Merge tag 'arm-soc-drivers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29
30 #include <asm/time.h>
31 #include <asm/processor.h>
32 #include <asm/bootinfo.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bmips.h>
37 #include <asm/traps.h>
38 #include <asm/barrier.h>
39 #include <asm/cpu-features.h>
40
41 static int __maybe_unused max_cpus = 1;
42
43 /* these may be configured by the platform code */
44 int bmips_smp_enabled = 1;
45 int bmips_cpu_offset;
46 cpumask_t bmips_booted_mask;
47 unsigned long bmips_tp1_irqs = IE_IRQ1;
48
49 #define RESET_FROM_KSEG0                0x80080800
50 #define RESET_FROM_KSEG1                0xa0080800
51
52 static void bmips_set_reset_vec(int cpu, u32 val);
53
54 #ifdef CONFIG_SMP
55
56 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
57 unsigned long bmips_smp_boot_sp;
58 unsigned long bmips_smp_boot_gp;
59
60 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
61 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
62 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
63 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
64
65 /* SW interrupts 0,1 are used for interprocessor signaling */
66 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
67 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
68
69 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
70 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
71 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
73
74 static void __init bmips_smp_setup(void)
75 {
76         int i, cpu = 1, boot_cpu = 0;
77         int cpu_hw_intr;
78
79         switch (current_cpu_type()) {
80         case CPU_BMIPS4350:
81         case CPU_BMIPS4380:
82                 /* arbitration priority */
83                 clear_c0_brcm_cmt_ctrl(0x30);
84
85                 /* NBK and weak order flags */
86                 set_c0_brcm_config_0(0x30000);
87
88                 /* Find out if we are running on TP0 or TP1 */
89                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
90
91                 /*
92                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
93                  * thread
94                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
95                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
96                  */
97                 if (boot_cpu == 0)
98                         cpu_hw_intr = 0x02;
99                 else
100                         cpu_hw_intr = 0x1d;
101
102                 change_c0_brcm_cmt_intr(0xf8018000,
103                                         (cpu_hw_intr << 27) | (0x03 << 15));
104
105                 /* single core, 2 threads (2 pipelines) */
106                 max_cpus = 2;
107
108                 break;
109         case CPU_BMIPS5000:
110                 /* enable raceless SW interrupts */
111                 set_c0_brcm_config(0x03 << 22);
112
113                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116                 /* N cores, 2 threads per core */
117                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119                 /* clear any pending SW interrupts */
120                 for (i = 0; i < max_cpus; i++) {
121                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123                 }
124
125                 break;
126         default:
127                 max_cpus = 1;
128         }
129
130         if (!bmips_smp_enabled)
131                 max_cpus = 1;
132
133         /* this can be overridden by the BSP */
134         if (!board_ebase_setup)
135                 board_ebase_setup = &bmips_ebase_setup;
136
137         __cpu_number_map[boot_cpu] = 0;
138         __cpu_logical_map[0] = boot_cpu;
139
140         for (i = 0; i < max_cpus; i++) {
141                 if (i != boot_cpu) {
142                         __cpu_number_map[i] = cpu;
143                         __cpu_logical_map[cpu] = i;
144                         cpu++;
145                 }
146                 set_cpu_possible(i, 1);
147                 set_cpu_present(i, 1);
148         }
149 }
150
151 /*
152  * IPI IRQ setup - runs on CPU0
153  */
154 static void bmips_prepare_cpus(unsigned int max_cpus)
155 {
156         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
157
158         switch (current_cpu_type()) {
159         case CPU_BMIPS4350:
160         case CPU_BMIPS4380:
161                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
162                 break;
163         case CPU_BMIPS5000:
164                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
165                 break;
166         default:
167                 return;
168         }
169
170         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
171                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
172                 panic("Can't request IPI0 interrupt");
173         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
174                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
175                 panic("Can't request IPI1 interrupt");
176 }
177
178 /*
179  * Tell the hardware to boot CPUx - runs on CPU0
180  */
181 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
182 {
183         bmips_smp_boot_sp = __KSTK_TOS(idle);
184         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
185         mb();
186
187         /*
188          * Initial boot sequence for secondary CPU:
189          *   bmips_reset_nmi_vec @ a000_0000 ->
190          *   bmips_smp_entry ->
191          *   plat_wired_tlb_setup (cached function call; optional) ->
192          *   start_secondary (cached jump)
193          *
194          * Warm restart sequence:
195          *   play_dead WAIT loop ->
196          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
197          *   eret to play_dead ->
