Merge tag 'for-5.15/parisc' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-microblaze.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40
41 static int __maybe_unused max_cpus = 1;
42
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48
49 #define RESET_FROM_KSEG0                0x80080800
50 #define RESET_FROM_KSEG1                0xa0080800
51
52 static void bmips_set_reset_vec(int cpu, u32 val);
53
54 #ifdef CONFIG_SMP
55
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
68
69 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
73
74 static void __init bmips_smp_setup(void)
75 {
76         int i, cpu = 1, boot_cpu = 0;
77         int cpu_hw_intr;
78
79         switch (current_cpu_type()) {
80         case CPU_BMIPS4350:
81         case CPU_BMIPS4380:
82                 /* arbitration priority */
83                 clear_c0_brcm_cmt_ctrl(0x30);
84
85                 /* NBK and weak order flags */
86                 set_c0_brcm_config_0(0x30000);
87
88                 /* Find out if we are running on TP0 or TP1 */
89                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91                 /*
92                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93                  * thread
94                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96                  */
97                 if (boot_cpu == 0)
98                         cpu_hw_intr = 0x02;
99                 else
100                         cpu_hw_intr = 0x1d;
101
102                 change_c0_brcm_cmt_intr(0xf8018000,
103                                         (cpu_hw_intr << 27) | (0x03 << 15));
104
105                 /* single core, 2 threads (2 pipelines) */
106                 max_cpus = 2;
107
108                 break;
109         case CPU_BMIPS5000:
110                 /* enable raceless SW interrupts */
111                 set_c0_brcm_config(0x03 << 22);
112
113                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116                 /* N cores, 2 threads per core */
117                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119                 /* clear any pending SW interrupts */
120                 for (i = 0; i < max_cpus; i++) {
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123                 }
124
125                 break;
126         default:
127                 max_cpus = 1;
128         }
129
130         if (!bmips_smp_enabled)
131                 max_cpus = 1;
132
133         /* this can be overridden by the BSP */
134         if (!board_ebase_setup)
135                 board_ebase_setup = &bmips_ebase_setup;
136
137         if (max_cpus > 1) {
138                 __cpu_number_map[boot_cpu] = 0;
139                 __cpu_logical_map[0] = boot_cpu;
140
141                 for (i = 0; i < max_cpus; i++) {
142                         if (i != boot_cpu) {
143                                 __cpu_number_map[i] = cpu;
144                                 __cpu_logical_map[cpu] = i;
145                                 cpu++;
146                         }
147                         set_cpu_possible(i, 1);
148                         set_cpu_present(i, 1);
149                 }
150         } else {
151                 __cpu_number_map[0] = boot_cpu;
152                 __cpu_logical_map[0] = 0;
153                 set_cpu_possible(0, 1);
154                 set_cpu_present(0, 1);
155         }
156 }
157
158 /*
159  * IPI IRQ setup - runs on CPU0
160  */
161 static void bmips_prepare_cpus(unsigned int max_cpus)
162 {
163         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
164
165         switch (current_cpu_type()) {
166         case CPU_BMIPS4350:
167         case CPU_BMIPS4380:
168                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
169                 break;
170         case CPU_BMIPS5000:
171                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
172                 break;
173         default:
174                 return;
175         }
176
177         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
178                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
179                 panic("Can't request IPI0 interrupt");
180         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
181                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
182                 panic("Can't request IPI1 interrupt");
183 }
184
185 /*
186  * Tell the hardware to boot CPUx - runs on CPU0
187  */
188 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
189 {
190         bmips_smp_boot_sp = __KSTK_TOS(idle);
191         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
192         mb();
193
194         /*
195          * Initial boot sequence for secondary CPU:
196          *   bmips_reset_nmi_vec @ a000_0000 ->
197          *   bmips_smp_entry ->
198          *   plat_wired_tlb_setup (cached function call; optional) ->
199          *   start_secondary (cached jump)
200          *
201          * Warm restart sequence:
202          *   play_dead WAIT loop ->
203          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
204          *   eret to play_dead ->
205          *   bmips_secondary_reentry ->
206          *   start_secondary
207          */
208
209         pr_info("SMP: Booting CPU%d...\n", cpu);
210
211         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
212                 /* kseg1 might not exist if this CPU enabled XKS01 */
213                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
214
215                 switch (current_cpu_type()) {
