Merge tag 'compiler-attributes-for-linus-v5.15-rc1-v2' of git://github.com/ojeda...
[linux-2.6-microblaze.git] / arch / mips / kernel / perf_event_mipsxx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux performance counter support for MIPS.
4  *
5  * Copyright (C) 2010 MIPS Technologies, Inc.
6  * Copyright (C) 2011 Cavium Networks, Inc.
7  * Author: Deng-Cheng Zhu
8  *
9  * This code is based on the implementation for ARM, which is in turn
10  * based on the sparc64 perf event code and the x86 code. Performance
11  * counter access is based on the MIPS Oprofile code. And the callchain
12  * support references the code of MIPS stacktrace.c.
13  */
14
15 #include <linux/cpumask.h>
16 #include <linux/interrupt.h>
17 #include <linux/smp.h>
18 #include <linux/kernel.h>
19 #include <linux/perf_event.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
25 #include <asm/time.h> /* For perf_irq */
26
27 #define MIPS_MAX_HWEVENTS 4
28 #define MIPS_TCS_PER_COUNTER 2
29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
30
31 struct cpu_hw_events {
32         /* Array of events on this cpu. */
33         struct perf_event       *events[MIPS_MAX_HWEVENTS];
34
35         /*
36          * Set the bit (indexed by the counter number) when the counter
37          * is used for an event.
38          */
39         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
40
41         /*
42          * Software copy of the control register for each performance counter.
43          * MIPS CPUs vary in performance counters. They use this differently,
44          * and even may not use it.
45          */
46         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
47 };
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .saved_ctrl = {0},
50 };
51
52 /* The description of MIPS performance events. */
53 struct mips_perf_event {
54         unsigned int event_id;
55         /*
56          * MIPS performance counters are indexed starting from 0.
57          * CNTR_EVEN indicates the indexes of the counters to be used are
58          * even numbers.
59          */
60         unsigned int cntr_mask;
61         #define CNTR_EVEN       0x55555555
62         #define CNTR_ODD        0xaaaaaaaa
63         #define CNTR_ALL        0xffffffff
64         enum {
65                 T  = 0,
66                 V  = 1,
67                 P  = 2,
68         } range;
69 };
70
71 static struct mips_perf_event raw_event;
72 static DEFINE_MUTEX(raw_event_mutex);
73
74 #define C(x) PERF_COUNT_HW_CACHE_##x
75
76 struct mips_pmu {
77         u64             max_period;
78         u64             valid_count;
79         u64             overflow;
80         const char      *name;
81         int             irq;
82         u64             (*read_counter)(unsigned int idx);
83         void            (*write_counter)(unsigned int idx, u64 val);
84         const struct mips_perf_event *(*map_raw_event)(u64 config);
85         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
86         const struct mips_perf_event (*cache_event_map)
87                                 [PERF_COUNT_HW_CACHE_MAX]
88                                 [PERF_COUNT_HW_CACHE_OP_MAX]
89                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
90         unsigned int    num_counters;
91 };
92
93 static int counter_bits;
94 static struct mips_pmu mipspmu;
95
96 #define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
97                                          MIPS_PERFCTRL_EVENT)
98 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
99
100 #ifdef CONFIG_CPU_BMIPS5000
101 #define M_PERFCTL_MT_EN(filter)         0
102 #else /* !CONFIG_CPU_BMIPS5000 */
103 #define M_PERFCTL_MT_EN(filter)         (filter)
104 #endif /* CONFIG_CPU_BMIPS5000 */
105
106 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
107 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
108 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
109
110 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
111                                          MIPS_PERFCTRL_K |              \
112                                          MIPS_PERFCTRL_U |              \
113                                          MIPS_PERFCTRL_S |              \
114                                          MIPS_PERFCTRL_IE)
115
116 #ifdef CONFIG_MIPS_MT_SMP
117 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
118 #else
119 #define M_PERFCTL_CONFIG_MASK           0x1f
120 #endif
121
122 #define CNTR_BIT_MASK(n)        (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
123
124 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
125 static DEFINE_RWLOCK(pmuint_rwlock);
126
127 #if defined(CONFIG_CPU_BMIPS5000)
128 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
129                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
130 #else
131 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
132                          0 : cpu_vpe_id(&current_cpu_data))
133 #endif
134
135 /* Copied from op_model_mipsxx.c */
136 static unsigned int vpe_shift(void)
137 {
138         if (num_possible_cpus() > 1)
139                 return 1;
140
141         return 0;
142 }
143
144 static unsigned int counters_total_to_per_cpu(unsigned int counters)
145 {
146         return counters >> vpe_shift();
147 }
148
149 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
150 #define vpe_id()        0
151
152 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
153
154 static void resume_local_counters(void);
155 static void pause_local_counters(void);
156 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
157 static int mipsxx_pmu_handle_shared_irq(void);
158
159 /* 0: Not Loongson-3
160  * 1: Loongson-3A1000/3B1000/3B1500
161  * 2: Loongson-3A2000/3A3000
162  * 3: Loongson-3A4000+
163  */
164
165 #define LOONGSON_PMU_TYPE0 0
166 #define LOONGSON_PMU_TYPE1 1
167 #define LOONGSON_PMU_TYPE2 2
168 #define LOONGSON_PMU_TYPE3 3
169
170 static inline int get_loongson3_pmu_type(void)
171 {
172         if (boot_cpu_type() != CPU_LOONGSON64)
173                 return LOONGSON_PMU_TYPE0;
174         if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
175                 return LOONGSON_PMU_TYPE1;
176         if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
177                 return LOONGSON_PMU_TYPE2;
178         if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
179                 return LOONGSON_PMU_TYPE3;
180
181         return LOONGSON_PMU_TYPE0;
182 }
183
184 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
185 {
186         if (vpe_id() == 1)
187                 idx = (idx + 2) & 3;
188         return idx;
189 }
190
191 static u64 mipsxx_pmu_read_counter(unsigned int idx)
192 {
193         idx = mipsxx_pmu_swizzle_perf_idx(idx);
194
195         switch (idx) {
196         case 0:
197                 /*
198                  * The counters are unsigned, we must cast to truncate
199                  * off the high bits.
200                  */
201                 return (u32)read_c0_perfcntr0();
202         case 1:
203                 return (u32)read_c0_perfcntr1();
204         case 2:
205                 return (u32)read_c0_perfcntr2();
206         case 3:
207                 return (u32)read_c0_perfcntr3();
208         default:
209                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
210                 return 0;
211         }
212 }
213
214 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
215 {
216         u64 mask = CNTR_BIT_MASK(counter_bits);
217         idx = mipsxx_pmu_swizzle_perf_idx(idx);
218
219         switch (idx) {
220         case 0:
221                 return read_c0_perfcntr0_64() & mask;
222         case 1:
223                 return read_c0_perfcntr1_64() & mask;
224         case 2:
225                 return read_c0_perfcntr2_64() & mask;
226         case 3:
227                 return read_c0_perfcntr3_64() & mask;
228         default:
229                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
230                 return 0;
231         }
232 }
233
234 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
235 {
236         idx = mipsxx_pmu_swizzle_perf_idx(idx);
237
238         switch (idx) {
239         case 0:
240                 write_c0_perfcntr0(val);
241                 return;
242         case 1:
243                 write_c0_perfcntr1(val);
244                 return;
245         case 2:
246                 write_c0_perfcntr2(val);
247                 return;
248         case 3:
249                 write_c0_perfcntr3(val);
250                 return;
251         }
252 }
253
254 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
255 {
256         val &= CNTR_BIT_MASK(counter_bits);
257         idx = mipsxx_pmu_swizzle_perf_idx(idx);
258
259         switch (idx) {
260         case 0:
261                 write_c0_perfcntr0_64(val);
262                 return;
263         case 1:
264                 write_c0_perfcntr1_64(val);
265                 return;
266         case 2:
267                 write_c0_perfcntr2_64(val);
268                 return;
269         case 3:
270                 write_c0_perfcntr3_64(val);
271                 return;
272         }
273 }
274
275 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
276 {
277         idx = mipsxx_pmu_swizzle_perf_idx(idx);
278
279         switch (idx) {
280         case 0:
281                 return read_c0_perfctrl0();
282         case 1:
283                 return read_c0_perfctrl1();
284         case 2:
285                 return read_c0_perfctrl2();
286         case 3:
287                 return read_c0_perfctrl3();
288         default:
289                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
290                 return 0;
291         }
292 }
293
294 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
295 {
296         idx = mipsxx_pmu_swizzle_perf_idx(idx);
297
298         switch (idx) {
299         case 0:
300                 write_c0_perfctrl0(val);
301                 return;
302         case 1:
303                 write_c0_perfctrl1(val);
304                 return;
305         case 2:
306                 write_c0_perfctrl2(val);
307                 return;
308         case 3:
309                 write_c0_perfctrl3(val);
310                 return;
311         }
312 }
313
314 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
315                                     struct hw_perf_event *hwc)
316 {
317         int i;
318         unsigned long cntr_mask;
319
320         /*
321          * We only need to care the counter mask. The range has been
322          * checked definitely.
