flush_tlb_data fd = {
581                         .vma = vma,
582                         .addr1 = start,
583                         .addr2 = end,
584                 };
585
586                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
587                 local_flush_tlb_range(vma, start, end);
588         } else {
589                 unsigned int cpu;
590                 int exec = vma->vm_flags & VM_EXEC;
591
592                 for_each_online_cpu(cpu) {
593                         /*
594                          * flush_cache_range() will only fully flush icache if
595                          * the VMA is executable, otherwise we must invalidate
596                          * ASID without it appearing to has_valid_asid() as if
597                          * mm has been completely unused by that CPU.
598                          */
599                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
600                                 set_cpu_context(cpu, mm, !exec);
601                 }
602                 local_flush_tlb_range(vma, start, end);
603         }
604         preempt_enable();
605 }
606
607 static void flush_tlb_kernel_range_ipi(void *info)
608 {
609         struct flush_tlb_data *fd = info;
610
611         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
612 }
613
614 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
615 {
616         struct flush_tlb_data fd = {
617                 .addr1 = start,
618                 .addr2 = end,
619         };
620
621         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
622 }
623
624 static void flush_tlb_page_ipi(void *info)
625 {
626         struct flush_tlb_data *fd = info;
627
628         local_flush_tlb_page(fd->vma, fd->addr1);
629 }
630
631 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
632 {
633         u32 old_mmid;
634
635         preempt_disable();
636         if (cpu_has_mmid) {
637                 htw_stop();
638                 old_mmid = read_c0_memorymapid();
639                 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
640                 mtc0_tlbw_hazard();
641                 ginvt_va_mmid(page);
642                 sync_ginv();
643                 write_c0_memorymapid(old_mmid);
644                 instruction_hazard();
645                 htw_start();
646         } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
647                    (current->mm != vma->vm_mm)) {
648                 struct flush_tlb_data fd = {
649                         .vma = vma,
650                         .addr1 = page,
651                 };
652
653                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
654                 local_flush_tlb_page(vma, page);
655         } else {
656                 unsigned int cpu;
657
658                 for_each_online_cpu(cpu) {
659                         /*
660                          * flush_cache_page() only does partial flushes, so
661                          * invalidate ASID without it appearing to
662                          * has_valid_asid() as if mm has been completely unused
663                          * by that CPU.
664                          */
665                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
666                                 set_cpu_context(cpu, vma->vm_mm, 1);
667                 }
668                 local_flush_tlb_page(vma, page);
669         }
670         preempt_enable();
671 }
672
673 static void flush_tlb_one_ipi(void *info)
674 {
675         unsigned long vaddr = (unsigned long) info;
676
677         local_flush_tlb_one(vaddr);
678 }
679
680 void flush_tlb_one(unsigned long vaddr)
681 {
682         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
683 }
684
685 EXPORT_SYMBOL(flush_tlb_page);
686 EXPORT_SYMBOL(flush_tlb_one);
687
688 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
689
690 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
691
692 void tick_broadcast(const struct cpumask *mask)
693 {
694         call_single_data_t *csd;
695         int cpu;
696
697         for_each_cpu(cpu, mask) {
698                 csd = &per_cpu(tick_broadcast_csd, cpu);
699                 smp_call_function_single_async(cpu, csd);
700         }
701 }
702
703 static void tick_broadcast_callee(void *info)
704 {
705         tick_receive_broadcast();
706 }
707
708 static int __init tick_broadcast_init(void)
709 {
710         call_single_data_t *csd;
711         int cpu;
712
713         for (cpu = 0; cpu < NR_CPUS; cpu++) {
714                 csd = &per_cpu(tick_broadcast_csd, cpu);
715                 csd->func = tick_broadcast_callee;
716         }
717
718         return 0;
719 }
720 early_initcall(tick_broadcast_init);
721
722 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */