mfd: ab8500-debugfs: Remove the racy fiddling with irq_desc
[linux-2.6-microblaze.git] / arch / mips / kernel / smp-cps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15
16 #include <asm/bcache.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mips_mt.h>
19 #include <asm/mipsregs.h>
20 #include <asm/pm-cps.h>
21 #include <asm/r4kcache.h>
22 #include <asm/smp-cps.h>
23 #include <asm/time.h>
24 #include <asm/uasm.h>
25
26 static bool threads_disabled;
27 static DECLARE_BITMAP(core_power, NR_CPUS);
28
29 struct core_boot_config *mips_cps_core_bootcfg;
30
31 static int __init setup_nothreads(char *s)
32 {
33         threads_disabled = true;
34         return 0;
35 }
36 early_param("nothreads", setup_nothreads);
37
38 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
39 {
40         if (threads_disabled)
41                 return 1;
42
43         return mips_cps_numvps(cluster, core);
44 }
45
46 static void __init cps_smp_setup(void)
47 {
48         unsigned int nclusters, ncores, nvpes, core_vpes;
49         unsigned long core_entry;
50         int cl, c, v;
51
52         /* Detect & record VPE topology */
53         nvpes = 0;
54         nclusters = mips_cps_numclusters();
55         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
56         for (cl = 0; cl < nclusters; cl++) {
57                 if (cl > 0)
58                         pr_cont(",");
59                 pr_cont("{");
60
61                 ncores = mips_cps_numcores(cl);
62                 for (c = 0; c < ncores; c++) {
63                         core_vpes = core_vpe_count(cl, c);
64
65                         if (c > 0)
66                                 pr_cont(",");
67                         pr_cont("%u", core_vpes);
68
69                         /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
70                         if (!cl && !c)
71                                 smp_num_siblings = core_vpes;
72
73                         for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
74                                 cpu_set_cluster(&cpu_data[nvpes + v], cl);
75                                 cpu_set_core(&cpu_data[nvpes + v], c);
76                                 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
77                         }
78
79                         nvpes += core_vpes;
80                 }
81
82                 pr_cont("}");
83         }
84         pr_cont(" total %u\n", nvpes);
85
86         /* Indicate present CPUs (CPU being synonymous with VPE) */
87         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
88                 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
89                 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
90                 __cpu_number_map[v] = v;
91                 __cpu_logical_map[v] = v;
92         }
93
94         /* Set a coherent default CCA (CWB) */
95         change_c0_config(CONF_CM_CMASK, 0x5);
96
97         /* Core 0 is powered up (we're running on it) */
98         bitmap_set(core_power, 0, 1);
99
100         /* Initialise core 0 */
101         mips_cps_core_init();
102
103         /* Make core 0 coherent with everything */
104         write_gcr_cl_coherence(0xff);
105
106         if (mips_cm_revision() >= CM_REV_CM3) {
107                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
108                 write_gcr_bev_base(core_entry);
109         }
110
111 #ifdef CONFIG_MIPS_MT_FPAFF
112         /* If we have an FPU, enroll ourselves in the FPU-full mask */
113         if (cpu_has_fpu)
114                 cpumask_set_cpu(0, &mt_fpu_cpumask);
115 #endif /* CONFIG_MIPS_MT_FPAFF */
116 }
117
118 static void __init cps_prepare_cpus(unsigned int max_cpus)
119 {
120         unsigned ncores, core_vpes, c, cca;
121         bool cca_unsuitable, cores_limited;
122         u32 *entry_code;
123
124         mips_mt_set_cpuoptions();
125
126         /* Detect whether the CCA is unsuited to multi-core SMP */
127         cca = read_c0_config() & CONF_CM_CMASK;
128         switch (cca) {
129         case 0x4: /* CWBE */
130         case 0x5: /* CWB */
131                 /* The CCA is coherent, multi-core is fine */
132                 cca_unsuitable = false;
133                 break;
134
135         default:
136                 /* CCA is not coherent, multi-core is not usable */
137                 cca_unsuitable = true;
138         }