323          */
324         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
325                 cntr_mask = (hwc->event_base >> 10) & 0xffff;
326         else
327                 cntr_mask = (hwc->event_base >> 8) & 0xffff;
328
329         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
330                 /*
331                  * Note that some MIPS perf events can be counted by both
332                  * even and odd counters, wheresas many other are only by
333                  * even _or_ odd counters. This introduces an issue that
334                  * when the former kind of event takes the counter the
335                  * latter kind of event wants to use, then the "counter
336                  * allocation" for the latter event will fail. In fact if
337                  * they can be dynamically swapped, they both feel happy.
338                  * But here we leave this issue alone for now.
339                  */
340                 if (test_bit(i, &cntr_mask) &&
341                         !test_and_set_bit(i, cpuc->used_mask))
342                         return i;
343         }
344
345         return -EAGAIN;
346 }
347
348 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
349 {
350         struct perf_event *event = container_of(evt, struct perf_event, hw);
351         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
352         unsigned int range = evt->event_base >> 24;
353
354         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
355
356         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
357                 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
358                         (evt->config_base & M_PERFCTL_CONFIG_MASK) |
359                         /* Make sure interrupt enabled. */
360                         MIPS_PERFCTRL_IE;
361         else
362                 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
363                         (evt->config_base & M_PERFCTL_CONFIG_MASK) |
364                         /* Make sure interrupt enabled. */
365                         MIPS_PERFCTRL_IE;
366
367         if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
368                 /* enable the counter for the calling thread */
369                 cpuc->saved_ctrl[idx] |=
370                         (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
371         } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
372                 /* The counter is processor wide. Set it up to count all TCs. */
373                 pr_debug("Enabling perf counter for all TCs\n");
374                 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
375         } else {
376                 unsigned int cpu, ctrl;
377
378                 /*
379                  * Set up the counter for a particular CPU when event->cpu is
380                  * a valid CPU number. Otherwise set up the counter for the CPU
381                  * scheduling this thread.
382                  */
383                 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
384
385                 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
386                 ctrl |= M_TC_EN_VPE;
387                 cpuc->saved_ctrl[idx] |= ctrl;
388                 pr_debug("Enabling perf counter for CPU%d\n", cpu);
389         }
390         /*
391          * We do not actually let the counter run. Leave it until start().
392          */
393 }
394
395 static void mipsxx_pmu_disable_event(int idx)
396 {
397         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
398         unsigned long flags;
399
400         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
401
402         local_irq_save(flags);
403         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
404                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
405         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
406         local_irq_restore(flags);
407 }
408
409 static int mipspmu_event_set_period(struct perf_event *event,
410                                     struct hw_perf_event *hwc,
411                                     int idx)
412 {
413         u64 left = local64_read(&hwc->period_left);
414         u64 period = hwc->sample_period;
415         int ret = 0;
416
417         if (unlikely((left + period) & (1ULL << 63))) {
418                 /* left underflowed by more than period. */
419                 left = period;
420                 local64_set(&hwc->period_left, left);
421                 hwc->last_period = period;
422                 ret = 1;
423         } else  if (unlikely((left + period) <= period)) {
424                 /* left underflowed by less than period. */
425                 left += period;
426                 local64_set(&hwc->period_left, left);
427                 hwc->last_period = period;
428                 ret = 1;
429         }
430
431         if (left > mipspmu.max_period) {
432                 left = mipspmu.max_period;
433                 local64_set(&hwc->period_left, left);
434         }
435
436         local64_set(&hwc->prev_count, mipspmu.overflow - left);
437
438         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
439                 mipsxx_pmu_write_control(idx,
440                                 M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
441
442         mipspmu.write_counter(idx, mipspmu.overflow - left);
443
444         perf_event_update_userpage(event);
445
446         return ret;
447 }
448
449 static void mipspmu_event_update(struct perf_event *event,
450                                  struct hw_perf_event *hwc,
451                                  int idx)
452 {
453         u64 prev_raw_count, new_raw_count;
454         u64 delta;
455
456 again:
457         prev_raw_count = local64_read(&hwc->prev_count);
458         new_raw_count = mipspmu.read_counter(idx);
459
460         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
461                                 new_raw_count) != prev_raw_count)
462                 goto again;
463
464         delta = new_raw_count - prev_raw_count;
465
466         local64_add(delta, &event->count);
467         local64_sub(delta, &hwc->period_left);
468 }
469
470 static void mipspmu_start(struct perf_event *event, int flags)
471 {
472         struct hw_perf_event *hwc = &event->hw;
473
474         if (flags & PERF_EF_RELOAD)
475                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
476
477         hwc->state = 0;
478
479         /* Set the period for the event. */
480         mipspmu_event_set_period(event, hwc, hwc->idx);
481
482         /* Enable the event. */
483         mipsxx_pmu_enable_event(hwc, hwc->idx);
484 }
485
486 static void mipspmu_stop(struct perf_event *event, int flags)
487 {
488         struct hw_perf_event *hwc = &event->hw;
489
490         if (!(hwc->state & PERF_HES_STOPPED)) {
491                 /* We are working on a local event. */
492                 mipsxx_pmu_disable_event(hwc->idx);
493                 barrier();
494                 mipspmu_event_update(event, hwc, hwc->idx);
495                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
496         }
497 }
498
499 static int mipspmu_add(struct perf_event *event, int flags)
500 {
501         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
502         struct hw_perf_event *hwc = &event->hw;
503         int idx;
504         int err = 0;
505
506         perf_pmu_disable(event->pmu);
507
508         /* To look for a free counter for this event. */
509         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
510         if (idx < 0) {
511                 err = idx;
512                 goto out;
513         }
514
515         /*
516          * If there is an event in the counter we are going to use then
517          * make sure it is disabled.