216                 case CPU_BMIPS4350:
217                 case CPU_BMIPS4380:
218                         bmips43xx_send_ipi_single(cpu, 0);
219                         break;
220                 case CPU_BMIPS5000:
221                         bmips5000_send_ipi_single(cpu, 0);
222                         break;
223                 }
224         } else {
225                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
226
227                 switch (current_cpu_type()) {
228                 case CPU_BMIPS4350:
229                 case CPU_BMIPS4380:
230                         /* Reset slave TP1 if booting from TP0 */
231                         if (cpu_logical_map(cpu) == 1)
232                                 set_c0_brcm_cmt_ctrl(0x01);
233                         break;
234                 case CPU_BMIPS5000:
235                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
236                         break;
237                 }
238                 cpumask_set_cpu(cpu, &bmips_booted_mask);
239         }
240
241         return 0;
242 }
243
244 /*
245  * Early setup - runs on secondary CPU after cache probe
246  */
247 static void bmips_init_secondary(void)
248 {
249         bmips_cpu_setup();
250
251         switch (current_cpu_type()) {
252         case CPU_BMIPS4350:
253         case CPU_BMIPS4380:
254                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
255                 break;
256         case CPU_BMIPS5000:
257                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
259                 break;
260         }
261 }
262
263 /*
264  * Late setup - runs on secondary CPU before entering the idle loop
265  */
266 static void bmips_smp_finish(void)
267 {
268         pr_info("SMP: CPU%d is running\n", smp_processor_id());
269
270         /* make sure there won't be a timer interrupt for a little while */
271         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
272
273         irq_enable_hazard();
274         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
275         irq_enable_hazard();
276 }
277
278 /*
279  * BMIPS5000 raceless IPIs
280  *
281  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
282  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
283  * IPI1 is used for SMP_CALL_FUNCTION
284  */
285
286 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
287 {
288         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
289 }
290
291 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
292 {
293         int action = irq - IPI0_IRQ;
294
295         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
296
297         if (action == 0)
298                 scheduler_ipi();
299         else
300                 generic_smp_call_function_interrupt();
301
302         return IRQ_HANDLED;
303 }
304
305 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
306         unsigned int action)
307 {
308         unsigned int i;
309
310         for_each_cpu(i, mask)
311                 bmips5000_send_ipi_single(i, action);
312 }
313
314 /*
315  * BMIPS43xx racey IPIs
316  *
317  * We use one inbound SW IRQ for each CPU.
318  *
319  * A spinlock must be held in order to keep CPUx from accidentally clearing
320  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
321  * same spinlock is used to protect the action masks.
322  */
323
324 static DEFINE_SPINLOCK(ipi_lock);
325 static DEFINE_PER_CPU(int, ipi_action_mask);
326
327 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
328 {
329         unsigned long flags;
330
331         spin_lock_irqsave(&ipi_lock, flags);
332         set_c0_cause(cpu ? C_SW1 : C_SW0);
333         per_cpu(ipi_action_mask, cpu) |= action;
334         irq_enable_hazard();
335         spin_unlock_irqrestore(&ipi_lock, flags);
336 }
337
338 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
339 {
340         unsigned long flags;
341         int action, cpu = irq - IPI0_IRQ;
342
343         spin_lock_irqsave(&ipi_lock, flags);
344         action = __this_cpu_read(ipi_action_mask);
345         per_cpu(ipi_action_mask, cpu) = 0;
346         clear_c0_cause(cpu ? C_SW1 : C_SW0);
347         spin_unlock_irqrestore(&ipi_lock, flags);
348
349         if (action & SMP_RESCHEDULE_YOURSELF)
350                 scheduler_ipi();
351         if (action & SMP_CALL_FUNCTION)
352                 generic_smp_call_function_interrupt();
353
354         return IRQ_HANDLED;
355 }
356
357 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
358         unsigned int action)
359 {
360         unsigned int i;
361
362         for_each_cpu(i, mask)
363                 bmips43xx_send_ipi_single(i, action);
364 }
365
366 #ifdef CONFIG_HOTPLUG_CPU
367
368 static int bmips_cpu_disable(void)
369 {
370         unsigned int cpu = smp_processor_id();
371
372         pr_info("SMP: CPU%d is offline\n", cpu);
373
374         set_cpu_online(cpu, false);
375         calculate_cpu_foreign_map();
376         irq_cpu_offline();
377         clear_c0_status(IE_IRQ5);
378
379         local_flush_tlb_all();
380         local_flush_icache_range(0, ~0);
381
382         return 0;
383 }
384
385 static void bmips_cpu_die(unsigned int cpu)
386 {
387 }
388
389 void __ref play_dead(void)
390 {
391         idle_task_exit();
392
393         /* flush data cache */
394         _dma_cache_wback_inv(0, ~0);
395
396         /*
397          * Wakeup is on SW0 or SW1; disable everything else
398          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399          * IRQ handlers; this clears ST0_IE and returns immediately.