139
140         /* Warn the user if the CCA prevents multi-core */
141         cores_limited = false;
142         if (cca_unsuitable || cpu_has_dc_aliases) {
143                 for_each_present_cpu(c) {
144                         if (cpus_are_siblings(smp_processor_id(), c))
145                                 continue;
146
147                         set_cpu_present(c, false);
148                         cores_limited = true;
149                 }
150         }
151         if (cores_limited)
152                 pr_warn("Using only one core due to %s%s%s\n",
153                         cca_unsuitable ? "unsuitable CCA" : "",
154                         (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
155                         cpu_has_dc_aliases ? "dcache aliasing" : "");
156
157         /*
158          * Patch the start of mips_cps_core_entry to provide:
159          *
160          * s0 = kseg0 CCA
161          */
162         entry_code = (u32 *)&mips_cps_core_entry;
163         uasm_i_addiu(&entry_code, 16, 0, cca);
164         blast_dcache_range((unsigned long)&mips_cps_core_entry,
165                            (unsigned long)entry_code);
166         bc_wback_inv((unsigned long)&mips_cps_core_entry,
167                      (void *)entry_code - (void *)&mips_cps_core_entry);
168         __sync();
169
170         /* Allocate core boot configuration structs */
171         ncores = mips_cps_numcores(0);
172         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
173                                         GFP_KERNEL);
174         if (!mips_cps_core_bootcfg) {
175                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
176                 goto err_out;
177         }
178
179         /* Allocate VPE boot configuration structs */
180         for (c = 0; c < ncores; c++) {
181                 core_vpes = core_vpe_count(0, c);
182                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
183                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
184                                 GFP_KERNEL);
185                 if (!mips_cps_core_bootcfg[c].vpe_config) {
186                         pr_err("Failed to allocate %u VPE boot configs\n",
187                                core_vpes);
188                         goto err_out;
189                 }
190         }
191
192         /* Mark this CPU as booted */
193         atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
194                    1 << cpu_vpe_id(&current_cpu_data));
195
196         return;
197 err_out:
198         /* Clean up allocations */
199         if (mips_cps_core_bootcfg) {
200                 for (c = 0; c < ncores; c++)
201                         kfree(mips_cps_core_bootcfg[c].vpe_config);
202                 kfree(mips_cps_core_bootcfg);
203                 mips_cps_core_bootcfg = NULL;
204         }
205
206         /* Effectively disable SMP by declaring CPUs not present */
207         for_each_possible_cpu(c) {
208                 if (c == 0)
209                         continue;
210                 set_cpu_present(c, false);
211         }
212 }
213
214 static void boot_core(unsigned int core, unsigned int vpe_id)
215 {
216         u32 stat, seq_state;
217         unsigned timeout;
218
219         /* Select the appropriate core */
220         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
221
222         /* Set its reset vector */
223         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
224
225         /* Ensure its coherency is disabled */
226         write_gcr_co_coherence(0);
227
228         /* Start it with the legacy memory map and exception base */
229         write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
230
231         /* Ensure the core can access the GCRs */
232         set_gcr_access(1 << core);
233
234         if (mips_cpc_present()) {
235                 /* Reset the core */
236                 mips_cpc_lock_other(core);
237
238                 if (mips_cm_revision() >= CM_REV_CM3) {
239                         /* Run only the requested VP following the reset */
240                         write_cpc_co_vp_stop(0xf);
241                         write_cpc_co_vp_run(1 << vpe_id);
242
243                         /*
244                          * Ensure that the VP_RUN register is written before the
245                          * core leaves reset.