518          */
519         event->hw.idx = idx;
520         mipsxx_pmu_disable_event(idx);
521         cpuc->events[idx] = event;
522
523         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
524         if (flags & PERF_EF_START)
525                 mipspmu_start(event, PERF_EF_RELOAD);
526
527         /* Propagate our changes to the userspace mapping. */
528         perf_event_update_userpage(event);
529
530 out:
531         perf_pmu_enable(event->pmu);
532         return err;
533 }
534
535 static void mipspmu_del(struct perf_event *event, int flags)
536 {
537         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
538         struct hw_perf_event *hwc = &event->hw;
539         int idx = hwc->idx;
540
541         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
542
543         mipspmu_stop(event, PERF_EF_UPDATE);
544         cpuc->events[idx] = NULL;
545         clear_bit(idx, cpuc->used_mask);
546
547         perf_event_update_userpage(event);
548 }
549
550 static void mipspmu_read(struct perf_event *event)
551 {
552         struct hw_perf_event *hwc = &event->hw;
553
554         /* Don't read disabled counters! */
555         if (hwc->idx < 0)
556                 return;
557
558         mipspmu_event_update(event, hwc, hwc->idx);
559 }
560
561 static void mipspmu_enable(struct pmu *pmu)
562 {
563 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
564         write_unlock(&pmuint_rwlock);
565 #endif
566         resume_local_counters();
567 }
568
569 /*
570  * MIPS performance counters can be per-TC. The control registers can
571  * not be directly accessed across CPUs. Hence if we want to do global
572  * control, we need cross CPU calls. on_each_cpu() can help us, but we
573  * can not make sure this function is called with interrupts enabled. So
574  * here we pause local counters and then grab a rwlock and leave the
575  * counters on other CPUs alone. If any counter interrupt raises while
576  * we own the write lock, simply pause local counters on that CPU and
577  * spin in the handler. Also we know we won't be switched to another
578  * CPU after pausing local counters and before grabbing the lock.
579  */
580 static void mipspmu_disable(struct pmu *pmu)
581 {
582         pause_local_counters();
583 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
584         write_lock(&pmuint_rwlock);
585 #endif
586 }
587
588 static atomic_t active_events = ATOMIC_INIT(0);
589 static DEFINE_MUTEX(pmu_reserve_mutex);
590 static int (*save_perf_irq)(void);
591
592 static int mipspmu_get_irq(void)
593 {
594         int err;
595
596         if (mipspmu.irq >= 0) {
597                 /* Request my own irq handler. */
598                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
599                                   IRQF_PERCPU | IRQF_NOBALANCING |
600                                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
601                                   IRQF_SHARED,
602                                   "mips_perf_pmu", &mipspmu);
603                 if (err) {
604                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
605                                 mipspmu.irq);
606                 }
607         } else if (cp0_perfcount_irq < 0) {
608                 /*
609                  * We are sharing the irq number with the timer interrupt.
610                  */
611                 save_perf_irq = perf_irq;
612                 perf_irq = mipsxx_pmu_handle_shared_irq;
613                 err = 0;
614         } else {
615                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
616                 err = -ENOENT;
617         }
618
619         return err;
620 }
621
622 static void mipspmu_free_irq(void)
623 {
624         if (mipspmu.irq >= 0)
625                 free_irq(mipspmu.irq, &mipspmu);
626         else if (cp0_perfcount_irq < 0)
627                 perf_irq = save_perf_irq;
628 }
629
630 /*
631  * mipsxx/rm9000/loongson2 have different performance counters, they have
632  * specific low-level init routines.
633  */
634 static void reset_counters(void *arg);
635 static int __hw_perf_event_init(struct perf_event *event);
636
637 static void hw_perf_event_destroy(struct perf_event *event)
638 {
639         if (atomic_dec_and_mutex_lock(&active_events,
640                                 &pmu_reserve_mutex)) {
641                 /*
642                  * We must not call the destroy function with interrupts
643                  * disabled.
644                  */
645                 on_each_cpu(reset_counters,
646                         (void *)(long)mipspmu.num_counters, 1);
647                 mipspmu_free_irq();
648                 mutex_unlock(&pmu_reserve_mutex);
649         }
650 }
651
652 static int mipspmu_event_init(struct perf_event *event)
653 {
654         int err = 0;
655
656         /* does not support taken branch sampling */
657         if (has_branch_stack(event))
658                 return -EOPNOTSUPP;
659
660         switch (event->attr.type) {
661         case PERF_TYPE_RAW:
662         case PERF_TYPE_HARDWARE:
663         case PERF_TYPE_HW_CACHE:
664                 break;
665
666         default:
667                 return -ENOENT;
668         }
669
670         if (event->cpu >= 0 && !cpu_online(event->cpu))
671                 return -ENODEV;
672
673         if (!atomic_inc_not_zero(&active_events)) {
674                 mutex_lock(&pmu_reserve_mutex);
675                 if (atomic_read(&active_events) == 0)
676                         err = mipspmu_get_irq();
677
678                 if (!err)
679                         atomic_inc(&active_events);
680                 mutex_unlock(&pmu_reserve_mutex);
681         }
682
683         if (err)
684                 return err;
685
686         return __hw_perf_event_init(event);
687 }
688
689 static struct pmu pmu = {
690         .pmu_enable     = mipspmu_enable,
691         .pmu_disable    = mipspmu_disable,
692         .event_init     = mipspmu_event_init,
693         .add            = mipspmu_add,
694         .del            = mipspmu_del,
695         .start          = mipspmu_start,
696         .stop           = mipspmu_stop,
697         .read           = mipspmu_read,
698 };
699
700 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
701 {
702 /*
703  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
704  * event_id.
705  */
706 #ifdef CONFIG_MIPS_MT_SMP
707         if (num_possible_cpus() > 1)
708                 return ((unsigned int)pev->range << 24) |
709                         (pev->cntr_mask & 0xffff00) |
710                         (pev->event_id & 0xff);
711         else
712 #endif /* CONFIG_MIPS_MT_SMP */
713         {
714                 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
715                         return (pev->cntr_mask & 0xfffc00) |
716                                 (pev->event_id & 0x3ff);
717                 else
718                         return (pev->cntr_mask & 0xffff00) |
719                                 (pev->event_id & 0xff);
720         }
721 }
722
723 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
724 {
725
726         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
727                 return ERR_PTR(-EOPNOTSUPP);
728         return &(*mipspmu.general_event_map)[idx];
729 }
730
731 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
732 {
733         unsigned int cache_type, cache_op, cache_result;
734         const struct mips_perf_event *pev;
735
736         cache_type = (config >> 0) & 0xff;
737         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
738                 return ERR_PTR(-EINVAL);
739
740         cache_op = (config >> 8) & 0xff;
741         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
742                 return ERR_PTR(-EINVAL);
743
744         cache_result = (config >> 16) & 0xff;
745         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
746                 return ERR_PTR(-EINVAL);
747
748         pev = &((*mipspmu.cache_event_map)
749                                         [cache_type]
750                                         [cache_op]
751                                         [cache_result]);
752
753         if (pev->cntr_mask == 0)
754                 return ERR_PTR(-EOPNOTSUPP);
755
756         return pev;
757
758 }
759
760 static int validate_group(struct perf_event *event)
761 {
762         struct perf_event *sibling, *leader = event->group_leader;
763         struct cpu_hw_events fake_cpuc;
764
765         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
766
767         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
768                 return -EINVAL;
769
770         for_each_sibling_event(sibling, leader) {
771                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
772                         return -EINVAL;
773         }
774
775         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
776                 return -EINVAL;
777
778         return 0;
779 }
780
781 /* This is needed by specific irq handlers in perf_event_*.c */
782 static void handle_associated_event(struct cpu_hw_events *cpuc,
783                                     int idx, struct perf_sample_data *data,
784                                     struct pt_regs *regs)
785 {
786         struct perf_event *event = cpuc->events[idx];
787         struct hw_perf_event *hwc = &event->hw;
788
789         mipspmu_event_update(event, hwc, idx);
790         data->period = event->hw.last_period;
791         if (!mipspmu_event_set_period(event, hwc, idx))
792                 return;
793
794         if (perf_event_overflow(event, data, regs))
795                 mipsxx_pmu_disable_event(idx);
796 }
797
798
799 static int __n_counters(void)
800 {
801         if (!cpu_has_perf)
802                 return 0;
803         if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
804                 return 1;
805         if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
806                 return 2;
807         if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
808                 return 3;
809
810         return 4;
811 }
812
813 static int n_counters(void)
814 {
815         int counters;
816
817         switch (current_cpu_type()) {
818         case CPU_R10000:
819                 counters = 2;
820                 break;
821
822         case CPU_R12000:
823         case CPU_R14000:
824         case CPU_R16000:
825                 counters = 4;
826                 break;
827
828         default:
829                 counters = __n_counters();
830         }
831
832         return counters;
833 }
834
835 static void loongson3_reset_counters(void *arg)
836 {
837         int counters = (int)(long)arg;
838
839         switch (counters) {
840         case 4:
841                 mipsxx_pmu_write_control(3, 0);
842                 mipspmu.write_counter(3, 0);
843                 mipsxx_pmu_write_control(3, 127<<5);
844                 mipspmu.write_counter(3, 0);
845                 mipsxx_pmu_write_control(3, 191<<5);
846                 mipspmu.write_counter(3, 0);
847                 mipsxx_pmu_write_control(3, 255<<5);
848                 mipspmu.write_counter(3, 0);
849                 mipsxx_pmu_write_control(3, 319<<5);
850                 mipspmu.write_counter(3, 0);
851                 mipsxx_pmu_write_control(3, 383<<5);
852                 mipspmu.write_counter(3, 0);