198          *   bmips_secondary_reentry ->
199          *   start_secondary
200          */
201
202         pr_info("SMP: Booting CPU%d...\n", cpu);
203
204         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
205                 /* kseg1 might not exist if this CPU enabled XKS01 */
206                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
207
208                 switch (current_cpu_type()) {
209                 case CPU_BMIPS4350:
210                 case CPU_BMIPS4380:
211                         bmips43xx_send_ipi_single(cpu, 0);
212                         break;
213                 case CPU_BMIPS5000:
214                         bmips5000_send_ipi_single(cpu, 0);
215                         break;
216                 }
217         } else {
218                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
219
220                 switch (current_cpu_type()) {
221                 case CPU_BMIPS4350:
222                 case CPU_BMIPS4380:
223                         /* Reset slave TP1 if booting from TP0 */
224                         if (cpu_logical_map(cpu) == 1)
225                                 set_c0_brcm_cmt_ctrl(0x01);
226                         break;
227                 case CPU_BMIPS5000:
228                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
229                         break;
230                 }
231                 cpumask_set_cpu(cpu, &bmips_booted_mask);
232         }
233
234         return 0;
235 }
236
237 /*
238  * Early setup - runs on secondary CPU after cache probe
239  */
240 static void bmips_init_secondary(void)
241 {
242         bmips_cpu_setup();
243
244         switch (current_cpu_type()) {
245         case CPU_BMIPS4350:
246         case CPU_BMIPS4380:
247                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248                 break;
249         case CPU_BMIPS5000:
250                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252                 break;
253         }
254 }
255
256 /*
257  * Late setup - runs on secondary CPU before entering the idle loop
258  */
259 static void bmips_smp_finish(void)
260 {
261         pr_info("SMP: CPU%d is running\n", smp_processor_id());
262
263         /* make sure there won't be a timer interrupt for a little while */
264         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266         irq_enable_hazard();
267         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268         irq_enable_hazard();
269 }
270
271 /*
272  * BMIPS5000 raceless IPIs
273  *
274  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276  * IPI1 is used for SMP_CALL_FUNCTION
277  */
278
279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280 {
281         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282 }
283
284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285 {
286         int action = irq - IPI0_IRQ;
287
288         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290         if (action == 0)
291                 scheduler_ipi();
292         else
293                 generic_smp_call_function_interrupt();
294
295         return IRQ_HANDLED;
296 }
297
298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299         unsigned int action)
300 {
301         unsigned int i;
302
303         for_each_cpu(i, mask)
304                 bmips5000_send_ipi_single(i, action);
305 }
306
307 /*
308  * BMIPS43xx racey IPIs
309  *
310  * We use one inbound SW IRQ for each CPU.
311  *
312  * A spinlock must be held in order to keep CPUx from accidentally clearing
313  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314  * same spinlock is used to protect the action masks.
315  */
316
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
319
320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321 {
322         unsigned long flags;
323
324         spin_lock_irqsave(&ipi_lock, flags);
325         set_c0_cause(cpu ? C_SW1 : C_SW0);
326         per_cpu(ipi_action_mask, cpu) |= action;
327         irq_enable_hazard();
328         spin_unlock_irqrestore(&ipi_lock, flags);
329 }
330
331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332 {
333         unsigned long flags;
334         int action, cpu = irq - IPI0_IRQ;
335
336         spin_lock_irqsave(&ipi_lock, flags);
337         action = __this_cpu_read(ipi_action_mask);
338         per_cpu(ipi_action_mask, cpu) = 0;
339         clear_c0_cause(cpu ? C_SW1 : C_SW0);
340         spin_unlock_irqrestore(&ipi_lock, flags);
341
342         if (action & SMP_RESCHEDULE_YOURSELF)
343                 scheduler_ipi();
344         if (action & SMP_CALL_FUNCTION)
345                 generic_smp_call_function_interrupt();
346
347         return IRQ_HANDLED;
348 }
349
350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351         unsigned int action)
352 {
353         unsigned int i;
354
355         for_each_cpu(i, mask)
356                 bmips43xx_send_ipi_single(i, action);
357 }
358
359 #ifdef CONFIG_HOTPLUG_CPU
360
361 static int bmips_cpu_disable(void)
362 {
363         unsigned int cpu = smp_processor_id();
364
365         pr_info("SMP: CPU%d is offline\n", cpu);
366
367         set_cpu_online(cpu, false);
368         calculate_cpu_foreign_map();
369         irq_cpu_offline();
370         clear_c0_status(IE_IRQ5);
371
372         local_flush_tlb_all();
373         local_flush_icache_range(0, ~0);
374
375         return 0;
376 }
377
378 static void bmips_cpu_die(unsigned int cpu)
379 {
380 }
381
382 void __ref play_dead(void)
383 {
384         idle_task_exit();
385
386         /* flush data cache */
387         _dma_cache_wback_inv(0, ~0);
388
389         /*
390          * Wakeup is on SW0 or SW1; disable everything else
391          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
392          * IRQ handlers; this clears ST0_IE and returns immediately.
