x86/ptrace: Document FSBASE and GSBASE ABI oddities
[linux-2.6-microblaze.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29
30 #include <asm/time.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41
42 static int __maybe_unused max_cpus = 1;
43
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49
50 #define RESET_FROM_KSEG0                0x80080800
51 #define RESET_FROM_KSEG1                0xa0080800
52
53 static void bmips_set_reset_vec(int cpu, u32 val);
54
55 #ifdef CONFIG_SMP
56
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
69
70 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
74
75 static void __init bmips_smp_setup(void)
76 {
77         int i, cpu = 1, boot_cpu = 0;
78         int cpu_hw_intr;
79
80         switch (current_cpu_type()) {
81         case CPU_BMIPS4350:
82         case CPU_BMIPS4380:
83                 /* arbitration priority */
84                 clear_c0_brcm_cmt_ctrl(0x30);
85
86                 /* NBK and weak order flags */
87                 set_c0_brcm_config_0(0x30000);
88
89                 /* Find out if we are running on TP0 or TP1 */
90                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91
92                 /*
93                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94                  * thread
95                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97                  */
98                 if (boot_cpu == 0)
99                         cpu_hw_intr = 0x02;
100                 else
101                         cpu_hw_intr = 0x1d;
102
103                 change_c0_brcm_cmt_intr(0xf8018000,
104                                         (cpu_hw_intr << 27) | (0x03 << 15));
105
106                 /* single core, 2 threads (2 pipelines) */
107                 max_cpus = 2;
108
109                 break;
110         case CPU_BMIPS5000:
111                 /* enable raceless SW interrupts */
112                 set_c0_brcm_config(0x03 << 22);
113
114                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117                 /* N cores, 2 threads per core */
118                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120                 /* clear any pending SW interrupts */
121                 for (i = 0; i < max_cpus; i++) {
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124                 }
125
126                 break;
127         default:
128                 max_cpus = 1;
129         }
130
131         if (!bmips_smp_enabled)
132                 max_cpus = 1;
133
134         /* this can be overridden by the BSP */
135         if (!board_ebase_setup)
136                 board_ebase_setup = &bmips_ebase_setup;
137
138         __cpu_number_map[boot_cpu] = 0;
139         __cpu_logical_map[0] = boot_cpu;
140
141         for (i = 0; i < max_cpus; i++) {
142                 if (i != boot_cpu) {
143                         __cpu_number_map[i] = cpu;
144                         __cpu_logical_map[cpu] = i;
145                         cpu++;
146                 }
147                 set_cpu_possible(i, 1);
148                 set_cpu_present(i, 1);
149         }
150 }
151
152 /*
153  * IPI IRQ setup - runs on CPU0
154  */
155 static void bmips_prepare_cpus(unsigned int max_cpus)
156 {
157         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159         switch (current_cpu_type()) {
160         case CPU_BMIPS4350:
161         case CPU_BMIPS4380:
162                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163                 break;
164         case CPU_BMIPS5000:
165                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166                 break;
167         default:
168                 return;
169         }
170
171         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
172                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
173                 panic("Can't request IPI0 interrupt");
174         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
175                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
176                 panic("Can't request IPI1 interrupt");
177 }
178
179 /*
180  * Tell the hardware to boot CPUx - runs on CPU0
181  */
182 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183 {
184         bmips_smp_boot_sp = __KSTK_TOS(idle);
185         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186         mb();
187
188         /*
189          * Initial boot sequence for secondary CPU:
190          *   bmips_reset_nmi_vec @ a000_0000 ->
191          *   bmips_smp_entry ->
192          *   plat_wired_tlb_setup (cached function call; optional) ->
193          *   start_secondary (cached jump)
194          *
195          * Warm restart sequence:
196          *   play_dead WAIT loop ->
197          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198          *   eret to play_dead ->
199          *   bmips_secondary_reentry ->
200          *   start_secondary
201          */
202
203         pr_info("SMP: Booting CPU%d...\n", cpu);
204
205         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206                 /* kseg1 might not exist if this CPU enabled XKS01 */
207                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209                 switch (current_cpu_type()) {
210                 case CPU_BMIPS4350:
211                 case CPU_BMIPS4380:
212                         bmips43xx_send_ipi_single(cpu, 0);
213                         break;