853                 mipsxx_pmu_write_control(3, 575<<5);
854                 mipspmu.write_counter(3, 0);
855                 fallthrough;
856         case 3:
857                 mipsxx_pmu_write_control(2, 0);
858                 mipspmu.write_counter(2, 0);
859                 mipsxx_pmu_write_control(2, 127<<5);
860                 mipspmu.write_counter(2, 0);
861                 mipsxx_pmu_write_control(2, 191<<5);
862                 mipspmu.write_counter(2, 0);
863                 mipsxx_pmu_write_control(2, 255<<5);
864                 mipspmu.write_counter(2, 0);
865                 mipsxx_pmu_write_control(2, 319<<5);
866                 mipspmu.write_counter(2, 0);
867                 mipsxx_pmu_write_control(2, 383<<5);
868                 mipspmu.write_counter(2, 0);
869                 mipsxx_pmu_write_control(2, 575<<5);
870                 mipspmu.write_counter(2, 0);
871                 fallthrough;
872         case 2:
873                 mipsxx_pmu_write_control(1, 0);
874                 mipspmu.write_counter(1, 0);
875                 mipsxx_pmu_write_control(1, 127<<5);
876                 mipspmu.write_counter(1, 0);
877                 mipsxx_pmu_write_control(1, 191<<5);
878                 mipspmu.write_counter(1, 0);
879                 mipsxx_pmu_write_control(1, 255<<5);
880                 mipspmu.write_counter(1, 0);
881                 mipsxx_pmu_write_control(1, 319<<5);
882                 mipspmu.write_counter(1, 0);
883                 mipsxx_pmu_write_control(1, 383<<5);
884                 mipspmu.write_counter(1, 0);
885                 mipsxx_pmu_write_control(1, 575<<5);
886                 mipspmu.write_counter(1, 0);
887                 fallthrough;
888         case 1:
889                 mipsxx_pmu_write_control(0, 0);
890                 mipspmu.write_counter(0, 0);
891                 mipsxx_pmu_write_control(0, 127<<5);
892                 mipspmu.write_counter(0, 0);
893                 mipsxx_pmu_write_control(0, 191<<5);
894                 mipspmu.write_counter(0, 0);
895                 mipsxx_pmu_write_control(0, 255<<5);
896                 mipspmu.write_counter(0, 0);
897                 mipsxx_pmu_write_control(0, 319<<5);
898                 mipspmu.write_counter(0, 0);
899                 mipsxx_pmu_write_control(0, 383<<5);
900                 mipspmu.write_counter(0, 0);
901                 mipsxx_pmu_write_control(0, 575<<5);
902                 mipspmu.write_counter(0, 0);
903                 break;
904         }
905 }
906
907 static void reset_counters(void *arg)
908 {
909         int counters = (int)(long)arg;
910
911         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
912                 loongson3_reset_counters(arg);
913                 return;
914         }
915
916         switch (counters) {
917         case 4:
918                 mipsxx_pmu_write_control(3, 0);
919                 mipspmu.write_counter(3, 0);
920                 fallthrough;
921         case 3:
922                 mipsxx_pmu_write_control(2, 0);
923                 mipspmu.write_counter(2, 0);
924                 fallthrough;
925         case 2:
926                 mipsxx_pmu_write_control(1, 0);
927                 mipspmu.write_counter(1, 0);
928                 fallthrough;
929         case 1:
930                 mipsxx_pmu_write_control(0, 0);
931                 mipspmu.write_counter(0, 0);
932                 break;
933         }
934 }
935
936 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
937 static const struct mips_perf_event mipsxxcore_event_map
938                                 [PERF_COUNT_HW_MAX] = {
939         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
940         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
941         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
942         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
943 };
944
945 /* 74K/proAptiv core has different branch event code. */
946 static const struct mips_perf_event mipsxxcore_event_map2
947                                 [PERF_COUNT_HW_MAX] = {
948         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
949         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
950         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
951         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
952 };
953
954 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
955         [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
956         [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
957         /* These only count dcache, not icache */
958         [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
959         [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
960         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
961         [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
962 };
963
964 static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
965         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
966         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
967         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
968         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
969 };
970
971 static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
972         [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
973         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
974         [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
975         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
976         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
977 };
978
979 static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
980         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
981         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
982         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
983         [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
984         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
985         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
986 };
987
988 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
989         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
990         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
991         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
992         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
993         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
994         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
995         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
996 };
997
998 static const struct mips_perf_event bmips5000_event_map
999                                 [PERF_COUNT_HW_MAX] = {
1000         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003 };
1004
1005 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
1006         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
1007         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
1008         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1009         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1010         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
1011         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
1012 };
1013
1014 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1015 static const struct mips_perf_event mipsxxcore_cache_map
1016                                 [PERF_COUNT_HW_CACHE_MAX]
1017                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1018                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1019 [C(L1D)] = {
1020         /*
1021          * Like some other architectures (e.g. ARM), the performance
1022          * counters don't differentiate between read and write
1023          * accesses/misses, so this isn't strictly correct, but it's the
1024          * best we can do. Writes and reads get combined.
1025          */
1026         [C(OP_READ)] = {
1027                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1028                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1029         },
1030         [C(OP_WRITE)] = {
1031                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1032                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1033         },
1034 },
1035 [C(L1I)] = {
1036         [C(OP_READ)] = {
1037                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1038                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1039         },
1040         [C(OP_WRITE)] = {
1041                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1042                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1043         },
1044         [C(OP_PREFETCH)] = {
1045                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
1046                 /*
1047                  * Note that MIPS has only "hit" events countable for
1048                  * the prefetch operation.
1049                  */
1050         },
1051 },
1052 [C(LL)] = {
1053         [C(OP_READ)] = {
1054                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1055                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1056         },
1057         [C(OP_WRITE)] = {
1058                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1059                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1060         },
1061 },
1062 [C(DTLB)] = {
1063         [C(OP_READ)] = {
1064                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1065                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1066         },
1067         [C(OP_WRITE)] = {
1068                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1069                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1070         },
1071 },
1072 [C(ITLB)] = {
1073         [C(OP_READ)] = {
1074                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1075                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1076         },
1077         [C(OP_WRITE)] = {
1078                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1079                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1080         },
1081 },
1082 [C(BPU)] = {
1083         /* Using the same code for *HW_BRANCH* */
1084         [C(OP_READ)] = {
1085                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1086                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1087         },
1088         [C(OP_WRITE)] = {
1089                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1090                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1091         },
1092 },
1093 };
1094
1095 /* 74K/proAptiv core has completely different cache event map. */
1096 static const struct mips_perf_event mipsxxcore_cache_map2
1097                                 [PERF_COUNT_HW_CACHE_MAX]
1098                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1099                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1100 [C(L1D)] = {
1101         /*
1102          * Like some other architectures (e.g. ARM), the performance
1103          * counters don't differentiate between read and write
1104          * accesses/misses, so this isn't strictly correct, but it's the
1105          * best we can do. Writes and reads get combined.