393          */
394         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
395         change_c0_status(
396                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
397                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
398         irq_disable_hazard();
399
400         /*
401          * wait for SW interrupt from bmips_boot_secondary(), then jump
402          * back to start_secondary()
403          */
404         __asm__ __volatile__(
405         "       wait\n"
406         "       j       bmips_secondary_reentry\n"
407         : : : "memory");
408 }
409
410 #endif /* CONFIG_HOTPLUG_CPU */
411
412 const struct plat_smp_ops bmips43xx_smp_ops = {
413         .smp_setup              = bmips_smp_setup,
414         .prepare_cpus           = bmips_prepare_cpus,
415         .boot_secondary         = bmips_boot_secondary,
416         .smp_finish             = bmips_smp_finish,
417         .init_secondary         = bmips_init_secondary,
418         .send_ipi_single        = bmips43xx_send_ipi_single,
419         .send_ipi_mask          = bmips43xx_send_ipi_mask,
420 #ifdef CONFIG_HOTPLUG_CPU
421         .cpu_disable            = bmips_cpu_disable,
422         .cpu_die                = bmips_cpu_die,
423 #endif
424 #ifdef CONFIG_KEXEC
425         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
426 #endif
427 };
428
429 const struct plat_smp_ops bmips5000_smp_ops = {
430         .smp_setup              = bmips_smp_setup,
431         .prepare_cpus           = bmips_prepare_cpus,
432         .boot_secondary         = bmips_boot_secondary,
433         .smp_finish             = bmips_smp_finish,
434         .init_secondary         = bmips_init_secondary,
435         .send_ipi_single        = bmips5000_send_ipi_single,
436         .send_ipi_mask          = bmips5000_send_ipi_mask,
437 #ifdef CONFIG_HOTPLUG_CPU
438         .cpu_disable            = bmips_cpu_disable,
439         .cpu_die                = bmips_cpu_die,
440 #endif
441 #ifdef CONFIG_KEXEC
442         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
443 #endif
444 };
445
446 #endif /* CONFIG_SMP */
447
448 /***********************************************************************
449  * BMIPS vector relocation
450  * This is primarily used for SMP boot, but it is applicable to some
451  * UP BMIPS systems as well.
452  ***********************************************************************/
453
454 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
455 {
456         memcpy((void *)dst, start, end - start);
457         dma_cache_wback(dst, end - start);
458         local_flush_icache_range(dst, dst + (end - start));
459         instruction_hazard();
460 }
461
462 static inline void bmips_nmi_handler_setup(void)
463 {
464         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
465                 bmips_reset_nmi_vec_end);
466         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
467                 bmips_smp_int_vec_end);
468 }
469
470 struct reset_vec_info {
471         int cpu;
472         u32 val;
473 };
474
475 static void bmips_set_reset_vec_remote(void *vinfo)
476 {
477         struct reset_vec_info *info = vinfo;
478         int shift = info->cpu & 0x01 ? 16 : 0;
479         u32 mask = ~(0xffff << shift), val = info->val >> 16;
480
481         preempt_disable();
482         if (smp_processor_id() > 0) {
483                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
484                                          info, 1);
485         } else {
486                 if (info->cpu & 0x02) {
487                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
488                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
489                         bmips_read_zscm_reg(0xa0);
490                 } else {
491                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
492                                               (val << shift));
493                 }
494         }
495         preempt_enable();
496 }
497
498 static void bmips_set_reset_vec(int cpu, u32 val)
499 {
500         struct reset_vec_info info;
501
502         if (current_cpu_type() == CPU_BMIPS5000) {
503                 /* this needs to run from CPU0 (which is always online) */
504                 info.cpu = cpu;
505                 info.val = val;
506                 bmips_set_reset_vec_remote(&info);
507         } else {
508                 void __iomem *cbr = BMIPS_GET_CBR();
509
510                 if (cpu == 0)
511                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
512                 else {
513                         if (current_cpu_type() != CPU_BMIPS4380)
514                                 return;
515                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
516                 }
517         }
518         __sync();
519         back_to_back_c0_hazard();
520 }
521
522 void bmips_ebase_setup(void)
523 {
524         unsigned long new_ebase = ebase;
525
526         BUG_ON(ebase != CKSEG0);
527
528         switch (current_cpu_type()) {
529         case CPU_BMIPS4350:
530                 /*
531                  * BMIPS4350 cannot relocate the normal vectors, but it
532                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
533                  * the relocated BEV=1, IV=0 general exception vector @
534                  * 0xa000_0380.