214                 case CPU_BMIPS5000:
215                         bmips5000_send_ipi_single(cpu, 0);
216                         break;
217                 }
218         } else {
219                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221                 switch (current_cpu_type()) {
222                 case CPU_BMIPS4350:
223                 case CPU_BMIPS4380:
224                         /* Reset slave TP1 if booting from TP0 */
225                         if (cpu_logical_map(cpu) == 1)
226                                 set_c0_brcm_cmt_ctrl(0x01);
227                         break;
228                 case CPU_BMIPS5000:
229                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230                         break;
231                 }
232                 cpumask_set_cpu(cpu, &bmips_booted_mask);
233         }
234
235         return 0;
236 }
237
238 /*
239  * Early setup - runs on secondary CPU after cache probe
240  */
241 static void bmips_init_secondary(void)
242 {
243         switch (current_cpu_type()) {
244         case CPU_BMIPS4350:
245         case CPU_BMIPS4380:
246                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
247                 break;
248         case CPU_BMIPS5000:
249                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
250                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
251                 break;
252         }
253 }
254
255 /*
256  * Late setup - runs on secondary CPU before entering the idle loop
257  */
258 static void bmips_smp_finish(void)
259 {
260         pr_info("SMP: CPU%d is running\n", smp_processor_id());
261
262         /* make sure there won't be a timer interrupt for a little while */
263         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
264
265         irq_enable_hazard();
266         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
267         irq_enable_hazard();
268 }
269
270 /*
271  * BMIPS5000 raceless IPIs
272  *
273  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
274  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
275  * IPI1 is used for SMP_CALL_FUNCTION
276  */
277
278 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
279 {
280         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
281 }
282
283 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
284 {
285         int action = irq - IPI0_IRQ;
286
287         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
288
289         if (action == 0)
290                 scheduler_ipi();
291         else
292                 generic_smp_call_function_interrupt();
293
294         return IRQ_HANDLED;
295 }
296
297 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
298         unsigned int action)
299 {
300         unsigned int i;
301
302         for_each_cpu(i, mask)
303                 bmips5000_send_ipi_single(i, action);
304 }
305
306 /*
307  * BMIPS43xx racey IPIs
308  *
309  * We use one inbound SW IRQ for each CPU.
310  *
311  * A spinlock must be held in order to keep CPUx from accidentally clearing
312  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
313  * same spinlock is used to protect the action masks.
314  */
315
316 static DEFINE_SPINLOCK(ipi_lock);
317 static DEFINE_PER_CPU(int, ipi_action_mask);
318
319 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
320 {
321         unsigned long flags;
322
323         spin_lock_irqsave(&ipi_lock, flags);
324         set_c0_cause(cpu ? C_SW1 : C_SW0);
325         per_cpu(ipi_action_mask, cpu) |= action;
326         irq_enable_hazard();
327         spin_unlock_irqrestore(&ipi_lock, flags);
328 }
329
330 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
331 {
332         unsigned long flags;
333         int action, cpu = irq - IPI0_IRQ;
334
335         spin_lock_irqsave(&ipi_lock, flags);
336         action = __this_cpu_read(ipi_action_mask);
337         per_cpu(ipi_action_mask, cpu) = 0;
338         clear_c0_cause(cpu ? C_SW1 : C_SW0);
339         spin_unlock_irqrestore(&ipi_lock, flags);
340
341         if (action & SMP_RESCHEDULE_YOURSELF)
342                 scheduler_ipi();
343         if (action & SMP_CALL_FUNCTION)
344                 generic_smp_call_function_interrupt();
345
346         return IRQ_HANDLED;
347 }
348
349 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
350         unsigned int action)
351 {
352         unsigned int i;
353
354         for_each_cpu(i, mask)
355                 bmips43xx_send_ipi_single(i, action);
356 }
357
358 #ifdef CONFIG_HOTPLUG_CPU
359
360 static int bmips_cpu_disable(void)
361 {
362         unsigned int cpu = smp_processor_id();
363
364         if (cpu == 0)
365                 return -EBUSY;
366
367         pr_info("SMP: CPU%d is offline\n", cpu);
368
369         set_cpu_online(cpu, false);
370         calculate_cpu_foreign_map();
371         irq_cpu_offline();
372         clear_c0_status(IE_IRQ5);
373
374         local_flush_tlb_all();
375         local_flush_icache_range(0, ~0);
376
377         return 0;
378 }
379
380 static void bmips_cpu_die(unsigned int cpu)
381 {
382 }
383
384 void __ref play_dead(void)
385 {
386         idle_task_exit();
387
388         /* flush data cache */
389         _dma_cache_wback_inv(0, ~0);
390
391         /*
392          * Wakeup is on SW0 or SW1; disable everything else
393          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
394          * IRQ handlers; this clears ST0_IE and returns immediately.