1106          */
1107         [C(OP_READ)] = {
1108                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1109                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1110         },
1111         [C(OP_WRITE)] = {
1112                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1113                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1114         },
1115 },
1116 [C(L1I)] = {
1117         [C(OP_READ)] = {
1118                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1119                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1120         },
1121         [C(OP_WRITE)] = {
1122                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1123                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1124         },
1125         [C(OP_PREFETCH)] = {
1126                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
1127                 /*
1128                  * Note that MIPS has only "hit" events countable for
1129                  * the prefetch operation.
1130                  */
1131         },
1132 },
1133 [C(LL)] = {
1134         [C(OP_READ)] = {
1135                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1136                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1137         },
1138         [C(OP_WRITE)] = {
1139                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1140                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1141         },
1142 },
1143 /*
1144  * 74K core does not have specific DTLB events. proAptiv core has
1145  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1146  * not included here. One can use raw events if really needed.
1147  */
1148 [C(ITLB)] = {
1149         [C(OP_READ)] = {
1150                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1151                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1152         },
1153         [C(OP_WRITE)] = {
1154                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1155                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1156         },
1157 },
1158 [C(BPU)] = {
1159         /* Using the same code for *HW_BRANCH* */
1160         [C(OP_READ)] = {
1161                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1162                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1163         },
1164         [C(OP_WRITE)] = {
1165                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1166                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1167         },
1168 },
1169 };
1170
1171 static const struct mips_perf_event i6x00_cache_map
1172                                 [PERF_COUNT_HW_CACHE_MAX]
1173                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1174                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175 [C(L1D)] = {
1176         [C(OP_READ)] = {
1177                 [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1178                 [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1179         },
1180         [C(OP_WRITE)] = {
1181                 [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1182                 [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1183         },
1184 },
1185 [C(L1I)] = {
1186         [C(OP_READ)] = {
1187                 [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1188                 [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1189         },
1190 },
1191 [C(DTLB)] = {
1192         /* Can't distinguish read & write */
1193         [C(OP_READ)] = {
1194                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1195                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1196         },
1197         [C(OP_WRITE)] = {
1198                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1199                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1200         },
1201 },
1202 [C(BPU)] = {
1203         /* Conditional branches / mispredicted */
1204         [C(OP_READ)] = {
1205                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1206                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1207         },
1208 },
1209 };
1210
1211 static const struct mips_perf_event loongson3_cache_map1
1212                                 [PERF_COUNT_HW_CACHE_MAX]
1213                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1214                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215 [C(L1D)] = {
1216         /*
1217          * Like some other architectures (e.g. ARM), the performance
1218          * counters don't differentiate between read and write
1219          * accesses/misses, so this isn't strictly correct, but it's the
1220          * best we can do. Writes and reads get combined.
1221          */
1222         [C(OP_READ)] = {
1223                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1224         },
1225         [C(OP_WRITE)] = {
1226                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1227         },
1228 },
1229 [C(L1I)] = {
1230         [C(OP_READ)] = {
1231                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1232         },
1233         [C(OP_WRITE)] = {
1234                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1235         },
1236 },
1237 [C(DTLB)] = {
1238         [C(OP_READ)] = {
1239                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1240         },
1241         [C(OP_WRITE)] = {
1242                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1243         },
1244 },
1245 [C(ITLB)] = {
1246         [C(OP_READ)] = {
1247                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1248         },
1249         [C(OP_WRITE)] = {
1250                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1251         },
1252 },
1253 [C(BPU)] = {
1254         /* Using the same code for *HW_BRANCH* */
1255         [C(OP_READ)] = {
1256                 [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1257                 [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1258         },
1259         [C(OP_WRITE)] = {
1260                 [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1261                 [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1262         },
1263 },
1264 };
1265
1266 static const struct mips_perf_event loongson3_cache_map2
1267                                 [PERF_COUNT_HW_CACHE_MAX]
1268                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1269                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1270 [C(L1D)] = {
1271         /*
1272          * Like some other architectures (e.g. ARM), the performance
1273          * counters don't differentiate between read and write
1274          * accesses/misses, so this isn't strictly correct, but it's the
1275          * best we can do. Writes and reads get combined.
1276          */
1277         [C(OP_READ)] = {
1278                 [C(RESULT_ACCESS)]      = { 0x156, CNTR_ALL },
1279         },
1280         [C(OP_WRITE)] = {
1281                 [C(RESULT_ACCESS)]      = { 0x155, CNTR_ALL },
1282                 [C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1283         },
1284 },
1285 [C(L1I)] = {
1286         [C(OP_READ)] = {
1287                 [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1288         },
1289         [C(OP_WRITE)] = {
1290                 [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1291         },
1292 },
1293 [C(LL)] = {
1294         [C(OP_READ)] = {
1295                 [C(RESULT_ACCESS)]      = { 0x1b6, CNTR_ALL },
1296         },
1297         [C(OP_WRITE)] = {
1298                 [C(RESULT_ACCESS)]      = { 0x1b7, CNTR_ALL },
1299         },
1300         [C(OP_PREFETCH)] = {
1301                 [C(RESULT_ACCESS)]      = { 0x1bf, CNTR_ALL },
1302         },
1303 },
1304 [C(DTLB)] = {
1305         [C(OP_READ)] = {
1306                 [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1307         },
1308         [C(OP_WRITE)] = {
1309                 [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1310         },
1311 },
1312 [C(ITLB)] = {
1313         [C(OP_READ)] = {
1314                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1315         },
1316         [C(OP_WRITE)] = {
1317                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1318         },
1319 },
1320 [C(BPU)] = {
1321         /* Using the same code for *HW_BRANCH* */
1322         [C(OP_READ)] = {
1323                 [C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1324                 [C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1325         },
1326 },
1327 };
1328
1329 static const struct mips_perf_event loongson3_cache_map3
1330                                 [PERF_COUNT_HW_CACHE_MAX]
1331                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1332                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1333 [C(L1D)] = {
1334         /*
1335          * Like some other architectures (e.g. ARM), the performance
1336          * counters don't differentiate between read and write
1337          * accesses/misses, so this isn't strictly correct, but it's the
1338          * best we can do. Writes and reads get combined.
1339          */
1340         [C(OP_READ)] = {
1341                 [C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1342                 [C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1343         },
1344         [C(OP_PREFETCH)] = {
1345                 [C(RESULT_ACCESS)]      = { 0xaa, CNTR_ALL },
1346                 [C(RESULT_MISS)]        = { 0xa9, CNTR_ALL },
1347         },
1348 },
1349 [C(L1I)] = {
1350         [C(OP_READ)] = {
1351                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ALL },
1352                 [C(RESULT_MISS)]        = { 0x1d, CNTR_ALL },
1353         },
1354 },
1355 [C(LL)] = {
1356         [C(OP_READ)] = {
1357                 [C(RESULT_ACCESS)]      = { 0x2e, CNTR_ALL },
1358                 [C(RESULT_MISS)]        = { 0x2f, CNTR_ALL },
1359         },
1360 },
1361 [C(DTLB)] = {
1362         [C(OP_READ)] = {
1363                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1364                 [C(RESULT_MISS)]        = { 0x1b, CNTR_ALL },
1365         },
1366 },
1367 [C(ITLB)] = {
1368         [C(OP_READ)] = {
1369                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1370         },
1371 },
1372 [C(BPU)] = {
1373         /* Using the same code for *HW_BRANCH* */
1374         [C(OP_READ)] = {
1375                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1376                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1377         },
1378 },
1379 };
1380
1381 /* BMIPS5000 */
1382 static const struct mips_perf_event bmips5000_cache_map
1383                                 [PERF_COUNT_HW_CACHE_MAX]
1384                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1385                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1386 [C(L1D)] = {
1387         /*
1388          * Like some other architectures (e.g. ARM), the performance
1389          * counters don't differentiate between read and write
1390          * accesses/misses, so this isn't strictly correct, but it's the
1391          * best we can do. Writes and reads get combined.