535                  *
536                  * set_uncached_handler() is used here because:
537                  *  - CPU1 will run this from uncached space
538                  *  - None of the cacheflush functions are set up yet
539                  */
540                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
541                         &bmips_smp_int_vec, 0x80);
542                 __sync();
543                 return;
544         case CPU_BMIPS3300:
545         case CPU_BMIPS4380:
546                 /*
547                  * 0x8000_0000: reset/NMI (initially in kseg1)
548                  * 0x8000_0400: normal vectors
549                  */
550                 new_ebase = 0x80000400;
551                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
552                 break;
553         case CPU_BMIPS5000:
554                 /*
555                  * 0x8000_0000: reset/NMI (initially in kseg1)
556                  * 0x8000_1000: normal vectors
557                  */
558                 new_ebase = 0x80001000;
559                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
560                 write_c0_ebase(new_ebase);
561                 break;
562         default:
563                 return;
564         }
565
566         board_nmi_handler_setup = &bmips_nmi_handler_setup;
567         ebase = new_ebase;
568 }
569
570 asmlinkage void __weak plat_wired_tlb_setup(void)
571 {
572         /*
573          * Called when starting/restarting a secondary CPU.
574          * Kernel stacks and other important data might only be accessible
575          * once the wired entries are present.
576          */
577 }
578
579 void bmips_cpu_setup(void)
580 {
581         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
582         u32 __maybe_unused cfg;
583
584         switch (current_cpu_type()) {
585         case CPU_BMIPS3300:
586                 /* Set BIU to async mode */
587                 set_c0_brcm_bus_pll(BIT(22));
588                 __sync();
589
590                 /* put the BIU back in sync mode */
591                 clear_c0_brcm_bus_pll(BIT(22));
592
593                 /* clear BHTD to enable branch history table */
594                 clear_c0_brcm_reset(BIT(16));
595
596                 /* Flush and enable RAC */
597                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
599                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
600
601                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
602                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
603                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
604
605                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
606                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
607                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
608                 break;
609
610         case CPU_BMIPS4380:
611                 /* CBG workaround for early BMIPS4380 CPUs */
612                 switch (read_c0_prid()) {
613                 case 0x2a040:
614                 case 0x2a042:
615                 case 0x2a044:
616                 case 0x2a060:
617                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
618                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
619                         __raw_readl(cbr + BMIPS_L2_CONFIG);
620                 }
621
622                 /* clear BHTD to enable branch history table */
623                 clear_c0_brcm_config_0(BIT(21));
624
625                 /* XI/ROTR enable */
626                 set_c0_brcm_config_0(BIT(23));
627                 set_c0_brcm_cmt_ctrl(BIT(15));
628                 break;
629
630         case CPU_BMIPS5000:
631                 /* enable RDHWR, BRDHWR */
632                 set_c0_brcm_config(BIT(17) | BIT(21));
633
634                 /* Disable JTB */
635                 __asm__ __volatile__(
636                 "       .set    noreorder\n"
637                 "       li      $8, 0x5a455048\n"
638                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
639                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
640                 "       li      $9, 0x00008000\n"
641                 "       or      $8, $8, $9\n"
642                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
643                 "       sync\n"
644                 "       li      $8, 0x0\n"
645                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
646                 "       .set    reorder\n"
647                 : : : "$8", "$9");
648
649                 /* XI enable */
650                 set_c0_brcm_config(BIT(27));
651
652                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
653                 __asm__ __volatile__(
654                 "       li      $8, 0x5a455048\n"
655                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
656                 "       nop; nop; nop\n"
657                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
658                 "       lui     $9, 0x0100\n"
659                 "       or      $8, $9\n"
660                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
661                 : : : "$8", "$9");
662                 break;
663         }
664 }