395          */
396         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
397         change_c0_status(
398                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
399                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
400         irq_disable_hazard();
401
402         /*
403          * wait for SW interrupt from bmips_boot_secondary(), then jump
404          * back to start_secondary()
405          */
406         __asm__ __volatile__(
407         "       wait\n"
408         "       j       bmips_secondary_reentry\n"
409         : : : "memory");
410 }
411
412 #endif /* CONFIG_HOTPLUG_CPU */
413
414 const struct plat_smp_ops bmips43xx_smp_ops = {
415         .smp_setup              = bmips_smp_setup,
416         .prepare_cpus           = bmips_prepare_cpus,
417         .boot_secondary         = bmips_boot_secondary,
418         .smp_finish             = bmips_smp_finish,
419         .init_secondary         = bmips_init_secondary,
420         .send_ipi_single        = bmips43xx_send_ipi_single,
421         .send_ipi_mask          = bmips43xx_send_ipi_mask,
422 #ifdef CONFIG_HOTPLUG_CPU
423         .cpu_disable            = bmips_cpu_disable,
424         .cpu_die                = bmips_cpu_die,
425 #endif
426 #ifdef CONFIG_KEXEC
427         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
428 #endif
429 };
430
431 const struct plat_smp_ops bmips5000_smp_ops = {
432         .smp_setup              = bmips_smp_setup,
433         .prepare_cpus           = bmips_prepare_cpus,
434         .boot_secondary         = bmips_boot_secondary,
435         .smp_finish             = bmips_smp_finish,
436         .init_secondary         = bmips_init_secondary,
437         .send_ipi_single        = bmips5000_send_ipi_single,
438         .send_ipi_mask          = bmips5000_send_ipi_mask,
439 #ifdef CONFIG_HOTPLUG_CPU
440         .cpu_disable            = bmips_cpu_disable,
441         .cpu_die                = bmips_cpu_die,
442 #endif
443 #ifdef CONFIG_KEXEC
444         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
445 #endif
446 };
447
448 #endif /* CONFIG_SMP */
449
450 /***********************************************************************
451  * BMIPS vector relocation
452  * This is primarily used for SMP boot, but it is applicable to some
453  * UP BMIPS systems as well.
454  ***********************************************************************/
455
456 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
457 {
458         memcpy((void *)dst, start, end - start);
459         dma_cache_wback(dst, end - start);
460         local_flush_icache_range(dst, dst + (end - start));
461         instruction_hazard();
462 }
463
464 static inline void bmips_nmi_handler_setup(void)
465 {
466         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
467                 bmips_reset_nmi_vec_end);
468         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
469                 bmips_smp_int_vec_end);
470 }
471
472 struct reset_vec_info {
473         int cpu;
474         u32 val;
475 };
476
477 static void bmips_set_reset_vec_remote(void *vinfo)
478 {
479         struct reset_vec_info *info = vinfo;
480         int shift = info->cpu & 0x01 ? 16 : 0;
481         u32 mask = ~(0xffff << shift), val = info->val >> 16;
482
483         preempt_disable();
484         if (smp_processor_id() > 0) {
485                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
486                                          info, 1);
487         } else {
488                 if (info->cpu & 0x02) {
489                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
490                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
491                         bmips_read_zscm_reg(0xa0);
492                 } else {
493                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
494                                               (val << shift));
495                 }
496         }
497         preempt_enable();
498 }
499
500 static void bmips_set_reset_vec(int cpu, u32 val)
501 {
502         struct reset_vec_info info;
503
504         if (current_cpu_type() == CPU_BMIPS5000) {
505                 /* this needs to run from CPU0 (which is always online) */
506                 info.cpu = cpu;
507                 info.val = val;
508                 bmips_set_reset_vec_remote(&info);
509         } else {
510                 void __iomem *cbr = BMIPS_GET_CBR();
511
512                 if (cpu == 0)
513                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
514                 else {
515                         if (current_cpu_type() != CPU_BMIPS4380)
516                                 return;
517                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
518                 }
519         }
520         __sync();
521         back_to_back_c0_hazard();
522 }
523
524 void bmips_ebase_setup(void)
525 {
526         unsigned long new_ebase = ebase;
527
528         BUG_ON(ebase != CKSEG0);
529
530         switch (current_cpu_type()) {
531         case CPU_BMIPS4350:
532                 /*
533                  * BMIPS4350 cannot relocate the normal vectors, but it
534                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
535                  * the relocated BEV=1, IV=0 general exception vector @
536                  * 0xa000_0380.