400          */
401         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402         change_c0_status(
403                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
404                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
405         irq_disable_hazard();
406
407         /*
408          * wait for SW interrupt from bmips_boot_secondary(), then jump
409          * back to start_secondary()
410          */
411         __asm__ __volatile__(
412         "       wait\n"
413         "       j       bmips_secondary_reentry\n"
414         : : : "memory");
415 }
416
417 #endif /* CONFIG_HOTPLUG_CPU */
418
419 const struct plat_smp_ops bmips43xx_smp_ops = {
420         .smp_setup              = bmips_smp_setup,
421         .prepare_cpus           = bmips_prepare_cpus,
422         .boot_secondary         = bmips_boot_secondary,
423         .smp_finish             = bmips_smp_finish,
424         .init_secondary         = bmips_init_secondary,
425         .send_ipi_single        = bmips43xx_send_ipi_single,
426         .send_ipi_mask          = bmips43xx_send_ipi_mask,
427 #ifdef CONFIG_HOTPLUG_CPU
428         .cpu_disable            = bmips_cpu_disable,
429         .cpu_die                = bmips_cpu_die,
430 #endif
431 #ifdef CONFIG_KEXEC
432         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
433 #endif
434 };
435
436 const struct plat_smp_ops bmips5000_smp_ops = {
437         .smp_setup              = bmips_smp_setup,
438         .prepare_cpus           = bmips_prepare_cpus,
439         .boot_secondary         = bmips_boot_secondary,
440         .smp_finish             = bmips_smp_finish,
441         .init_secondary         = bmips_init_secondary,
442         .send_ipi_single        = bmips5000_send_ipi_single,
443         .send_ipi_mask          = bmips5000_send_ipi_mask,
444 #ifdef CONFIG_HOTPLUG_CPU
445         .cpu_disable            = bmips_cpu_disable,
446         .cpu_die                = bmips_cpu_die,
447 #endif
448 #ifdef CONFIG_KEXEC
449         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
450 #endif
451 };
452
453 #endif /* CONFIG_SMP */
454
455 /***********************************************************************
456  * BMIPS vector relocation
457  * This is primarily used for SMP boot, but it is applicable to some
458  * UP BMIPS systems as well.
459  ***********************************************************************/
460
461 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
462 {
463         memcpy((void *)dst, start, end - start);
464         dma_cache_wback(dst, end - start);
465         local_flush_icache_range(dst, dst + (end - start));
466         instruction_hazard();
467 }
468
469 static inline void bmips_nmi_handler_setup(void)
470 {
471         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
472                 bmips_reset_nmi_vec_end);
473         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
474                 bmips_smp_int_vec_end);
475 }
476
477 struct reset_vec_info {
478         int cpu;
479         u32 val;
480 };
481
482 static void bmips_set_reset_vec_remote(void *vinfo)
483 {
484         struct reset_vec_info *info = vinfo;
485         int shift = info->cpu & 0x01 ? 16 : 0;
486         u32 mask = ~(0xffff << shift), val = info->val >> 16;
487
488         preempt_disable();
489         if (smp_processor_id() > 0) {
490                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
491                                          info, 1);
492         } else {
493                 if (info->cpu & 0x02) {
494                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
495                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
496                         bmips_read_zscm_reg(0xa0);
497                 } else {
498                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
499                                               (val << shift));
500                 }
501         }
502         preempt_enable();
503 }
504
505 static void bmips_set_reset_vec(int cpu, u32 val)
506 {
507         struct reset_vec_info info;
508
509         if (current_cpu_type() == CPU_BMIPS5000) {
510                 /* this needs to run from CPU0 (which is always online) */
511                 info.cpu = cpu;
512                 info.val = val;
513                 bmips_set_reset_vec_remote(&info);
514         } else {
515                 void __iomem *cbr = BMIPS_GET_CBR();
516
517                 if (cpu == 0)
518                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
519                 else {
520                         if (current_cpu_type() != CPU_BMIPS4380)
521                                 return;
522                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
523                 }
524         }
525         __sync();
526         back_to_back_c0_hazard();
527 }
528
529 void bmips_ebase_setup(void)
530 {
531         unsigned long new_ebase = ebase;
532
533         BUG_ON(ebase != CKSEG0);
534
535         switch (current_cpu_type()) {
536         case CPU_BMIPS4350:
537                 /*
538                  * BMIPS4350 cannot relocate the normal vectors, but it
539                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
540                  * the relocated BEV=1, IV=0 general exception vector @
541                  * 0xa000_0380.