1392          */
1393         [C(OP_READ)] = {
1394                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1395                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1396         },
1397         [C(OP_WRITE)] = {
1398                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1399                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1400         },
1401 },
1402 [C(L1I)] = {
1403         [C(OP_READ)] = {
1404                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1405                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1406         },
1407         [C(OP_WRITE)] = {
1408                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1409                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1410         },
1411         [C(OP_PREFETCH)] = {
1412                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1413                 /*
1414                  * Note that MIPS has only "hit" events countable for
1415                  * the prefetch operation.
1416                  */
1417         },
1418 },
1419 [C(LL)] = {
1420         [C(OP_READ)] = {
1421                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1422                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1423         },
1424         [C(OP_WRITE)] = {
1425                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1426                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1427         },
1428 },
1429 [C(BPU)] = {
1430         /* Using the same code for *HW_BRANCH* */
1431         [C(OP_READ)] = {
1432                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1433         },
1434         [C(OP_WRITE)] = {
1435                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1436         },
1437 },
1438 };
1439
1440 static const struct mips_perf_event octeon_cache_map
1441                                 [PERF_COUNT_HW_CACHE_MAX]
1442                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1443                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1444 [C(L1D)] = {
1445         [C(OP_READ)] = {
1446                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1447                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1448         },
1449         [C(OP_WRITE)] = {
1450                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1451         },
1452 },
1453 [C(L1I)] = {
1454         [C(OP_READ)] = {
1455                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1456         },
1457         [C(OP_PREFETCH)] = {
1458                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1459         },
1460 },
1461 [C(DTLB)] = {
1462         /*
1463          * Only general DTLB misses are counted use the same event for
1464          * read and write.
1465          */
1466         [C(OP_READ)] = {
1467                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1468         },
1469         [C(OP_WRITE)] = {
1470                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1471         },
1472 },
1473 [C(ITLB)] = {
1474         [C(OP_READ)] = {
1475                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1476         },
1477 },
1478 };
1479
1480 static const struct mips_perf_event xlp_cache_map
1481                                 [PERF_COUNT_HW_CACHE_MAX]
1482                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1483                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1484 [C(L1D)] = {
1485         [C(OP_READ)] = {
1486                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1487                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1488         },
1489         [C(OP_WRITE)] = {
1490                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1491                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1492         },
1493 },
1494 [C(L1I)] = {
1495         [C(OP_READ)] = {
1496                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1497                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1498         },
1499 },
1500 [C(LL)] = {
1501         [C(OP_READ)] = {
1502                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1503                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1504         },
1505         [C(OP_WRITE)] = {
1506                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1507                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1508         },
1509 },
1510 [C(DTLB)] = {
1511         /*
1512          * Only general DTLB misses are counted use the same event for
1513          * read and write.
1514          */
1515         [C(OP_READ)] = {
1516                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1517         },
1518         [C(OP_WRITE)] = {
1519                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1520         },
1521 },
1522 [C(ITLB)] = {
1523         [C(OP_READ)] = {
1524                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1525         },
1526         [C(OP_WRITE)] = {
1527                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1528         },
1529 },
1530 [C(BPU)] = {
1531         [C(OP_READ)] = {
1532                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1533         },
1534 },
1535 };
1536
1537 static int __hw_perf_event_init(struct perf_event *event)
1538 {
1539         struct perf_event_attr *attr = &event->attr;
1540         struct hw_perf_event *hwc = &event->hw;
1541         const struct mips_perf_event *pev;
1542         int err;
1543
1544         /* Returning MIPS event descriptor for generic perf event. */
1545         if (PERF_TYPE_HARDWARE == event->attr.type) {
1546                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1547                         return -EINVAL;
1548                 pev = mipspmu_map_general_event(event->attr.config);
1549         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1550                 pev = mipspmu_map_cache_event(event->attr.config);
1551         } else if (PERF_TYPE_RAW == event->attr.type) {
1552                 /* We are working on the global raw event. */
1553                 mutex_lock(&raw_event_mutex);
1554                 pev = mipspmu.map_raw_event(event->attr.config);
1555         } else {
1556                 /* The event type is not (yet) supported. */
1557                 return -EOPNOTSUPP;
1558         }
1559
1560         if (IS_ERR(pev)) {
1561                 if (PERF_TYPE_RAW == event->attr.type)
1562                         mutex_unlock(&raw_event_mutex);
1563                 return PTR_ERR(pev);
1564         }
1565
1566         /*
1567          * We allow max flexibility on how each individual counter shared
1568          * by the single CPU operates (the mode exclusion and the range).
1569          */
1570         hwc->config_base = MIPS_PERFCTRL_IE;
1571
1572         hwc->event_base = mipspmu_perf_event_encode(pev);
1573         if (PERF_TYPE_RAW == event->attr.type)
1574                 mutex_unlock(&raw_event_mutex);
1575
1576         if (!attr->exclude_user)
1577                 hwc->config_base |= MIPS_PERFCTRL_U;
1578         if (!attr->exclude_kernel) {
1579                 hwc->config_base |= MIPS_PERFCTRL_K;
1580                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1581                 hwc->config_base |= MIPS_PERFCTRL_EXL;
1582         }
1583         if (!attr->exclude_hv)
1584                 hwc->config_base |= MIPS_PERFCTRL_S;
1585
1586         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1587         /*
1588          * The event can belong to another cpu. We do not assign a local
1589          * counter for it for now.
1590          */
1591         hwc->idx = -1;
1592         hwc->config = 0;
1593
1594         if (!hwc->sample_period) {
1595                 hwc->sample_period  = mipspmu.max_period;
1596                 hwc->last_period    = hwc->sample_period;
1597                 local64_set(&hwc->period_left, hwc->sample_period);
1598         }
1599
1600         err = 0;
1601         if (event->group_leader != event)
1602                 err = validate_group(event);
1603
1604         event->destroy = hw_perf_event_destroy;
1605
1606         if (err)
1607                 event->destroy(event);
1608
1609         return err;
1610 }
1611
1612 static void pause_local_counters(void)
1613 {
1614         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615         int ctr = mipspmu.num_counters;
1616         unsigned long flags;
1617
1618         local_irq_save(flags);
1619         do {
1620                 ctr--;
1621                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1622                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1623                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1624         } while (ctr > 0);
1625         local_irq_restore(flags);
1626 }
1627
1628 static void resume_local_counters(void)
1629 {
1630         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631         int ctr = mipspmu.num_counters;
1632
1633         do {
1634                 ctr--;
1635                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1636         } while (ctr > 0);
1637 }
1638
1639 static int mipsxx_pmu_handle_shared_irq(void)
1640 {
1641         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1642         struct perf_sample_data data;
1643         unsigned int counters = mipspmu.num_counters;
1644         u64 counter;
1645         int n, handled = IRQ_NONE;
1646         struct pt_regs *regs;
1647
1648         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1649                 return handled;
1650         /*
1651          * First we pause the local counters, so that when we are locked
1652          * here, the counters are all paused. When it gets locked due to
1653          * perf_disable(), the timer interrupt handler will be delayed.