537                  *
538                  * set_uncached_handler() is used here because:
539                  *  - CPU1 will run this from uncached space
540                  *  - None of the cacheflush functions are set up yet
541                  */
542                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
543                         &bmips_smp_int_vec, 0x80);
544                 __sync();
545                 return;
546         case CPU_BMIPS3300:
547         case CPU_BMIPS4380:
548                 /*
549                  * 0x8000_0000: reset/NMI (initially in kseg1)
550                  * 0x8000_0400: normal vectors
551                  */
552                 new_ebase = 0x80000400;
553                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
554                 break;
555         case CPU_BMIPS5000:
556                 /*
557                  * 0x8000_0000: reset/NMI (initially in kseg1)
558                  * 0x8000_1000: normal vectors
559                  */
560                 new_ebase = 0x80001000;
561                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
562                 write_c0_ebase(new_ebase);
563                 break;
564         default:
565                 return;
566         }
567
568         board_nmi_handler_setup = &bmips_nmi_handler_setup;
569         ebase = new_ebase;
570 }
571
572 asmlinkage void __weak plat_wired_tlb_setup(void)
573 {
574         /*
575          * Called when starting/restarting a secondary CPU.
576          * Kernel stacks and other important data might only be accessible
577          * once the wired entries are present.
578          */
579 }
580
581 void bmips_cpu_setup(void)
582 {
583         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
584         u32 __maybe_unused cfg;
585
586         switch (current_cpu_type()) {
587         case CPU_BMIPS3300:
588                 /* Set BIU to async mode */
589                 set_c0_brcm_bus_pll(BIT(22));
590                 __sync();
591
592                 /* put the BIU back in sync mode */
593                 clear_c0_brcm_bus_pll(BIT(22));
594
595                 /* clear BHTD to enable branch history table */
596                 clear_c0_brcm_reset(BIT(16));
597
598                 /* Flush and enable RAC */
599                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
600                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
601                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
602
603                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
604                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
605                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
606
607                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
608                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
609                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
610                 break;
611
612         case CPU_BMIPS4380:
613                 /* CBG workaround for early BMIPS4380 CPUs */
614                 switch (read_c0_prid()) {
615                 case 0x2a040:
616                 case 0x2a042:
617                 case 0x2a044:
618                 case 0x2a060:
619                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
620                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
621                         __raw_readl(cbr + BMIPS_L2_CONFIG);
622                 }
623
624                 /* clear BHTD to enable branch history table */
625                 clear_c0_brcm_config_0(BIT(21));
626
627                 /* XI/ROTR enable */
628                 set_c0_brcm_config_0(BIT(23));
629                 set_c0_brcm_cmt_ctrl(BIT(15));
630                 break;
631
632         case CPU_BMIPS5000:
633                 /* enable RDHWR, BRDHWR */
634                 set_c0_brcm_config(BIT(17) | BIT(21));
635
636                 /* Disable JTB */
637                 __asm__ __volatile__(
638                 "       .set    noreorder\n"
639                 "       li      $8, 0x5a455048\n"
640                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
641                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
642                 "       li      $9, 0x00008000\n"
643                 "       or      $8, $8, $9\n"
644                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
645                 "       sync\n"
646                 "       li      $8, 0x0\n"
647                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
648                 "       .set    reorder\n"
649                 : : : "$8", "$9");
650
651                 /* XI enable */
652                 set_c0_brcm_config(BIT(27));
653
654                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
655                 __asm__ __volatile__(
656                 "       li      $8, 0x5a455048\n"
657                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
658                 "       nop; nop; nop\n"
659                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
660                 "       lui     $9, 0x0100\n"
661                 "       or      $8, $9\n"
662                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
663                 : : : "$8", "$9");
664                 break;
665         }
666 }