246                          */
247                         wmb();
248                 }
249
250                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
251
252                 timeout = 100;
253                 while (true) {
254                         stat = read_cpc_co_stat_conf();
255                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
256                         seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
257
258                         /* U6 == coherent execution, ie. the core is up */
259                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
260                                 break;
261
262                         /* Delay a little while before we start warning */
263                         if (timeout) {
264                                 timeout--;
265                                 mdelay(10);
266                                 continue;
267                         }
268
269                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
270                                 core, stat);
271                         mdelay(1000);
272                 }
273
274                 mips_cpc_unlock_other();
275         } else {
276                 /* Take the core out of reset */
277                 write_gcr_co_reset_release(0);
278         }
279
280         mips_cm_unlock_other();
281
282         /* The core is now powered up */
283         bitmap_set(core_power, core, 1);
284 }
285
286 static void remote_vpe_boot(void *dummy)
287 {
288         unsigned core = cpu_core(&current_cpu_data);
289         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
290
291         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
292 }
293
294 static int cps_boot_secondary(int cpu, struct task_struct *idle)
295 {
296         unsigned core = cpu_core(&cpu_data[cpu]);
297         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
298         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
299         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
300         unsigned long core_entry;
301         unsigned int remote;
302         int err;
303
304         /* We don't yet support booting CPUs in other clusters */
305         if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
306                 return -ENOSYS;
307
308         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
309         vpe_cfg->sp = __KSTK_TOS(idle);
310         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
311
312         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
313
314         preempt_disable();
315
316         if (!test_bit(core, core_power)) {
317                 /* Boot a VPE on a powered down core */
318                 boot_core(core, vpe_id);
319                 goto out;
320         }
321
322         if (cpu_has_vp) {
323                 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
324                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
325                 write_gcr_co_reset_base(core_entry);
326                 mips_cm_unlock_other();
327         }
328
329         if (!cpus_are_siblings(cpu, smp_processor_id())) {
330                 /* Boot a VPE on another powered up core */
331                 for (remote = 0; remote < NR_CPUS; remote++) {
332                         if (!cpus_are_siblings(cpu, remote))
333                                 continue;
334                         if (cpu_online(remote))
335                                 break;
336                 }
337                 if (remote >= NR_CPUS) {
338                         pr_crit("No online CPU in core %u to start CPU%d\n",
339                                 core, cpu);
340                         goto out;
341                 }
342
343                 err = smp_call_function_single(remote, remote_vpe_boot,
344                                                NULL, 1);
345                 if (err)
346                         panic("Failed to call remote CPU\n");
347                 goto out;
348         }
349
350         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
351
352         /* Boot a VPE on this core */
353         mips_cps_boot_vpes(core_cfg, vpe_id);
354 out:
355         preempt_enable();
356         return 0;
357 }
358
359 static void cps_init_secondary(void)
360 {
361         /* Disable MT - we only want to run 1 TC per VPE */
362         if (cpu_has_mipsmt)
363                 dmt();
364
365         if (mips_cm_revision() >= CM_REV_CM3) {
366                 unsigned int ident = read_gic_vl_ident();
367
368                 /*
369                  * Ensure that our calculation of the VP ID matches up with
370                  * what the GIC reports, otherwise we'll have configured
371                  * interrupts incorrectly.