1654          *
1655          * See also mipsxx_pmu_start().
1656          */
1657         pause_local_counters();
1658 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1659         read_lock(&pmuint_rwlock);
1660 #endif
1661
1662         regs = get_irq_regs();
1663
1664         perf_sample_data_init(&data, 0, 0);
1665
1666         for (n = counters - 1; n >= 0; n--) {
1667                 if (!test_bit(n, cpuc->used_mask))
1668                         continue;
1669
1670                 counter = mipspmu.read_counter(n);
1671                 if (!(counter & mipspmu.overflow))
1672                         continue;
1673
1674                 handle_associated_event(cpuc, n, &data, regs);
1675                 handled = IRQ_HANDLED;
1676         }
1677
1678 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1679         read_unlock(&pmuint_rwlock);
1680 #endif
1681         resume_local_counters();
1682
1683         /*
1684          * Do all the work for the pending perf events. We can do this
1685          * in here because the performance counter interrupt is a regular
1686          * interrupt, not NMI.
1687          */
1688         if (handled == IRQ_HANDLED)
1689                 irq_work_run();
1690
1691         return handled;
1692 }
1693
1694 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1695 {
1696         return mipsxx_pmu_handle_shared_irq();
1697 }
1698
1699 /* 24K */
1700 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1701         ((b) == 0 || (b) == 1 || (b) == 11)
1702
1703 /* 34K */
1704 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1705         ((b) == 0 || (b) == 1 || (b) == 11)
1706 #ifdef CONFIG_MIPS_MT_SMP
1707 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1708         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1709          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1710          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1711          ((b) >= 64 && (b) <= 67))
1712 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1713 #endif
1714
1715 /* 74K */
1716 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1717         ((b) == 0 || (b) == 1)
1718
1719 /* proAptiv */
1720 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1721         ((b) == 0 || (b) == 1)
1722 /* P5600 */
1723 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1724         ((b) == 0 || (b) == 1)
1725
1726 /* 1004K */
1727 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1728         ((b) == 0 || (b) == 1 || (b) == 11)
1729 #ifdef CONFIG_MIPS_MT_SMP
1730 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1731         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1732          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1733          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1734          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1735          ((b) >= 64 && (b) <= 67))
1736 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1737 #endif
1738
1739 /* interAptiv */
1740 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1741         ((b) == 0 || (b) == 1 || (b) == 11)
1742 #ifdef CONFIG_MIPS_MT_SMP
1743 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1744 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1745         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1746          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1747          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1748          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1749          ((b) >= 64 && (b) <= 67))
1750 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1751 #endif
1752
1753 /* BMIPS5000 */
1754 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1755         ((b) == 0 || (b) == 1)
1756
1757
1758 /*
1759  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1760  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1761  * indicate the even/odd bank selector. So, for example, when user wants to take
1762  * the Event Num of 15 for odd counters (by referring to the user manual), then
1763  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1764  * to be used.
1765  *
1766  * Some newer cores have even more events, in which case the user can use raw
1767  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1768  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1769  */
1770 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1771 {
1772         /* currently most cores have 7-bit event numbers */
1773         int pmu_type;
1774         unsigned int raw_id = config & 0xff;
1775         unsigned int base_id = raw_id & 0x7f;
1776
1777         switch (current_cpu_type()) {
1778         case CPU_24K:
1779                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1780                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781                 else
1782                         raw_event.cntr_mask =
1783                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1784 #ifdef CONFIG_MIPS_MT_SMP
1785                 /*
1786                  * This is actually doing nothing. Non-multithreading
1787                  * CPUs will not check and calculate the range.
1788                  */
1789                 raw_event.range = P;
1790 #endif
1791                 break;
1792         case CPU_34K:
1793                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1794                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1795                 else
1796                         raw_event.cntr_mask =
1797                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1798 #ifdef CONFIG_MIPS_MT_SMP
1799                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1800                         raw_event.range = P;
1801                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1802                         raw_event.range = V;
1803                 else
1804                         raw_event.range = T;
1805 #endif
1806                 break;
1807         case CPU_74K:
1808         case CPU_1074K:
1809                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1810                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1811                 else
1812                         raw_event.cntr_mask =
1813                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1814 #ifdef CONFIG_MIPS_MT_SMP
1815                 raw_event.range = P;
1816 #endif
1817                 break;
1818         case CPU_PROAPTIV:
1819                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1820                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1821                 else
1822                         raw_event.cntr_mask =
1823                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1824 #ifdef CONFIG_MIPS_MT_SMP
1825                 raw_event.range = P;
1826 #endif
1827                 break;
1828         case CPU_P5600:
1829         case CPU_P6600:
1830                 /* 8-bit event numbers */
1831                 raw_id = config & 0x1ff;
1832                 base_id = raw_id & 0xff;
1833                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1834                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1835                 else
1836                         raw_event.cntr_mask =
1837                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1838 #ifdef CONFIG_MIPS_MT_SMP
1839                 raw_event.range = P;
1840 #endif
1841                 break;
1842         case CPU_I6400:
1843         case CPU_I6500:
1844                 /* 8-bit event numbers */
1845                 base_id = config & 0xff;
1846                 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1847                 break;
1848         case CPU_1004K:
1849                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1850                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1851                 else
1852                         raw_event.cntr_mask =
1853                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1854 #ifdef CONFIG_MIPS_MT_SMP
1855                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1856                         raw_event.range = P;
1857                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1858                         raw_event.range = V;
1859                 else
1860                         raw_event.range = T;
1861 #endif
1862                 break;
1863         case CPU_INTERAPTIV:
1864                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1865                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1866                 else
1867                         raw_event.cntr_mask =
1868                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1869 #ifdef CONFIG_MIPS_MT_SMP
1870                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1871                         raw_event.range = P;
1872                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1873                         raw_event.range = V;
1874                 else
1875                         raw_event.range = T;
1876 #endif
1877                 break;
1878         case CPU_BMIPS5000:
1879                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1880                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1881                 else
1882                         raw_event.cntr_mask =
1883                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1884                 break;
1885         case CPU_LOONGSON64:
1886                 pmu_type = get_loongson3_pmu_type();
1887
1888                 switch (pmu_type) {
1889                 case LOONGSON_PMU_TYPE1:
1890                         raw_event.cntr_mask =
1891                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1892                         break;
1893                 case LOONGSON_PMU_TYPE2:
1894                         base_id = config & 0x3ff;
1895                         raw_event.cntr_mask = CNTR_ALL;
1896
1897                         if ((base_id >= 1 && base_id < 28) ||
1898                                 (base_id >= 64 && base_id < 90) ||