542                  *
543                  * set_uncached_handler() is used here because:
544                  *  - CPU1 will run this from uncached space
545                  *  - None of the cacheflush functions are set up yet
546                  */
547                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
548                         &bmips_smp_int_vec, 0x80);
549                 __sync();
550                 return;
551         case CPU_BMIPS3300:
552         case CPU_BMIPS4380:
553                 /*
554                  * 0x8000_0000: reset/NMI (initially in kseg1)
555                  * 0x8000_0400: normal vectors
556                  */
557                 new_ebase = 0x80000400;
558                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
559                 break;
560         case CPU_BMIPS5000:
561                 /*
562                  * 0x8000_0000: reset/NMI (initially in kseg1)
563                  * 0x8000_1000: normal vectors
564                  */
565                 new_ebase = 0x80001000;
566                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
567                 write_c0_ebase(new_ebase);
568                 break;
569         default:
570                 return;
571         }
572
573         board_nmi_handler_setup = &bmips_nmi_handler_setup;
574         ebase = new_ebase;
575 }
576
577 asmlinkage void __weak plat_wired_tlb_setup(void)
578 {
579         /*
580          * Called when starting/restarting a secondary CPU.
581          * Kernel stacks and other important data might only be accessible
582          * once the wired entries are present.
583          */
584 }
585
586 void bmips_cpu_setup(void)
587 {
588         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
589         u32 __maybe_unused cfg;
590
591         switch (current_cpu_type()) {
592         case CPU_BMIPS3300:
593                 /* Set BIU to async mode */
594                 set_c0_brcm_bus_pll(BIT(22));
595                 __sync();
596
597                 /* put the BIU back in sync mode */
598                 clear_c0_brcm_bus_pll(BIT(22));
599
600                 /* clear BHTD to enable branch history table */
601                 clear_c0_brcm_reset(BIT(16));
602
603                 /* Flush and enable RAC */
604                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
606                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
609                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
610                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
611
612                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
614                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
615                 break;
616
617         case CPU_BMIPS4380:
618                 /* CBG workaround for early BMIPS4380 CPUs */
619                 switch (read_c0_prid()) {
620                 case 0x2a040:
621                 case 0x2a042:
622                 case 0x2a044:
623                 case 0x2a060:
624                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
625                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
626                         __raw_readl(cbr + BMIPS_L2_CONFIG);
627                 }
628
629                 /* clear BHTD to enable branch history table */
630                 clear_c0_brcm_config_0(BIT(21));
631
632                 /* XI/ROTR enable */
633                 set_c0_brcm_config_0(BIT(23));
634                 set_c0_brcm_cmt_ctrl(BIT(15));
635                 break;
636
637         case CPU_BMIPS5000:
638                 /* enable RDHWR, BRDHWR */
639                 set_c0_brcm_config(BIT(17) | BIT(21));
640
641                 /* Disable JTB */
642                 __asm__ __volatile__(
643                 "       .set    noreorder\n"
644                 "       li      $8, 0x5a455048\n"
645                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
646                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
647                 "       li      $9, 0x00008000\n"
648                 "       or      $8, $8, $9\n"
649                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
650                 "       sync\n"
651                 "       li      $8, 0x0\n"
652                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
653                 "       .set    reorder\n"
654                 : : : "$8", "$9");
655
656                 /* XI enable */
657                 set_c0_brcm_config(BIT(27));
658
659                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
660                 __asm__ __volatile__(
661                 "       li      $8, 0x5a455048\n"
662                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
663                 "       nop; nop; nop\n"
664                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
665                 "       lui     $9, 0x0100\n"
666                 "       or      $8, $9\n"
667                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
668                 : : : "$8", "$9");
669                 break;
670         }
671 }