372                  */
373                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
374         }
375
376         if (cpu_has_veic)
377                 clear_c0_status(ST0_IM);
378         else
379                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
380                                          STATUSF_IP4 | STATUSF_IP5 |
381                                          STATUSF_IP6 | STATUSF_IP7);
382 }
383
384 static void cps_smp_finish(void)
385 {
386         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
387
388 #ifdef CONFIG_MIPS_MT_FPAFF
389         /* If we have an FPU, enroll ourselves in the FPU-full mask */
390         if (cpu_has_fpu)
391                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
392 #endif /* CONFIG_MIPS_MT_FPAFF */
393
394         local_irq_enable();
395 }
396
397 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
398
399 enum cpu_death {
400         CPU_DEATH_HALT,
401         CPU_DEATH_POWER,
402 };
403
404 static void cps_shutdown_this_cpu(enum cpu_death death)
405 {
406         unsigned int cpu, core, vpe_id;
407
408         cpu = smp_processor_id();
409         core = cpu_core(&cpu_data[cpu]);
410
411         if (death == CPU_DEATH_HALT) {
412                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
413
414                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
415                 if (cpu_has_mipsmt) {
416                         /* Halt this TC */
417                         write_c0_tchalt(TCHALT_H);
418                         instruction_hazard();
419                 } else if (cpu_has_vp) {
420                         write_cpc_cl_vp_stop(1 << vpe_id);
421
422                         /* Ensure that the VP_STOP register is written */
423                         wmb();
424                 }
425         } else {
426                 pr_debug("Gating power to core %d\n", core);
427                 /* Power down the core */
428                 cps_pm_enter_state(CPS_PM_POWER_GATED);
429         }
430 }
431
432 #ifdef CONFIG_KEXEC
433
434 static void cps_kexec_nonboot_cpu(void)
435 {
436         if (cpu_has_mipsmt || cpu_has_vp)
437                 cps_shutdown_this_cpu(CPU_DEATH_HALT);
438         else
439                 cps_shutdown_this_cpu(CPU_DEATH_POWER);
440 }
441
442 #endif /* CONFIG_KEXEC */
443
444 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
445
446 #ifdef CONFIG_HOTPLUG_CPU
447
448 static int cps_cpu_disable(void)
449 {
450         unsigned cpu = smp_processor_id();
451         struct core_boot_config *core_cfg;
452
453         if (!cpu)
454                 return -EBUSY;
455
456         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
457                 return -EINVAL;
458
459         core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
460         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
461         smp_mb__after_atomic();
462         set_cpu_online(cpu, false);
463         calculate_cpu_foreign_map();
464
465         return 0;
466 }
467
468 static unsigned cpu_death_sibling;
469 static enum cpu_death cpu_death;
470
471 void play_dead(void)
472 {
473         unsigned int cpu;
474
475         local_irq_disable();
476         idle_task_exit();
477         cpu = smp_processor_id();
478         cpu_death = CPU_DEATH_POWER;
479
480         pr_debug("CPU%d going offline\n", cpu);
481
482         if (cpu_has_mipsmt || cpu_has_vp) {
483                 /* Look for another online VPE within the core */
484                 for_each_online_cpu(cpu_death_sibling) {
485                         if (!cpus_are_siblings(cpu, cpu_death_sibling))
486                                 continue;
487
488                         /*
489                          * There is an online VPE within the core. Just halt
490                          * this TC and leave the core alone.
491                          */
492                         cpu_death = CPU_DEATH_HALT;
493                         break;
494                 }
495         }
496
497         /* This CPU has chosen its way out */
498         (void)cpu_report_death();
499
500         cps_shutdown_this_cpu(cpu_death);
501
502         /* This should never be reached */
503         panic("Failed to offline CPU %u", cpu);
504 }
505
506 static void wait_for_sibling_halt(void *ptr_cpu)
507 {
508         unsigned cpu = (unsigned long)ptr_cpu;
509         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
510         unsigned halted;
511         unsigned long flags;
512
513         do {
514                 local_irq_save(flags);
515                 settc(vpe_id);
516                 halted = read_tc_c0_tchalt();
517                 local_irq_restore(flags);
518         } while (!(halted & TCHALT_H));
519 }
520
521 static void cps_cpu_die(unsigned int cpu)
522 {
523         unsigned core = cpu_core(&cpu_data[cpu]);
524         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
525         ktime_t fail_time;
526         unsigned stat;
527         int err;
528
529         /* Wait for the cpu to choose its way out */
530         if (!cpu_wait_death(cpu, 5)) {
531                 pr_err("CPU%u: didn't offline\n", cpu);
532                 return;
533         }
534
535         /*
536          * Now wait for the CPU to actually offline. Without doing this that
537          * offlining may race with one or more of:
538          *
539          *   - Onlining the CPU again.