1899                                 (base_id >= 128 && base_id < 164) ||
1900                                 (base_id >= 192 && base_id < 200) ||
1901                                 (base_id >= 256 && base_id < 275) ||
1902                                 (base_id >= 320 && base_id < 361) ||
1903                                 (base_id >= 384 && base_id < 574))
1904                                 break;
1905
1906                         return ERR_PTR(-EOPNOTSUPP);
1907                 case LOONGSON_PMU_TYPE3:
1908                         base_id = raw_id;
1909                         raw_event.cntr_mask = CNTR_ALL;
1910                         break;
1911                 }
1912                 break;
1913         }
1914
1915         raw_event.event_id = base_id;
1916
1917         return &raw_event;
1918 }
1919
1920 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1921 {
1922         unsigned int base_id = config & 0x7f;
1923         unsigned int event_max;
1924
1925
1926         raw_event.cntr_mask = CNTR_ALL;
1927         raw_event.event_id = base_id;
1928
1929         if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
1930                 event_max = 0x5f;
1931         else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
1932                 event_max = 0x42;
1933         else
1934                 event_max = 0x3a;
1935
1936         if (base_id > event_max) {
1937                 return ERR_PTR(-EOPNOTSUPP);
1938         }
1939
1940         switch (base_id) {
1941         case 0x00:
1942         case 0x0f:
1943         case 0x1e:
1944         case 0x1f:
1945         case 0x2f:
1946         case 0x34:
1947         case 0x3e ... 0x3f:
1948                 return ERR_PTR(-EOPNOTSUPP);
1949         default:
1950                 break;
1951         }
1952
1953         return &raw_event;
1954 }
1955
1956 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1957 {
1958         unsigned int raw_id = config & 0xff;
1959
1960         /* Only 1-63 are defined */
1961         if ((raw_id < 0x01) || (raw_id > 0x3f))
1962                 return ERR_PTR(-EOPNOTSUPP);
1963
1964         raw_event.cntr_mask = CNTR_ALL;
1965         raw_event.event_id = raw_id;
1966
1967         return &raw_event;
1968 }
1969
1970 static int __init
1971 init_hw_perf_events(void)
1972 {
1973         int counters, irq, pmu_type;
1974
1975         pr_info("Performance counters: ");
1976
1977         counters = n_counters();
1978         if (counters == 0) {
1979                 pr_cont("No available PMU.\n");
1980                 return -ENODEV;
1981         }
1982
1983 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1984         if (!cpu_has_mipsmt_pertccounters)
1985                 counters = counters_total_to_per_cpu(counters);
1986 #endif
1987
1988         if (get_c0_perfcount_int)
1989                 irq = get_c0_perfcount_int();
1990         else if (cp0_perfcount_irq >= 0)
1991                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1992         else
1993                 irq = -1;
1994
1995         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1996
1997         switch (current_cpu_type()) {
1998         case CPU_24K:
1999                 mipspmu.name = "mips/24K";
2000                 mipspmu.general_event_map = &mipsxxcore_event_map;
2001                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2002                 break;
2003         case CPU_34K:
2004                 mipspmu.name = "mips/34K";
2005                 mipspmu.general_event_map = &mipsxxcore_event_map;
2006                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2007                 break;
2008         case CPU_74K:
2009                 mipspmu.name = "mips/74K";
2010                 mipspmu.general_event_map = &mipsxxcore_event_map2;
2011                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2012                 break;
2013         case CPU_PROAPTIV:
2014                 mipspmu.name = "mips/proAptiv";
2015                 mipspmu.general_event_map = &mipsxxcore_event_map2;
2016                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2017                 break;
2018         case CPU_P5600:
2019                 mipspmu.name = "mips/P5600";
2020                 mipspmu.general_event_map = &mipsxxcore_event_map2;
2021                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2022                 break;
2023         case CPU_P6600:
2024                 mipspmu.name = "mips/P6600";
2025                 mipspmu.general_event_map = &mipsxxcore_event_map2;
2026                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2027                 break;
2028         case CPU_I6400:
2029                 mipspmu.name = "mips/I6400";
2030                 mipspmu.general_event_map = &i6x00_event_map;
2031                 mipspmu.cache_event_map = &i6x00_cache_map;
2032                 break;
2033         case CPU_I6500:
2034                 mipspmu.name = "mips/I6500";
2035                 mipspmu.general_event_map = &i6x00_event_map;
2036                 mipspmu.cache_event_map = &i6x00_cache_map;
2037                 break;
2038         case CPU_1004K:
2039                 mipspmu.name = "mips/1004K";
2040                 mipspmu.general_event_map = &mipsxxcore_event_map;
2041                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2042                 break;
2043         case CPU_1074K:
2044                 mipspmu.name = "mips/1074K";
2045                 mipspmu.general_event_map = &mipsxxcore_event_map;
2046                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2047                 break;
2048         case CPU_INTERAPTIV:
2049                 mipspmu.name = "mips/interAptiv";
2050                 mipspmu.general_event_map = &mipsxxcore_event_map;
2051                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2052                 break;
2053         case CPU_LOONGSON32:
2054                 mipspmu.name = "mips/loongson1";
2055                 mipspmu.general_event_map = &mipsxxcore_event_map;
2056                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2057                 break;
2058         case CPU_LOONGSON64:
2059                 mipspmu.name = "mips/loongson3";
2060                 pmu_type = get_loongson3_pmu_type();
2061
2062                 switch (pmu_type) {
2063                 case LOONGSON_PMU_TYPE1:
2064                         counters = 2;
2065                         mipspmu.general_event_map = &loongson3_event_map1;
2066                         mipspmu.cache_event_map = &loongson3_cache_map1;
2067                         break;
2068                 case LOONGSON_PMU_TYPE2:
2069                         counters = 4;
2070                         mipspmu.general_event_map = &loongson3_event_map2;
2071                         mipspmu.cache_event_map = &loongson3_cache_map2;
2072                         break;
2073                 case LOONGSON_PMU_TYPE3:
2074                         counters = 4;
2075                         mipspmu.general_event_map = &loongson3_event_map3;
2076                         mipspmu.cache_event_map = &loongson3_cache_map3;
2077                         break;
2078                 }
2079                 break;
2080         case CPU_CAVIUM_OCTEON:
2081         case CPU_CAVIUM_OCTEON_PLUS:
2082         case CPU_CAVIUM_OCTEON2:
2083         case CPU_CAVIUM_OCTEON3:
2084                 mipspmu.name = "octeon";
2085                 mipspmu.general_event_map = &octeon_event_map;
2086                 mipspmu.cache_event_map = &octeon_cache_map;
2087                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2088                 break;
2089         case CPU_BMIPS5000:
2090                 mipspmu.name = "BMIPS5000";
2091                 mipspmu.general_event_map = &bmips5000_event_map;
2092                 mipspmu.cache_event_map = &bmips5000_cache_map;
2093                 break;
2094         case CPU_XLP:
2095                 mipspmu.name = "xlp";
2096                 mipspmu.general_event_map = &xlp_event_map;
2097                 mipspmu.cache_event_map = &xlp_cache_map;
2098                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
2099                 break;
2100         default:
2101                 pr_cont("Either hardware does not support performance "
2102                         "counters, or not yet implemented.\n");
2103                 return -ENODEV;
2104         }
2105
2106         mipspmu.num_counters = counters;
2107         mipspmu.irq = irq;
2108
2109         if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2110                 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2111                         counter_bits = 48;
2112                         mipspmu.max_period = (1ULL << 47) - 1;
2113                         mipspmu.valid_count = (1ULL << 47) - 1;
2114                         mipspmu.overflow = 1ULL << 47;
2115                 } else {
2116                         counter_bits = 64;
2117                         mipspmu.max_period = (1ULL << 63) - 1;
2118                         mipspmu.valid_count = (1ULL << 63) - 1;
2119                         mipspmu.overflow = 1ULL << 63;
2120                 }
2121                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2122                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2123         } else {
2124                 counter_bits = 32;
2125                 mipspmu.max_period = (1ULL << 31) - 1;
2126                 mipspmu.valid_count = (1ULL << 31) - 1;
2127                 mipspmu.overflow = 1ULL << 31;
2128                 mipspmu.read_counter = mipsxx_pmu_read_counter;
2129                 mipspmu.write_counter = mipsxx_pmu_write_counter;
2130         }
2131
2132         on_each_cpu(reset_counters, (void *)(long)counters, 1);
2133
2134         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2135                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2136                 irq < 0 ? " (share with timer interrupt)" : "");
2137
2138         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2139
2140         return 0;
2141 }
2142 early_initcall(init_hw_perf_events);