540          *   - Powering down the core if another VPE within it is offlined.
541          *   - A sibling VPE entering a non-coherent state.
542          *
543          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
544          * with which we could race, so do nothing.
545          */
546         if (cpu_death == CPU_DEATH_POWER) {
547                 /*
548                  * Wait for the core to enter a powered down or clock gated
549                  * state, the latter happening when a JTAG probe is connected
550                  * in which case the CPC will refuse to power down the core.
551                  */
552                 fail_time = ktime_add_ms(ktime_get(), 2000);
553                 do {
554                         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
555                         mips_cpc_lock_other(core);
556                         stat = read_cpc_co_stat_conf();
557                         stat &= CPC_Cx_STAT_CONF_SEQSTATE;
558                         stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
559                         mips_cpc_unlock_other();
560                         mips_cm_unlock_other();
561
562                         if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
563                             stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
564                             stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
565                                 break;
566
567                         /*
568                          * The core ought to have powered down, but didn't &
569                          * now we don't really know what state it's in. It's
570                          * likely that its _pwr_up pin has been wired to logic
571                          * 1 & it powered back up as soon as we powered it
572                          * down...
573                          *
574                          * The best we can do is warn the user & continue in
575                          * the hope that the core is doing nothing harmful &
576                          * might behave properly if we online it later.
577                          */
578                         if (WARN(ktime_after(ktime_get(), fail_time),
579                                  "CPU%u hasn't powered down, seq. state %u\n",
580                                  cpu, stat))
581                                 break;
582                 } while (1);
583
584                 /* Indicate the core is powered off */
585                 bitmap_clear(core_power, core, 1);
586         } else if (cpu_has_mipsmt) {
587                 /*
588                  * Have a CPU with access to the offlined CPUs registers wait
589                  * for its TC to halt.
590                  */
591                 err = smp_call_function_single(cpu_death_sibling,
592                                                wait_for_sibling_halt,
593                                                (void *)(unsigned long)cpu, 1);
594                 if (err)
595                         panic("Failed to call remote sibling CPU\n");
596         } else if (cpu_has_vp) {
597                 do {
598                         mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
599                         stat = read_cpc_co_vp_running();
600                         mips_cm_unlock_other();
601                 } while (stat & (1 << vpe_id));
602         }
603 }
604
605 #endif /* CONFIG_HOTPLUG_CPU */
606
607 static const struct plat_smp_ops cps_smp_ops = {
608         .smp_setup              = cps_smp_setup,
609         .prepare_cpus           = cps_prepare_cpus,
610         .boot_secondary         = cps_boot_secondary,
611         .init_secondary         = cps_init_secondary,
612         .smp_finish             = cps_smp_finish,
613         .send_ipi_single        = mips_smp_send_ipi_single,
614         .send_ipi_mask          = mips_smp_send_ipi_mask,
615 #ifdef CONFIG_HOTPLUG_CPU
616         .cpu_disable            = cps_cpu_disable,
617         .cpu_die                = cps_cpu_die,
618 #endif
619 #ifdef CONFIG_KEXEC
620         .kexec_nonboot_cpu      = cps_kexec_nonboot_cpu,
621 #endif
622 };
623
624 bool mips_cps_smp_in_use(void)
625 {
626         extern const struct plat_smp_ops *mp_ops;
627         return mp_ops == &cps_smp_ops;
628 }
629
630 int register_cps_smp_ops(void)
631 {
632         if (!mips_cm_present()) {
633                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
634                 return -ENODEV;
635         }
636
637         /* check we have a GIC - we need one for IPIs */
638         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
639                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
640                 return -ENODEV;
641         }
642
643         register_smp_ops(&cps_smp_ops);
644         return 0;
645 }